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Abstract. A three-dimensional grid drawing of a graph is a placement
of the vertices at distinct points with integer coordinates, such that the
straight line-segments representing the edges are pairwise non-crossing.
A O(n3/2) volume bound is proved for three-dimensional grid drawings
of graphs with bounded degree, graphs with bounded genus, and graphs
with no bounded complete graph as a minor. The previous best bound
for these graph families was O(n2). These results (partially) solve open
problems due to Pach, Thiele, and Tóth [Graph Drawing 1997] and Fel-
sner, Liotta, and Wismath [Graph Drawing 2001].

1 Introduction

A three-dimensional straight-line grid drawing of a graph, henceforth called a
3D drawing, is a placement of the vertices at distinct points in Z

3 (called grid-
points), such that the line-segments representing the edges are pairwise non-
crossing. That is, distinct edges only intersect at common endpoints, and each
edge only intersects a vertex that is an endpoint of that edge. In contrast to
the case in the plane, it is well known that every graph has a 3D drawing. We
are therefore interested in optimising certain measures of the aesthetic quality
of such drawings.

The bounding box of a 3D drawing is the minimum axis-aligned box contain-
ing the drawing. If the bounding box has side lengths X − 1, Y − 1 and Z − 1,
then we speak of an X×Y ×Z drawing with volume X ·Y ·Z. That is, the volume
of a 3D drawing is the number of gridpoints in the bounding box. This definition
is formulated so that 2D drawings have positive volume. We are interested in 3D
drawings with small volume, which is a widely studied problem [3,4,5,6,7,8,10,
11,12,14,18,24,25,27]. Three-dimensional graph drawings in which the vertices
are allowed real coordinates have also been studied (see the references in [11]).
The authors have also established bounds on the volume of three-dimensional
polyline grid drawings, where bends in the edges are also at gridpoints [11]. Ta-
ble 1 summarises the best known upper bounds on the volume of 3D drawings,
including those established in this paper.
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Table 1. Upper bounds on the volume of 3D drawings of n-vertex m-edge graphs.

graph family volume reference
arbitrary O(n3) Cohen et al. [5]
arbitrary O(m4/3n) Theorem 4
maximum degree ∆ O(∆mn) Theorem 3
constant maximum degree O(n3/2) Theorem 10
constant chromatic number O(n2) Pach et al. [24]
constant chromatic number O(m2/3n) Theorem 6
no Kh-minor (h constant) O(n3/2) Theorem 9
constant genus O(n3/2) Theorem 8
constant tree-width O(n) Dujmović and Wood [12]

Cohen et al. [5] proved that every graph has a 3D drawing with O(n3) volume,
and that this bound is asymptotically optimal for complete graphs Kn. Our edge-
sensitive bounds of O(m4/3n) and O(∆mn) are greater than O(n3) in the worst
case. It is an open problem whether there are edge-sensitive bounds that match
the O(n3) bound in the case of complete graphs.

Pach et al. [24] proved that graphs with constant chromatic number have
3D drawings with O(n2) volume. For c-colourable graphs the actual bound is
O(c2n2). Our edge-sensitive bound of O(m2/3n) is an improvement on this result
for graphs with constant chromatic number and o

(
n3/2

)
edges. Pach et al. [24]

also proved an Ω(n2) lower bound for the volume of 3D drawings of com-
plete bipartite graphs Kn,n. This lower bound was generalised to all graphs by
Bose et al. [3], who proved that every 3D drawing has volume at least 1

8 (n+m).
Graphs with constant maximum degree have constant chromatic number,

and by the result of Pach et al. [24], have 3D drawings with O(n2) volume.
Pach et al. [24] conjectured that graphs with constant maximum degree have
3D drawings with o

(
n2

)
volume. We verify this conjecture by proving that such

graphs have 3D drawings with O(n3/2) volume.
The first O(n) upper bound on the volume of 3D drawings was established

by Felsner et al. [14] for outerplanar graphs. This result was generalised by the
authors for graphs with constant tree-width [12]. Improved constants have been
obtained in a number of special cases [6,7,8,18]. Felsner et al. [14] proposed the
following inviting open problem: does every planar graph have a 3D drawing
with O(n) volume? In this paper we provide a partial solution to this question,
by proving that planar graphs have 3D drawings with O(n3/2) volume. Note
that O(n2) is the optimal area for plane 2D grid drawings, and O(n2) was the
previous best upper bound on the volume of 3D drawings of planar graphs.

A graph H is a minor of a graph G if H is isomorphic to a graph obtained
from a subgraph of G by contracting edges. The genus of a graph G is the min-
imum γ such that G can be embedded in the orientable surface with γ handles.
Of course, planar graphs have genus 0 and no K5-minor. A generalisation of
our result for planar graphs is that every graph with constant genus or with no
Kh-minor for constant h has a 3D drawing with O(n3/2) volume.
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2 Track Layouts

We consider undirected, finite, and simple graphs G with vertex set V (G) and
edge set E(G). The number of vertices and edges of G are respectively denoted
by n = |V (G)| and m = |E(G)|. A vertex c-colouring of G is a partition {Vi :
1 ≤ i ≤ c} of V (G), such that for every edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj

then i �= j. Each i ∈ {1, 2, . . . , c} is a colour, and each set Vi is a colour class.
At times it will be convenient to write col(v) = i rather than v ∈ Vi. If G has a
vertex c-colouring then G is c-colourable. The chromatic number of G, denoted
by χ(G), is the minimum c such that G is c-colourable.

Let {Vi : 1 ≤ i ≤ c} be a vertex c-colouring of a graph G. Let <i be
a total order on each colour class Vi. Then each pair (Vi, <i) is a track, and
{(Vi, <i) : 1 ≤ i ≤ t} is a t-track assignment of G. To ease the notation we
denote track assignments by {Vi : 1 ≤ i ≤ c} when the ordering on each colour
class is implicit. An X-crossing in a track assignment consists of two edges vw
and xy such that v <i x and y <j w, for distinct colours i and j. A t-track layout
of G consists of a t-track assignment of G with no X-crossing. The track-number
of G, denoted by tn(G), is the minimum t such that G has a t-track layout1

Track layouts and track-number were introduced in [10,12] although they
are implicit in many previous works [14,19]. Track layouts and 3D drawings are
closely related, as illustrated by the following result by Dujmović et al. [10]. Also
note that other authors have used track layouts to produce 3D drawings [6,8,
18], and there is a tight relationship between track layouts and another type
of graph layout called a queue layout [27], which is a dual structure to a book
embedding introduced by Heath et al. [19].

Theorem 1. [10] Every n-vertex graph G with track-number tn(G) ≤ t has a
2t× 4t× 4t�n

t � drawing, which has O(t2n) volume. Conversely, if a graph G has
an X × Y × Z drawing then G has track-number tn(G) ≤ 2XY .

We have the following upper bounds on the track-number.

Lemma 1. Let G be a graph with n vertices, maximum degree ∆, path-width
p, tree-width w, genus γ, and with no Kh-minor. Then the track-number of
G satisfies: (a) tn(G) ≤ p + 1, (b) tn(G) ≤ O(64w

), (c) tn(G) ≤ 72w∆,
(d) tn(G) ∈ O(γ1/2n1/2), (e) tn(G) ∈ O(h3/2n1/2) .

Proof. Part (a) is by Dujmović et al. [10]. Parts (b) and (c) are by the au-
thors [12]. Gilbert et al. [16] and Djidjev [9] independently proved that G has
a O(γ1/2n1/2)-separator, and thus has O(γ1/2n1/2) path-width (see Bodlaen-
der [2, Theorem 20(iii)]). Hence (d) follows from (a). Similarly (e) follows from
the result by Alon et al. [1] that G has a O(h3/2n1/2)-separator. ��

The next result is the fundamental contribution of this section.

Theorem 2. Every graph G with m edges and maximum degree ∆ has track-
number tn(G) ≤ 14

√
∆m.

1 This definition of track-number is unrelated to that of Gyárfás and West [17].
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To prove Theorem 2 we introduce the following concept. A vertex colouring
is a strong star colouring if between every pair of colour classes, all edges (if any)
are incident to a single vertex. That is, each bichromatic subgraph consists of a
star and possibly some isolated vertices. The strong star chromatic number of a
graph G, denoted by χsst(G), is the minimum number of colours in a strong star
colouring of G. Note that star colourings, in which each bichromatic subgraph is
a forest of stars, have also been studied (see [23] for example). The star chromatic
number of a graph G, denoted by χst(G), is the minimum number of colours in
a star-colouring of G. With an arbitrary order on each colour class in a strong
star colouring, there is no X-crossing. Thus track-number tn(G) ≤ χsst(G) for
every graph G, and Theorem 2 is an immediate corollary of the next lemma.

Lemma 2. Every graph G with m edges and maximum degree ∆ ≥ 1 has strong
star chromatic number χsst(G) ≤ 14

√
∆m.

The proof of Lemma 2 uses the weighted version of the Lovász Local Lemma
[13].

Lemma 3. [22, p. 221] Let E = {A1, . . . , An} be a set of ‘bad’ events. Let
0 ≤ p ≤ 1

4 be a real number, and let t1, . . . , tn ≥ 1 be integers. Suppose that for
all Ai ∈ E,

(a) the probability P(Ai) ≤ pti ,
(b) Ai is mutually independent of E \ ({Ai} ∪ Di) for some Di ⊆ E, and

(c)
∑

Aj∈Di

(2p)tj ≤ ti
2

.

Then with positive probability, no event in E occurs.

Proof (of Lemma 2). Let c ≥ 4 be a positive integer to be specified later. Let
p = 1

c . Then 0 < p ≤ 1
4 . For each vertex v ∈ V (G), randomly and independently

choose col(v) from {1, 2, . . . , c}. For each edge vw ∈ E(G), let Avw be the type-I
event that col(v) = col(w). Let E′ be the set of arcs E′ = {(v, w), (w, v) : vw ∈
E(G)}. For each pair of arcs (v, w), (x, y) ∈ E′ with no endpoint in common, let
B(v,w),(x,y) be the type-II event that col(v) = col(x) and col(w) = col(y).

We will apply Lemma 3 to obtain a colouring such that no type-I event and
no type-II event occurs. No type-I event implies that we have a (proper) vertex
colouring. No type-II event implies that no two disjoint edges share the same
pair of colours; that is, we have a strong star colouring. For each type-I event A,
P(A) = 1

c . Let tA = 1. Then P(A) = ptA . For each type-II event B, P(B) = 1
c2 .

Let tB = 2. Then P(B) = ptB . Thus condition (a) of Lemma 3 is satisfied.
An event involving a particular set of vertices is dependent only on other

events involving at least one of the vertices in that set. Each vertex is involved
in at most ∆ type-I events, and at most 2∆|E′| = 4∆m type-II events. A type-I
event involves two vertices, and is thus mutually independent of all but at most
2∆ type-I events and at most 8∆m type-II events. A type-II event involves four
vertices, and is thus mutually independent of all but at most 4∆ type-I events
and at most 16∆m type-II events.
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For condition (c) of Lemma 3 to hold we need 2∆
( 2

c

)1+8∆m
( 2

c

)2 ≤ 1
2 for the

type-I events, and 4∆
( 2

c

)1 +16∆m
( 2

c

)2 ≤ 1 for the type-II events. It is a happy
coincidence that these two equations are equivalent, and it is easily verified that
c = �4(∆ +

√
∆(1 + 4m) )� ≥ 4 is a solution. Thus by Lemma 3, with positive

probability no type-I event and no type-II event occurs. Thus for every vertex
v ∈ V (G), there exists col(v) ∈ {1, . . . , c} such that no type-I event and no type-
II event occurs. As proved above such a colouring is a strong star colouring.
Since ∆ ≤ √

∆m, the number of colours c ≤ �4(1 +
√

5)
√

∆m� ≤ 14
√

∆m. ��
Theorems 1 and 2 imply:

Theorem 3. Every graph with n vertices, m edges and maximum degree ∆ has
a O((∆m)1/2) × O((∆m)1/2) × O(n) drawing with O(∆mn) volume. ��

We have the following corollary of Lemma 2.

Lemma 4. Every graph G with m edges has strong star chromatic number
χsst(G) ≤ 15m2/3.

Proof. Let X be the set of vertices of G with degree greater than 1
4m1/3. Let

H be the subgraph of G induced by V (G) \ X. Thus H has maximum de-
gree at most 1

4m1/3. By Lemma 2, H has a strong star colouring with at most
14( 1

4m1/3m)1/2 = 7m2/3 colours. Now |X| ≤ 2m/( 1
4m1/3) = 8m2/3. By adding

each vertex in X to its own colour class we obtain a strong star colouring of G
with at most 15m2/3 colours. ��

Since tn(G) ≤ χsst(G), Lemma 4 implies that tn(G) ≤ 15m2/3, and by
Theorem 1 we have:

Theorem 4. Every graph with n vertices and m edges has a O(m2/3) ×
O(m2/3) × O(n) drawing with O(m4/3n) volume. ��

3 Sub-quadratic Volume Bounds

Vertex colourings [24] and track layouts [10] have previously been used to pro-
duce 3D drawings with small volume. In the following sequence of results we
combine vertex colourings and track layouts to reduce the quadratic dependence
on t in Theorem 1 to linear. This comes at the expense of a higher dependence
on the chromatic number. However, in the intended applications the chromatic
number will be constant, or at least will be independent of the size of the graph.
The proof of the next lemma is a further generalisation of the ‘moment curve’
method for producing three-dimensional graph drawings [5,24,10].

Lemma 5. Let G be a graph with a vertex c-colouring {Vi : 0 ≤ i ≤ c − 1}, and
a track layout {Ti,j : 0 ≤ i ≤ c−1, 1 ≤ j ≤ ti}, such that each Ti,j ⊆ Vi. Then G
has a O(c) × O(c2 t) × O(c5 tn′) drawing, where t = max

i
ti and n′ = max

i,j
|Ti,j |.
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Proof. Let p be the minimum prime such that p ≥ c. Then p < 2c by Bertrand’s
postulate. Let v(i, j, k) denote the kth vertex in track Ti,j . Define

Y (i, j) = p(2 i t + j) + (i2 mod p), and

Z(i, j, k) = p(20 c i n′ · Y (i, j) + k) + (i3 mod p) .

Position each vertex v(i, j, k) at the gridpoint (i, Y (i, j), Z(i, j, k)), and draw
each edge as a line-segment between its endpoints. Since Y (i, j) ∈ O(c2 t) and
Z(i, j, k) ∈ O(c3 n′ · Y (i, j)), the drawing is O(c) × O(c2 t) × O(c5 tn′).

Observe that the tracks from a single colour class are within a distinct Y Z-
plane, each track occupies a distinct vertical line, and the Z-coordinates of the
vertices within a track preserve the given ordering of that track. In addition, the
Y -coordinates satisfy the following property.

Claim 1. For all distinct colours i1 and i2 and for all 1 ≤ j1, j2 ≤ t, we have
2c | (Y (i1, j1) − Y (i2, j2) | is greater than the Y -coordinate of any vertex.

Proof. Without loss of generality i1 > i2. Observe that every Y -coordinate is less
than p(2(c−1)t+t)+p = p(2 c t−t+1) ≤ 2cpt. Now 2c | Y (i1, j1)−Y (i2, j2) | >
2c | p(2 i1 t + 1) − p(2 i2 t + t + 1) | ≥ 2cp | 2(i2 + 1)t − (2i2t + t) | = 2cpt. ��

We first prove that the only vertices each edge intersects are its own end-
points. It suffices to prove that if three tracks are collinear in the XY -plane
then they are all from the same colour class. Loosely speaking, an edge does not
pass through any track. Clearly two tracks from the same colour class are not
collinear (in the XY -plane) with a third track from a distinct colour class. Thus
we need only consider tracks {T (iα, jα) : 1 ≤ iα ≤ 3} from three distinct colour
classes {i1, i2, i3}. Let R be the determinant,

R =

∣
∣
∣
∣
∣
∣

1 i1 Y (i1, j1)
1 i2 Y (i2, j2)
1 i3 Y (i3, j3)

∣
∣
∣
∣
∣
∣

.

If the tracks {T (iα, jα) : 1 ≤ iα ≤ 3} are collinear in the XY -plane then R = 0.
However Y (i, j) ≡ i2 (mod p), and thus

R ≡
∣
∣
∣
∣
∣
∣

1 i1 i21
1 i2 i22
1 i3 i23

∣
∣
∣
∣
∣
∣
=

∏

1≤α<β≤3

(iα − iβ) �≡ 0 (mod p) ,

since iα �= iβ , and p is a prime greater than any iα − iβ . Thus R �= 0, and the
tracks {T (iα, jα) : 1 ≤ iα ≤ 3} are not collinear in the XY -plane. Hence the
only vertices that an edge intersects are its own endpoints.

It remains to prove that there are no edge crossings. Consider two edges e
and e′ with distinct endpoints v(iα, jα, kα), 1 ≤ α ≤ 4. (Clearly edges with a
common endpoint do not cross.) Let Yα = Y (iα, jα). Consider the determinant

D =

∣
∣
∣
∣
∣
∣
∣
∣

1 i1 Y1 Z(i1, j1, k1)
1 i2 Y2 Z(i2, j2, k2)
1 i3 Y3 Z(i3, j3, k3)
1 i4 Y4 Z(i4, j4, k4)

∣
∣
∣
∣
∣
∣
∣
∣

.



196 V. Dujmović and D.R. Wood

If e and e′ cross then their endpoints are coplanar, and D = 0. Thus it suffices to
prove that D �= 0. We proceed by considering the number N = |{i1, i2, i3, i4}| of
distinct colours assigned to the four endpoints of e and e′. Clearly N ∈ {2, 3, 4}.

Case N = 4: Since Yα ≡ i2α (mod p) and Z(iα, jα, kα) ≡ i3α (mod p),

D ≡

∣
∣
∣
∣
∣
∣
∣
∣

1 i1 i21 i31
1 i2 i22 i32
1 i3 i23 i33
1 i4 i24 i34

∣
∣
∣
∣
∣
∣
∣
∣

=
∏

1≤α<β≤4

(iα − iβ) �≡ 0 (mod p) ,

since iα �= iβ , and p is a prime greater than any iα − iβ . Thus D �= 0.

Case N = 3: Without loss of generality i1 = i2. It follows that D = 5S0 +
S1 + S2 + S3 + S4 where

S0 = 4cpn′(i3 − i1)(i4 − i1)(Y2 − Y1)(Y3 − Y4)

S1 = p(Y2 − Y1)
(
k3(i4 − i1) − k4(i3 − i1)

)

S2 = p(i4 − i3)(k2Y1 − k1Y2)
S3 = p(k2 − k1)(Y4(i3 − i1) − Y3(i4 − i1))

S4 = (Y2 − Y1)
(
(i3 − i4)(i31 mod p)−(i3 − i1)(i34 mod p)+(i4 − i1)(i33 mod p)

)
.

If Y1 = Y2 then e and e′ do not cross, since no three tracks from distinct
colour classes are collinear in the XY -plane. Assume Y1 �= Y2. If i3 < i1 < i4 or
i4 < i1 < i3 then e and e′ do not cross, simply by considering the projection in
the XY -plane. Thus i1 < i3, i4 or i1 > i3, i4, which implies

(i4 − i1)(i3 − i1) > |i4 − i3| . (1)

Claim 2. If |S0| ≥ |S1|, |S0| ≥ |S2|, |S0| ≥ |S3| and |S0| ≥ |S4| then D �= 0.

Proof. To prove that D = 5S0+S1+S2+S3+S4 is nonzero it suffices to show that
D′ = ±5|S0|±|S1|±|S2|±|S3|±|S4| is nonzero for all combinations of pluses and
minuses. Consider X = ±|S1| ± |S2| ± |S3| ± |S4| for some combination of pluses
and minuses. Since |S1| ≤ |S0|, |S2| ≤ |S0|, |S3| ≤ |S0|, and |S4| ≤ |S0|, we have
−4|S0| ≤ X ≤ 4|S0|. Since S0 �= 0, we have 5|S0| + X �= 0 and −5|S0| + X �= 0.
That is, all values of D′ are nonzero. Therefore D �= 0. ��

Therefore, to prove that D �= 0 it suffices to show that |S0| ≥ |S1|, |S0| ≥
|S2|, |S0| ≥ |S3| and |S0| ≥ |S4|. We will use the following elementary facts
regarding absolute values:

∀a1, . . . , ak ∈ R |a1a2 . . . ak| = |a1||a2| · · · |ak|, and
|a1 + a2 + · · · + ak| ≤ |a1| + |a2| + · · · + |ak| ≤ k · max {|a1|, |a2|, . . . , |ak|} .

• First we prove that |S0| ≥ |S1|. That is,

|4cpn′(i3 − i1)(i4 − i1)(Y2 − Y1)(Y3 − Y4)| ≥ |p(Y2 − Y1)
(
k3(i4 − i1) − k4(i3 − i1)

)| .
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Hence, |S0| > |S1| is implied if

2n′|i3 − i1||i4 − i1||Y3 − Y4| ≥ | k3(i4 − i1) − k4(i3 − i1)| .

⇐= 2n′|i3 − i1||i4 − i1||Y3 − Y4| ≥ 2 · max {|k4(i3 − i1)|, |k3(i4 − i1)|} .

Since n′ ≥ k3, k4 and |Y3 − Y4| ≥ 1,

|S0| > |S1| ⇐= |i3 − i1||i4 − i1| ≥ max {|i3 − i1|, |i4 − i1|} .

Thus |S0| ≥ |S1| since |i3 − i1| ≥ 1 and |i4 − i1| ≥ 1.
• Now we prove that |S0| ≥ |S2|. That is,

|4cpn′(i3 − i1)(i4 − i1)(Y2 − Y1)(Y3 − Y4)| ≥ |p(i4 − i3)(k2Y1 − k1Y2)| .

By (1) and since |Y2 − Y1| ≥ 1, |S0| ≥ |S2| is implied if |4cn′(Y3 − Y4)| ≥
|k2Y1 − k1Y2|. This in turn is implied if |2cn′(Y3 −Y4)| ≥ max {|k2Y1|, |k1Y2|},
which holds since n′ ≥ k1, k2 and |2c(Y3 − Y4)| ≥ max{Y1, Y2} by Claim 1.

• Now we prove that |S0| ≥ |S3|. That is,

|4cpn′(i3 − i1)(i4 − i1)(Y2 − Y1)(Y3 − Y4)| ≥ |p(k2 − k1)
(
Y4(i3 − i1) − Y3(i4 − i1)

)| .

Now n′ ≥ |k2 − k1| and |Y2 − Y1| ≥ 1. Thus |S0| ≥ |S3| is implied if

|4c(i3 − i1)(i4 − i1)(Y3 − Y4)| ≥ | Y4(i3 − i1) − Y3(i4 − i1) | .

⇐= |2c(i3 − i1)(i4 − i1)(Y3 − Y4)| ≥ max {| Y4(i3 − i1)| , |Y3(i4 − i1) |} ,

which holds since |2c(Y3 − Y4)| ≥ max{Y1, Y2} by Claim 1.
• Finally we prove that |S0| ≥ |S4|. That is,

|4cpn′(i3 − i1)(i4 − i1)(Y2 − Y1)(Y3 − Y4)| ≥
|(Y2 − Y1)

(
(i3 − i4)(i31 mod p) − (i3 − i1)(i34 mod p) + (i4 − i1)(i33 mod p)

)| .

Now cn′|Y3 − Y4| ≥ 1. Thus |S0| > |S4| is implied if

|3p(i3 − i1)(i4 − i1)| ≥
| (i3 − i4)(i31 mod p) − (i3 − i1)(i34 mod p) + (i4 − i1)(i33 mod p) |

⇐= |3p(i3 − i1)(i4 − i1)| ≥
3 · max {| (i3 − i4)(i31 mod p)| , |(i3 − i1)(i34 mod p)| , |(i4 − i1)(i33 mod p) |}

⇐= |(i3 − i1)(i4 − i1)| ≥ max {| i3 − i4| , |i3 − i1| , |i4 − i1 |} ,

which holds by (1).

Case N = 2: Without loss of generality i1 = i2 �= i3 = i4. If Y1 = Y2 and
Y3 = Y4 then e and e′ do not cross as otherwise there would be an X-crossing
in the track layout. If Y1 = Y2 and Y3 �= Y4 (or Y1 �= Y2 and Y3 = Y4) then e
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and e′ do not cross, by considering the projection in the XY -plane. Thus we can
assume that Y1 �= Y2 and Y3 �= Y4. It follows that

D = p(i1 − i3)
(

5 · 4cn′(Y2 − Y1)(Y4 − Y3)(i3 − i1)

+ (k1 − k2)(Y4 − Y3) + (k4 − k3)(Y2 − Y1)
)

.

As in Claim 2, to show that D �= 0 it suffices to show that

| 4cn′(Y2 − Y1)(Y4 − Y3)(i3 − i1) | ≥ | (k1 − k2)(Y4 − Y3) | , (2)
and | 4cn′(Y2 − Y1)(Y4 − Y3)(i3 − i1) | ≥ | (k4 − k3)(Y2 − Y1) | . (3)

Inequalities (2) and (3) hold since n′ > |k1 − k2| and n′ > |k4 − k3|. ��
Note that the constant 20 in the definition of Z(i, j, k) in the proof of

Lemma 5 is chosen to enable a relatively simple proof. It is easily seen that it can
be reduced. The proof of the next lemma is based on an idea of Pach et al. [24]
for balancing the size of the colour classes in a vertex colouring.

Lemma 6. Let G be an n-vertex graph with a c-colouring {Vi : 0 ≤ i ≤ c − 1}
and a track layout {Ti,j : 0 ≤ i ≤ c− 1, 1 ≤ j ≤ ti}, such that each Ti,j ⊆ Vi. Let
k =

∑
i ti be the total number of tracks. Then G has a O(c) × O(ck) × O(c4n)

drawing.

Proof. Replace each track by tracks of size exactly �n
k �, except for at most one

track of size at most �n
k �. Order the vertices within each track according to the

original track, and consider the new tracks to belong to the same colour class as
the original. Clearly no X-crossing is created. Within Vi there are now at most
ti + |Vi|/�n

k � tracks. The total number of tracks is
∑

i(ti + |Vi|/�n
k �) ≤ 2k. For

each colour class Vi, partition the set of tracks in Vi into sets of size exactly
� 2k

c �, except for one set of size at most � 2k
c �. Consider each set to correspond

to a colour. The number of colours is now at most c + 2k/� 2k
c � ≤ 2c. Applying

Lemma 5 with 2c colours, n′ = �n
k �, and t = � 2k

c �, we obtain the desired drawing.
��

Theorem 5. Every c-colourable graph G with n vertices and track-number
tn(G) ≤ t has a O(c) × O(c2t) × O(c4n) drawing with O(c7tn) volume.

Proof. Let {Vi : 0 ≤ i ≤ c − 1} be a c-colouring of G. Let {Tj : 1 ≤ j ≤ t} be a
t-track layout of G. For all 0 ≤ i ≤ c − 1 and 1 ≤ j ≤ t, let Ti,j = Vi ∩ Tj . Then
{Vi : 0 ≤ i ≤ c − 1} and {Ti,j : 0 ≤ i ≤ c − 1, 1 ≤ j ≤ t} satisfy Lemma 6 with
k = ct. Thus G has the desired drawing. ��

In the case of bipartite graphs we have a simple proof of Theorem 5 with
improved constants.

Lemma 7. Every n-vertex bipartite graph G with track-number tn(G) ≤ t has
a 2 × t × n drawing.
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Proof. Let {A, B} be the bipartition of V (G). Let {Ti : 1 ≤ i ≤ t} be a t-track
layout of G. For each 1 ≤ i ≤ t, let Ai = Ti ∩ A and Bi = Ti ∩ B. Order each Ai

and Bi as in Ti. Place the jth vertex in Ai at (0, i, j +
∑i−1

k=1 |Ak|). Place the jth

vertex in Bi at (1, t − i + 1, j +
∑i−1

k=1 |Bk|). The drawing is thus 2 × t × n. Let
AiBj be the set of edges with one endpoint in Ai and the other in Bj . There
is no crossing between edges in AiBj and AiBj as otherwise there would be
an X-crossing in the track layout. Clearly there is no crossing between edges in
AiBj and AiBk for j �= k. Suppose there is a crossing between edges in AiBj

and AkB� with i �= k and j �= �. Without loss of generality i < k. Then the
projections of the edges in the XY -plane also cross, and thus j < �. Hence the
projections in the XZ-plane do not cross, and thus the edges do not cross. ��

Lemma 4 with tn(G) ≤ χsst(G) and Theorem 5 imply:

Theorem 6. Every c-colourable graph with n vertices and m edges has a O(c)×
O(c2m2/3) × O(c4n) drawing with O(c6m2/3n) volume. ��

The next result is one of the main contributions of this paper.

Theorem 7. Every planar graph with n vertices has a O(1) × O(n1/2) × O(n)
drawing with O(n3/2) volume.

Proof. Planar graphs have O(n1/2) path-width (see [2]), and thus have O(n1/2)
track-number by Lemma 1(a). The result follows from Theorem 5 since planar
graphs are 4-colourable. ��

The following generalisation of Theorem 7 follows from Lemma 1(d), Theo-
rem 5, and the classical result of Heawood [20] that χ(G) ∈ O(γ1/2).

Theorem 8. Every n-vertex graph with genus γ has a O(γ1/2)×O(γ3/2n1/2)×
O(γ2n) drawing with O(γ4n3/2) volume. ��

The next generalisation of Theorem 7 for graphs with no Kh-minor fol-
lows from Lemma 1(e), Theorem 5, and the result independently due to Kos-
tochka [21] and Thomason [26] that χ(G) ∈ O(h log1/2 h).

Theorem 9. Every n-vertex graph with no Kh-minor has a O(h log1/2 h) ×
O(h7/2 log h ·n1/2)×O(h4 log2 h ·n) drawing with volume O(h17/2 log7/2 h ·n3/2).

Finally we consider the maximum degree ∆ as a parameter. By the sequential
greedy algorithm, G is (∆ + 1)-colourable. Thus by Theorems 2 and 5 we have:

Theorem 10. Every graph with n vertices, m edges, and maximum degree ∆
has a O(∆)×O(∆5/2m1/2)×O(∆4n) drawing with O(∆15/2m1/2n) volume. ��

Graphs with constant ∆ have O(n) edges. By Theorems 8, 9, and 10 we have:

Corollary 1. Every n-vertex graph with constant genus, or with no Kh-minor
for some constant h, or with constant maximum degree has a O(1) × O(n1/2) ×
O(n) drawing with O(n3/2) volume. ��
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We conclude with the following open problems: Does every graph have a
3D drawing with O(nm) volume? Does every graph with constant chromatic
number have a 3D drawing with O(n

√
m) volume? These bounds match the

lower bounds for Kn and Kn,n, and would make edge-sensitive improvements to
the existing upper bounds of O(n3) and O(n2), respectively. These edge-sensitive
bounds would be implied by Theorems 1 and 5 should every graph have O(

√
m)

track-number. In turn, this bound on track-number would be implied should
every graph have O(

√
m) strong star chromatic number. As far as the authors

are aware, a O(
√

m) bound is not even known for star chromatic number. The
best known bound in this direction is χst(G) ≤ 11m3/5, which can be proved in
a similar fashion to Lemma 4, in conjunction with the result of Fertin et al. [15]
that χst(G) ≤ �20∆3/2� (see [11]).
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