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Abstract. This paper studies problems related to visibility among points in the plane. A

point x blocks two points v and w if x is in the interior of the line segment vw. A set of points P

is k-blocked if each point in P is assigned one of k colours, such that distinct points v, w ∈ P are

assigned the same colour if and only if some other point in P blocks v and w. The focus of this

paper is the conjecture that each k-blocked set has bounded size (as a function of k). Results

in the literature imply that every 2-blocked set has at most 3 points, and every 3-blocked set

has at most 6 points. We prove that every 4-blocked set has at most 12 points, and that this

bound is tight. In fact, we characterise all sets {n1, n2, n3, n4} such that some 4-blocked set has

exactly ni points in the i-th colour class. Amongst other results, for infinitely many values of

k, we construct k-blocked sets with k1.79... points.
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2 BLOCKING COLOURED POINT SETS

1. Introduction

This paper studies problems related to visibility and blocking in sets of coloured points in the

plane. A point x blocks two points v and w if x is in the interior of the line segment vw. Let

P be a finite set of points in the plane. Two points v and w are visible with respect to P if no

point in P blocks v and w. The visibility graph of P has vertex set P , where two distinct points

v, w ∈ P are adjacent if and only if they are visible with respect to P . A point set B blocks P

if P ∩B = ∅ and for all distinct v, w ∈ P there is a point in B that blocks v and w. That is, no

two points in P are visible with respect to P ∪ B, or alternatively, P is an independent set in

the visibility graph of P ∪B.

A set of points P is k-blocked if each point in P is assigned one of k colours, such that

each pair of points v, w ∈ P are visible with respect to P if and only if v and w are coloured

differently. Thus v and w are assigned the same colour if and only if some other point in P

blocks v and w. A k-set is a multiset of k positive integers. For a k-set {n1, . . . , nk}, we say

P is {n1, . . . , nk}-blocked if it is k-blocked and for some labelling of the colours by the integers

[k] := {1, 2, . . . , k}, the i-th colour class has exactly ni points, for each i ∈ [k]. Equivalently, P is

{n1, . . . , nk}-blocked if the visibility graph of P is the complete k-partite graph K(n1, . . . , nk).

A k-set {n1, . . . , nk} is representable if there is an {n1, . . . , nk}-blocked point set. See Figure 1

for an example.

g1
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g3
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b2

b3

Figure 1. A {3, 3, 3, 3}-blocked point set.

The following fundamental conjecture regarding k-blocked point sets is the focus of this paper.

Conjecture 1. For each integer k there is an integer n such that every k-blocked set has at

most n points.

As illustrated in Figure 2, the following theorem is a direct consequence of the characterisation

of 2- and 3-colourable visibility graphs by Kára et al. [6].
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Theorem 2. {1, 1} and {1, 2} are the only representable 2-sets, and

{1, 1, 1}, {1, 1, 2}, {1, 2, 2} and {2, 2, 2} are the only representable 3-sets.

{1, 1} {2, 1}
{1, 1, 1} {1, 1, 2}

{1, 2, 2} {1, 2, 2} {2, 2, 2}

Figure 2. The 2-blocked and 3-blocked point sets.

In particular, every 2-blocked point set has at most 3 points, and every 3-blocked point set

has at most 6 points. This proves Conjecture 1 for k ≤ 3.

This paper makes the following contributions. Section 3 introduces some background moti-

vation for the study of k-blocked point sets, and observes that results in the literature prove

Conjecture 1 for k = 4. Section 4 describes methods for constructing k-blocked sets from a

given (k−1)-blocked set. These methods lead to a characterisation of representable k-sets when

each colour class has at most three points. Section 5 studies the k = 4 case in more detail. In

particular, we characterise the representable 4-sets, and conclude that the example in Figure 1

is in fact the largest 4-blocked point set. Section 6 introduces a special class of k-blocked sets

(so-called midpoint-blocked sets) that lead to a construction of the largest known k-blocked sets

for infinitely many values of k.

2. Basic Properties

Lemma 3. At most three points are collinear in every k-blocked point set.

Proof. Suppose that four points p, q, r, s are collinear in this order. Thus (p, q, r, s) is an induced

path in the visibility graph. Thus p is not adjacent to r and not adjacent to s. Thus p, r, and

s have the same colour. This is a contradiction since r and s are adjacent. Thus no four points

are collinear. �

A set of points P is in general position if no three points in P are collinear.

Lemma 4. Each colour class in a k-blocked point set is in general position.

Proof. Suppose on the contrary that three points from a single colour class are collinear. Then

no other points are in the same line by Lemma 3. Thus two of the three points are adjacent,

which is a contradiction. �
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3. Some Background Motivation

Much recent research on blockers began with the following conjecture by Kára et al. [6].

Conjecture 5 (Big-Line-Big-Clique Conjecture [6]). For all integers t and ` there is an integer

n such that for every finite set P of at least n points in the plane:

• P contains ` collinear points, or

• P contains t pairwise visible points

(that is, the visibility graph of P contains a t-clique).

Conjecture 5 is true for t ≤ 5, but is open for t ≥ 6 or ` ≥ 4; see [1, 10]. Given that, in

general, Conjecture 5 is challenging, Jan Kára suggested the following weakening.

Conjecture 6 ([10]). For all integers t and ` there is an integer n such that for every finite set

P of at least n points in the plane:

• P contains ` collinear points, or

• the chromatic number of the visibility graph of P is at least t.

Conjecture 5 implies Conjecture 6 since every graph that contains a t-clique has chromatic

number at least t.

Proposition 7. Conjecture 6 with ` = 4 and t = k + 1 implies Conjecture 1.

Proof. Assume Conjecture 6 holds for ` = 4 and t = k + 1. Suppose there is a k-blocked set

P of at least n points. By Lemma 3, at most three points are collinear in P . Thus the first

conclusion of Conjecture 6 does not hold. By definition, the visibility graph of P is k-colourable.

Thus the second conclusion of Conjecture 6 does not hold. This contradiction proves that every

k-blocked set has less than n points, and Conjecture 1 holds. �

Thus, since Conjecture 5 holds for t ≤ 5, Conjecture 1 holds for k ≤ 4. In Section 5 we take

this result much further, by characterising all representable 4-sets, this concluding a tight bound

on the size of a 4-blocked set.

Part of our interest in blocked point sets comes from the following.

Proposition 8. For all k ≥ 3 and n ≥ 2, the edge set of the k-partite Turán graph K(n, n, . . . , n)

can be partitioned into a set of ‘lines’, where:

• each line is either an edge or an induced path on three vertices,

• every pair of vertices is in exactly one line, and

• for every line L there is a vertex adjacent to each vertex in L.

Proof. Let (i, p) be the p-th vertex in the i-th colour class for i ∈ Zk and p ∈ Zn (taken as additive

cyclic groups). We introduce three types of lines. First, for i ∈ Zk and distinct p, q ∈ Zn, let

the triple {(i, p), (i + 1, p + q), (i, q)} be a line. Second, for i ∈ Zk and p ∈ Zn, let the pair

{(i, p), (i + 1, p + p)} be a line. Third, for p, q ∈ Zn and distinct non-consecutive i, j ∈ Zk, let

the pair {(i, p), (j, q)} be a line. By construction each line is either an edge or an induced path

on three vertices.
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Every pair of vertices in the same colour class are in exactly one line (of the first type).

Consider vertices (i, p) and (j, q) in distinct colour classes. First suppose that i and j are

consecutive. Without loss of generality, j = i + 1. If q 6= p + p then (i, p) and (j, q) are in

exactly one line (of the first type). If q = p + p then (i, p) and (j, q) are in exactly one line (of

the second type). If i and j are not consecutive, then (i, p) and (j, q) are in exactly one line (of

the third type). This proves that every pair of vertices is in exactly one line. Moreover, every

edge of K(n, n, . . . , n) is in exactly one line, and the lines partition the edges set.

Since every line L is contained in the union of two colour classes, each vertex in neither colour

class intersecting L is adjacent to each vertex in L. �

Proposition 8 is significant for Conjecture 5 because it says that K(n, . . . , n) behaves like a

‘visibility space’ with no four collinear points, but it has no large clique (for fixed k). Conjec-

ture 1, if true, implies that such a visibility space is not ‘geometrically representable’ for large

n.

Let b(n) be the minimum integer such that some set of n points in the plane in general position

is blocked by some set of b(n) points. Matoušek [7] proved that b(n) ≥ 2n−3. Dumitrescu et al.

[2] improved this bound to b(n) ≥ (258 − o(1))n. Many authors have conjectured or stated as an

open problem that b(n) is super-linear.

Conjecture 9 ([2, 7, 9, 10]). b(n)
n →∞ as n→∞.

Pór and Wood [10] proved that Conjecture 9 implies Conjecture 6, and thus implies Conjec-

ture 1. That Conjecture 1 is implied by a number of other well-known conjectures, yet remains

challenging, adds to its interest.

4. k-Blocked Sets with Small Colour Classes

We now describe some methods for building blocked point sets from smaller blocked point

sets.

Lemma 10. Let G be a visibility graph. Let i ∈ {1, 2, 3}. Furthermore suppose that if i ≥ 2

then V (G) 6= ∅, and if i = 3 then not all the vertices of G are collinear. Let Gi be the graph

obtained from G by adding an independent set of i new vertices, each adjacent to every vertex

in G. Then G1, G2, and G3 are visibility graphs.

Proof. For distinct points p and q, let←−pq denote the ray that is (1) contained in the line through

p and q, (2) starting at p, and (3) not containing q. Let L be the union of the set of lines

containing at least two vertices in G.

i = 1: Since L is the union of finitely many lines, there is a point p 6∈ L. Thus p is visible

from every vertex of G. By adding a new vertex at p, we obtain a representation of G1 as a

visibility graph.

i = 2: Let p be a point not in L. Let v be a vertex of G. Each line in L intersects ←−vp in at

most one point. Thus ←−vp \ L 6= ∅. Let q be a point in ←−vp \ L. Thus p and q are visible from

every vertex of G, but p and q are blocked by v. By adding new vertices at p and q, we obtain

a representation of G2 as a visibility graph.
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i = 3: Let u, v, w be non-collinear vertices in G. Let p be a point not in L and not in the

convex hull of {u, v, w}. Without loss of generality, uv∩pw 6= ∅. There are infinitely many pairs

of points q ∈ ←−up and r ∈ ←−vp such that w blocks q and r. Thus there are such q and r both not

in L. By construction, u blocks p and q, and v blocks p and r. By adding new vertices at p, q

and r, we obtain a representation of G3 as a visibility graph. �

Since no (≥ 3)-blocked set is collinear, Lemma 10 implies:

Corollary 11. If k ≥ 4 and {n1, . . . , nk−1} is representable and nk ∈ {1, 2, 3}, then {n1, . . . , nk−1, nk}
is representable.

The representable (≤ 3)-sets were characterised in Theorem 2. In each case, each colour class

has at most three vertices. Now we characterise the representable (≥ 4)-sets, assuming that

each colour class has at most three vertices.

Proposition 12. {n1, . . . , nk} is representable whenever k ≥ 4 and each ni ≤ 3, except for

{1, 3, 3, 3}.

Proof. We say the k-set {n1, . . . , nk} contains the (k − 1)-set {n1, . . . , ni−1, ni+1, . . . , nk} for

each i ∈ [k]. Lemma 18 below proves that {1, 3, 3, 3} is not representable. We proceed by

induction on k. If {n1, . . . , nk} contains a representable (k−1)-set, then Corollary 11 implies that

{n1, . . . , nk} is also representable. Now assume that every (k − 1)-set contained in {n1, . . . , nk}
is not representable. By induction, we may assume that k ≤ 5. Moreover, if k = 5 then

{n1, . . . , n5} must contain {1, 3, 3, 3} (since by induction all other 4-sets are representable).

Similarly, if k = 4 then {n1, . . . , n4} must contain {1, 1, 3}, {1, 2, 3}, {1, 3, 3}, {2, 2, 3}, {2, 3, 3}
or {3, 3, 3} (since {1, 1, 1}, {1, 1, 2}, {1, 2, 2} and {2, 2, 2} are representable by Theorem 2). The

following table describes the required construction in each remaining case.

{1, 1, 1, x} contains {1, 1, 1} {1, 1, 2, x} contains {1, 1, 2}
{1, 1, 3, 3} Figure 1 minus {r1, g3, r3, g1} {1, 2, 2, x} contains {1, 2, 2}
{1, 2, 3, 3} Figure 1 minus {g1, g3, r3} {2, 2, 2, x} contains {2, 2, 2}
{2, 2, 3, 3} Figure 1 minus {g3, r3} {2, 3, 3, 3} Figure 1 minus g3

{1, 1, 3, 3, 3} contains {1, 1, 3, 3} {1, 2, 3, 3, 3} contains {1, 2, 3, 3}
{1, 3, 3, 3, 3} contains {3, 3, 3, 3}

�

5. 4-Blocked Point Sets

As we saw in Section 3, Conjecture 1 holds for k ≤ 4. In this section we study 4-blocked

point sets in more detail. First we derive explicit bounds on the size of 4-blocked sets from

other results in the literature. Then, following a more detailed approach, we characterise all

representable 4-sets, to conclude a tight bound on the size of 4-blocked sets.

Proposition 13. Every 4-blocked set has less than 2790 points.
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Proof. Abel et al. [1] proved that every set of at least ES( (2`−1)
`−1

2`−2 ) points in the plane contains

` collinear points or an empty convex pentagon, where ES(k) is the minimum integer such

that every set of at least ES(k) points in general position in the plane contains k points in

convex position. Let P be a 4-blocked set. The visibility graph of P is 4-colourable, and thus

contains no empty convex pentagon. By Lemma 3, at most three points in P are collinear.

Thus |P | ≤ ES(400) − 1 by the above result with ` = 4. Tóth and Valtr [11] proved that

ES(k) ≤
(
2k−5
k−2

)
+ 1. Hence |P | ≤

(
795
398

)
< 2790. �

Lemma 14. If P is a blocked set of n points with m points in the largest colour class, then

n ≥ 3m− 3 and n ≥ (338 − o(1))m.

Proof. If S is the largest colour class then P −S blocks S. By Lemma 4, S is in general position.

By the results of Matoušek [7] and Dumitrescu et al. [2] mentioned in Section 3, n−m ≥ 2m−3

and n−m ≥ (258 − o(1))m. �

Proposition 15. Every 4-blocked set has less than 2578 points.

Proof. Let P be a 4-blocked set of n points. Let S be the largest colour class in P . Let

m := |S| ≥ n
4 . By Lemma 14, n ≥ (338 − o(1))m ≥ (3332 − o(1))n. Thus o(n) ≥ n

32 . Hence

n is bounded. A precise bound is obtained as follows. Dumitrescu et al. [2] proved that S

needs at least 25m
8 − 25m

2 lnm − 25
8 blockers, which come from the other colour classes. Thus

n − m ≥ 25m
8 − 25m

2 lnm − 25
8 , implying n ≥ 33m

8 − 25m
2 lnm − 25

8 . Since n
4 ≤ m ≤ n, we have

25n
2 lnn + 25

8 ≥ n
32 . It follows that n ≤ 2578. �

The next result is the simplest known proof that every 4-blocked point set has bounded size.

Proposition 16. Every 4-blocked set has at most 36 points.

Proof. Let P be a 4-blocked set. Suppose that |P | ≥ 37. Let S be the largest colour class.

Thus |S| ≥ 10. By Lemma 4, S is in general position. By a theorem of Harborth [4], some

5-point subset K ⊆ S is the vertex-set of an empty convex pentagon conv(K). Let T :=

P ∩ (conv(K) − K). Since conv(K) is empty with respect to S, each point in T is not in S.

Thus T is 3-blocked. K needs at least 8 blockers (5 blockers for the edges on the boundary of

conv(K), and 3 blockers for the chords of conv(K)). Thus |T | ≥ 8. But every 3-blocked set has

at most 6 points, which is a contradiction. Hence |P | ≤ 36. �

We now set out to characterise all representable 4-sets. We need a few technical lemmas.

Lemma 17. Let A be a set of three monochromatic points in a 4-blocked set P . Then P∩conv(A)

contains a point from each colour class.

Proof. P ∩ conv(A) contains at least three points in A. If P ∩ conv(A) contains no point from

one of the three other colour classes, then P ∩ conv(A) is a (≤ 3)-blocked set with three points

in one colour class (A), contradicting Theorem 2. �

Lemma 18. {3, 3, 3, 1} is not representable.
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Proof. Let a ∗ b ∗ c mean that b blocks a and c, and let a ∗ b ∗ c ∗d mean that a ∗ b ∗ c and b ∗ c ∗d.

This allows us to record the order in which points occur on a line.

Suppose that P is a {3, 3, 3, 1}-blocked set of points, with colour classes A = {a1, a2, a3},
B = {b1, b2, b3}, C = {c1, c2, c3}, and D = {d}.

If d does not block some monochromatic pair, then P \ D is a 3-blocked set of nine points,

contradicting Theorem 2. Therefore d blocks some monochromatic pair, which we may call

a1, a2. Now ←−→a1a2 divides the remaining seven points of P into two sets, P1 and P2, where

WLOG 4 ≤ |P1| ≤ 7 and 0 ≤ |P2| ≤ 3. If |P1| ≥ 6, then P1 ∪ {a1} is a 3-blocked set of more

than six points, contradicting Theorem 2. Thus |P1| = 4 and |P2| = 3, or |P1| = 5 and |P2| = 2.

Consider the following cases, as illustrated in Figure 3.

Case 1. |P1| = 4 and |P2| = 3:

We have a3 ∈ P1 and P1 6= {a3, b1, b2, b3} and P1 6= {a3, c1, c2, c3}, as otherwise P1 is a 2-

blocked set of four points, contradicting Theorem 2. WLOG, P1 = {a3, b1, b2, c1} and P2 =

{b3, c2, c3}, where c2 ∗ b3 ∗ c3. Some point in P1 blocks b1 and b2. If b1 ∗ a3 ∗ b2, then neither b1

nor b2 can block a3a1 or a3a2; thus c1 blocks a3 from both a1 and a2, a contradiction. Therefore

b1 ∗ c1 ∗ b2. Since two of these three points must block a3a1 and a3a2, we may assume that

a1 ∗ b1 ∗ a3, and either a2 ∗ b2 ∗ a3 or a2 ∗ c1 ∗ a3.

Figure 3. Cases 1.1, 1.2, and 2.

Case 1.1. a2 ∗ b2 ∗ a3: Since c2 ∗ b3 ∗ c3, the only possible blockers for b1b3 are on ←−→a1a2. We

cannot have b3 ∗ a1 ∗ b1, for then b3 ∗ a1 ∗ b1 ∗ a3. We cannot have b3 ∗ a2 ∗ b1, for then
←→
b1b3

separates b2 from a1 and d, one of which needs to block b2b3. Therefore b1 ∗ d ∗ b3. Similarly,

b2 ∗ d ∗ b3, a contradiction.

Case 1.2. a2 ∗ c1 ∗ a3: Thus a2 does not block c1c2 or c1c3. Therefore a1 and d block c1c2 and

c1c3. WLOG, c2 ∗ a1 ∗ c1 and c3 ∗ d ∗ c1. Since c2 ∗ b3 ∗ c3, the blocker for b1b3 is on the same

side of ←→c1c3 as a1, and on the same side of
←→
b1b2 as a1. The only such points are a1, c2, and b3.

Thus a1 or c2 block b1b3. Now, c2 does not block b1b3, as otherwise b1 ∗ c2 ∗ b3 ∗ c3. Similarly,

a1 does not block b1b3, as otherwise b3 ∗ a1 ∗ b1 ∗ a3. This contradiction concludes this case.

Case 2. |P1| = 5 and |P2| = 2:

We have a3 ∈ P1, as otherwise P1 is 2-blocked, contradicting Theorem 2. WLOG, P1 =

{a3, b1, b2, c1, c2} and P2 = {b3, c3}. Note that a3 must block at least one of b1b2, c1c2, because

P1 \ {a3} is too large to be 2-blocked; however, it cannot block both, for then there would be
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no valid blockers left for a3. Thus WLOG b1 ∗ a3 ∗ b2 and c1 ∗ b1 ∗ c2. Since a3 ∈ b1b2, neither

b1 nor b2 block a3a1 or a3a2. Thus, WLOG, a1 ∗ c1 ∗ a3 and a2 ∗ c2 ∗ a3.
By Lemma 17, P ∩ conv{c1, c2, c3} contains some member of A, WLOG a1. We cannot have

a1 ∈ c1c3, for then c3 ∗ a1 ∗ c1 ∗ a3. Therefore a1 is on the same side of ←→c1c3 as c2; consequently,

d and a2 are, as well. It follows that c1 ∗ b3 ∗ c3, and so b3 sees b2. �

Lemma 19. Let P be a 4-blocked set. Suppose that some colour class S of P contains a subset

K, such that |K| = 4 and K is the vertex-set of a convex quadrilateral conv(K) that is empty

with respect to S. Then P is {4, 2, 2, 1)-blocked.

Proof. Let T := P ∩ (conv(K) −K). Since conv(K) is empty with respect to S, each point in

T is not in S. Thus T is 3-blocked. K needs at least 5 blockers (4 blockers for the edges on the

boundary of conv(K), and at least 1 blocker for the chords of conv(K)). The only representable

3-sets with at least 5 points are {2, 2, 1} and {2, 2, 2}. Exactly four points in T are on the

boundary of conv(T ). Every {2, 2, 2}-blocked set contains three points on the boundary of the

convex hull. Thus T is {2, 2, 1}-blocked. Hence, as illustrated in Figure 4, one point c in T is at

the intersection of the two chords of conv(K), and exactly one point in T is on each edge of the

boundary of conv(K), such that the points on opposite edges of conv(K) are collinear with c.

p

x

b

yz

c

Figure 4. A {4, 2, 2, 1}-blocked point set.

We claim that no other point is in P . Suppose otherwise, and let p be a point in P outside

conv(K) at minimum distance from conv(K). Let x be a point in conv(K) receiving the same

colour as p. Thus p and x are blocked by some point b in conv(K). Thus b and x are collinear

with no other point in P ∩ conv(K). Hence x 6= c and x 6∈ K. Thus x is in the interior of one of

the edges of the boundary of conv(K). Let y be the point in conv(K) receiving the same colour

as x. Thus x and y are on opposite edges of the boundary of conv(K). Hence p and y receive

the same colour, implying p and y are blocked. Since p is at minimum distance from conv(K),

this blocker must a point z of conv(K). This implies that p, z, y and one other point of conv(K)

are four collinear points, which contradicts Lemma 3. Hence no other point is in P , and P is

{4, 2, 2, 1}-blocked. �

Lemma 19 has the following corollary (let K := S).
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Corollary 20. Let P be a 4-blocked set. Suppose that some colour class S consists of exactly

four points in convex position. Then P is {4, 2, 2, 1}-blocked.

The next lemma is a key step in our characterisation of representable 4-sets.

Lemma 21. Each colour class in a 4-blocked point set has at most four points.

Proof. Suppose that some 4-blocked point set P has a colour class S with at least five points.

Esther Klein [3] proved that every set of least five points in general position in the plane contains

an empty quadrilateral. By Lemma 4, S is in general position. Thus S contains a subset K,

such that |K| = 4 and K is the vertex-set of a convex quadrilateral conv(K) that is empty with

respect to S. By Lemma 19, P is {4, 2, 2, 1}-blocked, which is the desired contradiction. �

Lemma 22. Let P be a 4-blocked point set with colour classes A,B,C,D. Suppose that no colour

class consists of exactly four points in convex position (that is, Corollary 20 is not applicable).

Furthermore, suppose that some colour class A consists of exactly four points in nonconvex

position. Then P is {4, 2, 2, 2}-blocked (as in Figure 5).

Figure 5. A {4, 2, 2, 2}-blocked point set.

Proof. By Lemma 21, each colour class has at most four points. By assumption, every 4-point

colour class is in nonconvex position. We may assume that A is a minimal in the sense that no

other 4-point colour class is within conv(A).

Let Q := P ∩conv(A). Thus Q is 4-blocked, and one colour class is A. By the minimality of A,

each other colour class in Q has at most three points. We first prove that Q is {4, 2, 2, 2}-blocked,

and then show that this implies that P = Q.

Let A = {a1, a2, a3, a4}, where a4 is the interior point of conv(A). Note that the edges with

points in A divide conv(A) into three triangles with disjoint interiors. By Lemma 17, each colour

class of Q is represented in each of these triangles; this requires at least two points of each colour

(one of which could sit on the edge shared by two triangles).

We name a point with reference to its colour class, such as b1 ∈ B; or, we name a point with

reference to its position. Let xij be the unique member of Q′ := Q \ A that blocks aiaj , for

1 ≤ i < j ≤ 4. This accounts for exactly 6 points of Q′.
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Q is not {4, 3, 3, 3}-blocked, as otherwise we could delete the three outer members of A to

represent {3, 3, 3, 1}, which contradicts Lemma 18. Thus Q is {4, 2, 2, 2}-blocked, {4, 3, 2, 2}-
blocked, or {4, 3, 3, 2}-blocked.

First suppose that Q is {4, 3, 2, 2}-blocked. Then Q′ consists of six points xij and one addi-

tional point, y. We have three cases:

Figure 6. Diagrams of {4, 3, 2, 2} cases 1, 2, and 3.

(1) If y blocks two points xi4 and xj4, then suppose WLOG that x24 ∗ y ∗ x34. Now y is on

one side or the other of←−−→x14a4, and therefore sees at least one of x12, x13; WLOG we may

say that y sees x12. Now x12, x14, x24, and y are four mutually visible points in Q′.

(2) If y is collinear with, but does not block, two points xi4 and xj4, then suppose WLOG

that y ∗ x24 ∗ x34. Now x12 is on one side or the other of ←−→yx24, and therefore sees either

x14 or x23. Whichever one x12 sees, that point is mutually visible with x12, x24, and y;

thus we have four mutually visible points in Q′.

(3) If y is not collinear with two points xi4 and xj4, then y sees all such points; thus x14,

x24, x34, and y are four mutually visible points in Q′.

In all cases, we have four mutually visible points in three colours, which is impossible.

Now suppose thatQ is {4, 3, 3, 2}-blocked. ThenQ′ comprises six points xij and two additional

points, y1 and y2. Let δ = {xi4 : 1 ≤ i ≤ 3} and let δ2 be the set of segments with endpoints in

δ. How many of the points yi block members of δ2? Again, we have three cases:

Figure 7. Diagrams of {4, 3, 3, 2} cases 1, 2, and 3.
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(1) If neither y1 nor y2 blocks a segment in δ2, then recall that y1 and y2 cannot both block

each other. Thus, WLOG, y2 does not block y1. Now δ and y1 give us four mutually

visible points in Q′.

(2) If y1 blocks a segment in δ2 and y2 does not, then WLOG x24 ∗ y1 ∗ x34. Also WLOG,

suppose that a2 and a4 are on the same side of←−→x14y1, so a4 /∈ conv(x13, x14, x34, y1). Now

y2 ∈ conv(x13, x14, x34, y1), for otherwise these four points in Q′ are mutually visible.

Also note that y1x12 is the only edge with points in {x12, x14, x24, y1} that can be

blocked by a4. To prevent these four points from being mutually visible, we require

y1 ∗ a4 ∗ x12.
Thus y1 and x12 belong to the same colour class, which we may suppose is B. Since

x12, x14, and x24 are mutually visible, we may suppose that x24 ∈ C and x14 ∈ D.

Since x24 ∗ y1 ∗ x34, we have x34 ∈ C. Since x23 sees x24 and y1, we have x23 ∈ D.

Now y2 sees y1 ∈ B and x34 ∈ C, and we conclude that y2 ∈ D; however, y2 sees

either x14 or x23, and colour class D is not blocked.

(3) If both y1 and y2 block segments in δ2, then WLOG xi4 ∗ yi ∗ x34 for i = 1, 2. Now

{x14, x24, a4} is insufficient to block x12 from {y1, y2}, for this would imply some x12 ∗
xi4 ∗ yi ∗ x34. Therefore some yi sees x12; now x12, x14, x24, and yi are four mutually

visible points in Q′.

The only remaining case is that Q is {4, 2, 2, 2}-blocked. This is possible, as illustrated in

Figure 5. We now show that this point set is essentially the only {4, 2, 2, 2}-blocked set, up to

betweenness-preserving deformations. We have exactly enough points in colour classes B, C,

and D to block all edges between points in colour class A. As each of the three A-triangles with

point a4 must contain a representative from each of the other three colour classes, it follows that

of the six A-edges, B blocks one interior edge and the opposite boundary edge, and likewise for

C and D. WLOG: b1 = x14, b2 = x23, c1 = x24, c2 = x13, d1 = x34, d2 = x12. Since b1 blocks

a4, a4 cannot block b1. Since b1b2 can be blocked only by an interior point of conv(A), it follows

that either c1 or d1 blocks b1b2. As these cases are symmetric, we may choose c1 ∈ b1b2. Now

b1 cannot block c1, so c1 must be blocked by d1, which must in turn be blocked by b1.

Now we show that P = Q. (This basically says that the point set in Figure 5 cannot be

extended without introducing a new colour.) Suppose to the contrary that some point x is in

P \Q; thus x /∈ conv(A). Note that every point outside conv(A) can see a vertex of conv(A), so

x must not be in colour class A. WLOG, we suppose x matches the points in B. Recall that b2

is on the supporting line ←−→a2a3, and will see x unless x is in the same half-plane (as determined

by this line) as the rest of Q. Who blocks b1x? Not a2 or a3, for this would put x in the wrong

half-plane. Not a1, a4, d1, or d2, for b1 blocks each of these. Not c1, which is on b1b2. Therefore

b1x can be blocked only by c2. Since c1 ∈ b1b2 and c2 ∈ b1x, it follows that b2 and x (and any

blocker between them) are on the same side of←→c1c2. But the only other points of Q in that open

half-plane are a2 and a3, which cannot block b2. Thus x sees b2, which is a contradiction. Thus

P = Q and P is {4, 2, 2, 2}-blocked. �

We now prove the main theorem of this section.
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Theorem 23. A 4-set {a, b, c, d} is representable if and only if

• {a, b, c, d} = {4, 2, 2, 1}, or

• {a, b, c, d} = {4, 2, 2, 2}, or

• all of a, b, c, d ≤ 3 except for {3, 3, 3, 1}

Proof. Figures 4 and 5 respectively show {4, 2, 2, 1}-blocked and {4, 2, 2, 2}-blocked point sets.

When a, b, c, d ≤ 3, the required constructions are described in Proposition 12. Now we prove

that these are the only representable 4-sets. Let P be a 4-blocked point set. By Lemma 21,

each colour class has at most four points. Let S be the largest colour class. If |S| ≤ 3 then we

are done by Proposition 12. Now assume that |S| = 4. If S is in nonconvex position, then P

is {4, 2, 2, 2}-blocked by Lemma 22. If S is in convex position, then P is {4, 2, 2, 1}-blocked by

Corollary 20. �

Corollary 24. Every 4-blocked set has at most 12 points, and there is a 4-blocked set with 12

points.

Note that in addition to the {3, 3, 3, 3}-blocked set shown in Figure 1, there is a different

{3, 3, 3, 3}-blocked point set, as illustrated in Figure 8.

Figure 8. Another {3, 3, 3, 3}-blocked point set.

6. Midpoint-Blocked Point Sets

A k-blocked point set P is k-midpoint-blocked if for each monochromatic pair of distinct points

v, w ∈ P the midpoint of vw is in P . Of course, the midpoint of vw blocks v and w. A point

set P is {n1, . . . , nk}-midpoint-blocked if it is {n1, . . . , nk}-blocked and k-midpoint-blocked. For

example, the point set in Figure 1 is {3, 3, 3, 3}-midpoint-blocked.
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Another interesting example is the projection1 of [3]d. With d = 1 this point set is {2, 1}-
blocked, with d = 2 it is {4, 2, 2, 1}-blocked, and with d = 3 it is {8, 4, 4, 4, 2, 2, 2, 1}-blocked.

In general, each set of points with exactly the same set of coordinates equal to 2 is a colour

class, there are 2d−i colour classes of points with exactly i coordinates equal to 2, and [3]d is

{
(
d
i

)
× 2i : i ∈ [0, d]}-midpoint-blocked and 2d-midpoint-blocked.

We now prove Conjecture 1 when restricted to k-midpoint-blocked point sets. (Finally we

have weakened Conjecture 5 to something proveable!)

Hernández-Barrera et al. [5] introduced the following definition. Let m(n) be the minimum

number of midpoints determined by some set of n points in general position in the plane.

Since the midpoint of vw blocks v and w, we have b(n) ≤ m(n). Hernández-Barrera et al. [5]

constructed a set of n points in general position in the plane that determine at most cnlog 3

midpoints for some contant c. (All logarithms here are binary.) Thus b(n) ≤ m(n) ≤ cnlog 3 =

cn1.585.... This upper bound was improved by Pach [8] (and later by Matoušek [7]) to

b(n) ≤ m(n) ≤ nc
√
logn .

Hernández-Barrera et al. [5] conjectured that m(n) is super-linear, which was verified by Pach

[8]; that is, m(n)
n →∞ as n→∞. Pór and Wood [10] proved the following more precise version:

For some constant c > 0, for all ε > 0 there is an integer N(ε) such that m(n) ≥ cn(log n)1/(3+ε)

for all n ≥ N(ε).

Theorem 25. For each k there is an integer n such that every k-midpoint-blocked set has at

most n points. More precisely, there is an absolute constant c and for each ε > 0 there is an an

integer N(ε), such that for all k, every k-midpoint-blocked set has at most kmax{N(ε), c(k−1)
3+ε}

points.

Proof. Let P be k-midpoint-blocked set of n points. If n ≤ kN(ε) then we are done. Now

assume that n
k > N(ε). Let S be a set of exactly s := dnk e monochromatic points in P . Thus S

is in general position by Lemma 4. And for every pair of distinct points v, w ∈ S the midpoint

of vw is in P − S. Thus

cnk (log n
k )1/(3+ε) ≤ m(s) ≤ n− s ≤ n(1− 1

k ) .

Hence (log n
k )1/(3+ε) ≤ (k − 1)/c, implying n ≤ k2((k−1)/c)

3+ε
. The result follows. �

We now construct k-midpoint-blocked point sets with a ‘large’ number of points. The method

is based on the following product of point sets P and Q. For each point v ∈ P ∪Q, let (xv, yv)

be the coordinates of v. Let P × Q be the point set {(v, w) : v ∈ P,w ∈ Q} where (v, w) is at

(xv, yv, xw, yw) in 4-dimensional space. For brevity we do not distinguish between a point in R4

and its image in an occlusion-free projection of the visibility graph of P ×Q into R2.

Lemma 26. If P is a {n1, . . . , nk}-midpoint-blocked point set and Q is a {m1, . . . ,m`}-midpoint-

blocked point set, then P ×Q is {nimj : i ∈ [k], j ∈ [`]}-midpoint-blocked.

1If G is the visibility graph of some point set P ⊆ Rd, then G is the visibility graph of some projection of P

to R2 (since a random projection of P to R2 is occlusion-free with probability 1).
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Proof. Colour each point (v, w) in P×Q by the pair (col(v), col(w)). Thus there are nimj points

for the (i, j)-th colour class. Consider distinct points (v, w) and (a, b) in P ×Q.

Suppose that col(v, w) = col(a, b). Thus col(v) = col(a) and col(w) = col(b). Since P and

Q are midpoint-blocked, 1
2(v + a) ∈ P and 1

2(w + b) ∈ Q. Thus (12(v + a), 12(w + b)), which is

positioned at (12(xv + xa),
1
2(yv + ya),

1
2(xw + xb),

1
2(yw + yb)), is in P × Q. This point is the

midpoint of (v, w)(a, b). Thus (v, w) and (a, b) are blocked by their midpoint in P ×Q.

Conversely, suppose that some point (r, s) ∈ P × Q blocks (v, w) and (a, b). Thus xr =

αxv + (1 − α)xa for some α ∈ (0, 1), and yr = βyv + (1 − β)ya for some β ∈ (0, 1), and

xs = δxw + (1 − δ)xb for some δ ∈ (0, 1), and ys = γyw + (1 − γ)yb for some γ ∈ (0, 1). Hence

r blocks v and a in P , and s blocks w and b in Q. Thus col(v) = col(a) 6= col(r) in P , and

col(w) = col(b) 6= col(s) in Q, implying (col(v), col(w)) = (col(a), col(b)).

We have shown that two points in P ×Q are blocked if and only if they have the same colour.

Thus P ×Q is blocked. Since every blocker is a midpoint, P ×Q is midpoint-blocked. �

Say P is a k-midpoint blocked set of n points. By Lemma 26, the i-fold product P i :=

P ×· · ·×P is a ki-blocked set of ni = (ki)logk n points. Taking P to be the {3, 3, 3, 3}-midpoint-

blocked point set in Figure 1, we obtain the following result:

Theorem 27. For all k a power of 4, there is a k-blocked set of klog4 12 = k1.79... points.

This result describes the largest known construction of k-blocked or k-midpoint blocked point

sets. To promote further research, we make the following strong conjectures:

Conjecture 28. Every k-blocked point set has O(k2) points.

Conjecture 29. In every k-blocked point set there are at most k points in each colour class.

Conjecture 29 would be tight for the projection of [3]d with k = 2d. Of course, Conjecture 29

implies Conjecture 28, which implies Conjecture 1.
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[11] Géza Tóth and Pavel Valtr. The Erdős-Szekeres theorem: upper bounds and related

results. In Combinatorial and computational geometry, vol. 52 of Math. Sci. Res. Inst.

Publ., pp. 557–568. Cambridge Univ. Press, 2005.

http://dx.doi.org/10.1007/s00454-005-1177-z
http://dx.doi.org/10.1007/s00454-005-1177-z
http://dx.doi.org/10.1007/s00454-009-9185-z
http://11011110.livejournal.com/184816.html
http://arxiv.org/abs/0912.1150
http://arxiv.org/abs/0912.1150


BLOCKING COLOURED POINT SETS 17

Institute of Information Science, Academia Sinica

Taipei, Taiwan

E-mail address: aloupis.greg@gmail.com

Department of Mathematics, Humboldt State University

Arcata, California, U.S.A

E-mail address: bjb86@humboldt.edu
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