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Abstract. This paper studies graphs that have two tree decompositions with the property
that every bag from the first decomposition has a bounded-size intersection with every bag from
the second decomposition. We show that every graph in each of the following classes has a tree
decomposition and a linear-sized path decomposition with bounded intersections: (1) every proper
minor-closed class, (2) string graphs with a linear number of crossings in a fixed surface, (3) graphs
with linear crossing number in a fixed surface. Here “linear size” means that the total size of the
bags in the path decomposition is O(n) for n-vertex graphs. We then show that every n-vertex graph
that has a tree decomposition and a linear-sized path decomposition with bounded intersections has
O(

√
n) treewidth. As a corollary, we conclude a new lower bound on the crossing number of a graph

in terms of its treewidth. Finally, we consider graph classes that have two path decompositions with
bounded intersections. Trees and outerplanar graphs have this property. But for the next most
simple class, series parallel graphs, we show that no such result holds.
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1. Introduction. A tree decomposition represents the vertices of a graph as
subtrees of a tree, so that the subtrees corresponding to adjacent vertices intersect.
The treewidth of a graph G is the minimum taken over all tree decompositions of G, of
the maximum number of pairwise intersecting subtrees minus 1. Treewidth measures
how similar a given graph is to a tree. It is a key measure of the complexity of a
graph and is of fundamental importance in algorithmic graph theory and structural
graph theory. For example, treewidth is a key parameter in Robertson–Seymour graph
minor theory [49], and many NP-complete problems are solvable in polynomial time
on graphs of bounded treewidth [14].

The main idea in this paper is to consider two tree decompositions of a graph and
then measure the sizes of the intersection of bags from the first decomposition with
bags from the second decomposition. Intuitively, one can think of the bags from the
first decomposition as being horizontal, and the bags from the second decomposition as
being vertical, so that the two tree decompositions are “orthogonal” to each other. We
are interested in which graphs have two tree decompositions such that every bag from
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Fig. 1. Two 4-orthogonal path decompositions of the grid graph.

the first decomposition has a bounded-size intersection with every bag from the second
decomposition. This idea is implicit in recent work on layered tree decompositions
(see section 2) and was made explicit in the recent survey by Norin [45].

Grid graphs illustrate this idea well; see Figure 1. Say G is the n × n pla-
nar grid graph. The sequence of consecutive pairs of columns determines a tree
decomposition—in fact, a path decomposition with bags of size 2n. Similarly, the
sequence of consecutive pairs of rows determines a path decomposition with bags of
size 2n. Observe that the intersection of a bag from the first decomposition with a bag
from the second decomposition has size 4. It is well known [34] that G has treewidth
n, which is unbounded. But as we have shown, G has two tree decompositions with
bounded intersections. This paper shows that many interesting graph classes with
unbounded treewidth have two tree decompositions with bounded intersections (and
with other useful properties too).

Before continuing, we formalize these ideas. A tree decomposition of a graph G
is given by a tree T whose nodes index a collection (Tx ⊆ V (G) : x ∈ V (T )) of
sets of vertices in G called bags, such that (1) for every edge vw of G, some bag Tx
contains both v and w, and (2) for every vertex v of G, the set {x ∈ V (T ) : v ∈ Tx}
induces a nonempty (connected) subtree of T . For brevity, we say that T is a tree
decomposition (with the bags Tx implicit). The width of a tree decomposition T is
max{|Tx| − 1 : x ∈ V (T )}, and the treewidth tw(G) of a graph G is the minimum
width of the tree decompositions of G. A path decomposition is a tree decomposition
in which the underlying tree is a path. We describe a path decomposition simply
by the corresponding sequence of bags. The pathwidth pw(G) of a graph G is the
minimum width of the path decompositions of G. Two tree decompositions A and B
of a graph G are c-orthogonal if |Ax ∩By| 6 c for all x ∈ V (A) and y ∈ V (B).

It turns out that not only the size of bag intersections is important when con-
sidering orthogonal tree decompositions. A key parameter is the total size of the
bags in a tree decomposition T , which we call the magnitude, formally defined to
be

∑
x∈V (T ) |Tx|. For example, consider the complete bipartite graph Kn,n. Say
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V = {v1, . . . , vn} and W = {w1, . . . , wn} are the two color classes. Then

P = (V ∪ {w1}, V ∪ {w2}, . . . , V ∪ {wn}) and

Q = (W ∪ {v1},W ∪ {v2}, . . . ,W ∪ {vn})

are path decompositions of Kn,n, such that the intersection of each bag of P with
each bag of Q has exactly two vertices. However, both P and Q have magnitude
n(n + 1). On the other hand, we prove in section 3 that if two tree decompositions
of a graph G have bounded intersections and one has linear magnitude, then G has a
linear number of edges. Here “linear” means O(n) for n-vertex graphs.

Our main results show that every graph in each of the following classes has a
tree decomposition and a linear-magnitude path decomposition with bounded inter-
sections:

• every proper minor-closed class (section 4),
• string graphs with a linear number of crossings in a fixed surface (section 5),
• graphs with linear crossing number in a fixed surface (section 6).

The latter two examples highlight that orthogonal decompositions are of interest
well beyond the world of minor-closed classes. We also show that every graph that
has a tree decomposition and a linear-magnitude path decomposition with bounded
intersections has O(

√
n) treewidth. This result is immediately applicable to each of

the above three classes. As a corollary, we conclude a new lower bound on the crossing
number of a graph in terms of its treewidth (section 6).

Treewidth is intrinsically related to graph separators. A set S of vertices in a
graph G is a separator of G if each component of G−S has at most 1

2 |V (G)| vertices.
Graphs with small treewidth have small separators, as shown by the following result
of Robertson and Seymour [50].

Lemma 1 (see [50]). Every graph G has a separator of size at most tw(G) + 1.

Our treewidth bounds and Lemma 1 give O(
√
n) separator results for each of the

above three classes. Also note that a converse to Lemma 1 holds: graphs in which
every subgraph has a small separator have small treewidth [23, 48].

The paper then considers graph classes that have two path decompositions with
bounded intersections. Trees and outerplanar graphs have this property. But for
the next most simple class, series parallel graphs, we show that no such result holds
(section 7). The paper concludes by discussing connections between orthogonal tree
decompositions and boxicity (section 8) and graph coloring (section 9).

2. Layered treewidth. The starting point for the study of orthogonal tree de-
compositions is the notion of a layered tree decomposition, introduced independently
by Dujmović, Morin, and Wood [22] and Shahrokhi [56]. Applications of layered
treewidth include nonrepetitive graph coloring [22]; queue layouts, track layouts, and
3-dimensional graph drawings [22]; book embeddings [21]; and intersection graph the-
ory [56].

A layering of a graph G is a partition (V0, V1, . . . , Vt) of V (G) such that for every
edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj , then |i − j| 6 1. Each set Vi is called a
layer. For example, for a vertex r of a connected graph G, if Vi is the set of vertices
at distance i from r, then (V0, V1, . . . ) is a layering of G.

The layered width of a tree decomposition (Tx : x ∈ V (T )) of a graph G is the
minimum integer ` such that, for some layering (V0, V1, . . . , Vt) of G, each bag Tx
contains at most ` vertices in each layer Vi. The layered treewidth of a graph G is the
minimum layered width of a tree decomposition of G. Note that the trivial layering
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with all vertices in one layer shows that layered treewidth is at most treewidth plus
1. The layered pathwidth of a graph G is the minimum layered width of a path
decomposition of G; see [3].

While n-vertex planar graphs may have treewidth as large as
√
n, Dujmović,

Morin, and Wood [22] proved the following theorem.1

Theorem 2 (see [22]). Every planar graph has layered treewidth at most 3. More
generally, every graph with Euler genus g has layered treewidth at most 2g + 3.

Layered treewidth is related to local treewidth, which was first introduced by
Eppstein [25] under the guise of the “treewidth-diameter” property. A graph class G
has bounded local treewidth if there is a function f such that for every graph G in G,
for every vertex v of G, and for every integer r > 0, the subgraph of G induced by the
vertices at distance at most r from v has treewidth at most f(r); see [15, 17, 25, 32].
If f(r) is a linear function, then G has linear local treewidth. Dujmović, Morin, and
Wood [22] observed that if every graph in some class G has layered treewidth at most
k, then G has linear local treewidth with f(r) 6 k(2r+ 1)− 1. Dujmović, Morin, and
Wood [22] also proved the following converse result for minor-closed classes, where a
graph G is apex if G − v is planar for some vertex v. (Earlier, Eppstein [25] proved
that (b) and (d) are equivalent, and Demaine and Hajiaghayi [17] proved that (b) and
(c) are equivalent.)

Theorem 3 (see [17, 22, 25]). The following are equivalent for a minor-closed
class G of graphs:

(a) G has bounded layered treewidth.
(b) G has bounded local treewidth.
(c) G has linear local treewidth.
(d) G excludes some apex graph as a minor.

Dujmović et al. [20] observed that such a converse result does not hold for non-
minor-closed classes. In particular, 3-dimensional grid graphs have quadratic local
treewidth and unbounded layered treewidth.

A number of non-minor-closed classes also have bounded layered treewidth. Du-
jmović et al. [20] gave the following two examples. A graph is (g, k)-planar if it can
be drawn in a surface of Euler genus at most g with at most k crossings on each edge.
Dujmović, Eppstein, and Wood [20] determined an optimal bound on the layered
treewidth and treewidth of such graphs.

Theorem 4 (see [20]). Every (g, k)-planar graph G has layered treewidth at
most (4g + 6)(k + 1) and treewidth at most 2

√
(4g + 6)(k + 1)n. Conversely, for all

g, k > 0 and infinitely many n there is an n-vertex (g, k)-planar graph with treewidth
Ω(

√
(g + 1)(k + 1)n) and layered treewidth Ω((g + 1)(k + 1)).

Map graphs are defined as follows. Start with a graph G0 embedded in a surface
of Euler genus g, with each face labeled a “nation” or a “lake,” where each vertex
of G0 is incident with at most d nations. Define a graph G whose vertices are the
nations of G0, where two vertices are adjacent in G if the corresponding faces in G0

share a vertex. Then G is called a (g, d)-map graph. A (0, d)-map graph is called a
(plane) d-map graph; such graphs have been extensively studied [11, 12, 13, 16, 28]. It
is easily seen that (g, 3)-map graphs are precisely the graphs of Euler genus at most g

1The Euler genus of an orientable surface with h handles is 2h. The Euler genus of a non-
orientable surface with c cross-caps is c. The Euler genus of a graph G is the minimum Euler genus
of a surface in which G embeds (with no crossings).
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[13, 20]. So (g, d)-map graphs provide a natural generalization of graphs embedded in
a surface. Note that if a vertex of G0 is incident with d nations, then G contains Kd,
which need not be bounded by a function of g. Dujmović, Eppstein, and Wood [20]
determined an optimal bound on the layered treewidth and treewidth of such graphs.

Theorem 5 (see [20]). Every (g, d)-map graph on n vertices has layered treewidth
at most (2g+3)(2d+1) and treewidth at most 2

√
(2g + 3)(2d+ 1)n. Moreover, for all

g > 0 and d > 8, for infinitely many integers n, there is an n-vertex (g, d)-map graph
with treewidth at least Ω(

√
(g + 1)dn) and layered treewidth at least Ω((g + 1)d).

Theorem 3 leads to further results. A tree decomposition is domino if every vertex
is in at most two bags [6, 7, 61].

Lemma 6. Every graph G with layered treewidth k has a domino path decompo-
sition P and a tree decomposition T such that for every vertex v of G, if Gv is the
subgraph of G induced by the union of the bags of P that contain v, then T restricted
to Gv has width at most 3k − 1.

Proof. Let T be a tree decomposition of G with layered width k with respect to
some layering V1, . . . , Vt of G, where Vt = ∅. Then P := (V1∪V2, V2∪V3, . . . , Vt−1∪Vt)
is a path decomposition of G. Consider a vertex v ∈ Vi for some i ∈ [t − 1]. Then v
is in exactly two bags, Vi−1 ∪ Vi and Vi ∪ Vi+1. Thus P is domino. The union of the
bags that contain v is Vi−1∪Vi∪Vi+1, which contains at most 3k vertices in each bag
of T .

Theorem 3 and Lemma 6 imply the following theorem.

Theorem 7. For every fixed apex graph H, there is a constant k, such that every
H-minor-free graph G has a domino path decomposition P and a tree decomposition
T such that for every vertex v of G, if Gv is the subgraph of G induced by the union
of the bags of P that contain v, then T restricted to Gv has width at most 3k − 1.

This result is best possible in the following sense. Let G be obtained from the n×n
grid graph by adding one dominant vertex v. Say T1 and T2 are tree decompositions
of G. The bags of T1 that contain v induce a subgraph that contains the n × n grid
and therefore has treewidth at least n, which is unbounded.

3. Extremal questions and treewidth bounds. We start this section by
considering the following natural extremal question: what is the maximum number of
edges in an n-vertex graph that has two orthogonal tree decompositions of a particular
type? Dujmović, Morin, and Wood [22] proved that every n-vertex graph with layered
treewidth k has minimum degree at most 3k−1 and thus has at most (3k−1)n edges,
which is tight up to a lower order term. More general structures allow for quadratically
many edges. For example, Kn,n has two 2-orthogonal path decompositions, as shown
in section 1. Note that each of these decompositions has quadratic magnitude. We
now show that a limit on the magnitude of one decomposition leads to a linear bound
on the number of edges, even for tree decompositions.

Lemma 8. Let S and T be k-orthogonal tree decompositions of a graph G, where
S has magnitude s. Then |E(G)| 6 (k − 1)s. In particular, if s 6 c|V (G)|, then
|E(G)| 6 c(k − 1)|V (G)|.

Proof. Each edge of G is in G[Sx] for some x ∈ V (S). Since T restricted to G[Sx]
has treewidth at most k − 1, it follows that G[Sx] has fewer than (k − 1)|Sx| edges.



844 DUJMOVIĆ, JORET, MORIN, NORIN, AND WOOD

Thus

|E(G)| 6
∑
x

|E(G[Sx])| 6
∑
x

(k − 1)|Sx| = (k − 1)s.

One application of layered treewidth is that it leads to O(
√
n) treewidth bounds.

Theorem 9 (Norin; see [22]). For every n-vertex graph G with layered treewidth
k,

tw(G) 6 2
√
kn− 1.

As an example, Theorems 2 and 9 imply that graphs with bounded Euler genus
have treewidth O(

√
n). Dujmović, Eppstein, and Wood [20] observed that a standard

trick applied with Theorem 9 implies the following theorem.

Theorem 10 (see [20]). For every n-vertex graph G with layered treewidth k,

pw(G) 6 11
√
kn− 1.

We now generalize these results to the setting of orthogonal decompositions. A
weak path decomposition of a graph G is a sequence P1, . . . , Pt of sets of vertices of G
called bags, such that P1∪· · ·∪Pt = V (G), for every vertex v of G the set of bags that
contain v forms a subsequence, and for every edge vw ofG both v and w are in Pi∪Pi+1

for some i ∈ {1, . . . , t} (where Pt+1 means ∅). Note that a path decomposition is a
weak path decomposition in which the final condition is strengthened to say that both
v and w are in Pi for some i ∈ {1, . . . , t}. If P1, . . . , Pt is a weak path decomposition,
then P1∪P2, P2∪P3, . . . , Pt−1∪Pt is a path decomposition with at most twice the width
of P1, . . . , Pt. In this sense, there is little difference between weak path decompositions
and path decompositions. The magnitude of a weak path decomposition P1, . . . , Pt is∑
i∈[n] |Pi|.

Observe that a layering is a weak path decomposition in which each vertex is in
exactly one bag. Thus weak path decompositions with linear magnitude generalize
the notion of a layering. In a weak path decomposition, each bag Pi separates P1 ∪
· · · ∪ Pi−1 and Pi+1 ∪ · · · ∪ Pt; that is, there is no edge between P1 ∪ · · · ∪ Pi−1
and Pi+1 ∪ · · · ∪ Pt. This property is the key to the next lemma, which generalizes
Theorem 9 to the setting of weak path decompositions. A tree decomposition T and
weak path decomposition P1, . . . , Pt of a graph G are c-orthogonal if |Tx ∩Pi| 6 c for
all x ∈ V (T ) and i ∈ [t].

Lemma 11. Suppose that T is a tree decomposition and P is a weak path de-
composition of a graph G, where T and P are k-orthogonal and P has magnitude s.
Then

tw(G) 6 2
√
ks− 1.

Proof. Let t := d
√
s/ke. Label the bags of P in order by 1, . . . , t, 1, . . . , t, . . . .

Since the magnitude of P is s, for some i ∈ {1, . . . , t} the bags labeled i have total
size at most s/t. Let G′ be the subgraph of G obtained by deleting the bags labeled
i. Since each bag of P separates the bags of P before and after it, each connected
component of G′ is contained within t− 1 consecutive bags of P . Thus G′ has a tree
decomposition with bags of size at most (t − 1)k. Add all the vertices in bags of P
labeled i to every bag of this tree decomposition of G′. We obtain a tree decomposition
of G with bag size at most (t− 1)k + s/t 6 2

√
ks. Thus tw(G) 6 2

√
ks− 1.

Several comments on Lemma 11 are in order.
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First we show that Lemma 11 cannot be strengthened for two tree decompositions
with bounded intersections. Let G be a bipartite graph with bipartition (A,B) and
maximum degree ∆. Let S be the star decomposition of G with root bag A and a
leaf bag N [w] for each vertex w ∈ B. Symmetrically, let T be the star decomposition
of G with root bag B and a leaf bag N [v] for each vertex v ∈ A. Observe that S
and T are ∆-orthogonal and both have magnitude |V (G)|+ |E(G)|. Now, apply this
construction with G a random cubic bipartite graph on n vertices. We obtain two
3-orthogonal tree decompositions of G both with magnitude 5

2n. But it is well known
that G has treewidth Ω(n); see [33], for example. Thus Lemma 11 does not hold for
two tree decompositions with bounded intersections.

We now show that Lemma 11 proves that certain graph classes have bounded
expansion. A graph class C has bounded expansion if there exists a function f such
that for every graph G ∈ C, for every subgraph G′ of G, and for all pairwise disjoint
balls B1, . . . , Bs of radius at most r in G′, the graph obtained from G′ by contracting
each Bi into a vertex has average degree at most f(r). If f(r) is a linear or polyno-
mial function, then C has linear or polynomial expansion, respectively. See [44] for
background on graph classes with bounded expansion. Dujmović, Morin, and Wood
[22] proved that graphs with bounded layered treewidth have linear expansion. In
particular, in a graph of layered treewidth k, contracting disjoint balls of radius r
gives a graph of layered treewidth at most (4r + 1)k, and thus with average degree
O(rk). This result can be extended as follows. A class G of graphs is hereditary if
for every graph G ∈ G every induced subgraph of G is in G. Dvořák and Norin [24]
proved that for a hereditary graph class G, if every graph G ∈ G has a separator of
order O(|V (G)|1−ε) for some fixed ε > 0, then G has polynomial expansion. Lemmas 1
and 11 then imply the following.

Proposition 12. Let Gk be the class of graphs G such that every subgraph G′ of
G has a path decomposition with magnitude at most k|V (G′)| and a tree decomposition
that are k-orthogonal. Then Gk has polynomial expansion.

We now show that Proposition 12 cannot be extended to the setting of two tree
decompositions with bounded intersections. Let G be the 1-subdivision of Kn,n, which
has N = n2 + 2n vertices. Say the bipartition classes of Kn,n are V := {v1, . . . , vn}
and W := {w1, . . . , wn}. Let xi,j be the division vertex for edge viwj . Let S be the
star decomposition of G with root bag {v1, . . . , vn}, and for each j ∈ [n] have a leaf
bag V ∪ {wj , x1,j , . . . , xn,j}. Similarly, let T be the star decomposition of G with
root bag W , and for each i ∈ [n] have a leaf bag W ∪ {vi, xi,1, . . . , xi,n}. Then the
intersection of a bag from S and a bag from T has size at most 3. Each of S and T have
magnitude O(N). On the other hand, contracting the edges incident to each vertex
vi gives Kn,n which has unbounded average degree. Thus the class of 1-subdivisions
of balanced complete bipartite graphs does not have bounded expansion, but every
graph in the class has two tree decompositions with bounded intersections and linear
magnitude.

Finally, we consider bounds on pathwidth. It is well known that hereditary graph
classes with treewidth O(nε), for some fixed ε ∈ (0, 1), have pathwidth O(nε); see
[5, 20], for example. In particular, Lemma 11 and Lemma 6.1 of Dujmović, Eppstein,
and Wood [20] imply the following.

Lemma 13. Let G be a hereditary class of graphs, such that every n-vertex graph
G in G has a tree decomposition T and a weak path decomposition P , such that T and
P are k-orthogonal and P has magnitude at most cn. Then for every n-vertex graph
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G in G,
pw(G) 6 11

√
ckn− 1.

4. Minor-closed classes. This section shows that graphs in a fixed minor-
closed class have a tree decomposition and a linear-magnitude path decomposition
with bounded intersections. The following graph minor structure theorem by Robert-
son and Seymour is at the heart of graph minor theory. In a tree decomposition T of
a graph G, the torso of a bag Tx is the subgraph obtained from G[Tx] by adding, for
each edge xy ∈ E(T ), all edges vw where v, w ∈ Tx ∩ Ty. A graph G is (g, p, k, a)-
almost-embeddable if there is set A of at most a vertices in G such that G − A can
be embedded in a surface of Euler genus g with at most p vortices of width at most
k. (See [22] for the definition of vortex, which will not be used in the present paper.)
A graph is k-almost-embeddable if it is (k, k, k, k)-almost-embeddable. If G1 and G2

are disjoint graphs, where {v1, . . . , vk} and {w1, . . . , wk} are cliques of equal size, re-
spectively, in G1 and G2, then a clique-sum of G1 and G2 is a graph obtained from
G1 ∪G2 by identifying vi with wi for each i ∈ {1, . . . , k}, and possibly deleting some
of the edges vivj .

Theorem 14 (see [51]). For every fixed graph H there are constants g, p, k, a
such that every H-minor-free graph is obtained by clique-sums of (g, p, k, a)-almost-
embeddable graphs. Alternatively, every H-minor-free graph has a tree decomposition
in which each torso is (g, p, k, a)-almost-embeddable.

Dujmović, Morin, and Wood [22] introduced the following definition to handle
clique-sums. Say a graph G is `-good if for every clique K of size at most ` in G
there is a tree decomposition of G of layered width at most ` with respect to some
layering of G in which K is the first layer. Dujmović, Morin, and Wood [22] proved the
` = (k+1)(2g+2p+3) case of the following result; the proof when ` > (k+1)(2g+2p+3)
is identical.

Theorem 15 (see [22]). For every integer ` > (k+1)(2g+2p+3), every (g, p, k, 0)-
almost-embeddable graph G is `-good.

Dujmović, Morin, and Wood [22] actually proved a result stronger than Theo-
rem 15 that allowed for apex vertices only adjacent to vertices in the vortices, but we
will not need that. Dujmović, Morin, and Wood [22] proved that for ` > k, if G is
a (6 k)-clique-sum of `-good graphs G1 and G2, then G is `-good. Lemma 16 below
generalizes this result allowing for apex vertices. We first need the following defini-
tion. Define ω(g, p, k, a) to be the maximum size of a clique in a (g, p, k, a)-embeddable
graph. Joret and Wood [37] proved that ω(g, p, k, a) ∈ Θ(a+ (k + 1)

√
g + p). Define

`(g, p, k) := max{ω(g, p, k, 0), (k + 1)(2g + 2p+ 3)}.

Lemma 16. Let G be a graph that has a tree decomposition T , such that Tα ∩ Tβ
is a clique of G for each edge αβ ∈ E(T ), and G[Tα] is (g, p, k, a)-almost-embeddable
for each node α ∈ V (T ). Then G has a set of vertices A, such that G− A is `-good,
where ` := `(g, p, k). Moreover, for every nonempty clique K in G there is a tree
decomposition T ∗ of G, such that

• T ∗ restricted to G−A has layered width at most ` with respect to some layering
L of G−A in which K −A is the first layer, and

• T ∗ restricted to A has width at most a− 1.

Proof. We proceed by induction on |E(T )|. In the base case with |E(T )| = 0, G
is (g, p, k, a)-almost-embeddable, implying G contains a set A of at most a vertices,



ORTHOGONAL TREE DECOMPOSITIONS OF GRAPHS 847

such that G−A is (g, p, k, 0)-embeddable. Theorem 15 implies that G−A is `-good.
Since K − A is a clique in G − A of size at most ω(g, p, k, 0) 6 `, there is a tree
decomposition T ∗ of G − A, such that T ∗ has layered width at most ` with respect
to some layering L of G−A in which K −A is the first layer. Add A to every bag of
T ∗. We obtain the desired tree decomposition of G, in which T ∗ restricted to A has
width at most a− 1 since |A| 6 a. This proves the base case.

Now assume that |E(T )| > 0. Let xy be an edge of T . Let Q := Tx ∩ Ty. By
assumption, Q is a clique of G. Let T 1 and T 2 be the component subtrees of T − xy,
where each node of T 1 and T 2 inherits its bag from the corresponding node of T . For
i ∈ {1, 2}, let Gi be the subgraph of G induced by the union of the bags in T i. Then
T i is a tree decomposition of Gi, such that Tα ∩ Tβ is a clique of Gi for each edge
αβ ∈ E(T i), and Gi[T iα] is (g, p, k, a)-almost-embeddable for each node α ∈ V (T i).
Note that G is obtained by pasting G1 and G2 on Q.

Without loss of generality, the given clique K of G is in G1. By induction, G1 has
a set of vertices A1 and a tree decomposition T 1, such that T 1 restricted to G1 −A1

has layered width at most ` with respect to some layering L1 of G1 − A1 in which
K − A1 is the first layer of L1, and T 1 restricted to A1 has width at most a − 1. In
L1, the clique Q − A1 is contained in one layer or in two consecutive layers. Let Q′

be the subclique of Q − A1 contained in the first layer of L1 that intersects Q − A1.
Note that if (K ∩Q) \A′ 6= ∅, then Q′ = (K ∩Q) \A1.

By induction, G2 has a set of vertices A2 and a tree decomposition T 2, such that
T 2 restricted to G2 − A2 has layered width at most ` with respect to some layering
L2 of G2 − A2 in which Q′ − A2 is the first layer of L2, and T 2 restricted to A2 has
width at most a− 1. Since Q′ \A2 is the first layer, (Q \Q′) \A2 is contained within
the second layer.

Let T ∗ be obtained from T 1 and T 2 by adding an edge between a bag of T 1 that
contains Q and a bag of T 2 that contains Q. Since Q is a clique, such bags exist.
Now T ∗ is a tree decomposition of G. Let A := A1 ∪ A2. Then T ∗ restricted to A
has width at most a − 1, since T 1 restricted to A1 has width at most a − 1 and T 2

restricted to A2 has width at most a− 1.
Delete each vertex in A2 from each layer of L1, and delete each vertex in A1 from

each layer of L2. Now, no vertex in A appears in a layer of L1 or L2. In particular,
the first layer of L1 equals K \A.

Construct a layering L of G−A by overlaying L1 and L2 so that the layer of L1

that contains Q′ is merged with the first layer of L2 (which equals Q′ −A2), and the
layer of L1 that contains (Q \Q′) \ A1 is merged with the second layer of L2 (which
contains (Q \Q′) \A2). Then L is a layering of G−A, since the vertices in common
between G1 −A and G2 −A are exactly the vertices in Q−A.

Consider the first layer of L, which consists of K \ A, plus any vertices added in
the construction of L. If no such vertices are added, then the first layer of L equals
K \ A, as desired. Now assume that some vertices are added. Then the first layer of
L1 was merged with the first layer of L2. Thus, by construction, the first layer of L1

contains Q′. Thus Q′ ⊆ K \ A1 and Q′ \ A2 ⊆ K \ A. Thus the first layer of L2 is
a subset of the first layer of L1, and the first layer of L equals the first layer of L1,
which equals K \A, as desired.

For each bag T ∗α of T ∗ the intersection of T ∗α with a single layer of L is a subset of
the intersection of T ∗α and the corresponding layer in L1 or L2. Hence T ∗ restricted
to G−A has layered width at most ` with respect to L.

Lemma 16 leads to the following theorem.
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Theorem 17. For every fixed graph H there is a constant k, such that every
H-minor-free graph G has a tree decomposition T ∗, a weak path decomposition P of
magnitude at most k|V (G)|, and a set of vertices A, such that

• T ∗ and P are k-orthogonal,
• T ∗ restricted to A has width at most k,
• P restricted to G−A is a layering L, and
• T ∗ restricted to G−A has layered width at most k with respect to L.

Proof. Theorem 14 says there are constants g, p, k, a such that G has a tree de-
composition T in which each torso is (g, p, k, a)-almost-embeddable. Add edges to
G so that the intersection of any two adjacent bags in T is a clique. Now, G[Tα] is
(g, p, k, a)-almost-embeddable for each node α ∈ V (T ). By Lemma 16, G has a set of
vertices A and a tree decomposition T ∗, such that T ∗ restricted to G−A has layered
width at most ` = `(g, p, k, a) with respect to some layering L of G − A, and T ∗

restricted to A has width at most a− 1.
For each node α ∈ V (T ), add every vertex in Tα ∩ A to every layer of L that

intersects Tα. This produces a weak path decomposition P of G, since in the proof
of Lemma 16, if A ∩ Q 6= ∅, then A is added to the at most two layers containing
Q \ A, implying that each vertex in A is added to a consecutive subset of the layers.
Moreover, |T ∗x ∩ Py| 6 ` + a for each node x ∈ V (T ∗) and node y ∈ V (P ), since T ∗x
contains at most ` vertices in the layer corresponding to y, and at most a vertices in
T ∗x ∩A are added to Py. Finally, we bound the magnitude of P . Since each vertex of
G − A is in exactly one layer of L, the size of L equals |V (G − A)|. For each node
α ∈ V (T ), the bag Tα uses at least two layers, and except for the first layer used by
Tα, there is at least one vertex in Tα \ A in each layer used by Tα. For each such
layer, at most a vertices in Tα ∩ A are added to this layer in the construction of P .
Thus there are at most 2a|Tα \ A| occurrences of vertices in Tα ∩ A in P . Thus the
total number of occurrences in P of vertices in A is at most 2a|V (G−A)|. Hence the
magnitude of P is at most (2a+ 1)|V (G−A)| 6 (2a+ 1)|V (G)|.

The result follows with k := max{`+ a, 2a+ 1}.

Lemmas 1, 11, and 13 and Theorem 17 imply the following result due to Alon,
Seymour, and Thomas [1], reproved by Grohe [32] and Kawarabayashi and Reed [38].
It is interesting that our approach using orthogonal decompositions also reproves this
result.

Theorem 18. For every fixed graph H, every H-minor-free graph on n vertices
has treewidth and pathwidth at most O(

√
n) and has a separator of order O(

√
n).

5. String graphs. A string graph is the intersection graph of a set of curves in
the plane with no three curves meeting at a single point [30, 31, 39, 47, 53, 54]. For
an integer k > 2, if each curve is in at most k intersections with other curves, then the
corresponding string graph is called a k-string graph. Note that the maximum degree
of a k-string graph might be much less than k, since two curves might have multiple
intersections. A (g, k)-string graph is defined analogously for curves on a surface of
Euler genus at most g.

Theorem 19. Every (g, k)-string graph has layered treewidth at most 2(k−1)(2g+
3).

Proof. Let X be a set of curves in a surface of Euler genus at most g, such that
no three curves meet at a point and each curve is in at most k intersections with
other curves in X. Let G be the corresponding (g, k)-string graph. Let G′ be the
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graph obtained from G by replacing each intersection point of two curves in X by
a vertex, where each curve is now a path on at most k vertices. Thus G′ has Euler
genus at most g. By Theorem 2, G′ has a tree decomposition T ′ with layered width
at most 2g + 3 with respect to some layering V ′0 , V

′
1 , . . . , V

′
t . For each vertex v of G,

if x1, . . . , x` is the path representing v in G′, then ` 6 k and x1, . . . , x` is contained
in at most k consecutive layers of G′.

For each vertex x of G′, let T ′x be the subtree of T formed by the bags that contain
x. Let T be the decomposition of G obtained by replacing each occurrence of a vertex
x in a bag of T ′ by the two vertices of G that correspond to the two curves that
intersect at x. We now show that T is a tree decomposition of G. For each vertex v of
G, let Tv be the subtree of T formed by the bags that contain v. If x1, x2, . . . , x` is the
path in G′ representing a vertex v of G, then Tv = T ′x1

∪ · · · ∪T ′x`
, which is connected

since each T ′i is connected, and T ′i and T ′i+1 have a node in common (containing xi
and xi+1). For each edge vw of G, if x is the vertex of G′ at the intersection of the
curves representing v and w, then Tv and Tw have T ′x in common. Thus there is a
bag containing both v and w. Hence T is a tree decomposition of G.

For each vertex v of G, let f(v) be the minimum integer i such that V ′i contains
a vertex x of G′ in the curve corresponding to v. For i > 0, let Vi := {v ∈ V (G) :
i(k−1) 6 f(v) 6 (i+1)(k−1)−1}. Then V0, V1, . . . is a partition of V (G). Consider
an edge vw of G with f(v) 6 f(w) and v ∈ Vi. Then the path in G′ representing
v is contained in layers V ′f(v), V

′
f(v)+1, . . . , V

′
f(v)+k−1. Thus f(w) 6 f(v) + k − 1 6

(i + 1)(k − 1) − 1 + (k − 1) 6 (i + 2)(k − 2) − 1. Since f(w) > f(v) > i(k − 1), we
have w ∈ Vi ∪ Vi+1. Hence V0, V1, . . . is a layering of G.

Since each layer in G is formed from at most k− 1 layers in G′, and each layer in
G′ contains at most 2g + 3 vertices in a single bag, each of which is replaced by two
vertices in G, the layered treewidth of this decomposition is at most 2(2g+3)(k−1).

Every intersection graph of segments in the plane with maximum degree k > 2 is
a (0, k)-string graph. Thus Theorems 9, 10, and 19 (since (0, k)-string graphs are a
hereditary class) imply the following corollary.

Corollary 20. Every intersection graph of n segments in the plane with max-
imum degree k > 2 has layered treewidth at most 6(k − 1) and treewidth at most
2
√

6(k − 1)n and pathwidth at most 11
√

6(k − 1)n.

We now show that this corollary is asymptotically tight.

Proposition 21. For k > 6 and for infinitely many values of n, there is a set
of n segments in the plane, whose intersection graph has maximum degree k, layered
treewidth at least 1

256 (k − 5), and treewidth at least 1
8

√
(k − 5)n− 1.

Proof. Let G be a planar graph such that deg(v) + deg(w) 6 k for every edge
vw. By Fáry’s Theorem [26], there is a crossing-free drawing of G with each edge
a segment. Then the intersection graph of E(G) is the line graph of G, denoted by
L(G). Note that the degree of a vertex in L(G) corresponding to an edge vw in G
equals deg(v) + deg(w).

Let r := bk−24 c. Infinitely many values of n satisfy n = 4q2r for some integer
q > 1. Let Y ′q,r be the plane graph obtained from the (q + 1)× (q + 1) grid graph by
subdividing each edge r times, then adding a vertex of degree 4r inside each internal
face adjacent to the subdivision vertices, and finally deleting the grid edges and the
nonsubdivision vertices of the grid. Note that deg(v) + deg(w) 6 4r + 2 6 k for each
edge vw of Y ′q,r.

Observe that the line graph L(Y ′q,r) has n vertices and is exactly the graph Zq,q,r
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introduced by Dujmović, Eppstein, and Wood [20] and illustrated in the lower part
of Figure 3 in [20]. By Lemma 5.6 in [20], every separator of L(Y ′q,r) has size at

least qr
2 = 1

4

√
rn > 1

8

√
(k − 5)n. By Lemma 1, the treewidth of L(Y ′p,q,r) is at least

1
8

√
(k − 5)n − 1. As shown above, L(Y ′p,q,r) is the intersection graph of n segments

in the plane, whose intersection graph has maximum degree k.
It follows from Theorem 9 that L(Y ′p,q,r) has layered treewidth at least 1

256 (k−5).

The next result shows that Theorem 19 is asymptotically tight for all g and k.
The proof is omitted, since it is almost identical to the proof of Theorem 5.7 in [20]
(which is equivalent to the second half of Theorem 5).

Proposition 22. For all g > 0 and k > 8, for infinitely many integers n, there
is an n-vertex (g, k)-string graph with layered treewidth Ω(k(g + 1)) and treewidth
Ω(

√
(k(g + 1)n).

Theorems 9 and 19 imply that every (g, k)-string graph on n vertices has treewidth
at most 2

√
2(k − 1)(2g + 3)n and pathwidth 11

√
2(k − 1)(2g + 3)n (since (g, k)-string

graphs are a hereditary class). However, this result is qualitatively weaker than the
following theorem, which can be concluded from a recent result of Dvořák and Norin
[23] and a separator theorem for string graphs by Fox and Pach [29]. See [34] for a
thorough discussion on the connections between separators and treewidth.

Theorem 23 (see [23, 29]). For every collection of curves on a surface of Euler
genus g with m crossings in total, the corresponding string graph has a separator of
order O(

√
(g + 1)m) and treewidth O(

√
(g + 1)m).

Fox and Pach [30] conjectured that Theorem 23 can be improved in the g = 0 case,
with the assumption of “m crossings” replaced by “m crossing pairs.” Equivalently,
they conjectured that every string graph with m edges has an O(

√
m) separator. Fox

and Pach [30] proved that every string graph with m edges has an O(m3/4
√

logm)
separator; see [31] for related results. The conjecture was almost proved by Matoušek
[41, 42], who showed an upper bound of O(

√
m logm). Recently, Lee [40] announced

a proof of this O(
√
m) conjecture.

We now give an alternative proof of Theorem 23 with explicit constants. The key
is the following structure theorem, which is of interest in its own right. The proof is
analogous to that of Theorem 19.

Lemma 24. For every collection of curves on a surface of Euler genus g with m
crossings in total (where no three curves meet at a point), the corresponding string
graph has a tree decomposition T and a path decomposition P such that |Tx ∩ Py| 6
2(2g + 3) for all x ∈ V (T ) and y ∈ V (P ), and P has magnitude 2m.

Proof. Let X be a collection of curves on a surface of Euler genus g with m
crossings in total. Let G be the corresponding string graph. Let G′ be the graph
obtained from G by replacing each intersection point of two curves in X by a vertex,
where each curve crossed by k other curves corresponds to a path on k vertices in G′.
Thus G′ has Euler genus at most g. By Theorem 2, G′ has a tree decomposition T ′

with layered width at most 2g + 3 with respect to some layering V ′0 , V
′
1 , . . . , V

′
t .

For each vertex x of G′, let T ′x be the subtree of T formed by the bags that contain
x. Let T be the decomposition of G obtained by replacing each occurrence of a vertex
x in a bag of T ′ by the two vertices of G that correspond to the two curves that
intersect at x. We now show that T is a tree decomposition of G. For each vertex v of
G, let Tv be the subtree of T formed by the bags that contain v. If x1, x2, . . . , xk is the
path in G′ representing a vertex v of G, then Tv = T ′x1

∪ · · · ∪T ′xk
, which is connected
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since each T ′i is connected, and T ′i and T ′i+1 have a node in common (containing xi
and xi+1). For each edge vw of G, if x is the vertex of G′ at the intersection of the
curves representing v and w, then Tv and Tw have T ′x in common. Thus there is a
bag containing both v and w. Hence T is a tree decomposition of G.

Construct a weak path decomposition V0, . . . , Vt as follows. For each vertex x
in V ′i corresponding to the crossing point of two curves in X corresponding to two
vertices v and w in G, add v and w to Vi. For each vertex v of G, if (x1, x2, . . . , xk)
is the path in G′ representing v, then since (x1, x2, . . . , xk) is connected in G′, the
bags that contain v are consecutive. For each edge vw of G, if x is the crossing
point between v and w, then both v and w are in the bag Vi where x is in V ′i . Thus
V0, . . . , Vt is a path decomposition of G.

Since each layer in G′ contains at most 2g + 3 vertices in a single bag, each of
which is replaced by two vertices in G, we have |Tx ∩Py| 6 2(2g+ 3) for all x ∈ V (T )
and y ∈ V (P ). Observe that

∑
y |Py| = 2|V (G′)| = 2m.

Note that Lemma 24 cannot be strengthened to say that string graphs with O(n)
crossings have bounded layered treewidth. For example, the graph obtained by adding
a dominant vertex to the line graph of a

√
n ×
√
n grid is a string graph with O(n)

crossings, but the layered treewidth is Ω(n) (since the diameter is 2). This says
that we need a path decomposition (rather than a layering) to conclude Lemma 24.
Lemmas 1, 11, and 24 imply the following theorem.

Theorem 25. For every collection of curves on a surface of Euler genus g with
m crossings in total (where no three curves meet at a point), the corresponding
string graph has treewidth at most 4

√
(2g + 3)m − 1 and has a separator of order

4
√

(2g + 3)m.

6. Crossing number. Throughout this section we assume that in a drawing of a
graph, no three edges cross at a single point. The crossing number of a graph G is the
minimum number of crossings in a drawing of G in the plane. See [52] for background
on crossing numbers. This section shows that graphs with a given crossing number
have orthogonal decompositions with desirable properties. From this we conclude
interesting lower bounds on the crossing number that, in a certain sense, improve on
known lower bounds. All the results generalize for drawings on arbitrary surfaces.

Theorem 26. Suppose that some n-vertex graph G has a drawing on a surface
of Euler genus g with m crossings in total. Then G has a tree decomposition T and
a weak path decomposition P , such that T and P are (4g + 6)-orthogonal and P has
magnitude 2m+ n.

Proof. Orient each edge of G arbitrarily. Let G′ be the graph obtained from G
by introducing a vertex at each crossing point. So G′ has n + m vertices, and has
Euler genus at most g. For a vertex z of G′ − V (G) that corresponds to the crossing
point of directed edges v1v2 and w1w2 in G, we say that z belongs to v1 and w1. Each
vertex of G belongs to itself.

By Theorem 2, G′ has layered treewidth at most 2g + 3. That is, G′ has tree
decomposition T ′ and a layering P ′ such that |T ′x ∩ P ′y| 6 2g + 3 for each bag T ′x and
layer P ′y. For each vertex z of G′ that belongs to v1 and w1 replace each occurrence
of z in T ′ and in P ′ by both v1 and w1. Let T and P be the decompositions of G
obtained from T ′ and P ′, respectively.

For each vertex v of G the set of vertices of G′ that belong to v forms a (connected)
star centered at v. Thus the set of bags in P that contain v forms a (connected)
subpath of P . Similarly, the set of bags in T that contain v forms a (connected)
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subtree of T . For each directed edge vw of G, if z is the last vertex in G′ before w
on the path from v to w corresponding to vw (possibly z = v), then zw ∈ E(G′)
and thus z and w are in a bag of T ′, which implies that v and w are in a bag in T .
Similarly, z and w are in a common bag of P ′ or are in adjacent bags in P ′, which
implies that v and w are in a common bag of P or are in adjacent bags in P .

Hence T is a tree decomposition and P is a weak path decomposition of G, such
that |Tx ∩ Py| 6 4g + 6 for x ∈ V (T ) and y ∈ V (P ). The total number of vertices in
P is 2|V (G′) \ V (G)|+ |V (G)| = 2((n+m)− n) + n = 2m+ n.

Lemma 11 and Theorem 26 imply that if G is a graph with a drawing on a surface
of Euler genus g with m crossings in total, then

tw(G) 6 2
√

(4g + 6)(2m+ n)− 1.(6.1)

Let cr(G) be the crossing number of a graph G (in the plane). Inequality (6.1) with
g = 0 can be rewritten as the following lower bound on cr(G):

cr(G) +
1

2
|V (G)| > 1

48
(tw(G) + 1)2.(6.2)

Of course, (6.2) generalizes to the crossing number on any surface. We focus on the
planar case since this is of most interest. Inequality (6.2) is similar to the following
lower bounds on the crossing number in terms of bisection width bw(G) (due to Pach
et al. [46] and [59]) and cutwidth cw(G) and pathwidth pw(G) (due to Djidjev and
Vrt’o [19]):

cr(G) +
1

16

∑
v∈V (G)

deg(v)2 >
1

40
bw(G)2,

cr(G) +
1

16

∑
v∈V (G)

deg(v)2 >
1

1176
cw(G)2,

cr(G) +
∑

v∈V (G)

deg(v)2 >
1

81
pw(G)2.

In one sense, inequality (6.2) is stronger than these lower bounds, since it replaces a∑
v deg(v)2 term by a term linear in |V (G)|. On the other hand, bw(G) and cw(G)

might be much larger than tw(G). For example, the star graph has treewidth and
pathwidth 1, but has linear bisection width and linear cutwidth. And pw(G) might
be much larger than tw(G). For example, the complete binary tree of height h has
treewidth 1 and pathwidth dh/2e.

7. Two path decompositions. This section considers graphs that have two
path decompositions with bounded intersections. This property can be interpreted
geometrically as follows.

Observation 27. A graph G has two k-orthogonal path decompositions if and
only if G is a subgraph of an intersection graph of axis-aligned rectangles with maxi-
mum clique size at most k.

Of course, every bipartite graph is a subgraph of an intersection graph of axis-
aligned lines with at most two lines at a single point. So every bipartite graph has
two 2-orthogonal path decompositions. This is essentially a restatement of the con-
struction for Kn,n in section 1.

The following result of Bannister et al. [3] is relevant.
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Theorem 28 (see [3]). Every tree has layered pathwidth 1, and every outerplanar
graph has layered pathwidth at most 2.

This result implies that every tree has two 2-orthogonal path decompositions, and
every outerplanar graph has two 4-orthogonal path decompositions. (The sequence
of consecutive pairs of layers defines the second path decomposition, as described
in section 3.) After trees and outerplanar graphs, the next simplest class of graphs
to consider are series parallel graphs, which are the graphs with treewidth 2, or
equivalently those containing no K4 minor. Every outerplanar graph is series parallel.
However, we now prove that series parallel graphs behave very differently compared
to trees and outerplanar graphs.

Theorem 29. There is no constant c such that every series parallel graph has
two c-orthogonal path decompositions.

The edge-maximal series parallel graphs are precisely the 2-trees, which are de-
fined recursively as follows. K2 is a 2-tree, and if vw is an edge of a 2-tree G, then
the graph obtained from G by adding a new vertex adjacent only to v and w is also
a 2-tree. To prove the above theorem, we show in Theorem 34 below that for every
integer k there is a 2-tree graph G such that every intersection graph of axis-aligned
rectangles that contains G as a subgraph also contains a k-clique.

Throughout this paper, the word rectangle means open axis-aligned rectangle:
a subset R of R2 of the form (x1, x2) × (y1, y2), where x1 < x2 and y1 < y2. The
rectangle R has four corners (x1, y1), (x1, y2), (x2, y1), and (x2, y2). And R has four
sides (closed vertical or horizontal line segments whose endpoints are corners) called
the left, top, right, and bottom sides of R in the obvious way. A rectangle intersection
graph is a graph whose vertices are rectangles and the edge between two rectangles u
and w is present if and only if u ∩ w 6= ∅. The boundary of R—the union of its four
sides—is denoted by ∂R.

We make use of the fact that the set of rectangles in the plane is a Helly family
(of order 2) [8, Chapter 11].

Observation 30. If u, v, and w are rectangles that pairwise intersect, then u ∩
v ∩ w 6= ∅.

Observation 30 follows from Helly’s Theorem for real intervals and the observation
that a rectangle is the Cartesian product of two real intervals (see [8, page 83] or [9]).

Let v and w be two rectangles with R = v ∩ w 6= ∅ and such that w does not
contain any corner of v. We say that (v, w) is an h-pair if the left or right side of
R is contained in ∂v. We say that (v, w) is a v-pair if the top or bottom side of R
is contained in ∂v. If (v, w) is not an h-pair or a v-pair, then we call it an o-pair.
Note that, since w does not contain a corner of v, (v, w) is exactly one of a v-pair, an
h-pair, or an o-pair. See Figure 2.

Our proof works by finding a path in a rectangle intersection graph G that defines
a sequence of rectangles having properties that ensure that these rectangles form a
clique.

See Figure 3 for an illustration of the following definition: Let v1, . . . , vk be a
sequence of rectangles and let Ri =

⋂i
j=1 vj . We say that v1, . . . , vk is hvo-alternating

if
1. for each i ∈ {2, . . . , k}, vi ∩Ri−1 6= ∅;
2. for each i ∈ {2, . . . , k}, vi does not contain any corner of Ri−1; and
3. for each i ∈ {2, . . . , k− 1}, (Ri−1, vi) and (Ri, vi+1) are not both h-pairs and

not both v-pairs.
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Fig. 2. Examples of v-pairs, h-pairs, and an o-pair.

v1
v2

v3

v4

v5

Fig. 3. An hvo-alternating sequence of rectangles.

Note that Property 1 with i = k ensures that
⋂k
j=1 vi 6= ∅. Therefore, if v1, . . . , vk

are vertices in a rectangle intersection graph G, then these vertices form a k-clique
in G. Our proof attempts to grow an hvo-alternating sequence of vertices in G. The
following lemma shows that an hvo-alternating sequence is neatly summarized by its
last two elements.

Lemma 31. If v1, . . . , vk is an hvo-alternating sequence of rectangles, then⋂k
i=1 vi = vk−1 ∩ vk.

Proof. The case k = 2 is trivial, so we first consider the case k = 3. Recall that,
for any two sets A and B, A ⊇ B if and only if A ∩B = B. Therefore, it is sufficient
to show that v1 ⊇ v2 ∩ v3.

If (v1, v2) is an o-pair, then v1 ⊇ v2 ⊇ v2∩v3 and we are done. Otherwise, assume
without loss of generality that (R1, v2) = (v1, v2) is an h-pair, so that (R2, v3) is not
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R∗

v1 = R1

v2

v3

Fig. 4. The proof of Lemma 31.

an h-pair. Refer to Figure 4. In this case, v2 ∩ v3 is contained in the rectangle R∗

whose top and bottom sides coincide with those of v2 and whose left and right sides
coincide with those of v1. We finish by observing that v1 ⊇ R∗ ⊇ v2 ∩ v3, as required.

Next consider the general case k > 3. By Lemma 31, the three element sequence
Rk−2, vk−1, vk is an hvo-alternating sequence, so, applying the result for k = 3, we
obtain

k⋂
j=1

vj = Rk−2 ∩ vk−1 ∩ vk = vk−1 ∩ vk.

Sometimes the process of growing our hvo-alternating sequence stalls. The fol-
lowing lemma shows that, when this process stalls, we can at least replace the last
element in the sequence.

Lemma 32. Let v1, . . . , vk be an hvo-alternating sequence of rectangles and define
Ri =

⋂i
j=1 vi. Let v be a rectangle such that

1. v ∩Rk 6= ∅;
2. v contains no corner of Rk; and
3. v1, . . . , vk, v is not hvo-alternating.

Then v1, . . . , vk−1, v is hvo-alternating.

Proof. Notice that v1, . . . , vk, v satisfies all the conditions to be hvo-alternating
except that (Rk−1, vk) and (Rk, v) are both h-pairs or both v-pairs. Without loss of
generality assume that they are both h-pairs.

It is sufficient to show that (Rk−1, v) is not a v-pair so that, by replacing vk
with v we are replacing the h-pair (Rk−1, vk) with an h-pair or an o-pair. But this
is immediate, since v intersects Rk but does not intersect the top or bottom side of
Rk. Therefore, v cannot intersect the top or bottom side of Rk−1 ⊇ Rk, so (Rk−1, v)
is not a v-pair.

If our process repeatedly stalls, then the hvo-alternating sequence we are growing
never gets any longer; we only repeatedly change the last element in the sequence.
Next we describe the sequences of rectangles that appear during these repeated stalls
and show that such sequences (if long enough) also determine large cliques in G.

A sequence v1, . . . , vk of rectangles is h-nesting with respect to a rectangle R if,
for each i ∈ {1, . . . , k}, (R, vi) is an h-pair and, for each i ∈ {2, . . . , k}, (R∩vi−1, vi) is
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R

v1
v2

v3
v4

Fig. 5. Rectangles v1, . . . , v4 that are h-nesting with respect to R.

an h-pair; see Figure 5. A v-nesting sequence is defined similarly by replacing h-pair
with v-pair.

Lemma 33. If v1, . . . , vk is an h-nesting sequence or a v-nesting sequence with
respect to R, then there exists a point x ∈ R such that |{i : x ∈ vi}| > dk/2e.

Proof. Assume, without loss of generality, that v1, . . . , vk is an h-nesting sequence
with respect to R. Consider the sequence of horizontal strips s1, . . . , sk, where each
si = (−∞,∞) × (yi,1, yi,2) has top and bottom sides that coincide with those of
vi. Since, for each i ∈ {2, . . . , k}, (R, vi−1) and (R ∩ vi−1, vi) are both h-pairs,
s1 ⊇ s2 ⊇ · · · ⊇ sk. Let ` be a point on the left side of R contained in sk, and let r be
a point on the right side of R contained in sk. Since (R, vi) is an h-pair, vi contains at
least one of ` or r for each i ∈ {1, . . . , k}. Therefore, at least one of ` or r is contained
in at least dk/2e rectangles in v1, . . . , vk. Since rectangles are open, there is a point
x in the neighborhood of ` or r (as appropriate) that is contained in R and is also
contained in dk/2e rectangles in v1, . . . , vk.

We now introduce a particular 2-tree. The height-h d-branching universal 2-tree
Th,d is defined recursively as follows:

• T−1,d is the empty graph.
• T0,d is a two-vertex graph with a single edge.
• For h > 1, Th,d is obtained from Th−1,d by adding, for each edge vw ∈
E(Th−1,d) \ E(Th−2,d), d new vertices v1,vw, . . . , vd,vw each adjacent to both
v and w.

The root edge of Th,d is the single edge of T0,d. For each i ∈ {0, . . . , h}, the level-i
vertices of Th,d are the vertices in V (Ti,d) \ V (Ti−1,d). The level-i edges of T are the
edges that join a level-i vertex to a level-j vertex for some j < i.

Note that the number of level-i edges in Th,d is given by the recurrence

mi =

{
1 if i = 0,

2dmi−1 otherwise,

which resolves to (2d)i. Thus, the total number of edges in Th,d is less than (2d)h+1.
We are now ready to prove the main result of this section.

Theorem 34. For each k ∈ N, every rectangle intersection graph that contains
T4k−7,(k−1)2 as a subgraph contains a clique of size k.

Proof. The cases k = 1 and k = 2 are trivial, so for the remainder of the proof
we assume that k > 3.
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Let G be a rectangle intersection graph that contains T = T4k−7,(k−1)2 as a
spanning subgraph. We use the convention that V (G) = V (T ) so that vertices of T
are rectangles in V (G). We will attempt to define a path v1, . . . , vk in T such that
v1, . . . , vk is hvo-alternating.

Let r0r1 be the root edge of T . We set v1 = r0 and use the convention that v0 = r1.
We will perform (k − 1)2 iterations, each of which tries to add another vertex, vi+1,
to a partially constructed hvo-alternating path v1, . . . , vi. During iteration t, for each
t ∈ {1, . . . , (k − 1)2}, the procedure will consider a level-t vertex, v, of T to include
in the path. At the end of iteration t, the last vertex in the partially constructed
sequence is always v, a level-t vertex.

At the beginning of iteration t, vi is a level-(t− 1) vertex, so vi−1 and vi are both
adjacent to a set S of 4k − 7 level-t vertices. Each of the rectangles in S intersects
vi−1 and vi, so, by Observation 30, each rectangle in S intersects vi−1∩vi. Therefore,
by Lemma 31, each of the rectangles in S intersects Ri =

⋂i
j=1 vj .

If each rectangle in S contains at least one corner of Ri, then some corner of Ri
is contained in at least

d(4k − 7)/4e = k − 1

rectangles. Since these rectangles are open, there is a point x contained in these k−1
rectangles and in vi. The resulting set of k rectangles therefore forms a k-clique in G
and we are done.

Otherwise, some rectangle v ∈ S does not contain a corner of Ri. Notice that the
sequence v1, . . . , vi, v is hvo-alternating except, possibly, that the pairs (Ri−1, vi) and
(Ri, v) are both h-pairs or both v-pairs. There are two cases to consider:

1. v1, . . . , vi, v is hvo-alternating. In this case, we say that the procedure succeeds
in iteration t, and we set vi+1 = v.

2. v1, . . . , vi, v is not hvo-alternating. In this case, we say that the procedure
stalls in iteration t. In this case, we change vi by setting vi = v. By Lemma 32
the resulting sequence is hvo-alternating.
Note that in this case we have failed to make our path any longer. Instead,
we have only replaced the last element with a level-t vertex. Regardless, the
next iteration will try to extend the path with the new value of vi.

If we allow this procedure to run sufficiently long, then one of two cases occurs:
1. At least k−1 iterations are successes. In this case, we find v2, . . . , vk, so that
v1, . . . , vk is an hvo-sequence whose vertices form a k-clique in G.

2. Some element of our sequence, vi, takes on a sequence Si = vi,0, . . . , vi,2(k−i)
of 2(k−i)+1 different values because the procedure stalls 2(k−i) times while
trying to select vi+1. In this case, Si is either h-nesting or v-nesting with re-
spect to Ri−1 so, by Lemma 33, some subset {w0, . . . , wk−i} ⊂ Si of rectangles
in Si all have a common intersection that includes a point of Ri−1. But Ri−1 is
the common intersection of v1, . . . , vi−1. Therefore, v1, . . . , vi−1, w0, . . . , wk−i
all have a point in common and form a k-clique in G.

The number of iterations required before this procedure finds a k-clique in G is at
most

h =

k∑
i=2

(2(k − i) + 1) = k + (k − 2)(k + 1) = (k − 1)2 .

During these h iterations, the procedure selects a level-j vertex of T for j = 1, 2, . . . , h.
Since T has height (k − 1)2 = h, the procedure succeeds in finding a k-clique before
running out of levels.
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This completes the proof of Theorem 29.
We now give an application of Theorem 29 in the setting of graph partitions.

Proposition 35. There is no constant c such that every series-parallel graph has
a vertex-partition into two induced subgraphs each with pathwidth at most c.

Proof. Suppose that every series-parallel graph G has such a partition {V1, V2}
of V (G), where P1 and P2 are path decompositions of G[V1] and G[V2], respectively,
each with width at most c. Adding V2 to every bag of P1 and V1 to every bag of P2

gives two (2c+ 2)-orthogonal path decompositions of G, contradicting Theorem 29.

This result is in contrast to a theorem of DeVos et al. [18], which says that for
every fixed graph H there is a constant c, such that every H-minor-free graph has a
vertex-partition into two induced subgraphs each with treewidth at most c.

8. Boxicity connections. Section 7 attempts to understand which graphs have
two path decompositions with bounded intersections. This turns out to be equiva-
lent to the more geometric problem of understanding which graphs are subgraphs of
rectangle intersection graphs of bounded clique size. There are several other ways we
could generalize these problems.

Does adding extra dimensions help? A d-dimensional box intersection graph is a
graph whose vertices are d-dimensional axis-aligned boxes and for which two vertices
are adjacent if and only if they intersect. For a graph, G, the smallest d such that G
is a d-dimensional box intersection graph is known as the boxicity of G.

Open Problem 36. For each d ∈ N, what is the smallest value of r = rd for
which the following statement is true: For every k ∈ N there exists an r-tree T such
that every graph G of boxicity d that contains T as a subgraph contains a k-clique?

Theorem 34 shows that r2 6 2, and the obvious representation of trees (1-trees)
as rectangle intersection graphs shows that r2 > 1, so r2 = 2. For d > 2, we now show
that rd 6 2d.

Proposition 37. For every k > 2 and d > 1, there exists a 2d-tree Tk such
that every intersection graph of d-dimensional boxes that contains Tk as a subgraph
contains a k-clique.

Proof. The 2d-tree Tk is defined inductively: T0 is a (2d + 1)-clique. To obtain
Ti, attach a vertex adjacent to each 2d-clique in Ti−1.

Now consider some box representation of a graph G that contains Tr as a sub-
graph, so that the vertices of G are d-dimensional boxes. We find the desired clique
inductively by constructing two sequences of sets S0, . . . , Sr and X0 ⊆ · · · ⊆ Xr that
satisfy the following conditions for each i ∈ {0, 1, . . . , r}:

1. |Si| = 2d,
2. Si ⊆ Xi ⊆ V (Ti),
3. Si forms a clique in Ti,
4. ∩Xi = ∩Si (so Xi is a (2d+ 1 + i)-clique in G).

Let X0 := V (T0). To find S0, look at the common intersection ∩X0. At least
one of the boxes x in X0 is redundant in the sense that ∩X0 = ∩(X0 \ x). Let
S0 := X0 \ {x}. Observe that X0 and S0 satisfy conditions 1–4.

Now for the inductive step. By conditions 1 and 3, the vertices of Si form a
2d-clique in Ti, so there is some vertex v in Ti+1 that is adjacent to all the vertices in
Si. Let Xi+1 := Xi∪{v}, and let Si+1 be the subset of Si∪{v} obtained by removing
one redundant box. Then Xi+1 and Si+1 satisfy conditions 1–4.
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Set r := max{0, k−2d−1}. Then every graph of boxicity at most d that contains
Tr contains a k-clique.

On the lower-bound side, Thomassen [60] proved that every planar graph has
boxicity at most 3. Since every 2-tree is planar, this implies rd > 3 for d > 3. More
generally, Chandran and Sivadasan [10] showed that every graph G has boxicity at
most tw(G) + 2, so every (d − 2)-tree has boxicity at most d. This implies that
rd > d− 1.

Returning to two dimensions, recall that the Koebe–Andreev–Thurston theorem
states that every planar graph is a subgraph of some intersection graph of disks for
which no point in the plane is contained in more than two disks. 2-trees are a very
special subclass of planar graphs, so Theorem 34 shows that axis-aligned rectangles
are very different than disks in this respect. Thus, we might ask how expressive other
classes of plane shapes are.

For a set C of lines, we can consider intersection graphs of C-oriented convex
shapes: convex bodies whose boundaries consist of linear pieces, each of which is
parallel to some line in C. (Axis-aligned rectangles are C-oriented where C is the
set consisting of the x-axis and y-axis.) For a set C of lines, let GC denote the
class of intersection graphs of C-oriented convex shapes. For an integer c, let Gc =⋃
C:|C|=c GC .

Open Problem 38. For each c ∈ N, what is the smallest value of r = rc such
that the following statement is true?: For every k ∈ N, there exists an r-tree T such
that every graph G ∈ Gc that contains T as a subgraph contains a k-clique.

As in the proof of Proposition 37, we can use the fact that, for any set B of
C-oriented convex shapes, there is a subset B′ ⊂ B with |B′| 6 2|C| and ∩B = ∩B′
to establish that rc 6 2c. We do not know a lower bound better than rc > 1.

Finally, we note that Theorem 34 generalizes a result of McKee and Scheinerman
[43], who constructed a series parallel graph with boxicity 3. Theorem 34 with k = 4
implies there is a series parallel graph G such that every rectangle intersection graph
that contains G as a subgraph contains K4. Since no series parallel graph contains
K4, this implies that G has boxicity at least 3, as proved by McKee and Scheinerman
[43].

9. Coloring connections. The tree-chromatic number of a graph G, denoted
by tree-χ(G), is the minimum integer k such that G has a tree decomposition in
which each bag induces a k-colorable subgraph. This definition was introduced by
Seymour [55]; also see [4, 36]. For a graph G, define the 2-dimensional treewidth of
G, denoted 2-tw(G), to be the minimum integer k such that G has two k-orthogonal
tree decompositions S and T . For each bag B of S, note that T defines a tree
decomposition of G[B] with width k − 1, implying G[B] is k-colorable. Thus

(9.1) 2-tw(G) > tree-χ(G) > ω(G).

Obviously, 2-tw(G) > ω(G) and tree-χ(G) > ω(G). Inequality (9.1) leads to lower
bounds on 2-tw(G). For example, Seymour [55] showed that tree-chromatic number
is unbounded on triangle-free graphs. Thus 2-tw is also unbounded on triangle-free
graphs.

On the other hand, we now show that there are graphs with bounded tree-
chromatic number (even path-chromatic number) and unbounded 2-tw. The shift
graph Hn has vertex set {(i, j) : 1 6 i < j 6 n} and edge set {(i, j)(j, `) : 1 6 i <
j < ` 6 n}. It is well known that Hn is triangle-free with chromatic number at least
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log2 n; see [35]. Seymour [55] constructed a path decomposition of Hn such that each
bag induces a bipartite subgraph. We prove the following result that separates tree-χ
and 2-tw.

Theorem 39. For every k there exists n such that the shift graph Hn does not
admit two k-orthogonal tree decompositions.

Lemma 40. For every integer ` > 1 there exists an even integer m > ` such that
for every tree decomposition T of the shift graph H = Hm,
(i) χ(H[Tx]) > ` for some x ∈ V (T ), or
(ii) there exist x ∈ V (T ), A ⊆ {1, 2, . . . , m2 }, and B ⊆ {m2 + 1, . . . ,m}, such that

|A|, |B| > `, and (a, b) ∈ Tx for all a ∈ A and b ∈ B.

Proof of Theorem 39 assuming Lemma 40. Let ` = m(k), and let n = m(`),
where m is as in Lemma 40. Then n > ` > k. We show that n satisfies the theorem.
Suppose not, and let T and T ′ be two k-orthogonal tree decompositions of Hn. Each
bag Tx induces a subgraph of treewidth at most k−1 in Hn. Thus χ(H[Tx]) 6 k 6 `.
Thus outcome (i) of Lemma 40 applied to ` and H does not hold for T , and so outcome
(ii) holds. Let x, A, and B be as in this outcome. We may assume that |A| = |B|.
Let H ′ be the subgraph of H induced by {(a, b) ∈ V (H) : a, b ∈ A ∪ B}. Then
H ′ ∼= H|A∪B|. Apply Lemma 40 to H ′ and the tree decomposition T ′′ of H ′ induced
by T ′. Each bag of T ′′ induces a k-colorable subgraph of H ′. Since k < `, outcome (ii)
occurs. Thus there exist A′ ⊆ A, B′ ⊆ A, and x′ ∈ V (T ′) such that |A′|, |B′| > k + 1
and (a, b) ∈ T ′x′ for all a ∈ A′ and b ∈ B′. Thus |Tx ∩ T ′x′ | > (k + 1)2 > k, yielding
the desired contradiction.

Proof of Lemma 40. Define m := 24`+1 +2. Let T be a tree decomposition of the
shift graph H = Hm. By splitting vertices of T , if necessary, we may assume that
T has maximum degree at most 3. Let H1 be the subgraph of H induced by pairs
(a, b) such that a, b 6 m

2 , and let H2 be the subgraph induced by pairs (a, b) with
a, b > m

2 . Then H1 ∼= H2 ∼= Hm/2. For a subtree X of T and i ∈ {1, 2}, let Hi(X)
denote the subgraph of Hi induced by V (Hi) −

⋃
{Tx : x ∈ V (T ) \ V (X)}, that is,

by those vertices of Hi that only belong to the bags of T corresponding to vertices of
X. We may assume that (i) does not hold.

Suppose that there does not exist an edge e ∈ E(T ) such that χ(H1(X)) > `+ 1
and χ(H1(Y )) > ` + 1, where X and Y are the components of T − e. That is,
χ(H1(X)) 6 ` or χ(H1(Y )) 6 `. Orient e toward X if χ(H1(X)) 6 ` and toward Y
otherwise. Do this for every edge of T . Let v be a source node in this orientation of
T . Then χ(H1(Z)) 6 ` for each subtree Z of T with v 6∈ V (Z). Let Z1, Z2, and Z3

be the (at most) three maximal subtrees of T − v. Then H1(Z1), H1(Z2), H1(Z3),
and H1[Tv] are four induced subgraphs of H1 covering the vertex set of H1, each with
chromatic number at most `. Thus log2

m
2 6 χ(H1) 6 4`, contradicting the choice of

m.
Thus there exists an edge e ∈ E(T ) such that χ(H1(X)) > `+1 and χ(H1(Y )) >

` + 1, where X and Y are the components of T − e. Repeating the argument in the
previous paragraph forH2, we may assume without loss of generality that χ(H2(Y )) >
` + 1. Let A be the set of all a such that (b, a) ∈ V (H1(X)) for some b < a. Then
|A| > `+ 1, since H1(X) can be properly colored using one color for each element of
A. Similarly, if B is the set of all b such that (b, a) ∈ V (H2(Y )) for some a > b, then
|B| > `+1. Consider (a, b) ∈ V (H) with a ∈ A and b ∈ B. Then (a, b) has a neighbor
in V (H1(X)) and therefore (a, b) ∈ Tx for some x ∈ V (X). Similarly, (a, b) ∈ Ty for
some y ∈ V (Y ). If z is an endpoint of e, then z lies on the xy-path in T , and thus
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(a, b) ∈ Tz and (ii) holds.

The above results suggest a positive answer to the following question.

Open Problem 41. Is there a function f such that every graph that has two k-
orthogonal tree decompositions is f(k)-colorable? That is, is χ(G) 6 f(2-tw(G)) for
every graph G?

This question asks whether graphs that have two tree decompositions with bounded
intersections have bounded chromatic number. Note that graphs that have two path
decompositions with bounded intersections have bounded chromatic number (since
rectangle intersection graphs are χ-bounded, as proved by Asplund and Grünbaum
[2]). Also note that the converse to this question is false: there are 3-colorable graph
classes with 2-tw unbounded. Suppose the complete tripartite graph Kn,n,n has two
k-orthogonal tree decompositions. Then each decomposition has at least 2n+ 1 ver-
tices in some bag (since tw(Kn,n,n) = 2n). The intersection of these two bags has size
at least n+ 2. Thus k > n+ 2 and 2-tw(Kn,n,n) > n+ 2.

Note. Independently of this paper, Stavropoulos [57, 58] introduced the
i-medianwidth of a graph for each i > 1. It is easily seen that 2-tw(G) equals the
2-medianwidth of G. Following the initial release of this paper, Felsner et al. [27]
answered Open Problem 41 in the negative.
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[26] I. Fáry, On straight line representation of planar graphs, Acta Univ. Szeged. Sect. Sci. Math.,
11 (1948), pp. 229–233.

[27] S. Felsner, G. Joret, P. Micek, W. T. Trotter, and V. Wiechert, Burling graphs, chro-
matic number, and orthogonal tree-decompositions, Electron. J. Combin., 25 (2018), P1.35,
http://www.combinatorics.org/v25i1p35.

[28] F. V. Fomin, D. Lokshtanov, and S. Saurabh, Bidimensionality and geometric graphs,
in Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms,
ACM, New York, SIAM, Philadelphia, 2012, pp. 1563–1575, https://doi.org/10.1137/1.
9781611973099.124.

[29] J. Fox and J. Pach, Separator theorems and Turán-type results for planar intersection graphs,
Adv. Math., 219 (2008), pp. 1070–1080, https://doi.org/10.1016/j.aim.2008.06.002.

[30] J. Fox and J. Pach, A separator theorem for string graphs and its applications, Combin.
Probab. Comput., 19 (2010), pp. 371–390, https://doi.org/10.1017/S0963548309990459.

[31] J. Fox and J. Pach, Applications of a new separator theorem for string graphs, Combin.
Probab. Comput., 23 (2014), pp. 66–74, https://doi.org/10.1017/S0963548313000412.

[32] M. Grohe, Local tree-width, excluded minors, and approximation algorithms, Combinatorica,
23 (2003), pp. 613–632, https://doi.org/10.1007/s00493-003-0037-9.

[33] M. Grohe and D. Marx, On tree width, bramble size, and expansion, J. Combin. Theory Ser.
B, 99 (2009), pp. 218–228, https://doi.org/10.1016/j.jctb.2008.06.004.

[34] D. J. Harvey and D. R. Wood, Parameters tied to treewidth, J. Graph Theory, 84 (2017),
pp. 364–385, https://doi.org/10.1002/jgt.22030.
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