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Abstract To untangle a geometric graph means to move some of the vertices so that
the resulting geometric graph has no crossings. Pach and Tardos (Discrete Comput.
Geom. 28(4): 585–592, 2002) asked if every n-vertex geometric planar graph can be
untangled while keeping at least nε vertices fixed. We answer this question in the
affirmative with ε = 1/4. The previous best known bound was �(

√
logn/ log logn).
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We also consider untangling geometric trees. It is known that every n-vertex geo-
metric tree can be untangled while keeping at least �(

√
n) vertices fixed, while the

best upper bound was O((n logn)2/3). We answer a question of Spillner and Wolff
(http://arxiv.org/abs/0709.0170) by closing this gap for untangling trees. In particular,
we show that for infinitely many values of n, there is an n-vertex geometric tree that
cannot be untangled while keeping more than 3(

√
n − 1) vertices fixed.

Keywords Geometric graphs · Untangling · Crossings

1 Introduction

Geometric reconfigurations consider the following fundamental problem. Given a
starting and a final configuration of an object R, determine if R can move from the
starting to the final configuration, subject to some set of movement rules. An object
can be a set of disks in the plane, or a graph representing a protein, or a robot’s arm,
for example. Typical movement rules include maintaining connectivity of the object
and avoiding collisions or crossings.

In this paper we study the problem where the object is a planar graph1 G. The
starting configuration is a drawing of G in the plane with vertices as distinct points
and edges as straight-line segments (and possibly many crossings). Our goal is to
relocate as few vertices of G as possible in order to remove all the crossings, that is,
to reconfigure G to some straight line crossing-free drawing of G. More formally,
a geometric graph is a graph whose vertices are distinct points in the plane (not
necessarily in general position) and whose edges are straight-line segments between
pairs of points. If the underlying combinatorial graph of G belongs to a class of
graphs K, then we say that G is a geometric K graph. For example, if K is the class
of planar graphs, then G is a geometric planar graph. Where it causes no confusion,
we do not distinguish between the geometric graph and its underlying combinatorial
graph. Two edges in a geometric graph cross if they intersect at some point other
than a common endpoint. A geometric graph with no pair of crossing edges is called
crossing-free.

Consider a geometric graph G with vertex set V (G) = {p1, . . . , pn}. A crossing-
free geometric graph H with vertex set V (H) = {q1, . . . , qn} is called an untangling
of G if for all i, j ∈ {1,2, . . . , n}, qi is adjacent to qj in H if and only if pi is adjacent
to pj in G. Furthermore, if pi = qi then we say that pi is fixed, otherwise we say that
pi is free. If H is an untangling of G with k vertices fixed, then we say that G can be
untangled while keeping k vertices fixed. Clearly only geometric planar graphs can
be untangled. Moreover, since every planar graph is isomorphic to some crossing-
free geometric graph [6, 16], trivially every geometric planar graph can be untangled
while keeping at least 2 vertices fixed. For a geometric graph G, let fix(G) denote the
maximum number of vertices that can be fixed in an untangling of G.

1We consider graphs that are simple, finite, and undirected. The vertex set of a graph G is denoted
by V (G), and its edge set by E(G). The subgraph of G induced by a set of vertices S ⊆ V (G) is de-
noted by G[S]. G \ S denotes G[V (G) \ S].

http://arxiv.org/abs/0709.0170
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At the 5th Czech–Slovak Symposium on Combinatorics in Prague in 1998,
Mamoru Watanabe asked if every geometric cycle (that is, all polygons) can be un-
tangled while keeping at least εn vertices fixed, for some ε > 0. Pach and Tardos [11]
answered that question in the negative by providing an O((n logn)2/3) upper bound
on the number of fixed vertices. Furthermore, they proved that every geometric cy-
cle can be untangled while keeping at least

√
n vertices fixed. This lower bound has

recently been improved to �(n2/3) by Cibulka [2].
Pach and Tardos [11] asked if every geometric planar graph can be untangled

while keeping nε vertices fixed, for some ε > 0. In recent work, Spillner and
Wolff [14] showed that geometric planar graphs can be untangled while keeping
�(

√
logn/ log logn) vertices fixed. The best known bound before that was 3 [7, 15].

In Sect. 4, we answer the question of Pach and Tardos [11] in the affirmative and
provide the first polynomial lower bound for untangling geometric planar graphs.
Specifically, our main result is that every n-vertex geometric planar graph can be
untangled while keeping (n/3)1/4 vertices fixed.

There has also been considerable interest in untangling specific classes of geomet-
ric planar graphs. Spillner and Wolff [14] studied the untangling of geometric outer-
planar graphs and showed that they can be untangled while keeping �(

√
n) vertices

fixed; and that for every sufficiently large n, there is an n-vertex outerplanar graph
that cannot be untangled while keeping more than 2

√
n − 1 − 1 vertices fixed. Thus

�(
√

n) is the tight bound for outerplanar graphs. A
√

n/3 lower bound for trees was
shown by Goaoc et al. [7]. The best known upper bound for trees was O((n logn)2/3),
which was in fact proved for geometric paths, by Pach and Tardos [11].2 We answer
a question posed by Spillner and Wolff [14] and close the gap for trees by showing
that for infinitely many values of n, there is a forest of stars that cannot be untangled
while keeping more than 3(

√
n − 1) vertices fixed. This result is proved in Sect. 5.

In addition, in Sect. 3, we prove that every geometric tree can be untangled while
keeping

√
n/2 vertices fixed. Note that the same result was independently obtained

by Goaoc et al. [7]. We conclude the paper with some open problems.
Note that our definition of a geometric graph allows for collinear vertices. The

same definition is used by Goaoc et al. [7] and Spillner and Wolff [14], but not by
Pach and Tardos [11]. While allowing collinearities makes our lower bounds stronger,
it makes our upper bound (for trees) weaker. In particular, the geometric trees, for
which we prove a 3(

√
n − 1) upper bound, have all their vertices on a line. We con-

jecture a fix(T ) ≤ O(
√

n) bound for certain geometric trees T with V (T ) in general
position. Very recently, Kang et al. [9] proved a bound of O(

√
n2α(n)) in this setting,

where α(·) is the inverse Ackermann function.
Untangling graphs has also been the topic of [9, 10, 13, 15]. Goaoc et al. [7]

also studied the computational complexity of the related optimization problems and
showed various hardness results.

2Pach and Tardos [11] actually proved this upper bound for geometric cycles, but their method readily
applies for geometric paths.
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2 Lower Bounds: A Useful Lemma

When proving lower bounds, our goal will be to show that given any geometric planar
graph G, we can find a large subset R of vertices of G such that G can be untangled
while keeping R fixed. The following geometric lemma simplifies this task by al-
lowing us to concentrate on the case in which each vertex in R is on the y-axis. This
lemma will be useful both for untangling geometric trees in Sect. 3 and for untangling
general geometric planar graphs in Sect. 4.

Lemma 1 Let G be an untangling of some geometric planar graph G. Let R be a
set of vertices of G such that each vertex of R is on the y-axis in G and has the same
y-coordinate in G as in G. Then there exists an untangling G′ of G in which the
vertices in R are fixed.

Proof The proof uses the fact that it is possible to perturb the vertices of a crossing-
free geometric graph without introducing crossings. More precisely, for any crossing-
free geometric graph, there exists a value ε > 0 such that each vertex can be moved
a distance of at most ε, and the resulting geometric graph is also crossing-free. The
maximum value ε for which this property holds is called the tolerance of the arrange-
ment of segments. This concept, both for the geometric realization and the combina-
torial meaning of the graphs, was systematically studied in [1, 12].

Consider the untangling G of G and let ε > 0 be the tolerance of G. Let X denote
the maximum absolute value of an x-coordinate in G of a vertex in R. Let G′′ be
the geometric graph obtained from G as follows. For each vertex v ∈ R positioned
at (x, y) in G, move v from (0, y) in G to (xε/X, y) in G′′. The vertices not in R

are unmoved. So each vertex moves a distance of at most ε, and G′′ is crossing-free.
Scale G′′ by multiplying the x-coordinates of all vertices in G′′ by X/ε to obtain a
crossing-free geometric graph G′. Then every vertex of R has the same location in G′
as it does in G. Thus G′ is an untangling of G that keeps the vertices of R fixed. �

3 Trees: Lower Bound

In this section we prove a lower bound for untangling geometric trees. The proof also
provides a warm up to our main result, the polynomial lower bound for planar graphs.

Theorem 1 Every n-vertex geometric tree T can be untangled while keeping at least√
n/2 vertices fixed. That is, fix(T ) ≥ √

n/2.

In a vertex 2-coloring of T , the largest of the two color classes has at least n/2
vertices. Therefore, the following lemma, coupled with Lemma 1, implies Theorem 1.

Lemma 2 Let T be an n-vertex geometric tree whose vertices are 2-colored. Let S

be one of the two color classes. Then there exists a set R of vertices in T such that
|R| ≥ √|S|, and there is an untangling T of T in which each vertex in R is on the
y-axis and has the same y-coordinate in T as in T .
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Proof Root T at any vertex and order its vertices σ := (v1, . . . , vn) based on a pos-
torder traversal of T .

While we make no general position assumption on the vertices of T , we may as-
sume, by a suitable rotation, that no pair of vertices of T have the same y-coordinate.
Let R be a largest ordered subset R ⊆ S such that the y-coordinates of the vertices
of R are either monotonically increasing or monotonically decreasing in σ . By the
Erdős–Szekeres Theorem [5], |R| ≥ √|S|. Without loss of generality, assume that R

is monotonically increasing.
Let T ′ be a geometric tree obtained from T as follows. For each vertex v ∈ R

positioned at (x, y) in T , move v to (0, y) in T ′. Move each vertex in S \ R from its
position in T to the y-axis, such that all the vertices in S appear in T ′ in the order σ

on the y-axis. The vertices in V (T ) \ S remain fixed. To complete the proof of the
lemma, it remains to show how to untangle T ′ while keeping S fixed. We prove that
by induction on i, with the following induction hypothesis.

Let Ti := T ′[{v1, . . . , vi}]. For each i ∈ {1, . . . , n}, there is an untangling Ti of Ti

such that S ∩ V (Ti) is fixed, and
(1) for all j ∈ {2, . . . , i}, the y-coordinate of vj is greater than the y-coordinate of

vj−1.
It remains to show how to untangle T ′ while keeping S fixed, as illustrated in

Fig. 1.
We first prove that such an untangling has the following useful property, where the

right ray at (x, y) is the open half-line containing all the points {(x′, y) : x′ > x}.
(2) For all j ∈ {1, . . . , i} such that the parent, vp , of vj is not in Ti , the right ray at

vj does not intersect Ti .
Let yj denote the y-coordinate of vj in Ti . Let P be the path from vp to the

root, vn. Suppose that some edge e of Ti crosses the right ray at vj in Ti . Thus yj

Fig. 1 An untangling of the complete binary tree of depth 4. Vertices in S are depicted by squares
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is between the y-coordinates of the endpoints of e. By condition (1), the index in σ

of one endpoint of e is less than j , and the index in σ of the other endpoint of e is
greater than j . Since σ is a post-order numbering, e has one endpoint in P . Since vp

is not in Ti , the remaining vertices of P are also not in Ti . Thus no such edge e is
in Ti . This proves that (1) implies (2).

We are now ready to prove the lemma by induction. For i = 1, the statement is
true trivially. Assume now that i > 1 and that the statement is true for i − 1. There
are two cases to consider: vi ∈ S and vi 	∈ S.

Consider first the case that vi 	∈ S. Since S is a color class in a 2-coloring of T , each
child of vi , if any, is in S and thus is on the y-axis. Assign a y-coordinate to vi that
is greater than the y-coordinate of each vertex in Ti−1 and less than the y-coordinate
of each vertex in S \ V (Ti−1). This ensures that condition (1) is maintained in Ti .
Assign a positive x-coordinate to vi such that Ti is crossing-free. Condition (2) on
Ti−1 guarantees that this is always possible.

Now assume the case that vi ∈ S. We start with an observation. Consider a ver-
tex v ∈ V (Ti−1) \ S whose parent is not in Ti−1. Let the coordinates of v in Ti−1
be (x, y). Each child of v is in S and thus lies on the y-axis. Denote their y-coordinates
by y1, . . . , yd . By condition (2), for each i ∈ {1, . . . , d}, the right ray at (0, yi) can
only be intersected by an edge incident to v in Ti−1. Thus v can be moved to any
position (x′, y), x′ ≥ 0, and the resulting untangling of Ti−1 still satisfies the two
conditions. We are now ready to untangle Ti . Vertex vi is fixed, and thus its position
in Ti is predetermined. None of its children are in S. Thus we are allowed to move
any child of vi from its position in Ti−1 to a new position. By the above observa-
tion it is possible to move each child w of vi (one by one, in the decreasing order
of their y-coordinates) so that the resulting untangling T ′

i−1 of Ti−1 satisfies condi-

tions (1) and (2), and so that the open segment (
wvi

) does not intersect T ′
i−1. Connect

vi by a segment to each of its children in T ′
i−1. Then the resulting untangling Ti is

crossing-free. Condition (1) is maintained since all the vertices of Ti−1 have smaller
y-coordinate that vi in Ti . �

4 Planar Graphs: Lower Bound

Let G be an n-vertex geometric planar graph. In this section we prove that G can be
untangled while keeping (n/3)1/4 vertices fixed (as stated in Theorem 2 below). It
suffices to prove this theorem for edge-maximal geometric planar graphs. Thus, for
the remainder of this section, assume that G is edge-maximal.3

Let E be an embedded planar graph isomorphic to G. Each face of E is bounded
by a 3-cycle. Canonical orderings of embedded edge-maximal planar graphs were
introduced by de Fraysseix et al. [3]. They proved that E has a vertex ordering σ =
(v1 := x, v2 := y, v3, . . . , vn := z), called a canonical ordering, with the following
properties. Define Gi to be the embedded subgraph of E induced by {v1, v2, . . . , vi}.

3A planar graph H is edge-maximal (also called, a triangulation) if for all vw /∈ E(H), the graph resulting
from adding vw to H is not planar.
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Fig. 2 a Canonical ordering of E . b Frame F of E . Vertices forming a largest antichain in <F , that is,
the vertices in S, are depicted by squares

Let Ci be the subgraph of E induced by the edges on the boundary of the outer face
of Gi . Then

• x, y, and z are the vertices on the outer face of E .
• For each i ∈ {3,4, . . . , n}, Ci is a cycle containing xy.
• For each i ∈ {3,4, . . . , n}, Gi is biconnected and internally 3-connected; that is,

removing any two interior vertices of Gi does not disconnect it.
• For each i ∈ {3,4, . . . , n}, vi is a vertex of Ci with at least two neighbors in Ci−1,

and these neighbors are consecutive on Ci−1.

For example, the ordering in Fig. 2a is a canonical ordering of the depicted embedded
graph E .

We now introduce a new combinatorial structure that is critical to the proof of
Theorem 2. A frame F of E is the oriented subgraph of E with vertex set V (F ) :=
V (E ), where:

• xy is in E(F ) and is oriented from x to y.
• For each i ∈ {3,4, . . . , n} in the canonical ordering σ of E , edges pvi and vip

′ are
in E(F ), where p and p′ are the first and the last neighbors, respectively, of vi

along the path in Ci−1 from x to y not containing edge xy. Edge pvi is oriented
from p to vi , and edge vip

′ is oriented from vi to p′, as illustrated in Fig. 2b. We
call p the left predecessor of v and p′ the right predecessor of v.

We also say that F is a frame of G. By definition, F is a directed acyclic graph
with one source x, and one sink y. F defines a partial order <F on V (F ), where
v <F w whenever there is a directed path from v to w in F .

The remainder of this section is dedicated to proving the following two lemmas,
which readily imply the desired result, as shown in the proof of Theorem 2 below.
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Lemma 3 Every n-vertex geometric planar graph G whose partial order <F asso-
ciated with a frame F of G has a chain4 of size � can be untangled while keeping√

�/3 vertices fixed.

Lemma 4 Every n-vertex geometric planar graph G whose partial order <F asso-
ciated with a frame F of G has an antichain of size t can be untangled while keeping√

t vertices fixed.

Theorem 2 Every n-vertex geometric planar graph G can be untangled while keep-
ing at least (n/3)1/4 vertices fixed. That is, fix(G) ≥ (n/3)1/4.

Proof Let F be a frame of G, and let <F be its associated partial order. If <F has a
chain of size at least

√
3n, then we are done by Lemma 3. Otherwise, by Dilworth’s

theorem [4], <F has a partition into at most
√

3n antichains. By the pigeon-hole
principle there is an antichain in that partition that has at least n√

3n
vertices, which

completes the proof, by Lemma 4. �

4.1 Big Chain: Proof of Lemma 3

A chord of a cycle C is an edge that has both endpoints in C but itself is not an
edge of C. Consider a cycle C in an embedded planar graph E . C is called externally
chordless if each chord of C is embedded inside of C in E . The following theorem
is by Spillner and Wolff [14], although they state it in a slightly different form; see
Theorem 2 in [14].

Theorem 3 [14] Let G be a geometric planar graph and E an embedded planar
graph isomorphic to G. If E has an externally chordless cycle on � vertices, then G

can be untangled while keeping at least
√

�/3 vertices fixed.

Lemma 5 Consider any directed path on at least three vertices from x to y in F . The
cycle comprised of that path and edge xy is externally chordless in E .

Proof Denote the cycle in question by C, and denote the directed path between x

and y in C not containing edge xy by P . Consider a chord vivj of C. Without loss of
generality, vi <σ vj in the canonical ordering σ . Thus vi is in Gj−1, and vivj is an
edge of Gj . The neighbors of vj in Gj−1 appear consecutively along the boundary
Cj−1 of Gj−1. Let x1, . . . , xd be the neighbors of vj in left-to-right order on Cj−1.
Thus x1vj and vjxd are arcs in F . Let uvj and vjw be the incoming and outgo-
ing arcs in P at vj . Then the counterclockwise order of edges incident to vj in E is
(u, . . . , x1, . . . , xd, . . . ,w, . . .). In particular, each edge vjx� is contained in the clo-
sure of the interior of C. Now vi = x� for some � ∈ [1, d]. Thus vivj is an internal
chord of C. �

4Recall that a chain (antichain) in a partial order is a subset of its elements that are pairwise comparable
(incomparable).
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This lemma, coupled with Theorem 3, implies Lemma 3, as demonstrated below.

Proof of Lemma 3 If � < 3, the claim follows trivially. Assume now that � ≥ 3. Since
<F has a chain of size �, <F has a maximal chain of size �′ ≥ �. Every maximal
chain in <F is a path from x to y in F . Therefore, Lemma 5 implies that E contains
an externally chordless cycle on �′ vertices, and the result follows from Theorem 3. �

4.2 Big Antichain: Proof of Lemma 4

For each vertex v ∈ V (F ), we define Lroof(v) and Rroof(v) as the following directed
paths in F

Lroof(v1) := ∅ and Rroof(v1) := ∅,

Lroof(v2) := ∅ and Rroof(v2) := ∅.

For each i ∈ {3, . . . , n}, define Lroof(vi) and Rroof(vi) recursively, as follows

Lroof(vi) := Lroof(p) ∪ {pvi}, and

Rroof(vi) := {vip
′} ∪ Rroof(p′),

where p is the left and p′ the right predecessor of vi . Finally, define the roof of vi to
be roof(vi) := Lroof(vi) ∪ Rroof(vi).

Note that for each i ∈ {3, . . . , n}, roof(vi) is a directed path in F from x to y con-
taining vi , where the sub-path ending at vi is Lroof(vi), and the sub-path starting vi

is Rroof(vi).
Let S be the set of vertices that comprise a largest antichain in <F , as illustrated

in Fig. 2b with squares. Now consider the given geometric graph G. We may assume,
by a suitable rotation, that no pair of vertices of G have the same y-coordinate. Let
R be a largest ordered subset of S such that the y-coordinates of the vertices of R are
either monotonically increasing or monotonically decreasing when considered in the
order given by σ . By the Erdős–Szekeres Theorem [5], |R| ≥ √|S|. Without loss of
generality, assume that R is monotonically increasing. In what follows, we untangle
G while keeping R fixed.

Let H be the graph induced in E by the following set of vertices: V (H) := {x, y}∪
{roof(w) : w ∈ R}; that is, H = E [V (H)]. Note that H is not necessarily a subgraph
of F , as illustrated in Fig. 3.

We say that a simple polygonal chain C is strictly x-monotone if, for every vertical
line �, |C ∩ �| ≤ 1. For two distinct points p and q in the plane, let (

pq
) denote

the open line-segment with endpoints p and q . A simple polygon C is star-shaped
(from p) if there is a point p such that for every point q ∈ C, (

pq
) ∩ C = ∅. The

following lemma is the main ingredient in the proof of Lemma 4.

Lemma 6 The geometric planar graph G[V (H)] can be untangled so that each
vertex of R is on the y-axis and it has the same y-coordinate in the untangling as
in G[V (H)]. Moreover, all the internal faces of the untangling are star-shaped, and
the path on its outer face from x to y not containing xy is strictly x-monotone.
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Fig. 3 The graph H. The
vertices in R ⊆ S are depicted
by squares. Edges {3,6}, {4,10},
{8,10}, {6,13}, {7,13},
{10,13}, and {12,13} are in H
but not in F

We delay the proof of Lemma 6 until the end of the section. We first show how it
implies our desired result when coupled with the following theorem by [8].

Theorem 4 [8] Consider a 3-connected embedded planar graph L, with outer facial
cycle C. Given any geometric cycle C that is star-shaped and any isomorphic map-
ping from V (C) to V (C), there is a crossing-free geometric graph L isomorphic to
L with C as its outer face and respecting the vertex mapping.

Proof of Lemma 4 Since <F has an antichain of size t , <F has a maximal antichain
S of size t ′ ≥ t . Then the subset R ⊆ S has size |R| ≥ √

t . Recall that R ⊂ V (H).
Thus by Lemma 6, G[V (H)] can be untangled so that the vertices of R are all on the
y-axis and their y-coordinates are preserved. If z /∈ R, then assign x- and y-coordinates
to z and connect z to its neighbors in H so that the resulting geometric graph H is
crossing-free and all the internal faces of H are star-shaped. This is always possible
since the path from x to y on the outer face of the above untangled graph is strictly
x-monotone. H is an untangling of G[V (H) ∪ {z}].

It remains to determine a placement of the remaining free vertices of G, that is,
vertices in V (G)\V (H). Vertices of V (G)\V (H) can be partitioned into sets Ij , 1 ≤
j ≤ |E(H)|− |V (H)|+1, where each vertex in Ij is inside the cycle in E determined
by the internal face fj of H . For each internal face fj of H , let Gj be the following
subgraph of E . The vertex set V (Gj ) is the union of V (fj ) and Ij . The edge set
E(Gj ) is comprised of the edges of the cycle fj , the edges in E [Ij ], and the edges
between V (fj ) and Ij . Each fj is star-shaped in H by Lemma 6. Therefore, to apply
Theorem 4, it remains to show that Gj is 3-connected.

Assume, for the sake of contradiction, that Gj is not 3-connected. All the faces
of Gj are triangles except possibly the outer face Cj . Therefore, Gj is internally
3-connected, that is, removing any two interior vertices of Gj does not disconnect it.
Thus each cut-set of size 2 of Gj has a vertex, say v, that is in Cj . Removing v from
Gj results in a graph that is not 2-connected. The outer face Cj has no chords, since
fj is a face of H . Therefore, removing v from Gj results in graph whose outer face
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is a cycle and all internal faces are triangles. Thus that graph is a 2-connected graph,
which provides the contradiction.

Applying Theorem 4 to embed each subgraph Gj yields an untangling of G in
which the vertices of R are all on the y-axis and have their y-coordinates preserved.
Applying Lemma 1 to this untangling completes the proof of the theorem. �

All that remains is to prove Lemma 6.

Proof of Lemma 6 The proof is by induction on the number of vertices in R. We start
by considering some useful properties of the roofs of two vertices in R.

Consider two vertices, u and v in R (or any two incomparable vertices in <F ),
where u <σ v. Let x′ be a vertex of F such that x′ ∈ Lroof(u) and x′ ∈ Lroof(v) and
such that the vertex following x′ in Lroof(u) is not the same as the vertex following
x′ in Lroof(v), as illustrated in Fig. 4. Similarly, let y′ be a vertex of F such that
y′ ∈ Rroof(u) and y′ ∈ Rroof(v) and such that the vertex before y′ in Rroof(u) is not
the same as the vertex before y′ in Rroof(v). Such vertices, x′ and y′, exist since u

and v are incomparable in F . Then roof(v) and roof(u) have the following properties.
The paths between x and x′ in roof(u) and in roof(v) coincide in F , that is, the two
paths are both equal to Lroof(x′). Similarly, the paths between y′ and y in roof(u) and
in roof(v) coincide in F , that is, they are both equal to Rroof(y′). The path between x′
and y′ in roof(u) contains u, the path between x′ and y′ in roof(v) contains v, and the
two paths have only x′ and y′ in common. Finally, u is inside the cycle determined
by roof(v) and edge xy in F . To summarize, for all u,v ∈ R, if u <σ v, then each
vertex of roof(u) is either on or inside the cycle determined by roof(v) and edge xy

in F .
We proceed by induction on the number of vertices in R but require a somewhat

stronger inductive hypothesis than the statement of the lemma. Let C be a simple
strictly x-monotone polygonal chain. We say that C is ε-ray-monotone from a point
p = (xp, yp) if, for every point r = (xp, yp + t) with t ≥ ε and every point q ∈ C,
(
rq

) ∩ C = ∅. Informally, C is ε-ray-monotone from p if every point sufficiently
far above p sees all of C. Note that, under this definition, if C is ε-ray-monotone
from p, then C is ε-ray-monotone from any point q = (xp, yp + t), t > 0, above p.
Furthermore, there exists a value δ = δ(p,C, ε) such that C is ε-ray-monotone from
any point p′ whose distance from p is at most δ. (This follows from the fact that the
set of points p from which C is ε-ray-monotone is an open set.)

Let ε′ be the minimum difference between the y-coordinates of any two vertices
in R. We will construct a crossing-free geometric graph H, that is, an untangling

Fig. 4 Roofs of two
incomparable vertices u and v

of <F
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of G[V (H)]. In addition to the conditions of the lemma, H will have the following
property: If |R| > 0, then the outer face of H is bounded by the edge xy and a path C

from x to y such that C ∩ R = {v} for some vertex v ∈ R, and C is ε-ray-monotone
from v for some ε < ε′.

The base case occurs when |R| = 0. Then H consists of the single edge xy, which
can be untangled by placing x at (−1, t) and y at (1, t), where t is smaller than any
y-coordinate in G. Clearly this crossing-free geometric graph satisfies the conditions
of the lemma and the inductive hypothesis. Next, suppose that |R| ≥ 1 and let v be the
largest vertex of R in the total order σ . Let H′ be the subgraph of H induced by the
vertices in {x, y} ∪ {roof(u) : u ∈ R \ v}. By induction, we can untangle G[V (H′)] to
obtain a crossing-free geometric graph H′ that satisfies the inductive hypothesis and
the conditions of the lemma. It remains to place v and the vertices of roof(v) that are
not yet placed. As described above, these vertices form a path P that goes from some
vertex x′ of H′ to v to some vertex y′ of H′. Denote by P ′ the path between x′ and
y′ in H′ not containing xy. Furthermore, let E be the set of edges e in H such that
either both endpoints of e are interior vertices of P , or one endpoint of e is an interior
vertex of P and the other endpoint of e is a vertex of P ′.

The conditions of the lemma specify the location of v. In particular, v is on the
y-axis, with its y-coordinate equal to its y-coordinate in G. The inductive hypothesis
guarantees that the vertex v and any point sufficiently close to v can see5 all vertices
of the outer face of H′. Finally, we note that, if |R| > 1, then directly below v, on the
y-axis, is a vertex u ∈ R. The fact that u is on the y-axis and that the outer face of H′
is strictly x-monotone implies that the x-coordinate of x′ is less than 0 and that the
x-coordinate of y′ is greater than 0. (For the special case where x′ = x and/or y′ = y,
the above statement is still true.)

Next we place the interior vertices of P to obtain the crossing-free geometric
graph H. To do this, draw a unit circle c, containing v, whose center is on the y-axis
and below v. Place all interior vertices of P on c and sufficiently close to v so that:

(1) the path on the outer face of H from x to y not containing xy is strictly x-
monotone

(2) in H \ E, all interior vertices of P see all other vertices of P

(3) in H \ E, all interior vertices of P see all vertices of P ′, and
(4) the path on the outer face of H from x to y not containing xy is ε-ray-monotone

from v for some ε < ε′.

The first condition can be achieved since x′ and y′ are to the left and right, respec-
tively, of the y-axis. The second condition can be achieved since we are placing the
interior vertices of P on a convex curve (a circle) as close to v as necessary. The
third condition can be achieved since the upper chain of H′ is ε-ray-monotone from
u and hence also from v. The fourth condition can be achieved by the definition of
ε-ray-monotonicity and the first condition.

Consider the path in H′ from x to y not containing xy along the outer face of H′.
This path is comprised of the same vertices and edges as a directed path from x to y

5Given a geometric graph, we say that a point p in the plane sees a point q if (
pq

) does not intersect the
graph.
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in F . Thus, by Lemma 5, the outer face of H′ has no outer chords in H. Therefore,
an edge of H that is not an edge of H′ is either an edge of P or an edge in E.
Clearly H \ E is crossing-free by the construction. The edges of E are not involved
in any crossings in H by Conditions (2) or (3) above and the fact that H is a planar
embedding. Thus H is crossing-free. The vertices in R are all on the y-axis and all
have the same y-coordinates in G as in H. Conditions (1) (and (4)) imply that the path
between x and y on the outer face of H is strictly x-monotone. It remains to show that
the internal faces of H are star-shaped. The only new faces in H not present in H′
are the faces having interior vertices of P on their boundary. However, Conditions (2)
and (3) above imply that each such face is star-shaped from some interior vertex of P .
This completes the proof of the lemma. �

5 Trees: Upper Bound

In this section we prove the following theorem.

Theorem 5 For every positive number n such that
√

n is an integer, there exists a
geometric forest (of stars) G on n vertices such that fix(G) = 3(

√
n − 1). That is, G

cannot be untangled while keeping more than 3(
√

n − 1) vertices fixed, and G can
be untangled while keeping exactly that many vertices fixed.

Proof We first define G. A k-star is a rooted tree on k + 1 vertices one of which is
the root and the rest of the vertices are leaves adjacent to that root. G is a forest on n

vertices comprised of trees Ti , 1 ≤ i ≤ √
n, where each Ti is a (

√
n − 1)-star. All the

vertices of G lie on the x-axis. For each i, the vertices of Ti have the x-coordinates
i, i + √

n, . . . , i + √
n(

√
n − 1), where the vertex with the maximum x-coordinate is

the root of Ti . This completes the description of G.

Upper Bound We first prove that fix(G) ≤ 3
√

n− 3; that is, we prove that G cannot
be untangled while keeping more than 3

√
n−3 vertices fixed. Let H be an untangling

of G with fix(G) vertices fixed. Let � denote the number of fixed leaves and r the
number of fixed roots. Let r ′ denote the number of fixed roots that are adjacent to a
fixed leaf. Given the ordering of the vertices of G on the x-axis, it is clear that r ′ ≤ 1.

Partition the set of free roots into two sets. Let A be the set containing the free
roots that are on or above the x-axis in H . Let B be the set containing the free roots
that are strictly below the x-axis in H . Our reason for this nonsymmetric definition
of A and B is to avoid double counting, and not because free roots on the x-axis have
any special meaning. The total number of roots of G is |A| + |B| + r .

Suppose that the number of fixed leaves with a neighbor (i.e., a parent) in A is
at most

√
n − 2 + |A|, and similarly for the number of fixed leaves with a neighbor

in B . As noted above, at most one fixed leaf can be adjacent to a fixed root, and thus
� ≤ 2

√
n−4+|A|+ |B|+ r ′. Since fix(G) = �+ r , we get fix(G) ≤ 2

√
n−4+|A|+

|B| + r ′ + r . Having |A| + |B| + r = √
n further implies that fix(G) ≤ 3

√
n − 4 + r ′.

Since r ′ ≤ 1, we get the desired upper bound.
Thus to complete the proof of the upper bound it remains to prove that the number

of fixed leaves with a neighbor in A is at most
√

n − 2 + |A|. The proof below has
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no special case for the free roots that are on the x-axis, so the proof for the number of
fixed leaves with a neighbor in B is analogous.

Partition the leaves of G into a set of blocks {Pj : 1 ≤ j ≤ √
n − 1} such

that P1 contains the first
√

n leaves on the x-axis, P2 the next
√

n leaves, and so
on. More formally, Pj contains all the leaves with x-coordinate in the range [1 +
(j −1)

√
n, j

√
n]. Note that each block contains exactly one leaf from each star of G.

There are
√

n − 1 blocks, each containing
√

n vertices.
Define an auxiliary graph Q with vertex set V (Q) = A ∪ {pj : 1 ≤ j ≤ √

n − 1},
where vpj ∈ E(Q) precisely if v is a vertex of A and v has a fixed neighbor in
block Pj . Thus Q is a bipartite graph, where one bipartition is precisely the set A.
Note that |V (Q)| = |A| + √

n − 1. Since each vertex of A has exactly one neighbor
in each block, the number of fixed leaves whose parents are in A is precisely |E(Q)|.
We now show that Q has no cycles. That will complete the proof of the upper bound
since in that case |E(Q)| ≤ |V (Q)| − 1 = |A| + √

n − 2.
Assume for the sake of contradiction that Q has a cycle. Let C be a shortest cycle

in Q. Every second vertex of C is a vertex of A. The remaining vertices of C corre-
spond to blocks of leaves. Let CH be the subset of V (H) containing all the roots in
V (C) ∩ A and such that, for each of those roots, CH also contains all its fixed leaves
contained in blocks Pj for which pj is in C.

Consider the geometric graph H [CH ]. The fact that C is a (shortest) cycle and
that each vertex in A has exactly one leaf in each block, implies that H [CH ] is a
geometric forest of 2-stars, where the vertices in V (C) ∩ A have degree 2 in H [CH ],
and each block Pj such that pj ∈ V (C) \A has precisely two fixed leaves in H [CH ].

Since H is crossing-free, so is H [CH ]. Furthermore, since all the roots in CH are
on or above the x-axis and all the leaves of CH are on the x-axis, H [CH ] is fully
contained in a closed half-plane determined by the x-axis. We now show that H [CH ]
cannot be crossing-free, which will provide the desired contradiction. H [CH ] is a
crossing-free geometric forest of 2-stars. We first expand H [CH ] into a crossing-
free geometric cycle by adding some segments to it as follows. Consider blocks that
contain a leaf of H [CH ]. Each such block Pj contains exactly two leaves of H [CH ],
denoted by j1 and j2 (see Fig. 5). We claim that (

j1j2
)∩H [CH ] = ∅. There is no edge

of H [CH ] that properly crosses (
j1j2

), since H [CH ] is fully contained in a closed
half-plane determined by the x-axis. Therefore, (

j1j2
) ∩ H [CH ] can be nonempty

only if there is an edge of H [CH ] fully contained in (
j1j2

). This implies that there
is a root of H [CH ] that is located on the x-axis between j1 and j2. This however is
impossible, since one of the two edges of H [CH ] incident to that root would contain
j1 or j2 in its interior. This observation implies that H [CH ] can be extend into a

Fig. 5 (Color online) Two 2-stars (one depicted in green and the other in red) with leaves in a common
block
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Fig. 6 Illustration for the proof
of the upper bound of
Theorem 5

Fig. 7 Untangled forest G with
3
√

n − 3 vertices fixed (k = √
n)

crossing-free geometric cycle R by adding the appropriate line segments into each
block that contains a leaf of H [CH ].

Let v be, among all the roots in CH , the one with the smallest index; that is,
there is no other root w ∈ CH where v ∈ Ti and w ∈ Tj with j < i. Vertex v has
two neighbors (fixed leaves) in H [CH ], s1 ∈ Ps and t1 ∈ Pt (see Fig. 6). Vertex s1
has two neighbors in R. One is v, and the other is a vertex (fixed leaf) s2 ∈ Ps .
Similarly, t1 is adjacent in R to v and to a vertex (fixed leaf) t2 ∈ Pt . Therefore,
R contains two vertex disjoint paths: R1, between s1 and t1, and R2, between s2
and t2. Since v belongs to the smallest indexed tree, the ordering of their endpoints
on the x-axis is s1 < s2 < t1 < t2. With such ordering of endpoints and since R is
fully contained in the closed half-plane above the x-axis, it is impossible to draw R1
and R2 without crossings (since R1 separates the closed half-plane above the x-axis
into two components, one containing s2 and one containing t2). This is the desired
contradiction.

Lower Bound We now prove that fix(G) ≥ 3
√

n− 3, that is, we prove that G can be
untangled while keeping 3

√
n − 3 vertices fixed. Keep the followings vertices of G

fixed:

(1) all the leaves of T1 and T2
(2) all the vertices in the block P√

n−1, and
(3) the root of T√

n.

Move the root of T1 to the half-plane above the x-axis and move the root of T2 to
the half-plane below the x-axis. For all 3 ≤ i ≤ √

n − 1, move all the free vertices of
Ti to a very small disk centered at the fixed leaf of Ti . Move all the free leaves of
T√

n to a small disk centered at the root of T√
n. Clearly, this can be done so that the

resulting geometric forest H is crossing-free, as illustrated in Fig. 7. The number of
fixed vertices of H is 2(

√
n − 1) + (

√
n − 2) + 1 = 3

√
n − 3, as claimed. �

6 Conclusions

Polynomial bounds are now known for untangling all classes of planar graphs. Tight
bounds (up to a constant) are known for untangling trees and outerplanar graphs. Gaps
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remain open for untangling geometric cycles, where the best known lower and upper
bounds are �(n2/3) and O((n logn)2/3), and for geometric planar graphs, where the
best known lower and upper bounds are �(n1/4) and O(

√
n).
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