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Vida Dujmović1,2, Matthew Suderman1, and David R. Wood2,3

1 School of Computer Science, McGill University, Montréal, Canada
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Abstract. We study straight-line drawings of graphs with few segments
and few slopes. Optimal results are obtained for all trees. Tight bounds
are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove
that every 3-connected plane graph on n vertices has a plane drawing
with at most 5n/2 segments and at most 2n slopes, and that every cubic
3-connected plane graph has a plane drawing with three slopes (and three
bends on the outerface). Drawings of non-planar graphs with few slopes
are also considered. For example, it is proved that graphs of bounded
degree and bounded treewidth have drawings with O(log n) slopes.

1 Introduction

A common requirement for an aesthetically pleasing drawing of graph is that
the edges are straight. This paper studies the following additional requirements
of straight-line graph drawings:

1. minimise the number of segments in the drawing
2. minimise the number of distinct edge slopes in the drawing

First we formalise these notions. Consider a mapping of the vertices of a
graph to distinct points in the plane. Now represent each edge by the closed
line segment between its endpoints. Such a mapping is a (straight-line) drawing
if each edge does not intersect any vertex, except for its own endpoints. By a
segment in a drawing, we mean a maximal set of edges that form a line segment.
The slope of a line L is the angle swept from the X-axis in an anticlockwise
direction to L (and is thus in [0, π)). The slope of an edge or segment is the
slope of the line that extends it. A crossing in a drawing is a pair of edges that
intersect at some point other than a common endpoint. A drawing is plane if
it has no crossings. A plane graph is a planar graph with a fixed combinatorial
embedding and a specified outerface. We emphasise that a plane drawing of a
plane graph must preserve the embedding and outerface. That every plane graph
has a plane drawing is a classical result independently due to Wagner and Fáry.
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It is easily seen that a graph has a (plane) drawing on two slopes if and
only if it has a (plane) drawing on any two slopes [3]. Garg and Tamassia [8]
proved that it is NP-complete to decide whether a graph has a rectilinear planar
drawing (that is, with vertical and horizontal edges). Thus it is NP-complete to
decide whether a graph has a plane drawing with two slopes.

Our results include lower and upper bounds on the minimum number of
segments and slopes in plane drawings of graphs, as summarised in Table 1. Due
to space limitations, a number of auxiliary results and most proofs are omitted
from this paper; see [3] for all the details. We refer the reader to the survey of
Bodlaender [1] for the definition of treewidth, pathwidth, and k-tree.

First observe that the minimum number of slopes in a drawing of (plane)
graph G is at most the minimum number of segments in a drawing of G. Upper
bounds for plane graphs are stronger than for planar graphs, since for planar
graphs one has the freedom to choose the embedding and outerface. On the other
hand, lower bounds for planar graphs are stronger than for plane graphs. For
example, consider the n-vertex planar triangulation illustrated in Figure 1. It
has at least n + 2 slopes in every plane drawing. Now fix the outerface to that
illustrated in (a). Then there are at least 2n − 2 slopes in every plane drawing.
However, using the embedding shown in (b), there is a plane drawing with only
�3n/2� slopes.

Section 2 studies plane drawings of 3-connected plane and planar graphs. In
the case of slope-minimisation for plane graphs we obtain a bound that is tight in
the worst case. However, our lower bound examples have linear maximum degree.
In Section 3 we (drastically) improve this result in the case of cubic graphs, by
proving that every 3-connected plane cubic graph has a plane drawing with
three slopes, except for three edges on the outerface that have their own slope.
As a corollary we prove that every 3-connected plane cubic graph has a plane
‘drawing’ with three slopes and three bends on the outerface. Section 4 considers
non-plane drawings of arbitrary graphs with few slopes. For example, we prove
that every graph with bounded degree and bounded treewidth has a drawing
with O(log n) slopes.

Before continuing, we outline some related research from the literature.

– Eppstein [6] characterised those planar graphs that have plane drawings with
a segment between every pair of vertices. In some sense, these are the plane
drawings with the least number of slopes.

– The geometric thickness of a graph G is the minimum k such that G has a
drawing in which every edge receives one of k colours, and monochromatic
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Table 1. Summary of results (ignoring additive constants). Here n is the number of
vertices, η is the number of vertices of odd degree, and ∆ is the maximum degree. The
lower bounds are existential, except for trees, for which the lower bounds are universal.

graph family # segments # slopes
≥ ≤ ≥ ≤

trees η/2 η/2 �∆/2� �∆/2�
maximal outerplanar n n - n
plane 2-trees 2n 2n 2n 2n
plane 3-trees 2n 2n 2n 2n
plane 2-connected 5n/2 - 2n -
planar 2-connected 2n - n -
plane 3-connected 2n 5n/2 2n 2n
planar 3-connected 2n 5n/2 n 2n
plane 3-connected cubic - n + 2 3 3

edges do not cross (see [5, 7]). In any drawing, edges with the same slope
do not cross. Thus the geometric thickness of G is a lower bound on the
minimum number of slopes in a drawing of G.

– A drawing is convex if all the vertices are on the convex hull, and no three
vertices are collinear. The book thickness of a graph (also called pagenumber
and stacknumber) is the same as geometric thickness except that the drawing
must be convex (see [4] for numerous references). Since edges with the same
slope do not cross, the book thickness of G is a lower bound on the minimum
number of slopes in a convex drawing of G.

– Plane orthogonal drawings with two slopes (and few bends) have been exten-
sively studied (see [12]). For example, Ungar [14] proved that every cyclically
4-edge-connected plane cubic graph has a plane drawing with two slopes
and four bends on the outerface. Thus our above-mentioned result for 3-
connected plane cubic graphs nicely complements this theorem of Ungar.

– A drawing of the complete graph Kn is defined by a set of n points with no
three collinear. Jamison [9] proved that the minimum number of slopes in a
drawing of Kn is n. The upper bound is obtained by positioning the vertices
of Kn on the vertices of a regular n-gon, as illustrated in Figure 2(a) and (b).
In fact, Jamison [9] proved that every drawing of Kn with exactly n slopes is
affinely equivalent to a regular n-gon. In [3] we study drawings of complete
multi-partite graphs. For example, we prove that the minimum number of
slopes in a convex drawing of Kn,n is n, as illustrated in Figure 2(c).

– Wade and Chu [15] recognised that drawing arbitrary graphs with few slopes
is an interesting problem. They defined the slope-number of a graph G to be
the minimum number of slopes in a drawing of G. However, the results of
Wade and Chu only pertain to Kn. Seemingly unaware of the earlier work
of Scott and Jamison, they rediscovered that the minimum number of slopes
in a drawing of Kn is n. In addition, they presented an algorithm to test if
Kn can be drawn using a given set of slopes.
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Fig. 2. Drawings of Kn and Kn,n with n slopes.

2 3-Connected Plane Graphs

Theorem 1. Every 3-connected plane graph with n vertices has a plane drawing
with at most 5n/2 − 3 segments and at most 2n − 10 slopes.

The proof of Theorem 1 is based on the canonical ordering of Kant [10].
Let G be a 3-connected plane graph. Kant [10] proved that G has a canonical
ordering defined as follows. Let σ = (V1, V2, . . . , VK) be an ordered partition of
V (G). That is, V1 ∪ V2 ∪ · · · ∪ VK = V (G) and Vi ∩ Vj = ∅ for all i �= j. Define
Gi to be the plane subgraph of G induced by V1 ∪ V2 ∪ · · · ∪ Vi. Let Ci be the
subgraph of G induced by the edges on the boundary of the outerface of Gi.
Then σ is a canonical ordering of G if:

– V1 = {v1, v2}, where v1 and v2 lie on the outerface and v1v2 ∈ E(G).
– VK = {vn}, where vn lies on the outerface, v1vn ∈ E(G), and vn �= v2.
– Each Ci (i > 1) is a cycle containing v1v2.
– Each Gi is biconnected and internally 3-connected; that is, removing any

two interior vertices of Gi does not disconnect it.
– For each i ∈ {2, 3, . . . , K − 1}, one of the following condition holds:

1. Vi = {vi} where vi is a vertex of Ci with at least three neighbours in
Ci−1, and vi has at least one neighbour in G \ Gi.

2. Vi = (s1, s2, . . . , s�, vi), � ≥ 0, is a path in Ci, where each vertex in Vi

has at least one neighbour in G \Gi. Furthermore, the first and the last
vertex in Vi have one neighbour in Ci−1, and these are the only two edges
between Vi and Gi−1.

The vertex vi is called the representative vertex of Vi, 2 ≤ i ≤ K. The vertices
{s1, s2, . . . , s�} ⊆ Vi are called division vertices. Let S ⊂ V (G) be the set of all
division vertices. A vertex u is a successor of a vertex w ∈ Vi if uw is an edge
and u ∈ G \Gi, and u is a predecessor of w ∈ Vi if uw is an edge and u ∈ Vj for
some j < i. We also say that u is a predecessor of Vi. Let P (Vi) = (p1, p2, . . . , pq)
be the set of predecessors of Vi ordered by the path from v1 to v2 in Ci−1 \ v1v2.
Vertex p1 and pq are the left and right predecessors of Vi respectively, and vertices
p2, p3, . . . pq−1 are called middle predecessors of Vi.
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Theorem 2. Let σ be a canonical ordering of an n-vertex m-edge plane 3-
connected graph G. Define S as above. Then G has a plane drawing D with at
most m−max {�n/2� − |S| − 3, |S|} segments, and at most m−max{n−|S|−4,
|S|} slopes.

Proof Construction. For every vertex v, let X(v) and Y (v) denote the x and
y coordinates of v, respectively. If a vertex v has a neighbour w, such that
X(w) < X(v) and Y (w) < Y (v), then we say vw is a left edge of v. Similarly, if
v has a neighbour w, such that X(w) > X(v) and Y (w) < Y (v), then we say vw
is a right edge of v. If vw is an edge such that X(v) = X(w) and Y (v) < Y (w),
than we say vw is a vertical edge above v and below w.

We define D inductively on σ = (V1, V2, . . . , VK) as follows. Let Di denote
a drawing of Gi. A vertex v is a peak in Di, if each neighbour w of v has
Y (w) ≤ Y (v) in Di. We say that a point p in the plane is visible in Di from
vertex v ∈ Di, if the segment pv does not intersect Di except at v. At the ith

induction step, 2 ≤ i ≤ K, Di will satisfy the following invariants:

Invariant 1: Ci \ v1v2 is strictly X-monotone; that is, the path from v1 to v2

in Ci \ v1v2 has (strictly) increasing X-coordinates.
Invariant 2: Every peak in Di, i < K, has a successor.
Invariant 3: Every representative vertex vj ∈ Vj , 2 ≤ j ≤ i has a left and a

right edge. Moreover, if |P (Vj)| ≥ 3 then there is a vertical edge below vj .
Invariant 4: Di has no edge crossings.

For the base case i = 2, position the vertices v1, v2 and v3 at the corners of
an equilateral triangle so that X(v1) < X(v3) < X(v2) and Y (v1) < Y (v2) <
Y (v3). Draw the division vertices of V2 on the segment v1v3. This drawing of D2

satisfies all four invariants. Now suppose that we have a drawing of Di−1 that
satisfies the invariants. There are two cases to consider in the construction of
Di, corresponding to the two cases in the definition of the canonical ordering.

Case 1. |P (Vi)| ≥ 3: If vi has a middle predecessor vj with |P (Vj)| ≥ 3, let
w = vj . Otherwise let w be any middle predecessor of vi. Let L be the open
ray {(X(w), y) : y > Y (w)}. By invariant 1 for Di−1, there is a point in L that
is visible in Di−1 from every predecessor of vi. Represent vi by such a point,
and draw segments between vi and each of its predecessors. That the resulting
drawing Di satisfies the four invariants can be immediately verified.

Case 2. |P (Vi)| = 2: Suppose that P (Vi) = {w, u}, where w and u are the
left and the right predecessors of Vi, respectively. Suppose Y (w) ≥ Y (u). (The
other case is symmetric.) Let P be the path between w and u on Ci−1 \ v1v2.
As illustrated in Figure 3, let Ai be the region {(x, y) : y > Y (w) and X(w) ≤
x ≤ X(u)}. Assume on the contrary that Di−1∩Ai �= ∅. By the monotonicity of
Di−1, P ∩Ai �= ∅. Let p ∈ P ∩Ai. Since Y (p) > Y (w) ≥ Y (u), P is X-monotone
and thus has a vertex between w and u that is a peak. By the definition of the
canonical ordering σ, the addition of Vi creates a face of G, since Vi is added
in the outerface of Gi−1. Therefore, each vertex between w and u on P has no
successor, and is thus not a peak in Di−1 by invariant 2, which is the desired
contradiction. Therefore Di−1 ∩ Ai = ∅.
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Fig. 3. Illustration for Case 2.

Let L be the open ray {(X(u), y) : y > Y (u)}. If w �∈ S, then by invariant 3,
w has a left and a right edge in Di−1. Let c be the point of intersection between
L and the line extending the left edge at w. If w ∈ S, then let c be any point
in Ai on L. By invariant 1, there is a point c′ �∈ {c, w} on wc such that c′ is
visible in Di−1 from u. Represent vi by c′, and draw two segments viu and viw.
These two segments do not intersect any part of Di−1 (and neither is horizontal).
Represent any division vertices in Vi by arbitrary points on the open segment
wvi ∩ Ai. Therefore, in the resulting drawing Di, there are no crossings and the
remaining three invariants are maintained. This completes the construction of
D. The analysis for the number of segments and slopes is in [3]. �
Proof (of Theorem 1). Whenever a set Vi is added to Gi−1, at least |Vi| − 1
edges that are not in G can be added so that the resulting graph is planar. Thus
|S| =

∑
i(|Vi| − 1) ≤ 3n − 6 − m. Hence Theorem 2 implies that G has a plane

drawing with at most m − n/2 + |S| + 3 ≤ 5n/2 − 3 segments, and at most
m − n + |S| − 4 ≤ 2n − 10 slopes. �

Since deleting an edge from a drawing cannot increase the number of slopes,
and every plane graph can be triangulated to a 3-connected plane graph, Theo-
rem 1 implies that every n-vertex plane graph has a plane drawing with at most
2n − 10 slopes. Note that we cannot draw the same conclusion for segments,
since deleting an edge in a drawing may increase the number of segments. The
famous ‘nested-triangles’ planar graph leads to the following lower bound.

Lemma 1. For all n ≡ 0 (mod 3), there is an n-vertex planar triangulation
with maximum degree six that has at least 2n−6 segments in every plane drawing,
regardless of the choice of outerface.

3 Cubic 3-Connected Plane Graphs

A graph in which every vertex has degree three is cubic.

Theorem 3. Every cubic 3-connected plane graph has a plane drawing in which
every edge has slope in {π/4, π/2, 3π/4}, except for three edges on the outerface.
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Proof. Let σ = (V1, V2, . . . , VK) be a canonical ordering of G. We re-use the
notation from Theorem 2, except that a representative vertex of Vi may be the
first or last vertex in Vi. Since G is cubic, |P (Vi)| = 2 for all 1 < i < K, and every
vertex not in {v1, v2, vn} has exactly one successor. We proceed by induction on
i with the hypothesis that Gi has a plane drawing Di that satisfies:

Invariant 1: Ci\v1v2 is X-monotone; that is, the path from v1 to v2 in Ci\v1v2

has non-decreasing X-coordinates.
Invariant 2: Every peak in Di, i < K, has a successor.
Invariant 3: If there is a vertical edge above v in Di, then all the edges of G

that are incident to v are in Gi.
Invariant 4: Di has no edge crossings.

Let D2 be the drawing of G2 constructed as follows. Draw v1v2 horizon-
tally with X(v1) < X(v2). This accounts for one edge whose slope is not in
{π/4, π/2, 3π/4}. Now draw v1v3 with slope π/4, and draw v2v3 with slope
3π/4. Add any division vertices on the segment v1v3. Now v3 is the only peak
in D2, and it has a successor by the definition of the canonical ordering. Thus
all the invariants are satisfied for the base case D2.

Now suppose that 2 < i < K and we have a drawing of Di−1 that satisfies the
invariants. Suppose that P (Vi) = {u, w}, where u and w are the left and the right
predecessors of Vi, respectively. Without loss of generality, Y (w) ≤ Y (u). Let
the representative vertex vi be last vertex in Vi. Position vi at the intersection
of a vertical segment above w, and a segment of slope π/4 from u, and add any
division vertices on uvi, as illustrated in Figure 4(a). Note that there is no vertical
edge above w by invariant 3 for Di−1. (For the case in which Y (u) < Y (w), we
take the representative vertex vi to be the first vertex in Vi, and the edge wvi

has slope 3π/4, as illustrated in Figure 4(b).)
Clearly the resulting drawing Di is X-monotone. Thus invariant 1 is main-

tained. The vertex vi is the only peak in Di that is not a peak in Di−1. Since vi

has a successor by the definition of the canonical ordering, invariant 2 is main-
tained. The vertical edge wvi satisfies invariant 3, since vi is the sole successor
of w. Thus invariant 3 is maintained. No vertex between u and w (on the path
from u to w in Ci−1 \ v1v2) is higher than the higher of u and w. Otherwise
there would be a peak, not equal to vn, with no successor, and thus violating
invariant 2 for Di−1. Thus the edges in Di \ Di−1 do not cross any edges in Di.
In particular, there is no edge ux in Di−1 with slope π/4 and Y (x) > Y (u). The
vertex vn can be easily added to the drawing to complete the construction. �
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Fig. 4. Construction of a 3-slope drawing of a cubic 3-connected plane graph.



Really Straight Graph Drawings 129

It is easily seen that the bound of six on the number of slopes in Theorem 3
is optimal for any 3-connected cubic plane graph whose outerface is a triangle.
An easy variation on the algorithm in Theorem 3 gives:

Corollary 1. Every cubic 3-connected plane graph has a plane ‘drawing’ with
three slopes and three bends on the outerface.

4 Drawings of General Graphs with Few Slopes

This section is motivated by the following fundamental open problem: Is there
a function f such that every graph with maximum degree ∆ has a drawing with
at most f(∆) slopes? This is open even for ∆ = 3. Note that:

– The best lower bound that we are aware of is ∆ + 1 for the complete graph.
– There is no such function f for convex drawings. Malitz [11] proved that

there are ∆-regular n-vertex graphs with book thickness Ω(
√

∆n1/2−1/∆).
Since book thickness is a lower bound on the number of slopes in a convex
drawing, every convex drawing of such a graph has Ω(

√
∆n1/2−1/∆) slopes.

– An affirmative solution to this problem would imply that geometric thick-
ness is bounded by maximum degree, which is an open problem due to Epp-
stein [7]. Duncan et al. [5] recently proved that graphs with maximum degree
at most four have geometric thickness at most two.

Let H be a (host) graph. The vertices of H are called nodes. An H-partition
of a graph G is a function f : V (G) → V (H) such that for every edge vw ∈ E(G)
we have f(v) = f(w) or f(v)f(w) ∈ E(H). In the latter case, we say vw is mapped
to the edge f(v)f(w). The width of f is the maximum of |f−1(x)|, taken over
all nodes x ∈ V (H), where f−1(x) = {v ∈ V (G) : f(v) = x}. In the following
result, we describe how to produce a drawing of a graph G given an H-partition
of G and a drawing D of H . The general approach is to scale D appropriately,
and then replace each node of H by a copy of the drawing of Kk on a regular
k-gon. The only difficulty is to scale D so that we obtain a valid drawing of G.

Lemma 2 ([3]). Let H be a graph admitting a drawing D with s distinct slopes
and � distinct edge lengths. Let G be a graph admitting an H-partition of width k.
Then G has a drawing with ks�(k − 1) + k + s slopes.

Lemma 2 suggests looking at host graphs that admit drawings with few slopes
and few edge lengths. Obviously a path has a drawing with one slope and one
edge length. Based on this idea, we prove that every graph with bandwidth b has
a drawing with at most 1

2b(b+1)+1 slopes. Based on results from the literature
that bound bandwidth in terms of maximum degree ∆, we conclude:

– Every interval graph has a drawing with at most 1
2∆ (∆ + 1) + 1 slopes.

– Every co-comparability graph (which includes the permutation graphs) has
a drawing with at most ∆ (2∆ − 1) + 1 slopes.

– Every AT-free graph has a drawing with at most 3
2∆ (3∆ + 1) + 1 slopes.
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Lemma 2 motivates the study of drawings of trees with few slopes and few
distinct edge lengths.

Lemma 3. Every tree T with pathwidth k ≥ 1 has a plane drawing with
max{∆(T )− 1, 1} slopes and 2k − 1 distinct edge lengths.

Lemma 4 ([13]). Every tree T has a path P , called a “backbone”, such that
T \ V (P ) has smaller pathwidth than T , and the endpoints of P are leaves of T .

Proof (of Lemma 3). We refer to T as T0. Let n0 be the number of vertices in
T0, and let ∆0 = ∆(T0). The result holds trivially for ∆0 ≤ 2. Now assume
that ∆0 ≥ 3. Let S be the set of slopes S = {π

2 (1 + i
∆0−2 ) : 0 ≤ i ≤ ∆0 − 2}.

We proceed by induction on n with the hypothesis: “There is a real number
� = �(n0, ∆0), such that for every tree T with n ≤ n0 vertices, maximum degree
at most ∆0, and pathwidth k ≥ 1, and for every vertex r of T with degree less
than ∆0, T has a plane drawing D in which:

– r is at the top of D (that is, no point in D has greater Y-coordinate than r),
– every edge of T has slope in S,
– every edge of T has length in {�0, �1, . . . , �2k−1}, and
– if r is contained in some backbone of T , then every edge of T has length in

{�0, �1, . . . , �2k−2}.”
The result follows from the induction hypothesis, since we can take r to be

the endpoint of a backbone of T0, in which case deg(r) = 1 < ∆0, and thus every
edge of T0 has length in {�0, �1, . . . , �2k−2}.

The base case with n = 1 is trivial. Now suppose that the hypothesis is true
for trees on less than n vertices, and we are given a tree T with n vertices and
pathwidth k, and r is a vertex of T with degree less than ∆0.

If r is contained in some backbone B of T , then let P = B. Otherwise, let
P be a path from r to an endpoint of a backbone B of T . Note that P has at
least one edge. As illustrated in Figure 5, draw P horizontally with unit-length
edges. Every vertex in P has at most ∆0−2 neighbours in T \V (P ), since r has
degree less than ∆0 and the endpoints of a backbone are leaves. At each vertex
x ∈ P , the children {y0, y1, . . . , y∆0−3} of x are positioned below P and on the
unit-circle centred at x, so that each edge xyj has slope π

2 (1 + j/(∆0 − 2)) ∈ S.
Every connected component T ′ of T \ V (P ) is a tree rooted at some vertex

r′ adjacent to a vertex in P . Thus r′ has already been positioned in the drawing
of T . If T ′ is a single vertex, then we no longer need to consider this T ′.

We consider two types of subtrees T ′, depending on whether the pathwidth
of T ′ is less than k. Suppose that the pathwidth of T ′ is k (it cannot be more).
Then T ′ ∩ B �= ∅ since B is a backbone of T . Thus T ′ ∩ B is a backbone of T ′

containing r′. Thus we can apply the stronger induction hypothesis in this case.
Every T ′ has less vertices than T , and every r′ has degree less than ∆0 in T ′.

Thus by induction, every T ′ has a drawing with r′ at the top, and every edge of
T ′ has slope in S. Furthermore, if the pathwidth of T ′ is less than k, then every
edge of T ′ has length in {�0, �1, . . . , �2k−3}. Otherwise r′ is in a backbone of T ′,
and every edge of T ′ has length in {�0, �1, . . . , �2k−2}.
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P

Fig. 5. Drawing of T with few slopes and few edge lengths.

There exists a scale factor � < 1, depending only on n0 and ∆0, so that
by scaling the drawings of every T ′ by �, the widths of the drawings are small
enough so that there is no crossings when the drawings are positioned with each
r′ at its already chosen location. (Note that � is the same value at every level of
the induction.) Scaling preserves the slopes of the edges. An edge in any T ′ that
had length �i before scaling, now has length �i+1.

Case 1. r is contained in some backbone B of T : By construction, P = B.
So every T ′ has pathwidth at most k − 1, and thus every edge of T ′ has length
in {�1, �2, . . . , �2k−2}. All the other edges of T have unit-length. Thus we have a
plane drawing of T with edge lengths {�0, �1, . . . , �2k−2}, as claimed.

Case 2. r is not contained in any backbone of T : Every edge in every T ′ has
length in {�1, �2, . . . , �2k−1}. All the other edges of T have unit-length. Thus we
have a plane drawing of T with edge lengths {�0, �1, . . . , �2k−1}, as claimed. �
Theorem 4. Let G be a graph with n vertices, maximum degree ∆, and tree-
width k. Then G has a drawing with O(k3∆4 log n) slopes.

Proof. Ding and Oporowski [2] proved that for some tree T , G has a T -partition
of width at most max{24k∆, 1}. Let w = max{24k∆, 1}. For each node x ∈
V (T ), there are at most w∆ edges of G incident to vertices mapped to x. Hence
we can assume that T is a forest with maximum degree at most w∆, as otherwise
there is an edge of T with no edge of G mapped to it, in which case the edge of T
can be deleted. Similarly, T has at most n vertices. Now, T has pathwidth at most
log(2n + 1) (see [1]). By Lemma 3, T has a drawing with at most w∆− 1 slopes
and at most 2 log(2n+1)−1 distinct edge lengths. By Lemma 2, G has a drawing
in which the number of slopes is at most w(w∆ − 1)(2 log(2n + 1) − 1)(w − 1)+
(w∆ − 1) + w ∈ O(w3∆ log n) ⊆ O(k3∆4 log n). �
Corollary 2. Every n-vertex graph with bounded degree and bounded treewidth
has a drawing with O(log n) slopes. �
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132 Vida Dujmović, Matthew Suderman, and David R. Wood

References

1. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoret. Comput. Sci., 209(1-2):1–45, 1998.

2. Guoli Ding and Bogdan Oporowski. Some results on tree decomposition of
graphs. J. Graph Theory, 20(4):481–499, 1995.
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