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Abstract We characterize which sets of k points cho-
sen from n points spaced evenly around a circle have
the property that, for each i = 1, 2, . . . , k−1, there is a
nonzero distance along the circle that occurs as the dis-
tance between exactly i pairs from the set of k points.
Such a set can be interpreted as the set of onsets in a
rhythm of period n, or as the set of pitches in a scale
of n tones, in which case the property states that, for
each i = 1, 2, . . . , k − 1, there is a nonzero time [tone]
interval that appears as the temporal [pitch] distance
between exactly i pairs of onsets [pitches]. Rhythms
with this property are called Erdős-deep. The problem
is a discrete, one-dimensional (circular) analog to an
unsolved problem posed by Erdős in the plane.

1 Introduction
Musical rhythms and scales can both be seen as two-
way infinite sequence of bits where each 1 bit represents
an onset played in a rhythm or a pitch included in a
scale. Here we suppose that all time intervals between
onsets in a rhythm are multiples of a fixed time unit,
and that all tone intervals between pitches in a scale
are multiples of a fixed tonal unit (in logarithm of fre-
quency). It is also generally assumed that the two-way
infinite bit sequence is periodic with some period n, so
that the information can be compacted down to an n-
bit string. To properly represent the cyclic nature of
this string, we imagine assigning the bits to n points
equally spaced around a circle of circumference n. A
rhythm or scale can therefore be represented as a subset
of these n points. Let k denote the size of this subset,
i.e., the number of onsets or pitches. Time intervals
between onsets in a rhythm and tone intervals between
pitches in a scale can thus be measured as (integral)
distances around the circle between two points in the
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subset.

A musical scale or rhythm is Winograd-deep if every
possible distance from 1 to bn/2c has a unique multi-
plicity (number of occurrences). This notion was in-
troduced by Winograd in an oft-cited but unpublished
class project from 1966 [10], disseminated and further
developed by the class instructor Gamer in 1967 [3, 4],
and considered further in numerous papers and books,
e.g., [1, 5]. Equivalently, a scale is Winograd-deep if
the number of tones it has in common with each of its
cyclic shifts (rotations) is unique. This equivalence is
the Common Tone Theorem of [5, p. 42], and is origi-
nally described by Winograd [10], who in fact uses this
definition as his primary definition of “deep”. Deepness
is one property of the ubiquitous Western diatonic 12-
tone major scale {0, 2, 4, 5, 7, 9, 11}12, and it captures
some of the rich structure that perhaps makes this scale
so attractive. More generally, Winograd [10], and inde-
pendently Clough et al. [1], characterize all Winograd-
deep scales: up to rotation, they are the scales genera-
ble as the first bn/2c or bn/2c+1 multiples (modulo n)
of a value m that is relatively prime to n, plus one
exceptional scale {0, 1, 2, 4}6.

Every scale can be reinterpreted as a rhythm. In par-
ticular, the diatonic major scale, which translates into
box-like notation as [x . x . x x . x . x . x], is interna-
tionally the most well known of all African rhythms. It
is traditionally played on an iron bell, and is known on
the world scene mainly by its Cuban name Bembé [8].
However, the notion of Winograd-deepness is rather
restrictive for rhythms, because it requires exactly
half of the pulses in a period (rounded to a near-
est integer) to be onsets. For example, the popu-
lar Bossa-Nova 16-pulse rhythm {0, 3, 6, 10, 13}16 =
[x . . x . . x . . . x . . x . .] has only five onsets [7].
Nonetheless, if we focus just on distances that appear
at least once between two onsets, then the frequen-
cies of occurrence are all unique and form an interval
starting at 1: distance 4 occurs once, distance 7 occurs
twice, distance 6 occurs thrice, and distance 3 occurs
four times.

We therefore define an Erdős-deep rhythm (or scale)
to be a rhythm with the property that, for every i =
1, 2, . . . , k − 1, there is a nonzero distance determined
by the points on the circle that occurs exactly i times.
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Figure 1: An Erdős-deep rhythm with k = 7 onsets and
period n = 16. Distances ordered by multiplicity from 1 to
6 are 2, 7, 4, 1, 6, and 5. The dotted line shows how the
rhythm is generated by multiples of m = 5.

The same definition is made in [9]. Figure 1 shows
another example. It turns out that every Winograd-
deep rhythm is also Erdős deep. Furthermore, we prove
a similar (but more general) characterization of Erdős-
deep rhythms: up to rotation and scaling, they are the
scales generable as the first k multiples (modulo n) of
a value m that is relatively prime to n, plus the same
exceptional scale {0, 1, 2, 4} of period n = 6. The key
difference is that k is now a free parameter, instead of
being forced to be either bn/2c or bn/2c+1. Our proof
follows Winograd’s proof of his characterization, but
differs in one case (the second case of Theorem 3).

The property of Erdős deepness involves only the dis-
tances between points in a set, and is thus an issue of
distance geometry, in this case in the discrete space
of n points spaced equally around a circle. In 1989,
Paul Erdős [2] considered the analogous question in the
plane, asking whether there exist n points in the plane
(no three on a line and no four on a circle) such that, for
every i = 1, 2, . . . , n− 1, there is a distance determined
by these points that occurs exactly i times. Solutions
have been found for 2 ≤ n ≤ 8, but in general the prob-
lem remains open. Palásti [6] considered a variant of
this problem with further restrictions—no three points
form a regular triangle, and no one is equidistant from
three others—and solves it for n = 6.

2 Definitions

Although the rest of the paper speaks about rhythms,
the results apply equally well to scales. We define a
rhythm of period n to be a subset of {0, 1, . . . , n − 1},
representing the set of pulses that are onsets in each
repetition. For clarity, we write the period n as a sub-
script after the subset: {. . .}n. Geometrically, we can
view such a rhythm as a subset of n points equally
spaced clockwise around a circle of circumference n.
Let k = |R| denote the number of onsets in rhythm R.
The successor of an onset i in R is the smallest onset
j ≥ i in R, if such a j exists, or else the overall smallest
onset j in R.

The oriented distance from onset i to onset j in R is
j− i if i < j, and n+j− i if i > j, i.e., the length of the
counterclockwise arc starting at i and ending at j on
the circle of circumference n. The distance between two
onsets i and j in R is d(i, j) = min{|i− j|, n− |i− j|},
i.e., the minimum of the oriented distance from i to j
and the oriented distance from j to i, i.e., the length
of the shortest arc connecting points i and j on the
circle of circumference n. Every distance is between
0 and bn/2c. The distance multiset of a rhythm R
is the multiset of all nonzero pairwise distances, i.e.,
{d(i, j) | i, j ∈ R, i 6= j}. The distance multiset has
cardinality

(
k
2

)
= k(k−1)

2 . The multiplicity of a distance
d is the number of occurrences of d in the distance
multiset.

A rhythm is Erdős-deep if it has (exactly) one dis-
tance of multiplicity i, for i = 1, 2, . . . , k − 1. Note
that these frequencies sum to

∑k−1
i=1 i = k(k−1)

2 =
(
k
2

)
,

which is the cardinality of the distance multiset, and
hence these are all the occurrences of distances in the
rhythm. A rhythm is Winograd-deep if every two possi-
ble distances from {1, 2, . . . , bn/2c} have different mul-
tiplicity.

A shelling of a Erdős-deep rhythm R is a sequence
s1, s2, . . . , sk of onsets in R such that R−{s1, s2, . . . , si}
is a Erdős-deep rhythm for i = 0, 1, . . . , k. (The defini-
tion of Erdős-deep rhythm includes all rhythms with 0,
1, or 2 onsets.)

3 Characterization

Our characterization of Erdős-deep rhythms is in terms
of two families of rhythms. The main rhythm family
consists of the rhythms Dk,n,m = {im mod n | i =
0, 1, . . . , k − 1}n of period n, for certain values of k, n,
and m. The one exceptional rhythm is F = {0, 1, 2, 4}6

of period 6.

Fact 1 F is Erdős-deep.

Lemma 2 Dk,n,m is Erdős-deep if k ≤ bn/2c + 1 and
m and n are relatively prime.1

Proof: By definition of Dk,n,m, the multiset of ori-
ented distances is {(jm − im) mod n | i < j} =
{(j − i)m mod n | i < j}. There are k − p choices
of i and j such that j − i = p, so there are exactly
p occurrences of the oriented distance (pm) mod n in
the multiset. Each of these oriented distances corre-
sponds to a nonoriented distance—either (pm) mod n
or (−pm) mod n, whichever is smaller (at most n/2).
We claim that these distances are all distinct. Then the
multiplicity of each distance (±pm) mod n is exactly p,
establishing that the rhythm is Erdős-deep.

1Two numbers m and n are relatively prime if their greatest
common divisor is 1.



For two distances to be equal, we must have ±pm ≡
±qm (mod n) for some (possibly different) choices for
the ± symbols, and for some p 6= q. By (possibly)
multiplying both sides by −1, we obtain two cases:
(1) pm ≡ qm (mod n) and (2) pm ≡ −qm (mod n).
Because m is relatively prime to n, m has a multi-
plicative inverse modulo n. Dividing both sides of the
congruence by m, we obtain (1) p ≡ q (mod n) and
(2) p ≡ −q (mod n). Because 0 ≤ i < j < k ≤
bn/2c+1, 0 ≤ p = j−i < bn/2c+1, and similarly for q:
0 ≤ p, q ≤ bn/2c. Thus, the first case of p ≡ q (mod n)
can happen only when p = q, and the second case of
p + q ≡ 0 (mod n) can happen only when p = q = 0 or
when p = q = n/2. Either case contradicts that p 6= q.
Therefore the distances arising from different values of
p are indeed distinct, proving the lemma. 2

We now state and prove our characterization of
Erdős-deep rhythms, which is up to rotation and scal-
ing. The rotation of a rhythm R by an integer
∆ ≥ 0 is the rhythm {(i + ∆) mod n | i ∈ R} of
the same period n. Rotation preserves the distance
multiset and therefore Erdős-deepness (and Winograd-
deepness). The scaling of a rhythm R of period n by
an integer α ≥ 1 is the rhythm {αi | i ∈ R} of period
αn. Scaling maps each distance d to αd, and thus pre-
serves multiplicities and therefore Erdős-deepness (but
not Winograd-deepness).

Theorem 3 A rhythm is Erdős-deep if and only if it
is a rotation of a scaling of either the rhythm F or the
rhythm Dk,n,m for some k, n,m with k ≤ bn/2c + 1,
1 ≤ m ≤ bn/2c, and m and n are relatively prime.

Proof: Because a rotation of a scaling of an Erdős-
deep rhythm is Erdős-deep, the “if” direction of the
theorem follows from Fact 1 and Lemma 2.

Consider an Erdős-deep rhythm R with k onsets. By
definition of Erdős-deepness, R has one nonzero dis-
tance with multiplicity i for each i = 1, 2, . . . , k − 1.
Let m be the distance with multiplicity k− 1. Because
m is a distance, 1 ≤ m ≤ bn/2c. Also, k ≤ bn/2c + 1
(for any Erdős-deep rhythm R), because all nonzero dis-
tances are between 1 and bn/2c and therefore at most
bn/2c nonzero distances occur. Thus k and m are suit-
able parameter choices for Dk,n,m.

Consider the graph Gm = (R,Em) with vertices cor-
responding to onsets in R and with an edge between two
onsets of distance m. By definition of distance, every
vertex i in Gm has degree at most 2: the only onsets
at distance exactly m from i are (i − m) mod n and
(i + m) mod n. Thus, the graph Gm is a disjoint union
of paths and cycles. The number of edges in Gm is the
multiplicity of m, which we supposed was k− 1, which
is 1 less than the number of vertices in Gm. Thus, the
graph Gm consists of exactly one path and any number
of cycles.

The cycles of Gm have a special structure because
they correspond to subgroups generated by single ele-
ments in the cyclic group Cn = (Z/(n),+). Namely, the
onsets corresponding to vertices of a cycle in Gm form
a regular (n/a)-gon, with a distance of a = gcd(m,n)
between consecutive onsets. (a is called the index of the
subgroup generated by m.) In particular, every cycle
in Gm has the same length r = n/a. Because Gm is a
simple graph, every cycle must have at least 3 vertices,
so r ≥ 3.

The proof partitions into four cases depending on
the length of the path and on how many cycles the
graph Gm has. The first two cases will turn out to be
impossible; the third case will lead to a rotation of a
scaling of rhythm F ; and the fourth case will lead to a
rotation of a scaling of rhythm Dk,n,m.

First suppose that the graph Gm consists of a path
of length at least 1 and at least one cycle. We show
that this case is impossible because the rhythm R can
have no distance with multiplicity 1. Suppose that
there is a distance with multiplicity 1, say between on-
sets i1 and i2. If i is a vertex of a cycle, then both
(i + m) mod n and (i − m) mod n are onsets in R. If
i is a vertex of the path, then one or two of these
are onsets in R, with the case of one occurring only
at the endpoints of the path. If (i1 + m) mod n and
(i2+m) mod n were both onsets in R, or (i1−m) mod n
and (i2 − m) mod n were both onsets in R, then we
would have another occurrence of the distance between
i1 and i2, contradicting that this distance has multi-
plicity 1. Thus, i1 and i2 must be opposite endpoints
of the path. If the path has length `, then the oriented
distance between i1 and i2 is (`m) mod n. This ori-
ented distance (and hence the corresponding distance)
appears in every cycle, of which there is at least one,
so the distance has multiplicity more than 1, a contra-
diction. Therefore this case is impossible.

Second suppose that the graph Gm consists of a path
of length 0 and at least two cycles. We show that this
case is impossible because the rhythm R has two dis-
tances with the same multiplicity. Pick any two cycles
C1 and C2, and let d be the smallest positive oriented
distance from a vertex of C1 to a vertex of C2. Thus
i is a vertex of C1 if and only if (i + d) mod n is a
vertex of C2. Because the cycles are disjoint, d < a.
Because r ≥ 3, d < n/3, so oriented distances of d are
also true distances of d. The number of occurrences of
distance d between a vertex of C1 and a vertex of C2

is either r or 2r, the case of 2r arising when d = a/2
(i.e., C2 is a “half-rotation” of C1). The number of oc-
currences of distance d′ = min{d + m,n − (d + m)} is
the same—either r or 2r, in the same cases. (Note that
d < a ≤ n−m, so d+m < n, so the definition of d′ cor-
rectly captures a distance modulo n.) The same is true
of distance d′′ = min{d−m,n−(d−m)}. If other pairs



of cycles have the same smallest positive oriented dis-
tance d, then the number of occurrences of d, d′, and d′′

between those cycles are also equal. Because the cycles
are disjoint, distance d and thus d + m and d−m can-
not be (pm) mod n for any p, so these distances cannot
occur between two vertices of the same cycle. Finally,
the sole vertex x of the path has distance d to onset i
(which must be a vertex of some cycle) if and only if
x has distance d′ to onset (i + m) mod n (which must
be a vertex of the same cycle) if and only if x has dis-
tance d′′ to onset (i − m) mod n (which also must be
a vertex of the same cycle). Therefore the frequencies
of distances d, d′, and d′′ must be equal. Because R is
Erdős-deep, we must have d = d′ = d′′. To have d = d′,
either d = d + m or d = n− (d + m), but the first case
is impossible because d > 0 by nonoverlap of cycles, so
2d + m = n. Similarly, to have d = d′′, we must have
2d − m = n. Subtracting these two equations, we ob-
tain that 2m = 0, contradicting that m > 0. Therefore
this case is also impossible.

Third suppose that the graph Gm consists of a path
of length 0 and exactly one cycle. We show that this
case forces R to be a rotation of a scaling of rhythm
F because otherwise two distances m and m′ have the
same multiplicity. The number of occurrences of dis-
tance m in the cycle is precisely the length r of the
cycle. Similarly, the number of occurrences of distance
m′ = min{2m,n− 2m} in the cycle is r. The sole ver-
tex x on the path cannot have distance m or m′ to
any other onset (a vertex of the cycle) because then
x would then be on the cycle. Therefore the frequen-
cies of distances m and m′ must be equal. Because
R is Erdős-deep, m must equal m′, which implies that
either m = 2m or m = n − 2m. The first case is im-
possible because m > 0. In the second case, 3m = n,
i.e., m = 1

3n. Therefore, the cycle has r = 3 vertices,
say at ∆,∆ + 1

3n, ∆ + 2
3n. The fourth and final onset

x must be midway between two of these three onsets,
because otherwise its distance to the three vertices are
all distinct and therefore unique. No matter where x is
so placed, the rhythm R is a rotation by ∆ + c 1

3n (for
some c ∈ {0, 1, 2}) of a scaling by n/6 of the rhythm F .

Finally suppose that Gm has no cycles, and con-
sists solely of a path. We show that this case forces
R to be a rotation of a scaling of a rhythm Dk,n′,m′

with 1 ≤ m′ ≤ bn′/2c and with m′ and n′ relatively
prime. Let b be the onset such that (b − m) mod n
is not an onset (the “beginning” vertex of the path).
Consider rotating R by −i so that 0 is an onset
in the resulting rhythm R − i. The vertices of the
path in R − i form a subset of the subgroup of the
cyclic group Cn generated by the element m. There-
fore the rhythm R − i = Dk,n,m = {(im) mod n |
i = 0, 1, . . . , k − 1} is a scaling by a of the rhythm
Dk,n/a,m/a = {(im/a) mod (n/a) | i = 0, 1, . . . , k − 1}.

The rhythm Dk,n/a,m/a has an appropriate value for
the third argument: m/a and n/a are relatively prime
(a = gcd(m,n)) and 1 ≤ m/a ≤ bn/2c/a ≤ b(n/a)/2c.
Also, k ≤ b(n/a)/2c+1 because the only occurring dis-
tances are multiples of a and therefore the number k−1
of distinct distances is at most b(n/a)/2c. Therefore R
is a rotation by i of a scaling by a of Dk,n/a,m/a with
appropriate values of the arguments. 2

An interesting consequence of this characterization is
the following:

Corollary 4 Every Erdős-deep rhythm has a shelling.

Proof: If the Erdős-deep rhythm is Dk,n,m, we can
remove the last onset from the path, resulting in
Dk−1,n,m, and repeat until we obtain the empty rhythm
D0,n,m. At all times, k remains at most bn/2c + 1
(assuming it was originally) and m remains between
1 and bn/2c and relatively prime to n. On the other
hand, F = {0, 1, 2, 4}6 has the shelling 4, 2, 1, 0 because
{0, 1, 2}6 is Erdős-deep. 2
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