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Abstract

Motivated by the question of whether planar graphs have bounded queue-number,
we prove that planar graphs with maximum degree ∆ have queue-number O(∆2), which
improves upon the best previous bound of O(∆6). More generally, we prove that graphs
with bounded degree and bounded Euler genus have bounded queue-number. In particular
graphs with Euler genus g and maximum degree ∆ have queue-number O(g + ∆2). As
a byproduct we prove that if planar graphs have bounded queue-number, then graphs of
Euler genus g have queue-number O(g).

1 Introduction

Bekos, Förster, Gronemann, Mchedlidze, Montecchiani, Raftopoulou, and Ueckerdt [1] recently
proved that planar graphs with bounded (maximum) degree have bounded queue-number. We
improve their bound and more generally show that graphs with bounded degree and bounded
genus have bounded queue-number.
First we introduce queue layouts and give the background to the above results. For a graph
G and integer k > 0, a k-queue layout of G consists of a linear ordering � of V (G) and a
partition E1, E2, . . . , Ek of E(G), such that for i ∈ {1, . . . , k}, no two edges in Ei are nested
with respect to �. Here edges vw and xy are nested if v ≺ x ≺ y ≺ w. The queue-number of
a graph G, denoted by qn(G), is the minimum integer k such that G has a k-queue layout.
These definitions were introduced by Heath et al. [12, 13] as a dual to stack layouts (also
called book embeddings). In a stack layout, no two edges in Ei cross with respect to �. Here
edges vw and xy cross if v ≺ x ≺ w ≺ y
Heath et al. [12] conjectured that every planar graph has bounded queue number. This conjecture
has remained open despite much research on queue layouts [3, 5–8, 10–14, 16, 18, 19]. Dujmović
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and Wood [8] observed that every graph with m edges has a O(
√
m)-queue layout using a

random vertex ordering. Thus every planar graph with n vertices has queue-number O(
√
n).

Di Battista, Frati, and Pach [2] proved the first breakthrough on this topic, by showing that
every planar graph with n vertices has queue-number O(log2 n). Dujmović [4] improved this
bound to O(log n) with a simpler proof.
Dujmović et al. [6] established (poly-)logarithmic bounds for more general classes of graphs.1
For example, they proved that every graph with n vertices and Euler genus g has queue-number
O(g + log n), and that every graph with n vertices excluding a fixed minor has queue-number
logO(1) n.
Recently, Bekos et al. [1] proved a second breakthrough result, by showing that planar graphs
with bounded degree have bounded queue-number.
Theorem 1 ([1]). Every planar graph with maximum degree ∆ has queue-number at most
32(2∆− 1)6 − 1.

Note that bounded degree alone is not enough to ensure bounded queue-number. In particular,
Wood [20] proved that for every integer ∆ > 3 and all sufficiently large n, there are graphs
with n vertices, maximum degree ∆, and queue-number Ω(

√
∆n1/2−1/∆).

The first contribution of this paper is to improve the bound of Bekos et al. [1] from O(∆6) to
O(∆2).
Theorem 2. Every planar graph with maximum degree ∆ has queue-number at most 12∆2 +

16∆ + 3.

We extend this result by showing that graphs with bounded Euler genus and bounded degree
have bounded queue-number.
Theorem 3. Every graph with Euler genus g and maximum degree ∆ has queue-number at
most 4g + 36∆2 + 48∆ + 9.

We remark that using well-known constructions [5, 7, 9], Theorem 3 implies that graphs with
bounded Euler genus and bounded degree have bounded track-number, which in turn can be
used to prove linear volume bounds for three-dimensional straight-line grid drawings of the
same class of graphs. These results can also be extended for graphs with bounded degree that
can be drawn in a surface of bounded Euler genus with a bounded number of crossings per
edge (using [10, Theorem 6]). We omit all these details.
The proof of Theorem 3 uses Theorem 2 as a ‘black box’. Starting with a graph G of bounded
Euler genus and bounded degree, we construct a planar subgraph G′ of G. We then apply
Theorem 2 to obtain a queue layout of G′, from which we construct a queue layout of G. This
approach suggests a direct connection between the queue-number of graphs with bounded
Euler genus and planar graphs, regardless of degree considerations. The following theorem

1The Euler genus of a graph G is the minimum integer k such that G embeds in the orientable surface with
k/2 handles (and k is even) or the non-orientable surface with k cross-caps. Of course, a graph is planar if and
only if it has Euler genus 0; see [15] for more about graph embeddings in surfaces. A graph H is a minor of a
graph G if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges.
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establishes this connection. A class of graphs is hereditary if it is closed under taking induced
subgraphs.
Theorem 4. Let G be a hereditary class of graphs, such that every planar graph in G has
queue-number at most k. Then every graph in G with Euler genus g has queue-number at
most 3k + 4g.

Theorem 3 is an immediate corollary of Theorems 2 and 4, where G is the class of graphs
with maximum degree at most ∆. Theorem 4, where G is the class of all graphs, implies the
following result of interest:
Corollary 5. If every planar graph has queue-number at most k, then every graph with Euler
genus g has queue-number at most 3k + 4g.

For a graph G and a set A ⊆ V (G), let G[A] be the subgraph of G induced by A, which has
vertex set A and edge set {vw ∈ E(G) : v, w ∈ A}. For disjoint sets A,B ⊆ V (G), let G[A,B]

be the bipartite graph with bipartition {A,B} and edge set {vw ∈ E(G) : v ∈ A,w ∈ B}.

2 Planar Graphs of Bounded Degree

This section proves Theorem 2. The proof is inspired by the proof of Theorem 1 by Bekos
et al. [1]. Here is high-level overview of their proof for a planar graph G with maximum degree
∆. First, Bekos et al. [1] construct a particular planar graph G1 obtained from G by subdividing
each edge at most three times. Then they construct a planar graph G2 from G1 by replacing
certain edges by pairs of trees and a perfect matching between their leaves. G2 is called a
‘∆-matched’ graph. The heart of the proof of Bekos et al. [1] is to construct a O(∆)-queue
layout of any ∆-matched graph, and thus of G2. They then observe that the queue layout of
G2 also gives a O(∆)-queue layout of G1. Finally, they use a generic lemma of Dujmović and
Wood [8], which says that if some (6 c)-subdivision of a graph has a k-queue layout, then the
original graph has a O(k2c)-queue layout. Bekos et al. [1] apply this result with k = O(∆)

and c = 3, to obtain a O(∆6)-queue layout of G.
It should be mentioned that there is a straightforward way to improve this O(∆6) bound.
Lemma 11 in Appendix 1 shows that if some (6 c)-subdivision of a graph has a k-queue layout
for some fixed c, then the original graph has a O(kc+1)-queue layout. Moreover, in the proof
of Bekos et al. [1], for every edge e of G that is subdivided three times, one of the edges in
the subdivision of e is assigned to a single queue (Q0 in their notation). This observation, in
conjunction with the proof of Lemma 11, leads to a O(∆3)-queue layout of G.
Our proof of Theorem 2 initially follows a similar strategy. Starting with a planar graph G with
maximum degree ∆, we consider the (6 3)-subdivision G1 of G constructed by Bekos et al. [1].
Note that Bekos et al. [1] explain in Section 3.3 of their paper that one can work directly with
G1 instead of the ∆-matched graph G2, and this is what we choose to do. The key properties
of G1 are summarised in the definition of ‘well-layered’ below. We then construct a partition of
V (G1) with several desirable properties (see Lemma 7). This partition is implicit in the proof
of Bekos et al. [1]—there is really nothing new in this part of our proof.
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The main point of difference between our proof and that of Bekos et al. [1] is that we do not
apply the generic ‘unsubdividing’ lemma of Dujmović and Wood [8]. Instead we refine the
partition of V (G1) to obtain a similar partition of V (G) (see Lemma 8). From this partition one
can determine a O(∆2)-queue layout of G. Note that in this O(∆2)-queue layout, the vertex
ordering is identical to that used by Bekos et al. [1], only the queue assignment is different.
This fact shows the value in focusing on structural partitions rather than the final queue layout.
The following definitions are key concepts in our proofs (and that of several other papers on
queue layouts [1, 5, 6, 8]). A layering of a graph G is a partition (V0, V1, . . . , Vt) of V (G) such
that for every edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj , then |i − j| 6 1. If r is a vertex in a
connected graph G and Vi := {v ∈ V (G) : distG(r, v) = i} for all i > 0, then (V0, V1, . . . , Vt)

is called a BFS layering of G, where t := max{distG(r, v) : v ∈ V (G)}. Associated with a bfs
layering is a bfs spanning tree T obtained by choosing, for each non-root vertex v ∈ Vi with
i > 1, a neighbour w in Vi−1, and adding the edge vw to T . Thus distT (r, v) = distG(r, v) for
each vertex v of G. When the spanning tree T is obvious from the context, we call edges in T
tree edges and edges not in T non-tree edges. An edge vw ∈ E(G) with v, w ∈ Vi for some
i > 0 is called a level edge. An edge vw ∈ E(G) with v ∈ Vi and w ∈ Vi+1 for some i > 0 is
called a binding edge. Every tree edge is binding.
The following lemma of Pupyrev [17] shows that every planar graph has a drawing that
highlights particular aspects of a BFS layering, as illustrated in Figure 1.
Lemma 6 ([17]). For every connected planar graph G and every vertex r of G, if T is the BFS
tree and (V0, V1, . . . , Vt) is the BFS layering of G rooted at r, then there is a drawing of G in
R2 with the r at the origin and on the outer-face, such that for i ∈ {1, 2, . . . , t},

• the vertices in Vi are drawn on a circle Ci of radius Ri centred at the origin, where
0 < R1 < R2 < · · · < Rt;

• each level edge vw ∈ E(G) with v, w ∈ Vi is drawn as an open curve between v and w
strictly outside of Ci; and

• each binding edge vw with v ∈ Vi and w ∈ Vi+1 is drawn either:

– as an open curve from v to w strictly between Ci and Ci+1 (called a direct edge),
or

– as an open curve starting at v that crosses Ci+1 once at a point distinct from w,
then stays outside of Ci+1, and ends at w (called a hooked edge).

• each tree edge vw ∈ E(T ) is direct and binding..

2.1 Well-Layered Planar Graphs

A planar graph G is well-layered if there is a BFS spanning tree T of G rooted at a vertex r
such that every non-tree edge vw ∈ E(G) \ E(T ) is a level edge in the corresponding BFS
layering, and both v and w are leaves in T with degree 2 in G. This implies that the set of
non-tree edges are a matching in G.
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Figure 1: Drawing of planar graph on concentric circles: tree edges are blue, hooked edges
are green, level edges are brown, direct non-tree edges are red.

Lemma 7. Let G be well-layered planar graph with corresponding BFS spanning tree T and
BFS layering (V0, V1, . . . , Vt) rooted at a vertex r. Assume that every vertex in G has at most
∆ children in T . Then for i ∈ {1, 2, . . . , t}, there is a partition {Vi,a : a > 0} of Vi, and an
ordering −→Vi,a of each set Vi,a, such that:

(a) for each non-tree edge vw ∈ E(G) \ E(T ), both v and w are in Vi,a for some i, a > 0,

(b) for each tree edge vw ∈ E(T ), if v ∈ Vi,a and w ∈ Vi+1,b for some a, b > 0, then
b−∆a ∈ {0, 1, . . . , 2∆− 1},

(c) for all i, a > 0, no two edges in G[Vi,a] cross or nest with respect to the ordering −→Vi,a, in
particular, −→Vi,a defines a 1-queue layout of G[Vi,a], and

(d) for all i, a, b > 0, the ordering −→Vi,a
−−−→
Vi+1,b defines a 1-queue layout of G[Vi,a, Vi+1,b].

Proof. Apply Lemma 6 to obtain a drawing of G on concentric circles C1, C2, . . . , Ct. For each
vertex v ∈ V (G), let `(v) := distG(v, r)− t. Thus `(v) ∈ {0, 1, . . . , t} for every vertex v of G,
and `(r) = t. For each vertex v of G, let Tv be the subtree of T rooted at v.
For each non-tree edge vw ∈ E(G) \ E(T ), let Dvw be the cycle obtained from the vw-path
in T by adding the edge vw. Note that if v, w ∈ Vi then the vw-path in T is drawn within the
interior of Ci (since every tree edge is binding and direct) and vw is drawn outside of Ci.
Let G+ be the multigraph with vertex set V (G), where each tree edge vw ∈ E(T ) has
multiplicity 1 in G+, and each non-tree edge vw ∈ E(G) \E(T ) has multiplicity ∆`(v) (which
equals ∆`(w) since every non-tree edge is a level edge). Note that T is a spanning tree of G+.
A key property of this construction is that for each vertex v of G, the number of non-tree edges
in G+ with one endpoint in Tv is at most ∆`(v). We prove this claim by induction on `(v).
First note that if v is a leaf in T , then Tv is simply the vertex v, and v is incident to at most
one non-tree edge in G, and thus is incident to at most ∆`(v) edges in G+. So the claim holds
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for leaves. In particular, if `(v) = 0 then v is a leaf in T , and the claim holds. Now consider a
non-leaf vertex v with `(v) > 1. Let v1, . . . , vd be the children of v, where v1, . . . , vp are not
leaves of T , and vp+1, . . . , vd are leaves of T . Note that `(vi) = `(v) − 1 for i ∈ {1, . . . , d}.
By induction, for each i ∈ {1, . . . , p}, the number of non-tree edges in G+ with one endpoint
in Tvi is at most ∆`(vi) = ∆`(v)−1. For i ∈ {p + 1, . . . , d}, we have already shown that the
number of non-tree edges in G+ incident to vi is at most ∆`(vi) = ∆`(v)−1 edges. In total,
there are at most d∆`(v)−1 6 ∆`(v) non-tree edges in G+ incident to Tv , as claimed.
Let G∗ be the dual of G+. Let T ∗ be the spanning subgraph of G∗ consisting of those edges of
G∗ dual to edges of E(G+) \ E(T ). It is well known (and easily follows from Euler’s formula)
that T ∗ is a spanning tree of G∗. (T ∗ is sometimes called a co-tree; note that T and T ∗ can
be simultaneously drawn without crossing each other.) Let r∗ be the vertex of T ∗ dual to the
outer-face of G+. Consider T ∗ to be rooted at r∗.
For each face f of G+, let d(f) be the distance in T ∗ between r∗ and the vertex of T ∗ dual
to f . For each vertex v of G+, let m(v) be the minimum of d(f) taken over all faces f of G+

incident with the subtree of T rooted at v, and let
g(v) :=

⌊
m(v)

∆`(v)

⌋
.

For i, a > 0, let
Vi,a := {v ∈ Vi : g(v) = a}.

Let −→Vi,a be the ordering of Vi,a along circle Ci, where the outer-face defines the start and end
point. (In the language of Bekos et al. [1], m(v) is analogous to the ‘matching-value’ of v, and
g(v) is the ‘layer-group’ of v.)
This concludes the description of the partition {Vi,a : i, a > 0} and the orderings −→Vi,a. We now
show these satisfy the claims of the lemma.
We now prove (a). Consider a non-tree edge vw ∈ E(G) \ E(T ). By assumption, both v and
w are in Vi for some i > 0, and both v and w are leaves in T . Thus `(v) = `(w), and v is the
only vertex in the subtree rooted at v, and similarly for w. Since degG(v) = degG(w) = 2, the
faces incident to v are exactly the same faces incident to w. Thus m(v) = m(w), implying v
and w are in Vi,a where a = bm(v)/∆`(v)c. This proves (a).
We now prove (b). Consider a non-leaf vertex v with `(v) = `. Then all the edges incident
to v are in T . Let x and y be two children of v consecutive in the embedding of G. Observe
that m(y)−m(x) is maximised when all the non-tree edges incident to Tx go ‘under’ Ty . The
number of such edges is at most ∆`(x) = ∆`−1. Thus m(y) 6 m(x) + ∆`−1. Since v has at
most ∆ children, m(y) 6 m(x) + ∆` for all children x and y of v. Every face incident with Tv
is incident to Tx for some child x of v. Thus m(v) equals the minimum of m(x) taken over all
children x of v. Hence m(y) 6 m(v) + ∆` for all children y of v, implying

g(y) =

⌊
m(y)

∆`−1

⌋
6
m(y)

∆`−1
6 ∆

m(v)

∆`
+ ∆ < ∆

(⌊
m(v)

∆`

⌋
+ 1

)
+ ∆ = ∆ g(v) + 2∆.

Since g(v) and g(y) are integers, g(y) 6 ∆ g(v) + 2∆− 1. Moreover, m(v) 6 m(y), implying
∆ g(v) = ∆

⌊
m(v)

∆`

⌋
6 ∆

m(v)

∆`
6
m(y)

∆`−1
<

⌊
m(y)

∆`−1

⌋
+ 1 = g(y) + 1.
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Since g(v) and g(y) are integers, g(y) > ∆ g(v). Summarising, if y is a child of v in T then
g(y)−∆ g(v) ∈ {0, 1, . . . , 2∆− 1}.

This says that for each tree edge vw ∈ E(T ) where v ∈ Vi,a and w ∈ Vi+1,b, we have
b−∆a ∈ {0, 1, . . . , 2∆− 1}, which proves (b).
We now prove (c), which claims that no two edges in G[Vi,a] cross or nest with respect to
the ordering −→Vi,a. Consider edges vw, pq ∈ E(G) with v, w, p, q ∈ Vi,a. Let ` := `(v) = `(w).
Neither vw nor pq are tree edges. Suppose on the contrary that vw and pq cross with respect
to −→Vi,a. Without loss of generality, v ≺ p ≺ w ≺ q in −→Vi,a. Then v, p, w, q appear in this order
on the circle Ci. Since vw and pq are drawn outside Ci, these edges cross in the drawing
of G, which is a contradiction. Thus no two edges in G[Vi,a] cross with respect to −→Vi,a. Now
suppose that vw and pq nest with respect to −→Vi,a. Without loss of generality, v ≺ p ≺ q ≺ w
in −→Vi,a. Thus v, p, q, w appear in this order on Ci. Hence both Tp and Tq are inside Dvw and
the outer-face of G+ is outside Dvw . Since vw is the only edge of Dvw not in T , every path
in T ∗ from r∗ to a vertex dual to a face incident with p or q must include the edges of T ∗ dual
to vw. Let f be the face of G immediately below vw. Since vw has multiplicity ∆` in G+, for
every face f ′ incident with Tp or Tq , we have d(f ′) > d(f) + ∆`. Since w is incident with f ,
we have m(w) 6 d(f). Thus m(p) > d(f) + ∆` > m(w) + ∆`. Hence

m(p)

∆`
>
m(w)

∆`
+ 1.

Therefore
g(p) =

⌊
m(p)

∆`

⌋
>

⌊
m(w)

∆`

⌋
= g(w),

which implies that p and w are not both in Vi,a. This contradiction shows that −→Vi,a defines a
1-queue layout of G[Vi,a] for all i, a > 0. This proves (c).
We now prove (d). Suppose on the contrary that v ≺ x in −→Vi,a and y ≺ w in −−−→Vi+1,b for some
edges vw, xy ∈ E(G) for some i, a, b > 0. Thus v is to the left of x in Ci and y is to the
left of w in Ci+1. Since every non-tree edge is a level edge, both vw and xy are tree edges,
which are drawn direct between Ci and Ci+1. Thus vw and xy cross. This contradiction shows
that no two edges of G[Vi,a, Vj,b] are nested in the ordering −→Vi,a−−−→Vi+1,b, which thus defines a
1-queue layout of G[Vi,a, Vi+1,b]. This proves (d).

Note that Lemma 7 implies that every well-layered graph has a 2∆-queue layout, as proved
by Bekos et al. [1]. To see this, let −→Vi be the ordering −→Vi,0−→Vi,1 . . . of Vi. Then take the ordering−→
V0
−→
V1
−→
V2 . . . of V (G). By Lemma 7(c), every level edge can be assigned to a single queue Q∗.

Assign each tree edge vw ∈ E(T ) where v ∈ Vi,a and w ∈ Vi+1,b to Qb−∆a. By Lemma 7(b)
this introduces 2∆ queues. Suppose that tree edges vw and pq in Qj are nested for some
j ∈ {0, 1, . . . , 2∆− 1}, with v ≺ p ≺ q ≺ w in the ordering. Then v ∈ Vi,a, p ∈ Vi,b, q ∈ Vi+1,c

and w ∈ Vi+1,d for some i, a, b, c, d > 0 with j = d −∆a = c −∆b. Thus d − c = ∆(a − b).
Since v ≺ p ≺ q ≺ w in the ordering, d− c > 0 and a− b 6 0. Thus a = b and c = d, which
contradicts Lemma 7(d).
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2.2 General Planar Graphs

We now extend Lemma 7 for all planar graphs.
Lemma 8. Let G be a planar graph with a BFS spanning tree T and BFS layering
(V0, V1, . . . , Vt) rooted at a vertex r. Assume that every vertex in G has degree at most ∆ + 1

and has most ∆ children in T . Then for i ∈ {1, 2, . . . , t}, there is a partition {Vi,a : a > 0} of
Vi, and an ordering −→Vi,a of each set Vi,a, such that:

(a) for each level edge vw ∈ E(G), if v ∈ Vi,a and w ∈ Vi,b then |a− b| 6 1;

(b) for each tree edge vw ∈ E(T ), if v ∈ Vi,a and w ∈ Vi+1,b then b−a∆ ∈ {0, 1, . . . , 2∆−1};

(c) for each non-tree binding edge vw ∈ E(G) \ E(T ), if v ∈ Vi,a and w ∈ Vi+1,b then
b− a∆ ∈ {−1, 0, . . . , 2∆};

(d) the ordering −→Vi,a
−−−→
Vi,a+1 defines a 1-queue layout of G[Vi,a, Vi,a+1] for all i, a > 0.

(e) the ordering −→Vi,a
−−−→
Vi+1,b defines a (6∆ + 1)-queue layout of G[Vi,a, Vi+1,b] for all i, a, b > 0.

(f ) the ordering −→Vi,a defines a 2∆-queue layout of G[Vi,a] for all i, a > 0.

Proof. Apply Lemma 6 to obtain a drawing of G on concentric circles C1, C2, . . . , Ct rooted at
r.
Let G′ be obtained by subdividing edges of G as follows, as illustrated in Figure 2. Initialise
T ′ := T and V ′i := Vi for each i > 0. For each level edge vw ∈ E(G) with v, w ∈ Vi for some
i > 0:

• replace vw by a path vxyw in G′ (where x and y are new vertices);
• add the edges vx and wy to T ′ (so x and y are leaves in T ′ with degree 2 in G′); and
• add x and y to V ′i+1.

For each non-tree binding edge vw ∈ E(G) \ E(T ) with v ∈ Vi and w ∈ Vi+1 for some i > 0:

• replace vw by a path vxyzw in G′ (where x, y, z are new vertices);
• add the edges vx, xy and wz to T ′ (so y and z are leaves in T ′ with degree 2 in G′);

and
• add x to V ′i+1, and add y and z to V ′i+2.

Observe that T ′ is a bfs spanning tree of G′, and G′ is well-layered with respect to the layering
V ′0 , V

′
1 , . . . , V

′
t . For i > 0, let {V ′i,a : a > 0} be the partition of V ′i from Lemma 7 applied to G′.

Let Vi,a := V ′i,a ∩ V (G) for i, a > 0, where −→Vi,a inherits its order from −→V ′i,a.
We now prove (a). Consider a level edge vw ∈ E(G) with v ∈ Vi,a and w ∈ Vi,b. Let vxyw be
the corresponding path in G′. Then xy is a level non-tree edge of G′ with v, w ∈ V ′i+1. By
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(a)

ℓ ℓ

ℓ− 1

(b)

ℓ

ℓ− 1

ℓ

ℓ− 1

ℓ− 2

Figure 2: Creating the subdivision G′: (a) level edge, (b) non-tree binding edge.

Lemma 7(a), both x and y are in V ′i+1,c for some c > 0. Since vx and wy are tree edges in
G′ by Lemma 7(b), we have c−∆a = α and c−∆b = β for some α, β ∈ {0, 1, . . . , 2∆− 1}.
Thus c = α+ ∆a = β + ∆b, implying ∆(a− b) = β − α 6 2∆− 1 and a− b 6 1. Similarly
b− a 6 1. Thus |a− b| 6 1. This proves (a).
Property (b) follows immediately from Lemma 7(b) since a tree edge vw ∈ E(T ) with v ∈ Vi,a
and w ∈ Vi+1,b is a tree edge in G′ with v ∈ V ′i,a and w ∈ V ′i+1,b, in which case b − ∆a ∈
{0, 1, . . . , 2∆− 1}.
We now prove (c). Consider a binding non-tree edge vw ∈ E(G) \ E(T ) with v ∈ Vi,a and
w ∈ Vi+1,b. Let vxyzw be the corresponding path in G′. Then vx, xy and wz are tree edges
in G′, and yz is a level edge in G′. Moreover, x ∈ V ′i+1 and y, z ∈ V ′i+2. Then x ∈ V ′i+1,cfor some c > 0, and y, z ∈ V ′i+2,d for some d > 0 by Lemma 7(a). Since vx, xy and wz

are tree edges, by Lemma 7(b), c − ∆a = α and d − ∆c = β and d − ∆b = γ for some
α, β, γ ∈ {0, 1, . . . , 2∆− 1}. Thus d = β+ ∆c = γ+ ∆b, implying ∆(c− b) = γ− β 6 2∆− 1

and c−b 6 1. Similarly, ∆(b−c) = β−γ 6 2∆−1 and b−c 6 1. Now b 6 c+1 = α+a∆+1,
implying b− a∆ 6 α+ 1 6 2∆. Similarly, ∆(c− b) = γ − β 6 2∆− 1 and c− b 6 1. Thus
b > c−1 = ∆a+α−1 > ∆a−1, implying b−∆a > −1. In summary, b−a∆ ∈ {−1, 0, . . . , 2∆}.
This proves (c).
We now prove (d). Suppose on the contrary that edges vw and pq in G[Vi,a, Vi,a+1] are nested
in −→Vi,a−−−→Vi,a+1. Without loss of generality, v ≺ p in −→Vi,a and q ≺ w in −−−→Vi,a+1. Thus v ≺ p

and q ≺ w in Ci. If v ≺ p ≺ w in Ci, then m(p) > m(w), which contradicts the fact that
g(w) > g(p). Thus v ≺ w ≺ p. If v ≺ q ≺ w in Ci, then vw crosses pq in the drawing of G.
Thus q ≺ v ≺ w ≺ p in Ci. Since pq ∈ E(G), we have m(v) > m(q), which contradicts the fact
that g(q) > g(v). Therefore the ordering −→Vi,a−−−→Vi,a+1 defines a 1-queue layout of G[Vi,a, Vi,a+1].
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This proves (d).
We now prove (e). That is, for i, a, b > 0, we show that the ordering −→Vi,a−−−→Vi+1,b defines a
(6∆ + 1)-queue layout of G[Vi,a, Vi+1,b]. Each edge in G[Vi,a, Vi+1,b] is either direct or hooked.
We first show that one queue suffices for direct edges in G[Vi,a, Vi+1,b]. Suppose on the contrary
that there are two direct edges vw and xy in G[Vi,a, Vi+1,b] with v ≺ x in −→Vi,a and y ≺ w in−−−→
Vi+1,b. Then vw and xy are drawn between Ci and Ci+1 with v ≺ w in Ci and x ≺ y in Ci+1.
Thus vw and xy cross. This contradiction shows that one queue suffices for direct edges in
G[Vi,a, Vi+1,b].
Now consider a hooked edge vw in G[Vi,a, Vi+1,b] with v ∈ Vi,a and w ∈ Vi+1,b. Let vxyzw
be the corresponding path in G′. Then vx, xy and wz are tree edges in G′, and yz is a
level edge in G′. Moreover, x ∈ V ′i+1,c for some c > 0, and y, z ∈ V ′i+2,d for some d > 0 by
Lemma 7(a). Since vx, xy and wz are tree edges, by Lemma 7(b), c−∆a = α and d−∆c = β

and d−∆b = γ for some α, β, γ ∈ {0, 1, . . . , 2∆− 1}. Thus d = β + ∆c = γ + ∆b, implying
∆(c− b) = γ−β 6 2∆− 1 and c− b 6 1. Similarly, ∆(b− c) = β−γ 6 2∆− 1 and b− c 6 1.
Thus c ∈ {b− 1, b, b+ 1}. Assign vw to queue Qηγ where η = c− b. This introduces 6∆ queues.
We claim that this is a valid queue assignment. Suppose on the contrary that there are
hooked edges vw and pq in Qηγ with v ≺ p in −→Vi,a and q ≺ w in −−−→Vi+1,b. Let vxyzw be the
path corresponding to vw in G′. Let prstq be the path corresponding to pq in G′. Then
x, y, z, r, s, t are distinct vertices, and x, r ∈ V ′i+1,b+η and y, z, s, t ∈ V ′i+2,d where d = ∆b+ γ.
By Lemma 7(d) and since v ≺ p in −→Vi,a, we have x ≺ r in −−−→Vi+1,c. This in turn implies that
y ≺ s in −−−→Vi+2,d by Lemma 7(d). Similarly, by Lemma 7(d) and since q ≺ w in −−−→Vi+1,b, we have
t ≺ z in −−−→Vi+2,d. This implies that y ≺ t ≺ s ≺ z or y ≺ t ≺ z ≺ s or y ≺ s ≺ t ≺ z or
t ≺ z ≺ y ≺ s or t ≺ y ≺ s ≺ z or t ≺ y ≺ z ≺ s in −−−→Vi+2,d. Thus yz and st either nest or
cross in −−−→Vi+2,d, which contradicts Lemma 7(c). Hence no two edges in Qηγ nest. Therefore
(Qηj : η ∈ {−1, 0, 1}, j ∈ {0, 1, . . . , 2∆ − 1}) is a 6∆-queue layout of the hooked edges in
G[Vi,a, Vi,a+1] using the ordering −→Vi,a−−−→Vi,a+1. Including one queue for the direct edges, we
obtain a (6∆ + 1)-queue layout of G[Vi,a, Vi,a+1] using the ordering −→Vi,a−−−→Vi,a+1. This proves (e).
Finally we prove (f). Consider an edge vw with both end points v and w in Vi,a for some
i, a > 0. Then vw is a level edge. Let vxyw be the corresponding path in G′. Then xy is a level
non-tree edge of G′ with v, w ∈ V ′i+1. By Lemma 7(a), both x and y are in V ′i+1,b for some b > 0.
Since vx and wy are tree edges in G′ by Lemma 7(b), we have b−∆a ∈ {0, 1, . . . , 2∆− 1}.
Assign vw to queue Qb−∆a. Suppose on the contrary that v ≺ p ≺ q ≺ w for two edges vw
and pq in Qb−∆a. Let vxyw be the path in G′ corresponding to vw. Let pstq be the path in G′
corresponding to pq. Then x, y, s, t ∈ V ′i+1,b. Note that vx, wy, ps and qt are tree edges in G′,
while xy and st are level edges in G′. Since v ≺ p, we have x ≺ s in −−−→Vi+1,b by Lemma 7(d).
Similarly, since q ≺ q, we have t ≺ y in −−−→Vi+1,b by Lemma 7(d). Thus x ≺ s ≺ t ≺ y or
x ≺ t ≺ s ≺ y or x ≺ t ≺ y ≺ s or t ≺ y ≺ x ≺ s or t ≺ x ≺ s ≺ y or t ≺ x ≺ y ≺ s in −−−→Vi+1,b

In each case, xy and st either nest or cross, which contradicts Lemma 7(c). Thus no two edges
in Qb−∆a are nested, and (Qj : j ∈ {0, 1, . . . , 2∆− 1} is a 2∆-queue layout of G[Vi,a] using
ordering −→Vi,a. This proves (f).

We now show that Lemma 8 leads to a O(∆2)-queue layout of an arbitrary planar graph.
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Proof of Theorem 2. Let {Vi,a : i ∈ {0, 1, . . . , t}, a ∈ {0, 1, . . . , ni} be the partition of of V (G)

from Lemma 8. Let −→Vi be the ordering −→Vi,0−→Vi,1 . . .−−→Vi,ni of Vi. Consider the ordering −→V0
−→
V1 . . .

−→
Vt

of V (G).
An edge with both endpoints in Vi,a cannot nest an edge with both endpoints in Vj,b for
(i, a) 6= (j, b), and 2∆ queues suffice for such edges by Lemma 8(f). An edge with endpoints in
Vi,a and Vi,a+1 cannot nest an edge with endpoints in Vj,b and Vj,b+1 for (i, a) 6= (j, b), and
one queue suffice for such edges by Lemma 8(d). By Lemma 8(a) this accounts for all level
edges. Thus 2∆ + 1 queues suffice for level edges.
For i, a, b > 0, by Lemma 8(e), there is a queue layout (Qi,a,bj : j ∈ {1, 2, . . . , 6∆ + 1}) of
G[Vi,a, Vi+1,b]. For j ∈ {1, 2, . . . , 6∆ + 1} and α ∈ {−1, 0, . . . , 2∆}, let

Qαj :=
⋃
{Qi,a,bj : i, a, b > 0, b−∆a = α}.

By Lemma 8(b) and (c), this accounts for all binding edges.
Suppose that binding edges vw and pq in some Qαj are nested with v ≺ p ≺ q ≺ w in our
ordering of V (G). Then v ∈ Vi,a, p ∈ Vi,b, q ∈ Vi+1,c and w ∈ Vi+1,d for some i, a, b, c, d > 0

with α = d −∆a = c −∆b. Thus d − c = ∆(a − b). Since v ≺ p ≺ q ≺ w in the ordering,
d− c > 0 and a− b 6 0. Thus a = b and c = d, which contradicts Lemma 8(e).
Thus (2∆ + 2)(6∆ + 1) queues suffice for binding edges. In total we use (2∆ + 2)(6∆ + 1) +

2∆ + 1 = 12∆2 + 16∆ + 3 queues

We emphasise that the vertex ordering used in the proof of Theorem 2 is identical to that used
by Bekos et al. [1]. Our contribution is to show that O(∆2) queues suffice rather than the
O(∆6) queues used by Bekos et al. [1]. On the other hand, we now show that up to a constant
factor our analysis is tight. That is, the above ordering can produce Ω(∆2) pairwise nested
edges (a so-called ‘rainbow’), which each must be assigned to a distinct queue. Start with a
rooted binary tree with 2∆2 leaves. Label the leaves left-right

v1,1, . . . , v1,∆; . . . ; v∆,1, . . . , v∆,∆;w∆,∆, . . . , w∆,1; . . . ;w1,∆, . . . , w1,1.

Subdivide the edge incident to each leaf vi,j . Let G be the graph obtained by adding the
edge vi,jwi,j for i, j ∈ {1, 2, . . . ,∆}, as illustrated in Figure 3. Let G′ be the well-layered
graph obtained by subdividing the edges of G as described above. Thus each edge vi,jwi,j is
replaced by a path vi,jxi,jyi,jzi,jwi,j . Vertices yi,j and zi,j , which are on level 0, are joined
by a level edge. Edges vi,jxi,j , xi,jyi,j and zi,jwi,j are tree edges. The above algorithm does
not introduce any parallel edges, since each level edge joins vertices on level 0. Vertices vi,j
are on level 1, and vertices wi,j are on level 2. It follows that g(wi,j) = 0 and g(vi,j) = i− 1

for all i, j. Thus the vertex ordering of G produced by the above algorithm (after removing
subdivision vertices) includes the sequence

w∆,∆, . . . , w∆,1; . . . ;w1,∆, . . . , w1,1, v1,1, . . . , v1,∆; . . . ; v∆,1, . . . , v∆,∆; .

Here, vi,jwi,j is nested with vi′,j′wi′,j′ for (i, j) 6= (i′, j′). Thus ∆2 queues are needed, as
claimed. Curiously this example has maximum degree 3.
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v1,1 v1,2 v1,3 v2,1 v2,2 v2,3 v3,1 v3,2 v3,3

w1,1w1,2w1,3w2,1w2,2w2,3w3,1w3,2w3,3

Figure 3: Example where the algorithm uses ∆2 queues.

3 Graphs of Bounded Genus

This section proves our results for graphs of bounded Euler genus (Theorem 4 which implies
Theorem 3). The next lemma is the key.
Lemma 9. Let G be a connected graph G with Euler genus g. For every bfs layering
V0, V1, . . . , Vt of G, there is a set Z ⊆ V (G) with at most 2g vertices in each layer Vi, such
that G− Z is planar.

Proof. Fix an embedding of G in a surface of Euler genus g. Say G has n vertices, m edges,
and f faces. By Euler’s formula, n−m+ f = 2− g. Let V0, V1, . . . , Vt be a bfs layering of G
rooted at some vertex r. Let T be the corresponding bfs spanning tree. Let D be the graph with
V (D) = F (G), where for each edge e of G− E(T ), if f1 and f2 are the faces of G with e on
their boundary, then there is an edge f1f2 in D. (Think of D as the spanning subgraph of G∗
consisting of those edges that do not cross edges in T .) Note that |V (D)| = f = 2− g−n+m

and |E(D)| = m − (n − 1) = |V (D)| − 1 + g. Since T is a tree, D is connected; see [6,
Lemma 11] for a proof. Let T ∗ be a spanning tree of D. Let Q := E(D) \E(T ∗). Thus |Q| = g.
Say Q = {v1w1, v2w2, . . . , vgwg}. For i ∈ {1, 2, . . . , g}, let Zi be the union of the vir-path
and the wir-path in T , plus the edge viwi. Let Z be Z1 ∪Z2 ∪ · · · ∪Zg . Say Z has p vertices
and q edges. Since Z consists of a subtree of T plus the g edges in Q, we have q = p− 1 + g.
We now describe how to ‘cut’ along the edges of Z to obtain a new graph G′; see Figure 4.
First, each edge e of Z is replaced by two edges e′ and e′′ in G′. Each vertex of G incident
with no edges in Z is untouched. Consider a vertex v of G incident with edges e1, e2, . . . , ed
in Z in clockwise order. In G′ replace v by new vertices v1, v2, . . . , vd, where vi is incident
with e′i, e′′i+1 and all the edges incident with v clockwise from ei to ei+1 (exclusive). Here
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ed+1 means e1 and e′′d+1 means e′′1 . This operation defines a cyclic ordering of the edges in
G′ incident with each vertex (where e′′i+1 is followed by e′i in the cyclic order at vi). This in
turn defines an embedding of G′ in some orientable surface. (Note that if G is embedded in a
non-orientable surface, then the edge signatures for G are ignored in the embedding of G′.)

degZ(v) = 1

e1

v v1

e′′1 e′1

degZ(v) = 2

e1

e2

v v1v2

e′′1 e′1

e′′2e′2

degZ(v) = 3

e1

e3 e2

v
v1v3

v2

e′′1 e′1

e′′2
e′2e′′3

e′3

Figure 4: Cutting the blue edges in Z at each vertex.
Say G′ has n′ vertices and m′ edges, and the embedding of G’ has f ′ faces and Euler genus
g′. Each vertex v in G with degree d in Z is replaced by d vertices in G′. Each edge in Z is
replaced by two edges in G′, while each edge of G− E(Z) is maintained in G′. Thus

n′ = n− p+
∑

v∈V (G)

degZ(v) = n+ 2q − p = n+ 2(p− 1 + g)− p = n+ p− 2 + 2g

and m′ = m+q = m+p−1+g. Each face of G is preserved in G′. Say r new faces are created
by the cutting. Thus f ′ = f + r. Since D is connected, it follows that G′ is connected. By
Euler’s formula, n′−m′+f ′ = 2−g′. Thus (n+p−2+2g)− (m+p−1+g)+(f+r) = 2−g′,
implying (n −m + f) − 1 + g + r = 2 − g′. Hence (2 − g) − 1 + g + r = 2 − g′, implying
g′ = 1− r. Since r > 1 and g′ > 0, we have g′ = 0 and r = 1. Therefore G′ is planar.
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Note that G− V (Z) is a subgraph of G′, and G− V (Z) is planar. By construction, each path
Zi has at most two vertices in each layer Vj . Thus Z has at most 2g vertices in each Vj .
We need the following lemma of independent interest.
Lemma 10. If a graph G has a k-queue layout, and V0, V1, . . . , Vt is a layering of G, then G
has a 3k-queue layout using ordering V0, V1, . . . , Vt.

Proof. Say E1, E2, . . . , Ek is the edge-partition and � is the ordering of V (G) in a k-queue
layout of G. For a ∈ {1, 2, . . . , k}, let Xa be the set of edges vw ∈ Qa with v, w ∈ Vi for some
i; let Ya be the set of edges vw ∈ Qa with v ≺ w and v ∈ Vi and w ∈ Vi+1 for some i; and
let Za be the set of edges vw ∈ Qa with w ≺ v and v ∈ Vi and w ∈ Vi+1 for some i. Then
X1, Y1, Z1, X2, Y2, Z2, . . . , Xk, Yk, Zk is a partition of E(G).
Let �′ be the ordering V0, V1, . . . , Vt of V (G) where each Vi is ordered by �. No two edges
in some set Xa are nested in �′, as otherwise the same two edges would be in Qa and would
be nested in �. Suppose that v �′ p �′ q �′ w for some edges vw, pq ∈ Ya. So v, p ∈ Vi
and w, q ∈ Vi+1 for some i, and v ≺ p and q ≺ w. Now p ≺ q by the definition of Ya. Hence
v ≺ p ≺ q ≺ w, which is a contradiction since both vw and pq are in Qa. Thus no two edges
in Ya are nested in �′. By symmetry, no two edges in Za are nested in �′. Hence �′ is the
ordering in a 3k-queue layout of G.
We now prove Theorem 4, which says that if G is a hereditary class of graphs, such that every
planar graph in G has queue-number at most k, then every graph in G with Euler genus g has
queue-number at most 3k + 4g.
Proof of Theorem 4. Let G be a graph in G with Euler genus g. Since the queue-number of
G equals the maximum queue-number of the connected components of G, we may assume
that G is connected. Let V0, V1, . . . , Vt be a bfs layering of G. By Lemma 9, there is a set
Z ⊆ V (G) with at most 2g vertices in each layer Vi, such that G − Z is planar. Since
G is hereditary, G − Z ∈ G, and by assumption G − Z has a k-queue layout. Note that
V0 \Z, V1 \Z, . . . , Vt \Z is a layering of G−Z . By Lemma 10, G−Z has a 3k-queue layout
using ordering V0 \Z, V1 \Z, . . . , Vt \Z . Recall that |Vj ∩Z| 6 2g for all j ∈ {0, 1, . . . , t}. Let
� be the ordering

V0 ∩ Z, V0 \ Z, V1 ∩ Z, V1 \ Z, . . . , Vt ∩ Z, Vt \ Z
of V (G). where each set Vj ∩Z is ordered arbitrarily, and each set Vj \Z is ordered according
to the above 3k-queue layout of G−Z . Edges of G−Z inherit their queue assignment. We now
assign edges incident with vertices in Z to queues. For i ∈ {1, . . . , 2g} and odd j > 1, put each
edge incident with the i-th vertex in Vj ∩ Z in a new queue Si. For i ∈ {1, . . . , 2g} and even
j > 0, put each edge incident with the i-th vertex in Vj ∩ Z (not already assigned to a queue)
in a new queue Ti. Suppose that two edges vw and pq in Si are nested, where v ≺ p ≺ q ≺ w.
Say v ∈ Va and p ∈ Vb and q ∈ Vc and w ∈ Vd. By construction, a 6 b 6 c 6 d. Since vw is
an edge, d 6 a+ 1. At least one endpoint of vw is in Vj ∩Z for some odd j, and one endpoint
of pq is in V` ∩ Z for some odd `. Since v, w, p, q are distinct, j 6= `. Thus |i− j| > 2. This
is a contradiction since a 6 b 6 c 6 d 6 a+ 1. Thus Si is a queue. Similarly Ti is a queue.
Hence this step introduces 4g new queues. We obtain a (3k + 4g)-queue layout of G.
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4 Excluded Minors

Whether the result of Bekos et al. [1] can be generalised for arbitrary excluded minors is an
interesting question. That is, do graphs excluding a fixed minor and with bounded degree
have bounded queue-number? It might even be true that graphs excluding a fixed minor have
bounded queue-number.
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A Unsubdividing

Dujmović and Wood [8] proved that if some (6 c)-subdivision of a graph G has a k-queue
layout, then G has a O(k2c)-queue layout. Here we improve this bound to O(kc+1).
Lemma 11. For every (6 c)-subdivision G′ of a graph G, if G′ has a k-queue layout using
vertex ordering �, then G has a 2k

2k−1((2k)c+1 − 1)-queue layout using � restricted to V (G).

Proof. Let E1, . . . , Ek be the partition of E(G′) into queues. For each edge xy ∈ Ei, let
q(xy) := i. For distinct vertices a, b ∈ V (G′), let f(a, b) := 1 if a ≺ b and let f(a, b) := −1

if b ≺ a. For ` ∈ {0, 1, . . . , c}, let X` be the set of edges in G that are subdivided exactly
` times in G′. We will use distinct sets of queues for the X`. Consider an edge vw in
X` with v ≺ w. Say v = x0, x1, . . . , x`, x`+1 = w is the corresponding path in G′. Let
f(vw) := (f(x0, x1), . . . , f(x`, x`+1)) and q(vw) := (q(x0, x1), . . . , q(x`, x`+1)). Consider
edges vw, pq ∈ X` with v, w, p, q distinct and f(vw) = f(pq) and g(vw) = g(pq). Assume v ≺
p. Say v = x0, x1, . . . , x`, x`+1 = w and p = y0, y1, . . . , x`, x`+1 = q are the paths respectively
corresponding to vw and pq in G′. Thus f(xi, xi+1) = f(yi, yi+1) and q(xixi+1) = q(yiyi+1)

for i ∈ {0, 1, . . . , `}. Thus xixi+1 and yiyi+1 are not nested. Since v = x0 ≺ y0 = p, it follows
by induction that xi ≺ yi for i ∈ {0, 1, . . . , `+ 1}. In particular, w = x`+1 ≺ y`+1 = q. Thus
vw and pq are not nested. There are 2`+1 values for f , and k`+1 values for q. Thus (2k)`+1

queues suffice for X`. In total, ∑c
`=0(2k)`+1 = 2k

2k−1((2k)c+1 − 1) queues suffice for G.
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