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ON VISIBILITY AND BLOCKERS∗

Attila Pór †, David R. Wood ‡

Abstract. This expository paper discusses some conjectures related to visibility and
blockers for sets of points in the plane.

1 Visibility Graphs

Let P be a finite set of points in the plane. Two distinct points v and w in the plane are
visible with respect to P if no point in P is in the open line segment vw. The visibility
graph V(P ) of P has vertex set P , where two distinct points v, w ∈ P are adjacent if and
only if they are visible with respect to P . In other words, V(P ) is obtained by drawing a
line through each pair of points in P , where two points are adjacent if they are consecutive
on a such a line. See Figure 1 for an example.

Figure 1: The visibility graph of the 5× 5 grid.

Visibility graphs have many interesting properties. For example, if P is not collinear
then V(P ) has diameter at most two [24]. Consider the following Ramsey-theoretic conjec-
ture by Kára et al. [24], which has recently received considerable attention [1, 2, 27].
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Conjecture 1 (Big-Line-Big-Clique Conjecture [24]). For all integers k ≥ 2 and ` ≥ 2
there is an integer n such that for every finite set P of at least n points in the plane:

• P contains ` collinear points, or

• P contains k pairwise visible points (that is, V(P ) contains a k-clique).

Conjecture 1 is true for k ≤ 5 or ` ≤ 3 [1, 2, 24], and is open for k = 6 or ` = 4. Note
that the natural approach for attacking the Big-Line-Big-Clique Conjecture using extremal
graph theory fails. Turán [47] proved that every n-vertex graph with more edges than the
Turán graph Tn,k contains Kk+1 as a subgraph1. Thus the Big-Line-Big-Clique Conjecture
would be proved if every sufficiently large visibility graph with no ` collinear points has
more edges than Tn,k−1. However, Sylvester [42, 43, 44, 45] constructed a set P of n points
with no four collinear, such that P determines n2

6 −O(n) lines each containing three points2.
Thus V(P ) has n2

3 + O(n) edges, which is less than the number of edges in Tn,k−1 for all
k ≥ 5 and large n. These examples show that the number of edges in a visibility graph with
no four collinear points is not enough to necessarily imply the existance of a large clique
via Turán’s Theorem.

Consider the following weakening of Conjecture 1, due to Jan Kára Jan [private
communication, 2005].

Conjecture 2. For all integers k ≥ 2 and ` ≥ 2 there is an integer n such that if P is
a finite set of at least n points in the plane, and each point in P is assigned one of k − 1
colours, then:

• P contains ` collinear points, or

• some pair of visible points in P receive the same colour
(that is, the visibility graph V(P ) has chromatic number χ(V(P )) ≥ k).

Conjecture 1 implies Conjecture 2 since the chromatic number of any graph con-
taining a k-clique is at least k. Thus Conjecture 2 is true for k ≤ 5 or ` ≤ 3. See reference
[3] for a study of a special case of Conjecture 2.

Consider a proper colouring of a visibility graph V(P ). That is, visible points are
coloured differently. In each colour class C, no two vertices are visible. So the vertices not
in C ‘block’ the lines of visibility amongst vertices in C. This idea leads to the following
definitions that were independently introduced by Matoušek [27] amongst others.

A point x in the plane blocks two points v and w if x ∈ vw. Let P be a finite set of
points in the plane. A set B of points in the plane blocks P if P ∩B = ∅ and for all distinct
v, w ∈ P there is a point in B that blocks v and w. That is, no two points in P are visible
with respect to P ∪B, or alternatively, P is an independent set in V(P ∪B).

The purpose of this expository paper is to discuss some conjectures related to block-
ing sets. We remark that in the last few years, a number of researchers have started studying

1 Let Tn,k be the k-coloured graph with ni vertices in the i-th colour class, where two vertices are adjacent
if and only if they have distinct colours, n =

P
i ni, and |ni − nj | ≤ 1 for all i, j ∈ [k].

2While the proof by Sylvester is lacking details, subsequent proofs with improved O(n) terms have been
given by Burr et al. [9] and Füredi and Palásti [20]; also see [7, 8].
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blocking sets around the same time (see [13, 27, 31] and the named researchers therein). So
we expect that some of the observations in this paper have been independently discovered
by others.

2 The Blocking Conjecture

Every set P of collinear points can be blocked by a set of |P | − 1 points (for example, the
midpoints of the consecutive pairs of points in P block P ) . At the other extreme, how
small can a blocking set be if P is in general position (that is, no three points are collinear)?
Let b(P ) be the minimum size of a set of points that block P . Let b(n) be the minimum
of b(P ), where P is a set of n points in general position in the plane. We conjecture that
every set of points in general position requires a super-linear number of blockers.

Conjecture 3. b(n)
n →∞ as n →∞.

In fact, Pinchasi [31] conjectured that b(n) ∈ Ω(n log n). Linear lower bounds on
b(n) are known [13, 27]. Let P be a set of n points in the plane in general position with t
vertices on the boundary of the convex hull. Each edge of a triangulation of P requires a
distinct blocker, and every triangulation of P has 3n − 3 − t edges. So every blocking set
of P has at least 3n − 3 − t ≥ 2n − 3 vertices, and b(n) ≥ 2n − 3. Dumitrescu et al. [13]
improved this bound to b(n) ≥ (25

8 − o(1))n.

3 Blocking Graph Drawings

A drawing of a graph3 G represents each vertex of G by a distinct point in the plane,
and represents each edge of G by a simple closed curve between its endpoints, such that
a vertex v intersects an edge e if and only if v is an endpoint of e. We do not distinguish
between graph elements and their representation in a drawing. Note that multiple edges
may intersect at a common point. A drawing is simple if any two edges intersect at most
once, at a common endpoint or as a proper crossing (“kissing” edges are not allowed). A
drawing is geometric if each edge is a straight line-segment. Obviously, every geometric
drawing is simple.

Blockers for point sets generalise for graph drawings as follows. A set of points B
blocks a drawing of a graph G if no vertex of G is in B and every edge of G contains some
point in B. Observe that if P is a set of points in general position, then B blocks P if and
only if B blocks the geometric drawing of the complete graph with vertices drawn at P .

Some geometry is needed in Conjecture 3, in the sense that Kn has a simple (non-
geometric) drawing that can be blocked by 2n − 3 blockers. As illustrated in Figure 2, if
V (Kn) = {v1, . . . , vn} then place vi at (i, 0) and draw each edge vivj with i < j as a curve
from vi into the upper half-plane, through the point (−i−j, 0), into the lower half-plane, and
across to vj . As illustrated in Figure 2, the edges can be drawn so that two edges intersect
at most once. Each edge is blocked by one of the 2n−3 points in {(−k, 0) : k ∈ [3, 2n−1]}.

3Throughout this paper, we consider graphs with no parallel edges and no loops.
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This observation improves upon a O(n log n) upper bound on the number of blockers in
a simple drawing of Kn, due to Dumitrescu et al. [13]. A similar construction is due to
Harborth and Mengersen [22]; see Pach et al. [30]. Note that at least n − 1 blockers are
needed for every simple drawing of Kn (since each point can block at most n

2 edges).

Conjecture 4. The minimum number of blockers in a simple drawing of Kn equals 2n−3.

Figure 2: A drawing of K7 blocked by 11 blockers.

While this example suggests that geometry is needed in Conjecture 3, Stefan Langer-
man [personal communication, 2009] proposed an alternative. A drawing of a graph is
extendable if the edges are contained in a pseudoline arrangment; that is, for each edge e
there is a simple unbounded curve Ce containing e, such that for all distinct edges e and e′,
the curves Ce and Ce′ intersect at most once. Observe that the above simple drawing that
can be blocked by O(n) blockers is not extendable. For extendible drawings we make the
following conjecture:

Conjecture 5. Eevery extendible simple drawing of Kn requires a super-linear number of
blockers.
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4 Midpoints and Freiman's Theorem

Conjecture 3 is related to known results about midpoints. Hernández-Barrera et al. [23]
introduced the following definitions4. For a set P of points in the plane, let m(P ) be the
number of midpoints determined by distinct points in P ; that is,

m(P ) := |{1
2(x + y) : x, y ∈ P, x 6= y}| .

Let m(n) be the minimum of m(P ), where P is a set of n points in general position in
the plane. Since midpoints are also blockers, b(n) ≤ m(n). Hernández-Barrera et al. [23]
constructed a set of n points in general position in the plane that determine at most cnlog2 3

midpoints for some contant c > 0. Thus

b(n) ≤ m(n) ≤ cnlog2 3 = cn1.585... .

This upper bound was independently improved by Stanchescu [40] and Pach [29] (and later
by Matoušek [27]) to

b(n) ≤ m(n) ≤ nc
√

log n .

(This function is between n log n and n1+ε for large n.) Hernández-Barrera et al. [23]
conjectured that m(n) is super-linear, which was independently verified by Stanchescu [40]
and Pach [29]; that is,

m(n)
n

→∞ as n →∞ . (1)

Thus Conjecture 3 would stregthen this lower bound on m(n). Pach’s proof of (1) is based
on Freiman’s Theorem5:

Theorem 6 (Freiman’s Theorem in the Plane [19]). Let P be a set of n points in the plane
(not necessarily in general position). If m(P ) = αn then P is a subset of a d-dimensional
progression of size at most βn, for some d and β depending only on α.

Pach [29] concluded that at least n1/d/β points in P are collinear. Thus, assuming
that P is in general position, n is bounded by a function of α. It follows that m(n)

n → ∞.
(This argument is generalised in Proposition 8 below.) Analogously, the following conjec-
tured ‘convex combination’ version of Freiman’s Theorem would establish Conjecture 3.

Conjecture 7. Let P be a set of points in the plane with at most 1
2 |P | points collinear.

Suppose that P can be blocked by some set B with |B| ≤ α|P |. That is, for all distinct
x, y ∈ P there is a real number γ ∈ (0, 1), such that γx + (1− γ)y ∈ B. Then P is a subset
of a d-dimensional progression of size at most β|P |, for some d and β depending only on α.

4These definitions and questions about midpoints are implicit in the literature on Freiman’s Theorem,
which pre-dates the study of midpoints in the combinatorial geometry literature.

5A d-dimensional progression in the plane is a set {v0 + x1v1 + · · ·+ xdvd : xi ∈ [1, ni]} for some vectors
v0, . . . , vd ∈ R2. Freiman’s Theorem is usually stated in terms of the sum set P + P := {x + y : x, y ∈ P},
but this is not important since m(P ) ≤ |P + P | ≤ m(P ) + |P |. Freiman’s Theorem actually applies in any
abelian group; see [46]. See [18, 38, 39, 41] for more on Freiman’s Theorem in the plane.
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Note that some assumption on the number of collinear points is needed in Conjec-
ture 7. For example, a set of n random collinear points can be blocked by n − 1 points,
but is not a subset of a progression of bounded dimension and linear size. This conjecture
generalises Freiman’s Theorem for the plane, which assumes γ = 1

2 for all x, y ∈ P .

The proof of (1) by Stanchescu [40] gives an explicit lower bound on m(n). In
particular, for all ε > 0 there is a constant cε > 0 such that6

m(n) ≥ cεn(log n)
1
8
−ε .

This bound was recently improved by Sanders [36] who proved the following more general
result: If G is an abelian group and P ⊂ G is finite and contains no non-trivial 3-term
arithmetic progression, then |P + P | ≥ cε|P |(log |P |)

1
3
−ε for all ε > 0. Consider this result

with G = R2. The assumption that P contains no non-trivial 3-term arithmetic progression
is equivalent to saying that the midpoint of distinct points in P is not in P , which is weaker
than the assumption that P is in general position. Sander’s theorem thus implies that for
all ε > 0,

m(n) ≥ cεn(log n)
1
3
−ε . (2)

While Freiman’s Theorem applies in some sense for sum sets along the edges of
any dense graph [15], it is worth noting that there is a geometric drawing of the complete
bipartite graph Kn,n that can be blocked by O(n) blockers. Say the colour classes of Kn,n

are {v1, . . . , vn} and {w1, . . . , wn}. Position vi at (2i, 0), and wj at (2j, 2). Thus viwj is
blocked by (i+ j, 1), and {(i, 1) : i ∈ [2, 2n]} is a set of 2n−1 points blocking every edge. In
fact, there is a geometric drawing of Kn,n with its vertices in general position that can be
similarly blocked. Position vi at (−2i, 22i) and wj at (2j , 22j). These points lie on opposite
sides of the parabola y = x2. The edge viwj is blocked by (0, 2i+j), and {(0, 2i) : i ∈ [2, 2n]}
is a set of 2n− 1 points blocking every edge.

In general, say S = {s1, . . . , sn} is a set of n positive integers. Draw Kn,n by
positioning each vi at (−si, s

2
i ) and each wj at (sj , s

2
j ) (again on opposite sides of the

parabola y = x2). Say we block every edge by a point on the y-axis. The edge viwj crosses
the y-axis at (0, sisj). Thus to have few blockers, S should be chosen so that the product
set S · S := {ab : a, b ∈ S} is small. Geometric progessions, such as 21, 22, . . . , 2n, minimise
the size of the product set (leading to the construction of Kn,n above). It is interesting
that both sum sets (that is, midpoints) and product sets appear to be related to blocking
sets. There is a known trade-off between the sizes of sum sets and product sets (so-called
sum-product estimates). In particular, |S + S| or |S · S| is at least c|S|1+ε for some c > 0
and ε > 0; see [11, 12, 14, 17, 37]. Especially given that geometric methods based on
the Szemerédi-Trotter theorem can be used to prove such a result [14], it is plausible that
sum-product estimates might shed some light on Conjecture 3.

6Stanchescu’s result is stated for points with integer coordinates, but by the well-known Freiman isomor-
phism [46], the result also applies for general point sets.
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5 Point Sets with Bounded Collinearities

Now consider midpoints and blocking sets for point sets with a bounded number of collinear
points. Let m`(n) be the minimum number of midpoints determined by some set of n points
in the plane with no ` collinear points. Thus m3(n) = m(n). Pach’s proof of (1) generalises
as follows. Here we use a recent result of Bourgain [6] to improve upon the bound in (2).

Proposition 8. For all ε > 0, ` ≥ 3 and sufficiently large n > n(`, ε),

m`(n) ≥ n(log n)
4
11
−ε .

Proof. Let P be a set of n points in the plane with no ` collinear, such that m(P ) =
m`(n) = αn. As observed by Pach [29], Freiman’s Theorem implies that at least n1/d/β
points in P are collinear; see Theorem 6. Thus n < (β`)d and log n < d log β + d log `.
Bourgain [6] proved that, for some absolute constant c > 0, one can take d = bα − 1c and
log β = cα7/4 logc α in Freiman’s Theorem; also see [10, 35]. Thus log n < cα11/4 logc α +
α log `. Since n ≥ n(ε, `), we have c logc α + log ` ≤ αε. Thus log n < α11/4+ε. Therefore
m`(n) = αn > n(log n)1/(11/4+ε) ≥ n(log n)4/11−ε.

Analogous to the definition of m`(n), let b`(n) be the minimum integer such that
every set of n points in the plane with no ` collinear points is blocked by some set of b`(n)
points. Thus b3(n) = b(n). We conjecture that b`(n) is also super-linear in n for fixed `.

Conjecture 9. For all fixed `, we have b`(n)
n →∞ as n →∞.

Proposition 10. Conjecture 9 implies Conjecture 2.

Proof. Suppose on the contrary that Conjecture 9 holds but Conjecture 2 does not. Then
there are constants ` and k, and there are arbitrarily large point sets P containing no `
collinear points, and with χ(V(P )) ≤ k. Conjecture 9 implies that b`(n) ≥ n · g`(n) for
some non-decreasing function g` for which g`(n) →∞ as n →∞. Thus there is an integer
n′ such that g`(n) > k − 1 for all n ≥ n′. Let P be a set of n ≥ kn′ points, containing no `
collinear points, and with χ(V(P )) ≤ k. Let S be the largest colour class in a k-colouring
of V(P ). Thus S has no ` collinear points and P − S blocks S. That is, there is a set of
s = dn

k e points blocked by a set of n − s points. Thus b`(s) ≤ n − s ≤ n(1 − 1
k ). On the

other hand, b`(s) ≥ s · g`(s) ≥ n
k · g`(s). Hence n

k · g`(s) ≤ n(1− 1
k ) and g`(s) ≤ k− 1. Since

n′ ≤ s and g is non-decreasing, g`(n′) ≤ k − 1, which is the desired contradiction.

6 Colouring Edges and Points in Convex Position

Now consider edge-colourings of graph drawings, such that if two edges have the same colour,
then they cross. This idea is related to blockers, since if a graph drawing can be blocked by
b blockers, then it can be coloured with b colours. Let t(n) be the minimum integer such
that the edges in some geometric drawing of Kn can be coloured with t(n) colours such that
every monochromatic pair of edges cross. Each colour class is called a crossing family [4].
Hence t(n) ≤ b(n). We conjecture the following strengthening of Conjecture 3.
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Conjecture 11. t(n)
n →∞ as n →∞.

The analogous conjecture could be made for extendible simple drawings of Kn.

For point sets in convex position, the above edge-colouring problem is equivalent
to covering a circle graph7 by cliques. It follows from a result by Kostochka [26] (see [25])
that the minimum number of colours is at least n lnn − c and at most n lnn + cn, for
some constant c. Thus the number of blockers for a point set in convex position is at least
n lnn− c. We conjecture that the answer is quadratic.

Conjecture 12. Every set of n points in convex position requires Ω(n2) blockers.

For n equally spaced points around a circle, at least n2

14 −O(n) blockers are required,
since except for the point in the centre, at most 7 edges intersect at a common interior point
[33]. This property does not hold for arbitrary points in convex position, since as described
in Section 4, for the point set P = {(−2i, 22i), (2i, 22i) : i ∈ [1, n]}, the point (0, 2k) blocks
each edge (−2i, 22i)(2j , 22j) for which k = i + j. Thus Ω(n) points on the y-axis each block
Ω(n) edges.

Note that Erdős et al. [16] proved that the minimum number of midpoints for a set
of n points in convex position is between 0.8

(
n
2

)
and 0.9

(
n
2

)
.

7 A Final Conjecture

We finish the paper with a strengthening of Conjecture 2.

Conjecture 13. For all integers k ≥ 1 and ` ≥ 2 there is an integer n such that if P is
a set of at least n points in the plane, and each point in P is assigned one of k colours, then:

• P contains ` collinear points, or

• P contains a monochromatic line
(that is, a maximal set of collinear points, all receiving the same colour).

Conjecture 13 is trivially true for k = 1 and n = 2, or ` ≤ 3 and n = k + 1. The
Motzkin-Rabin Theorem says that it is true for k = 2 with n = `; see [5, 28, 34]. Conjec-
ture 13 is related to the Hales-Jewett Theorem [21, 32], which states that for sufficiently
large d, every k-colouring of the grid [1, `− 1]d contains a monochromatic “combinatorial”
line of length `− 1.
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