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Three-Dimensional Orthogonal Graph
Drawing with Optimal Volume1

Therese Biedl,2 Torsten Thiele,3 and David R. Wood4

Abstract. An orthogonal drawing of a graph is an embedding of the graph in the rectangular grid, with
vertices represented by axis-aligned boxes, and edges represented by paths in the grid that only possibly
intersect at common endpoints. In this paper we study three-dimensional orthogonal drawings and provide
lower bounds for three scenarios: (1) drawings where the vertices have a bounded aspect ratio, (2) drawings
where the surfaces of vertices are proportional to their degrees, and (3) drawings without any such restrictions.
Then we show that these lower bounds are asymptotically optimal, by providing constructions that in all
scenarios match the lower bounds within a constant factor.
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1. Introduction. Graph drawing is a field with a wide range of applications, for exam-
ple in network visualisation, data base design, and telecommunications. See the recent
book [11] for an overview of techniques in graph drawing. Orthogonal graph draw-
ing, where edges are routed along a rectangular grid, is a popular drawing style with
applications in data flow diagrams, entity relationship diagrams, and VLSI design.

In this paper we study three-dimensional orthogonal graph drawings, and in particular,
focus on minimising the volume of such drawings. We improve on previous results by
generalising the existing lower bounds on the volume, and giving new constructions
with smaller volume. In fact, for three different drawing scenarios, our upper and lower
bounds are matching up to a constant factor, and are hence asymptotically optimal. To
state our results precisely, we first give formal definitions and notation.

The (three-dimensional) rectangular grid is the cubic lattice, consisting of grid points
with integer coordinates, together with the axis-parallel grid lines determined by these
points. We use the word box to mean a three-dimensional axis-parallel box whose corners
have integer coordinates. That is, a box B is a set of points

{(pX , pY , pZ ) : lI ≤ pI ≤ rI , I ∈ {X, Y, Z}}
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for some integers lI , rI , I ∈ {X, Y, Z}. At each grid point in a box B that is extremal in
some direction d ∈ {±X,±Y ± Z}, there is port on B in direction d. One grid point can
thus define up to six incident ports. For each dimension I ∈ {X, Y, Z}, an I -line is a line
parallel to the I -axis, an I -segment is a line-segment within an I -line, and an I -plane is
a plane perpendicular to the I -axis.

Let G = (V, E) be a graph, which is allowed to have parallel edges but no self-
loops. We denote the number of vertices of G by n = |V |, the number of edges of G
by m = |E |, and the maximum degree of G by �(G), or � if the graph in question is
clear.

An orthogonal (box-)drawing of G represents vertices by pairwise non-intersecting
boxes. Hence vertices are possibly degenerate, in the sense that they may be represented
by a rectangle or even a line-segment or a point. This is the approach taken in [5], [8],
[25], and [26], but not in [21]. (Enlarging vertices to remove this degeneracy increases
the volume by a multiplicative constant.) An edge vw ∈ E is represented by a sequence
of contiguous segments of grid lines possibly bent at grid points, between ports on the
boxes of v and w. The intermediate grid points along the path representing an edge do
not intersect the box of any vertex or any other edge route.

An orthogonal drawing with a particular shape of box representing every vertex, e.g.
point, line-segment, or cube, is called an orthogonal shape-drawing for each particular
shape. Initial research in orthogonal drawing was mostly concerned with point-drawings;
see for example [9], [10], [12], [13], [21], [28], and [29]. However, three-dimensional
orthogonal point-drawings can only exist for graphs with maximum degree at most six.
Overcoming this restriction has motivated recent interest in orthogonal box-drawings
[5], [8], [21], [25], [26]. Related research in three-dimensional VLSI includes [1], [2],
[18], [22], and [23].

From now on, we use the term drawing to mean a three-dimensional orthogonal
box-drawing. Furthermore, the graph-theoretic terms “vertex” and “edge” also refer to
their representation in a drawing. The size of a vertex v in a drawing is denoted by
X (v) × Y (v) × Z(v), where for each I ∈ {X, Y, Z}, I (v) is one more than the length
of the side of (the box of) v parallel to the I -axis. Thus, if the boundaries of v are rI (v)

and lI (v) then I (v) = rI (v)− lI (v)+ 1. The number of ports of v is called its surface,
denoted by surface (v). The number of grid points in a box is called its volume.

The smallest box enclosing a drawing is called the bounding box of the drawing. The
volume of a drawing is the volume of its bounding box. The volume and the maximum
number of bends per edge are the most commonly proposed measures for determining
the quality of a drawing. For box-drawings, the size and shape of a vertex with respect
to its degree are also considered an important measure of quality. We use the following
two measures for the shape of a vertex:

DEGREE-RESTRICTED DRAWINGS . A vertex v in a drawing is strictly α-degree-
restricted if

surface(v) ≤ α · deg(v)

for some constant α ≥ 1. If there exists a constant α such that every vertex in a drawing
is strictly α-degree-restricted then the drawing is strictly degree-restricted, or strictly
α-degree-restricted if we wish to emphasise the value of the constant.
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For some drawing algorithms, the minimum α such that the drawings produced by
the algorithm are strictly α-degree-restricted does not necessarily reflect the asymptotic
relationship between the surface and the degree of the vertices. We therefore say that in
a drawing, a vertex v is α-degree-restricted if

surface(v) ≤ α · deg(v)+ o (deg(v)).

If for some constant α, every vertex v is α-degree-restricted then the drawing is degree-
restricted or α-degree-restricted. This definition enables us to compare the asymptotic
behaviour of α for various algorithms.

Clearly, if a drawing is strictly degree-restricted then it is also degree-restricted.
Conversely, it is easily seen that the degree-restricted drawings produced by the al-
gorithm presented in this paper (and all known algorithms) are also strictly degree-
restricted, thus for our purposes the two notions coincide. It is necessary to distin-
guish the two terms as the lower bound in Theorem 2 is for strictly degree-restricted
drawings.

ASPECT RATIO. The aspect ratio of a vertex v is the ratio between its largest and
smallest side, i.e.,

max{X (v), Y (v), Z(v)}/min{X (v), Y (v), Z(v)}.
In particular, a vertex with aspect ratio one is a cube. A drawing has bounded aspect
ratios if there exists a constant r such that all vertices have aspect ratios at most r . Note
that necessarily r ≥ 1.

There is no inherent relationship between whether a drawing is degree-restricted or has
bounded aspect ratios. Previously, algorithms have been presented that give drawings
that are degree-restricted, but do not have bounded aspect ratios [5], [25], [26]. It is
conceivable that a drawing could have bounded aspect ratios, but not be degree-restricted
(for example, by representing each vertex vwith a deg(v)×deg(v)×deg(v) box), though
no algorithms to create such drawings have been presented, and as our lower bound results
show, no improvement in volume is possible by doing so.

1.1. Lower Bounds. For a graph G, denote by vol(G, r, α) the minimum volume, taken
over all (orthogonal) drawings of G that have aspect ratios at most r and are strictly α-
degree-restricted. Let vol(n,m, r, α) be the maximum, taken over all graphs G with n
vertices and m edges, of vol(G, r, α). Thus, vol(n,m, r, α) describes a volume bound
within which we can draw all graphs with n vertices and m edges such that each vertex
v has aspect ratio at most r and surface at most α · deg(v).

The first lower bounds on the volume were due to Hagihara et al. [16].5 They show
that, in the above notation, vol(n,m, 1, 1) = 
(max{n�2, (n�/ log n)3/2}). In fact, in
their construction the graphs are�-regular. Hence m = 1

2 n�, which allows us to restate
their result as

vol(n,m, 1, 1) = 
 (max
{
m�, (m/ log n)3/2

})
.

5 This paper seems widely unknown in the graph drawing community.
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In this paper, we show that:

• vol(n,m,∞,∞) = 
(m√n).
• vol(n,m, r,∞) = 
(m3/2/

√
r).

• vol(n,m,∞, α) = 
(m3/2/α).

We thus improve the results of [16] in three ways: Firstly, we remove the log-factor
to establish vol(n,m, 1, 1) = 
(m3/2) as the lower bound. Secondly, we show that the
result holds even if only one of the conditions of having bounded aspect ratios and being
strictly degree-restricted holds. Finally, we also study the case when neither of these
two conditions hold. The lower bound here appears weaker, but as we prove by giving a
construction later, it is asymptotically optimal.

Our first result includes the lower bound of
(n5/2) for drawings of Kn established by
Biedl et al. [8]. In fact, the proofs of our lower bounds are based on techniques developed
in that paper, generalised to graphs with fewer edges.

1.2. Algorithms. A trade-off between the maximum number of bends per edge route
and the bounding box volume is apparent in algorithms for orthogonal graph drawing.
(Eades et al. [13] discuss this phenomena in the case of orthogonal point-drawings.)
Biedl et al. [8] construct drawings of Kn withO(n5/2) volume and three bends per edge,
but these drawings are not degree-restricted. They also construct drawings of Kn with
O(n3) volume and one bend per edge, but these drawings are degree-restricted only for
graphs where all vertices have degree θ(n). Wood [27] obtained drawings with one bend
per edge andO(n3/2m) volume. Biedl [4] showed that
(n3) volume is required for Kn

if only one bend per edge is allowed.
A drawing is in general position if no two vertices are in a common grid plane.

The algorithm of Papakostas and Tollis [21] produces general position drawings with
O(m3) volume. This bound has been improved to O((nm)3/2) for cube-drawings and
O(n2m) for line-segment-drawings in general position by Biedl [5] and Wood [25],
respectively.

The lifting half-edges technique developed by Biedl [5] generates drawings of simple
graphs starting with a two-dimensional general position drawing [7] (possibly with
overlapping edges). The edge routes are partitioned into sub-drawings each consisting
of X -segments or Y -segments. Each sub-drawing is then assigned its own Z -plane,
vertices are extended to form lines passing through each layer, and vertical segments are
added to the edges in such a way as to avoid crossings. Using this technique an improved
volume bound ofO(n2�) is attained. This bound has been improved toO(nm), although
the drawings are no longer degree-restricted [27]. At the cost of an increase in volume,
cube-drawings can also be produced in the lifting half-edges model.

The plane-drawing technique consists of positioning vertices in the (Z = 0)-plane,
and then routing edges above and possibly also below the (Z = 0)-plane. The two
algorithms presented in this paper use the plane-drawing technique. The first algorithm
produces degree-restricted cube-drawings withO(m3/2)volume and at most six bends per
edge. The technique used is a generalisation of the COMPACT algorithm of Eades et al. [13]
for point-drawings, and is an improvement on the algorithms of Hagihara et al. [16] and
Wood [26], who obtained upper bounds of O((n�)3/2) and O(m2/

√
n), respectively.

Our second algorithm produces box-drawings with O(m
√

n) volume and at most four
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Table 1. The trade-off between volume and the maximum number of bends in orthogonal graph drawings for
various quality measures. All lower bounds are proved in Theorem 2.

Lower Bound Volume Bends Model Graphs Reference

Bounded aspect ratio / degree-restricted

(m3/2) O((nm)3/2) 2 General position Simple [5], [25]

(m3/2) O(nm

√
�) 2 Lifting half-edges Simple [5]


(m3/2) O(m2) 5 Plane layout Multigraphs Theorem 4

(m3/2) O((n�)3/2) 10 Plane layout Simple [16]∗

(m3/2) O(m3/2) 6 Plane layout Multigraphs Theorem 3

No bounds on aspect ratio / degree-restricted

(m3/2) O(n2m) 2 General position Simple [5], [25]

(m3/2) O(n2�) 2 Lifting half-edges Simple [5]

(m3/2) O(m2) 5 Plane layout Multigraphs Theorem 4

(m3/2) O(m3/2) 6 Plane layout Multigraphs Theorem 3

No bounds on aspect ratio / not necessarily degree-restricted

(m
√

n) O(n3) 1 Lifting edges Simple [8]

(m
√

n) O(n3/2m) 1 Lifting edges Simple [27]

(m
√

n) O(nm) 2 Lifting half-edges Simple [27]

(m
√

n) O(n5/2) 3 Lifting edges Simple [8]

(m
√

n) O(nm) 3 Plane layout Multigraphs Theorem 6

(m
√

n) O(m
√

n) 4 Plane layout Simple Theorem 5

∗Hagihara et al. [16] did not consider the number of bends per edge; we deduce the bound of 10 from their
construction.

bends per edge; these drawings are not degree-restricted nor do the vertices have bounded
aspect ratios.6

Both upper bounds are therefore within a constant factor of the lower bound. We also
present refinements of both our algorithms with one less bend per edge, at the cost of
an increase in the volume. Table 1 summarises the known bounds for orthogonal graph
drawing.

2. Lower Bounds. In this section we prove lower bounds on the volume of orthogonal
graph drawings. Such lower bounds were previously only known for drawings of the
complete graph Kn [8]. The crucial argument for Kn is that between any two disjoint
vertex sets of size θ(n) in Kn , there are θ(n2) edges. To generalise this to arbitrary graphs,
we first exhibit graphs such that between any two disjoint vertex sets of size θ(n) there
are θ(m) edges. Then we use an argument similar to that in [8] to obtain lower bounds
on the volume.

2.1. Graphs with Large Cuts. Suppose G = (V, E) is a graph and S, T ⊂ V are
disjoint sets of vertices. Let e(S, T ) denote the number of edges between S and T . For
our lower bound proofs, we need graphs for which e(S, T ) is large under some conditions
on S and T , and we prove the existence of such graphs in the following lemma.

6 These results assume that m ≥ n, which one would expect in most applications. If m < n then the volume
of the drawings produced isO(n3/2) in both constructions.
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LEMMA 1. If p �= q are primes, p ≡ 1 mod 4, q ≡ 1 mod 4, 144 ≤ p < q(q − 1)/2,
then there exists a simple n-vertex graph G p,q = (V, E) with the following properties:

• G p,q is d-regular with d = p + 1.
• q(q − 1)/2 ≤ n ≤ q(q − 1).
• For any disjoint sets S, T ⊂ V of vertices of G p,q with |S||T | ≥ n2/36 we have

e(S, T ) ≥ C · dn,

where C ≈ 0.00009 is a constant.

Before proving this lemma, we need some background. For a graph G, denote by
λ(G) the second largest eigenvalue of its adjacency matrix. The following well-known
inequality (see, for example, [3, pp. 119–125] and [24]) relates λ(G) to the cut property
we are interested in.

LEMMA 2. Let G = (V, E) be a d-regular n-vertex graph with second largest eigen-
value λ(G). Then, for all disjoint sets S, T ⊂ V, we have

e(S, T ) ≥ d|S||T |
n
− λ(G)

√
|S||T |.

This lemma suggest looking for graphs G with small λ(G). Fortunately, such graphs
(called Ramanujan graphs) have already been constructed.

LEMMA 3 [19], [20]. If p �= q are primes, p ≡ 1 mod 4, q ≡ 1 mod 4, then there
exists a simple n-vertex graph G p,q = (V, E) with the following properties:

• G p,q is d-regular with d = p + 1.
• q(q − 1)/2 ≤ n ≤ q(q − 1).
• λ(G p,q) ≤ 2

√
d − 1.

REMARK. This second-largest eigenvalue is known to be asymptotically optimal, see
[19].

Now we are in a position to prove Lemma 1.

PROOF. Given p and q , construct the graph G p,q = (V, E) as in Lemma 3. Let S, T ⊂
V be two disjoint sets of vertices of G p,q with |S||T | ≥ n2/36. From Lemma 2, we know
that

e(S, T ) ≥ d|S||T |
n
− λ(G p,q)

√
|S||T |.

Since |S||T | ≥ n2/36 and d = p + 1 ≥ 145,

λ(G p,q)
√
|S||T | ≤ 2

√
d − 1

√
|S||T |·6

√
|S||T |/n︸ ︷︷ ︸
≥1

·
√

d/
√

145︸ ︷︷ ︸
≥1

≤ 12/
√

145·d|S||T |/n.
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Hence,

e(S, T ) ≥ (1− 12/
√

145) · d|S||T |/n ≥ 1
36 (1− 12/

√
145)dn,

which proves the claim for C = 1
36 (1− 12/

√
145) ≈ 0.000096.

For future reference, we will call the constant C the Ramanujan constant.

2.2. Lower Bounds on the Volume of Drawings. We start by proving the lower bound
for those graphs that satisfy the conditions of Lemma 1. The proof is based on the
technique developed in [8], which distinguishes three cases: (1) there exists a grid line
that intersects many vertices, (2) every grid plane intersects few vertices, or (3) neither
of these is the case. Our approach is different in two ways: we use graphs with large
cuts, rather than Kn , and we incorporate considerations of the aspect ratio and degree-
restrictions.

THEOREM 1. Let G = (V, E) be a d-regular simple graph with n ≥ 8 vertices such
that for any disjoint sets S, T ⊂ V with |S||T | ≥ n2/36 we have e(S, T ) ≥ C ·dn. Then
for all α ≥ 1 and for all r ≥ 1,

• vol(G,∞,∞) ≥ 1
3 C3/2 · dn3/2,

• vol(G, r,∞) ≥ 1
3 C3/2 · (dn)3/2/

√
r ,

• vol(G,∞, α) ≥ 1
3 C2 · (dn)3/2/α.

PROOF. Consider an orthogonal drawing of G in a grid of dimensions X × Y × Z .

Case 1: A line intersects many vertices. Assume that there exists a Z -line that inter-
sects at least 2� 1

6 n� vertices. Let v1, . . . , vt be the vertices intersected by the Z -line,
listed in order of occurrence along the line. Let Z0 be a not necessarily integer Z -
coordinate such that the (Z = Z0)-plane intersects none of these t vertices and separates
the first � 1

6 n� of them from the remaining ones, of which there are at least � 1
6 n�.

By assumption at least C · dn edges connect these two groups. These edges cross the
(Z = Z0)-plane, which thus must contain at least C · dn points having integer X - and
Y -coordinates. Hence XY ≥ C · dn. Since the Z -line intersects at least 2� 1

6 n� ≥ 1
3 n

vertices, we have Z ≥ 1
3 n. Thus XYZ ≥ 1

3 C · dn2 ≥ 1
3 C3/2 · (dn)3/2 since C ≤ 1 and

d ≤ n. This proves all claims.
Similarly, one proves all claims if any X -line or any Y -line intersects at least 2� 1

6 n�
vertices.

Case 2: No plane intersects many vertices. Assume that any X -plane, Y -plane, or Z -
plane intersects at most n − 2� 1

6 n� + 1 vertices. A vertex is left of an (X = X0)-plane
if all the points in its grid box have X -coordinates less than X0. The notion of right of
an (X = X0)-plane is analogous. As an (X = X0)-plane is swept from smaller to larger
values of X0, it intersects at most n − 2� 1

6 n� + 1 vertices at any time by assumption.
During the sweep by the (X = X0)-plane, an integer X ′ is encountered where, for the

last time, there are at most � 1
6 n� − 1 vertices to the left of the (X = X ′)-plane. Since

the (X = X ′)-plane intersects at most n − 2� 1
6 n� + 1 vertices, there are at least � 1

6 n�
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vertices to the right of the (X = X ′)-plane. All these vertices also lie to the right of the
(X = X ′+ 1

2 )-plane.
By definition of X ′, the number of vertices that lie left of the (X = X ′+1)-plane is at

least � 1
6 n�. All these vertices also lie to the left of the (X = X ′+ 1

2 )-plane.
By assumption there are at least C · dn edges between the vertices on the left and

the vertices on the right of the (X = X ′+ 1
2 )-plane, thus YZ ≥ C · dn. Since the same

argument holds for the other two directions, XYZ = √XY · YZ · XZ ≥ (C · dn)3/2,
which proves all claims.

Case 3: A plane intersects many vertices. Assume now that none of the previous cases
hold. Therefore any X -line, Y -line, or Z -line intersects at most 2� 1

6 n� − 1 vertices,
but there exists, say, a (Z = Z0)-plane that intersects at least n − 2� 1

6 n� + 2 ≥ 2
3 n

vertices. As an (X = X0)-plane is swept from smaller to larger values of X0, the Y -line
determined by the intersection of this (X = X0)-plane with the (Z = Z0)-plane sweeps
the (Z = Z0)-plane. At any time, this Y -line intersects at most 2� 1

6 n� − 1 vertices by
assumption.

During the sweep by the (X = X0)-plane, an integer X ′ is encountered where, for the
last time, there are at most � 1

6 n�−2 vertices left of the (X = X ′)-plane and intersecting the
(Z = Z0)-plane. Since the Y -line determined by the intersection of the (X = X ′)-plane
and the (Z = Z0)-plane intersects at most 2� 1

6 n� − 1 vertices, and the (Z = Z0)-plane
intersects at least n − 2� 1

6 n� + 2 vertices, at least n − 5� 1
6 n� + 5 vertices intersect the

(Z = Z0)-plane and lie to the right of the (X = X ′)-plane. All these vertices, which we
denote by S, also lie to the right of the (X = X ′+ 1

2 )-plane.
By definition of X ′, the number of vertices that intersect the (Z = Z0)-plane and that

lie left of the (X = X ′+1)-plane is at least � 1
6 n�−1. All these vertices, which we denote

by T , also lie to the left of the (X = X ′+ 1
2 )-plane.

Note that |S||T| ≥ (n − 5� 1
6 n� + 5)(� 1

6 n� − 1), and we claim that this is at least
1

36 n2. If n ≡ 0 mod 6 then |S||T| ≥ (n − 5
6 n + 5)( 1

6 n − 1) = 1
36 n2 + 4

6 n − 5 ≥ 1
36 n2

(since n ≥ 8). If n ≡ k mod 6 for some k, 1 ≤ k ≤ 5, then � 1
6 n� = 1

6 (n + 6 − k) and
|S||T| ≥ (n− 5

6 (n+ 6− k)+ 5)( 1
6 (n+ 6− k)− 1) = 1

36 (n
2+ 4kn− 5k2) ≥ 1

36 n2 since
n ≥ 8 and k ≤ 5.

By assumption there are at least C · dn edges between S and T , thus YZ ≥ C · dn.
Apply exactly the same argument in the Y -direction to obtain YZ ≥ C · dn.

Now we obtain the three lower bounds as follows:

• The (Z = Z0)-plane intersects at least 2
3 n vertices, thus XY ≥ 2

3 n. This implies

XYZ = √XY · YZ · X Z ≥
√

2
3 n · (C · dn)2 =

√
2
3 C · dn3/2, which proves the first

lower bound.
• Assume that every vertex has aspect ratio at most r (r ≥ 1). In particular, therefore,

Z(v) ≤ r X (v) and Z(v) ≤ rY (v) for every vertex v. Since the surface of v is at least
deg(v), we have deg(v) ≤ 2(X (v)Y (v)+ Y (v)Z(v)+ X (v)Z(v)) ≤ 6r X (v)Y (v).

Thus, every vertex v that intersects the (Z= Z0) has X (v)Y (v)≥deg(v)/6r=d/6r .
Since the (Z = Z0)-plane intersects at least 2

3 n vertices, and these intersections
are disjoint, there is at least 2

3 n · d/6r grid points in the (Z = Z0)-plane. Hence
XY ≥ 1

9 · dn/r .
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Therefore

XYZ =
√

XY · Y Z · X Z ≥
√

1
9 · dn/r · (C · dn)2 = 1

3 C · (dn)3/2/
√

r ,

which proves the second lower bound.
• Assume now that the drawing is strictly α-degree-restricted for some α ≥ 1. If

X > Cn/α and Y > Cn/α, then XY > C2n2/α2, and XYZ = √XY · YZ · XZ ≥√
(C2 · n2/α2) · (C · dn)2 = C2 · dn2/α ≥ C2 · (dn)3/2/α since d ≤ n, which proves

the claim.
So assume Y ≤ Cn/α; the case X ≤ Cn/α is similar. Since the drawing is strictly

α-degree-restricted, the surface of every vertex v is at most α · deg(v) = αd, and
therefore Z(v) < αd/4.

Define Z− = Z0−αd/4 and Z+ = Z0+αd/4. A point is inside if its Z -coordinate
z satisfies Z− < z < Z+, and outside otherwise. Every vertex v in S and T crosses
the (Z = Z0)-plane. Since Z(v) < αd/4, v crosses neither the (Z = Z−)-plane nor
the (Z = Z+)-plane, and thus all ports of v are inside.

Define X∗ = X ′ + 1
2 ; we have shown above that at least C · dn edges cross the

(X = X∗)-plane. Of these, at least C · dn− Y ·αd/2 edges cross the (X = X∗)-plane
at an outside point, because there are at most Y · αd/2 inside points with integer Y -
and Z -coordinate on the (X = X∗)-plane.

Each of these C · dn − Y · αd/2 edges start at a vertex in S (and hence at an
inside point), cross the (X = X∗)-plane at an outside point, and end at a vertex in T
(also at an inside point). This implies that each edge crosses either the (Z = Z−)-
plane or the (Z = Z+)-plane at least twice. Thus these two planes together have
at least 2(C · dn − Y · αd/2) points with integral X - and Y -coordinate. Therefore
XY ≥ C · dn− Y · αd/2 ≥ C · dn/2 since Y ≤ Cn/α, and XYZ = √XY · YZ · XZ ≥√

1
2 C · dn · (C · dn)2 = 1√

2
C3/2 · (dn)3/2.

Using this theorem, we construct the lower bound for arbitrary values of m and n,
as long as both are large enough. Before proving this, we need to show that primes
congruent to 1 modulo 4 are frequent.

LEMMA 4. There exist constants k ≥ 2 and x1 ≥ k such that for all x ≥ x1, the interval
[(1/k)x, x] contains a prime number p with p ≡ 1 mod 4.

PROOF. Denote by π4,1(x) the number of primes p ≤ x that satisfy p ≡ 1 mod 4. A
famous theorem by de la Vallée Poussin establishes that

π4,1(x) = θ
(

1

ϕ(4)
· x

log x

)
,

where ϕ is Euler’s function, in particular, ϕ(4) = 2. See, for example, [15] for a proof.
Let c1, c2, x0 be constants such that c2 ≥ c1 and

c1 · x

log x
≤ π4,1(x) ≤ c2 · x

log x
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for all x ≥ x0. Let k = 2c2/c1. Choose x1 ≥ k · x0 so that log(k) ≤ 1
4 log(x) and

x/ log x ≥ 3/c1 for all x ≥ x1. Then

π4,1(x)−π4,1

(
1

k
x

)
≥c1

x

log x
−c2

(c1/2c2)x

log(1/k)+log x
≥ c1x

log x
−

1
2 c1x

3
4 log x

≥ 1

3

c1x

log x
≥1.

Hence there is at least one prime number ≡ 1 mod 4 between (1/k)x and x .

To establish this lower bound, we prove that for sufficiently large n and sufficiently
large m there exists a graph G with n vertices and m edges that has an induced subgraph
G ′ that satisfies the conditions of Theorem 1. Moreover, G ′ is asymptotically as big as
G, i.e., G ′ has θ(n) vertices and θ(m) edges. G ′ is also d ′-regular, and vertices in G ′

have degree θ(d ′) in G. The precise conditions are as follows:

LEMMA 5. Let n ≥ max{32k4, 2x2
1} and m ≥ max{ 14 (144x1 + 1)n, 145

4 kn}, where
k ≥ 2 and x1 ≥ k are the constants of Lemma 4. Then there exists a simple graph G
with n vertices and m edges that has a d ′-regular subgraph G ′ with n′ vertices and m ′

edges such that:

• G ′ satisfies the conditions of Theorem 1.
• n ≥ n′ ≥ n/8k2.
• m ≥ m ′ = d ′n′/2 ≥ m/64k4.
• Every vertex of G ′ has degree at most 8k2d ′ in G.

PROOF. The proof splits into two cases, depending on the size of m. If m is big enough,
then G ′ can be a complete graph; if m is small, then we use a Ramanujan graph for G ′. In
both cases we “pad” G ′ with additional vertices and edges to achieve the desired number
of vertices and edges.

Case 1: m ≥ n2/64k4. In this case let G ′ be the complete graph on n′ = �n/8k2� + 1
vertices.

Clearly, G ′ as a complete graph satisfies the conditions of Theorem 1. Also, n/8k2+
1 ≤ n′ ≤ n/8k2 + 2 ≤ n. G ′ has m ′ = (n′

2

)
edges, which is not too many, since

m ′ ≤ (n′)2/2 ≤ (n/8k2+2)2/2 = n2/128k4+n/4k2+2 ≤ n2/64k4 ≤ m by n ≥ 32k4.
Also, m ′ = (n′

2

) ≥ (n/8k2)2/2 = 1/64k4 · n2/2 ≥ 1/64k4 · m since m ≤ (n
2

)
.

To obtain G, add n − n′ vertices to G ′, and add m −m ′ arbitrary edges such that the
resulting graph is simple; this is possible since m ≤ (n

2

)
. The maximum degree of G is

at most n − 1. G ′ is d ′-regular with d ′ = n′ − 1 ≥ n/8k2. Hence the degree (in G) of
any vertex in G ′ is at most n − 1 ≤ n ≤ 8k2d ′.

Case 2: m < n2/64k4. In this case, G ′ will be a Ramanujan graph G p,q for some care-
fully chosen primes p and q .

Let q ′ = 1
2 +

√
n/2+ 1

4 , which implies that q ′(q ′ − 1) = n/2, q ′ ≤ √n/2+ 1, and

q ′ ≥ √n/2 ≥ x1. Find a prime q with q ≡ 1 mod 4 such that (1/k)q ′ ≤ q ≤ q ′; this
exists by Lemma 4. Note that q(q − 1) ≤ q ′(q ′ − 1) = n/2. Also, since n ≥ 32k4

we have
√

n/2 ≤ n/8k2 and 1 ≤ n/8k2. Hence
√

n/2 + 1 ≤ n/4k2 and q(q − 1) ≥
q2 − q ≥ (q ′)2/k2 − q ′ ≥ n/2k2 − (√n/2+ 1) ≥ n/4k2.
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Let p′ = 2m/q(q − 1) − 1; since m ≥ 1
4 (144x1 + 1)n and q(q − 1) ≤ n/2 this

implies that p′ ≥ 144x1. Find a prime p with p ≡ 1 mod 4 such that (1/k)p′ ≤ p ≤ p′;
this exists by Lemma 4. We have p ≥ (1/k)p′ ≥ (1/k)144x1 ≥ 144. Also, since
m ≤ n2/64k4 and q(q − 1) ≥ n/4k2 we have

p ≤ p′ <
2n2

64k4

1

q(q − 1)

(
q(q − 1)

n/4k2

)2

= q(q − 1)

2
.

Let G ′ be the graph G p,q for primes p and q as defined in Lemma 1, and suppose
it has n′ vertices and m ′ edges. By Lemma 1, G ′ satisfies the conditions of Theorem 1.
Also,

n ≥ n

2
≥ q(q − 1) ≥ n′ ≥ 1

2 q(q − 1) ≥ n

8k2
.

By definition G ′ is d ′-regular with d ′ = p + 1 ≤ p′ + 1, thus m ′ satisfies

m ′ = 1
2 (p + 1)n′ ≤ 1

2 (p
′ + 1)q(q − 1) = m

and

m ′ = 1
2 (p + 1)n′ ≥ 1

2k
(p′ + k) 1

2 q(q − 1) ≥ 1

2k
m.

Create G by adding n − n′ vertices to G ′. Since m < n2/64k4 we have 2m ≤ n2/32 ≤
(n/2− 1)2 ≤ (n − q(q − 1)− 1)2 ≤ (n − n′ − 1)2, hence m ≤ (n−n′

2

)
and we can add

m−m ′ edges between the n−n′ added vertices in such a way that G is simple. Note that
no incident edges were added to any vertex in G ′; in particular, the degree of vertices in
G ′ remains d ′. This completes the proof.

Now we use these graphs to prove the lower bounds for almost any value of n and m.

LEMMA 6. Let C ≤ 1 be the Ramanujan constant and let k ≥ 2 and x1 be the constants
of Lemma 4. Then for any n ≥ max{32k4, 2x2

1} and m ≥ max{ 14 (144x1 + 1)n, 145
4 kn},

there exists a graph G with n vertices and m edges such that:

• vol(G,∞,∞) ≥ √2/(384k5) · C3/2 · m√n.
• vol(G, r,∞) ≥ √2/(768k6) · C3/2 · m3/2/

√
r .

• vol(G,∞, α) ≥ √2/(6144k8) · C2 · m3/2/α.

PROOF. Let G be the graph of Lemma 5. Any drawing of G contains a drawing of G ′,
and thus has volume at least 1

3 C3/2d ′(n′)3/2 by Theorem 1. Using the known bounds on
n′ and m ′ from Lemma 5, we obtain a lower bound on the volume of at least

1
3 C3/2 · 2m ′ ·

√
n′ ≥ 2

3 C3/2 · m/64k4 ·
√

n/8k2 =
√

2/(384k5) · C3/2 · m√n,

which proves the first claim.
If the drawing of G has aspect ratios at most r , then so does the drawing of G ′, which

thus has volume at least 1
3 C3/2(d ′n′)3/2/

√
r , which is at least

1
3 C3/2 · (2m ′)3/2/

√
r ≥
√

8/3 ·C3/2 · (m/64k4)3/2/
√

r =
√

2/(768k6) ·C3/2 ·m3/2/
√

r;
this proves the second claim.
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If the drawing of G is strictly α-degree-restricted, then every vertex in G ′ has surface
at mostα8k2d ′. Thus the drawing of G ′ is strictlyα8k2-degree-restricted, and has volume
at least 1

3 C2(d ′n′)3/2/α8k2, which is at least

1/24k2 ·C2 ·(2m ′)3/2/α ≥
√

2/12k2 ·C2 ·(m/64k4)3/2/α =
√

2/(6144k8) ·C2 ·m3/2/α;

this proves the third claim.

From Lemma 6 we can conclude the main result of this section.

THEOREM 2. We have the following lower bounds:

• vol(n,m,∞,∞) = 
(m√n).
• vol(n,m, r,∞) = 
(m3/2/

√
r).

• vol(n,m,∞, α) = 
(m3/2/α).

3. Constructions. In the following we give two constructions. The first creates degree-
restricted cube-drawings with asymptotically optimal volume. The second creates draw-
ings without restrictions on vertex boxes; again the drawings produced have asymptoti-
cally optimal volume.

3.1. Cube-Drawings. In the following algorithm for producing orthogonal drawings,
each vertex v is initially represented by a square of size O(

√
deg(v))×O(√deg(v)) in

the (Z = 0)-plane. (The algorithm by Hagihara et al. [16] is similar in spirit, but uses
squares of sizeO(

√
�) for each vertex, and hence results in a drawing withO((n�)3/2)

volume.) Edges are then routed either above or below the (Z = 0)-plane in a similar
manner to the COMPACT point-drawing algorithm of Eades et al. [13]. Finally, the vertices
are extended in the Z -dimension to form cubes.

Algorithm OPTIMAL VOLUME CUBE-DRAWING

Input: graph G = (V, E).
Output: orthogonal drawing of G.

1. Initially represent each vertex v ∈ V by a square Sv with side length

2
⌈√�deg(v)/2� + 1

⌉
.

2. Position the squares {Sv : v ∈ V } in the (Z = 0)-plane with the square-
packing algorithm of Kleitman and Krieger [17]. Note that squares may
touch, and since all squares have even side length, we may assume that
all corners of the squares have even coordinates.

3. For each vertex v ∈ V , remove the top two rows from Sv and the two
rightmost columns from Sv . Vertices are now disjoint; see Figure 1.

4. Pair the odd degree vertices in G, and add an edge between the paired
vertices. All vertices now have even degrees. Orient the edges of G and
alternately label the edges “+” and “−” by following an Eulerian tour of
G. Remove the added edges.
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Fig. 1. Positioning the vertices with a square-packing.

5. Assign each edge vw ∈ E labelled “+” unique Z+ ports at v andw both
with an even X -coordinate and an even Y -coordinate.

6. Construct a graph H = (VH , EH ) with vertex set VH corresponding to
the edges of G labelled “+”. For oriented edges vw, xy ∈ E , add the
edge {vw, xy} to EH if the port assigned to vw at v is in the same column
as the port assigned to xy at x , or the port assigned to vw at w is in the
same row as the port assigned to xy at y.

7. Determine a proper vertex-colouring of H using the sequential greedy
algorithm (with colours {1, 2, . . . , �(H)+ 1}). For each vertex of H
coloured i corresponding to an edge vw in E , set the height h(vw)← i .

8. For each oriented edge vw ∈ E labelled “+”, construct an edge route for
vw as follows. Suppose the ports on v and w assigned to vw have co-
ordinates (vX , vY , 0) and (wX , wY , 0), respectively. Route the edge vw
with one of the following 4- or 6-bend routes, as illustrated in Figure 2:
• vX =wX : (vX , vY , 0)→(vX , vY , 2h(vw))→(vX +1, vY , 2h(vw))→
(vX + 1, wY , 2h(vw))→ (vX , wY , 2h(vw))→ (vX , wY , 0) = (wX ,

wY , 0).
• vY =wY : (vX , vY , 0) → (vX , vY , 2h(vw) + 1) → (vX , vY + 1,

2h(vw)+1)→ (wX , vY+1, 2h(vw)+1)→ (wX , vY , 2h(vw)+1)→
(wX , vY , 0) = (wX , wY , 0).
• vX �=wX and vY �=wY : (vX , vY , 0) → (vX , vY , 2h(vw)) → (vX +

1, vY , 2h(vw)) → (vX + 1, wY + 1, 2h(vw)) → (vX + 1, wY + 1,
2h(vw) + 1) → (wX , wY + 1, 2h(vw) + 1) → (wX , wY , 2h(vw)
+ 1)→ (wX , wY , 0).

9. Repeat Steps 5–8 for the edges labelled “−” assigning Z− ports and con-
structing edge routes below the (Z = 0)-plane in an analogous manner.

10. So that each vertex is enlarged into a cube, insert enough Z -planes at
Z = 0, extend the side of each vertex parallel to the Z -axis, and possibly
lengthen incident edges labelled “−”.
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X

YZ
v

v

w

2h(vw)

x y

2h(xy) + 1

u

2h(vu)

Fig. 2. Routing edges above the (Z = 0)-plane.

THEOREM 3. Algorithm OPTIMAL VOLUME CUBE-DRAWING determines a 12-degree-
restricted cube-drawing of any loopless graph G inO(m3/2) time, withO(m3/2) volume
(assuming m ≥ n), and at most six bends per edge route.

PROOF. After Step 3.1 the square Sv has side length 2
⌈√�deg(v)/2� + 1

⌉
− 2. Since

the corners of the square have even coordinates, the number of Z+ ports on Sv with even
X - and Y -coordinates is at least

⌈√
�deg(v)/2� + 1

⌉2
≥ �deg(v)/2� + 1.

At most �deg(v)/2� + 1 edges incident to v are labelled “+”. (In fact, all vertices v,
except the starting vertex in the Eulerian tour, have at most �deg(v)/2� incident edges
labelled “+”.) Similarly, at most �deg(v)/2� + 1 edges incident to v are labelled “−”.
Thus there are enough ports on v.

If a unit-length edge segment intersects another edge route then so does one of the
adjacent non-unit-length edge segments. Therefore, to show that the drawing is crossing-
free, we need only show that non-unit-length edge segments do not intersect, and consider
only such segments in the following. Vertical segments cannot intersect because ports
are assigned to unique edges. X -segments have an odd Z -coordinate and Y -segments
have an even Z -coordinate, thus an X -segment cannot intersect a Y -segment. A vertical
segment has even X - and Y -coordinates, an X -segment has an odd Y -coordinate, and
a Y -segment has an odd X -coordinate. Thus a vertical segment cannot intersect an X -
segment or a Y -segment. Two Y -segments can only intersect if they overlap. Since edge
routes originating in the same column have different heights, two Y -segments cannot
intersect. Similarly, two X -segments can only intersect if originating in the same row,
and in this case they have different heights, thus they cannot intersect. Hence no two
edge routes can intersect.
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The total area of the squares {Sv : v ∈ V } (before Step 3.1) is∑
v

(
2
⌈√
�deg(v)/2� + 1

⌉)2
≤
∑
v

(
2 deg(v)+ 4

√
2(deg(v)+ 3)+ 10

)
,

which is

4m +O
(

n +
∑
v

√
deg(v)

)
.

By the Cauchy–Schwarz inequality,
∑

v

√
deg(v) ≤ √2nm. Since we assume that

m ≥ n it follows that n ≤ √nm and the total area of squares is therefore 4m+O(√nm).
The algorithm of Kleitman and Krieger [17] packs squares with a total area of 1 in a

2/
√

3×√2 rectangle. Thus the squares {Sv : v ∈ V } can be packed in a rectangle with
size (

4

√
m

3
+O ((nm)1/4

))× (2
√

2m +O ((nm)1/4
))
.

Hence the maximum degree of H is

�(H) ≤
(

4√
3
+ 2
√

2

)√
m +O ((nm)1/4

)
.

A greedy vertex-colouring of H requires at most �(H)+ 1 colours. Thus the height of
the drawing above the (Z = 0)-plane, and the height below the vertices is at most(

8√
3
+ 4
√

2

)√
m +O ((nm)1/4

)
.

The height of the vertices is maxv 2
⌈√
(deg(v)+ 1)/2

⌉
≤ √2�(G) + O(1) ≤√

2m +O(1),
and thus the height of the drawing is at most(

16√
3
+ 9
√

2

)√
m +O ((nm)1/4

)
.

The bounding box is therefore at most(
4

√
m

3
+O((nm)1/4

))×(2
√

2m+O((nm)1/4
))×(( 16√

3
+9
√

2

)√
m+O ((nm)1/4

))
.

A simple calculation establishes that the bounding box volume is at most(
144√

3
+ 128

√
2

3

)
m3/2 +O (m(nm)1/4

) ≤ 144m3/2 +O (m(nm)1/4
) = O (m3/2

)
.

The time-consuming stage of the algorithm is the vertex colouring of H . This can be
computed in O(|EH |) = O(|VH |�(H)) = O(m

√
m) = O(m3/2) time. The surface of

a vertex v is

6
(

2
⌈√
(deg(v)+ 1)/2

⌉)2
≤ 12 · deg(v)+O

(√
deg(v)

)
.
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Thus each vertex is 12-degree-restricted. By construction, there are at most six bends
per edge route.

Biedl and Chan [6] have developed a technique based on edge-colouring a cer-
tain bipartite graph to implement Steps 3.1 and 3.1 of Algorithm OPTIMAL VOLUME

CUBE-DRAWING more efficiently. With this technique, the time complexity reduces
to O(m log m), and the volume of the produced drawings decreases to ≈ 83m3/2 +
O
(
m(nm)1/4

)
.

The number of bends per edge can be reduced to five if we allow for an increase in
the volume.

THEOREM 4. Every loopless graph has a 12-degree-restricted cube-drawing, which
can be computed in O(m) time, with O(m2) volume, and at most five bends per edge
route.

PROOF. The claimed drawing is obtained by modifying Algorithm OPTIMAL VOLUME

CUBE-DRAWING in two ways. Number the edges e1, . . . , em , and set h(ei ) = i/2 for all i
(and hence omit Steps 6 and 7). Then in Step 8, in the case that vX �= wX and vY �= wY ,
omit the middle segment, and apply the routing (vX , vY , 0) → (vX , vY , 2h(vw)) →
(vX+1, vY , 2h(vw))→ (wX , wY+1, 2h(vw))→ (wX , wY , 2h(vw))→ (wX , wY , 0).
Since h(ei ) �= h(ej ) for all i �= j , one can easily verify that this gives a crossing-free
drawing with bounding box O(

√
m)×O(√m)×O(m).

3.2. Drawings with an Unbounded Aspect Ratio. We now show how to create drawings
of a simple graph that have volume O(m

√
n), which is optimal. The vertices have an

unbounded aspect ratio and are not necessarily degree-restricted. can easily
The following algorithm initially represents vertices by points or line segments in the

(Z = 0)-plane, and edges are routed above this plane. The vertices are then extended in
the Z -dimension to form lines or rectangles.

Algorithm OPTIMAL VOLUME BOX-DRAWING

Input: simple graph G = (V, E).
Output: orthogonal drawing of G.

1. Let N = �√n�, and define Vbig = {v ∈ V : deg(v) > 4m/N } and
Vsmall = V \Vbig.

Define Ebig to be the set of edges with both endpoints in Vbig, Ecut to
be the set of edges with exactly one endpoint in Vbig, and Esmall to be the
set of edges with both endpoints in Vsmall.

2. Let Vbig = {w1, . . . , wl}. For each vertex wj ∈ Vbig, define k(wj ) =
�deg(wj )N/4m�, and initially represent wj by the line segment with
endpoints at(

2
j−1∑
i=1

k(wi ), −2, 0

)
and

(
2

(
j∑

i=1

k(wi )− 1

)
, −2, 0

)
.
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v8

v1

w1 w2 w4w3

v0

v14

v7

v16

v9

v15

Fig. 3. Placing points and segments of vertices. Vertices w1, w2, w3 belong to Vbig.

Note thatwj has k(wj ) ≥ 2 grid points with an even X -coordinate. When
j = 1 the sum on the left is taken to be 0.

3. Add extra vertices of degree 0 to Vsmall so that Vsmall has exactly N 2 ver-
tices (simply to ease the description). Let Vsmall =

(
v0, v1, v2, . . . , vN 2−1

)
sorted by non-increasing degree. For each original vertex vk ∈ Vsmall, 0 ≤
k ≤ N 2− 1, initially represent vk by the point (2(i + j) mod 2N , 2 j, 0),
where k = i N + j for the unique pair i, j with 0 ≤ i, j ≤ N − 1. See
Figure 3.

4. Orient each edge in Ecut from the endpoint in Vbig to the other endpoint.
Orient all edges in Esmall arbitrarily.

5. For each oriented edge e = vw ∈ Ecut, assign to e a Z+-port at v with
even coordinates, such that at most �4m/N� edges are assigned to any
Z+-port of any vertex in Vbig. Assign the unique Z+-port at w to e.
For each edge e = vw ∈ Esmall, assign to e the unique Z+-ports at v
and w.

6. Construct a graph H = (VH , EH ) with vertex set VH corresponding to
the edges of Ecut ∪ Esmall. For oriented edges vw, xy ∈ Ecut ∪ Esmall, add
the edge {vw, xy} to EH if the port assigned to vw at v is in the same
column as the port assigned to xy at x , or the port assigned to vw at w is
in the same row as the port assigned to xy at y.

7. Determine a proper vertex-colouring of H using the sequential greedy
algorithm (with colours {1, 2, . . . , �(H)+ 1}). For each vertex of H
coloured i corresponding to an edge vw ∈ Ecut ∪ Esmall, set the height
h(vw)← i .

8. For each oriented edge vw ∈ Ecut ∪ Esmall construct an edge route for
vw exactly as described in Step 3.1 of Algorithm OPTIMAL VOLUME

CUBE-DRAWING.
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9. Construct edge routes for edges in Ebig by copying the 2-bend layout of
the complete graph developed in [8]. More precisely, recall that |Vbig| = l.
It is possible to partition the edges of the complete graph Kl , and therefore
Ebig, into l matchings M1,M2, . . . ,Ml such that if the edges (wi , wj ),
i < j , and (wa, wb), a < b, are in the same matching, and (say) i ≤ a,
then i < a < b < j or i < j < a < b. If the edge (wi , wj ) with i < j
belongs to matching Mk , and if the leftmost points of wi and wj have
coordinates (xi ,−2, 0) and (xj ,−2, 0), respectively, then route (wi , wj )

as

(xi ,−2, 0) → (xi ,−2, k)→(xi ,−2− �( j − i)/2�, k)

→ (xj ,−2− �( j − i)/2�, k)→(xj ,−2, k)→(xj ,−2, 0).

10. Enlarge points/lines representing vertices into lines/rectangles by extend-
ing their sides parallel to the Z -axis from the minimum to the maximum
Z -coordinate of the drawing. For each edge vw ∈ E , clip the segment of
vw incident to v if it is contained in the box representing v (and similarly
at w); see Figure 4.

To analyse the size of the resulting drawing, we need a bound on the maximum degree
of H .

LEMMA 7. The maximum degree of H in Algorithm OPTIMAL VOLUME BOX-DRAWING

is at most 16m/N − 1.

PROOF. Let xy be an arbitrary oriented edge in Ecut ∪ Esmall. Any neighbour of xy in
H must have a port in the same column as x or in the same row as y. Thus we want to
study the number of edges that have a port in a specific row/column.

X

Y
Z

e2

e1

e3

e7

e4

e5

e6

Fig. 4. A selection of edge routes in Algorithm OPTIMAL VOLUME BOX-DRAWING; e1, e2 and e3 belong to
Ebig, e4 and e5 belong to Ecut, and e6 and e7 belong to Esmall.
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Assume that xy ∈ Ecut. By the direction of edges, we know that x ∈ Vbig and
y ∈ Vsmall. If vw is a neighbour of xy in H , because w and y have ports in the same row
r , then row r contains vertices in Vsmall, and therefore this is not the row with Y -coordinate
−2. If xy ∈ Esmall, then both ports must be in a row that does not have Y -coordinate−2
because both endpoints are in Vsmall. Hence no edge in H is added because of the row
with Y -coordinate−2, which we can therefore ignore for considerations of the maximum
degree of H .

Also, notice that by the way we assign ports to edges, there are at most �4m/N�
edges in Ecut assigned to the same Z+-port of a vertex in Vbig (i.e., to a Z+-port with
Y -coordinate−2). To obtain a bound on the maximum degree, we thus need a bound on
the number of edges in H resulting from a Z+-port with a non-negative Y -coordinate.
For future reference, let a proper row/column be the intersection of a row/column with
the first quadrant, i.e., with the range of non-negative X - and Y -coordinates.

CLAIM. For any proper row and any proper column, there are at most 6m/N edges
that use a Z+-port in that row/column.

We prove this by showing that the sum of the degrees of vertices placed in any one
proper row/column is at most 6m/N . Define for i = 0, . . . , N − 1 the i th diagonal to
be the grid-points {(2(i + k) mod 2N , 2k) : k = 0, . . . , N − 1}. In Step 3.2, vertices in
Vsmall are positioned, in order of non-increasing degree, in the 0th diagonal from bottom
to top, then in the 1th diagonal from bottom to top, and so on. This implies the following
properties for each i , 0 ≤ i ≤ N − 1:

• The vertex with the largest degree in the i th diagonal is at (2i, 0), while the vertex
with the smallest degree in this diagonal is at (2(i + N − 1) mod 2N , 2(N − 1)).
• The last vertex in the i th diagonal (i.e., the vertex at (2(i+N−1) mod 2N , 2(N−1)))

has degree no larger than the first vertex in the (i + 1)th diagonal (i.e., the vertex at
(2(i + 1), 0)).

For any proper row/column, define the degree-sum as the sum of the degrees of the
vertices placed in this row/column. Denote the degree-sum of the row with Y -coordinate
2i by R(i).

Notice that each proper column and each proper row contains exactly one vertex from
each diagonal, and no other vertices. Thus the degree-sum of each proper row/column
can be at most the sum of the maximum degrees in each diagonal, and is at least the sum
of the minimum degrees in each diagonal. By the first observation above, we know that
the degree-sum of each proper row/column is at most R(0) and at least R(N − 1).

Also, by the second observation above, we know that R(0) ≤ R(N−1)+�small, where
�small is the maximum degree among all vertices in Vsmall, in particular,�small ≤ 4m/N
by the definition of Vsmall. This follows because each entry in R(0) is the first entry in
some diagonal, and can be upper bounded by the last entry in the previous diagonal. The
only exception is the first entry in the 0th diagonal, which has degree �small.

Now we can estimate

2m ≥
∑
v∈Vsmall

deg(v) =
N−1∑
i=0

R(i) ≥ N · R(N − 1) ≥ N · R(0)− N�small,
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and therefore R(0) ≤ 2m/N + �small ≤ 6m/N . Since the degree-sum of each proper
row/column is at most R(0), the claim follows.

So any vertex in H (which corresponds to an edge in Ecut∪Esmall) has at most 6m/N−1
neighbours that use a Z+-port in the same row, and at most 6m/N − 1 + �4m/N�
neighbours that use a Z+-port in the same column. Hence the maximum degree of H is
at most 16m/N − 1.

THEOREM 5. Algorithm OPTIMAL VOLUME BOX-DRAWING determines a drawing of
any simple graph G in O(m2/

√
n) time, with O(m

√
n) volume, and at most four bends

per edge route.

PROOF. First, we show that no edges overlap or intersect. Exactly as in Theorem 3, one
shows that if two edges in Ecut ∪ Esmall have different ports at both endpoints, then the
edges neither overlap nor cross. The same holds for any two edges in Ebig as discussed
in [8]. No edge of Ebig can overlap or intersect an edge in Ecut ∪ Esmall, because they are
separated by the (Y = 0)-plane.

If two edges xy and vw have a common port at one endpoint, say at x = v , then
the edges do overlap, but only at the segment incident to x = v, which is parallel to
the Z -axis. This segment will be clipped when extending the vertices in Step 3.2; hence
there is no overlap in the final drawing.

Since Vsmall contains at most n ≤ N 2 vertices, the vertices in Vsmall can be placed in
a 2N × 2N rectangle. Since deg(v) > 4m/N for all vertices v ∈ Vbig, we have

|Vbig| ≤
∑
v∈Vbig

deg(v)N

4m
≤ N

2

and ∑
v∈Vbig

k(v) =
∑
v∈Vbig

⌈
deg(v)N

4m

⌉
≤
∑
v∈Vbig

deg(v)N

4m
+ |Vbig| ≤ N ,

thus the maximum X -coordinate of a vertex in Vbig is 2N , and we need at most 2N
X -planes.

Since |Vbig| ≤ N/2, the edges in Ebig have Y -coordinate ≥ −2 − �(N/2 − 1)/2�.
Hence we need at most 9

4 N + 3 Y -planes.
In Step 5 a vertex v ∈ Vbig has at most deg(v) incident edges that need a Z+-port in

v, and there are k(v) Z+-ports at v with even coordinates. Thus, we can assign edges
to ports such that each port has at most �deg(v)/k(v)� ≤ �4m/N� edges assigned to it.
Hence there are enough ports for the edges.

A greedy vertex colouring of H requires at most�(H)+1 ≤ 16m/N colours, thus to
route the edges in Ecut∪ Esmall, we need at most 2 ·16m/N Z -planes. To route the edges
in Ebig, we need at most |Vbig| ≤ N/2 Z -planes. Since m ≥ n, we have 32m/N ≥ N/2,
and the height of the drawing above the Z = 0 plane is at most 32m/N . The bounding
box therefore has volume at most 2N × ( 9

4 N + 3) × 32m/N = 144m N + O(m) =
144m

√
n +O(m) = O(m√n).

The time-consuming stage of the algorithm is the vertex colouring of H . This can be
computed in O(|EH |) = O(|VH |�(H)) = O(m · m/N ) = O(m2/

√
n) time.
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Originally, there are at most six bends per edge route, and at most four bends per edge
route for edges in Vbig. During the clipping step, the first and last segment of each edge
gets clipped. Hence every edge has at most four bends.

The technique of Biedl and Chan [6] works for Steps 3.2 and 3.2 of Algorithm
OPTIMAL VOLUME BOX-DRAWING as well, reducing the time complexity toO(m log n),
and decreasing the volume of the produced drawings to ≈ 90m

√
n +O(m).

Note that we required G to be simple; this is necessary for the routing of the edges in
Ebig. It is not hard to show that if each edge in Ebig has multiplicity ≤ k, then all edges
in Ebig can be routed with ≤ k N Z -planes. Thus, as long as m = 
(kn), the drawing
still has O(m

√
n) volume.

In an analogous way to Theorem 4, the number of bends per edge can be reduced to
three if we allow for an increase in the volume.

THEOREM 6. Every loopless graph has a drawing, which can be computed in O(m)
time, with O(mn) volume, and three bends per edge route.

PROOF. The construction is a greatly simplified version of Algorithm OPTIMAL VOLUME

BOX-DRAWING. In particular, there is now no need for Vbig and no need to sort the vertices
by degree. Number the edges e1, . . . , em , and set h(ei ) = i/2 for all i . Arbitrarily
place the vertices at the points {(2i, 2 j, 0) : 1 ≤ i, j ≤ ⌈√

n
⌉}. Route each edge

as before, except in the case that vX �= wY and vY �= wY . Here the middle segment
is omitted, and the edge vw is routed (vX , vY , 2h(vw)) → (vX + 1, vY , 2h(vw)) →
(vX +1, wY +1, 2h(vw))→ (wX +1, wY +1, 2h(vw))→ (wX , wY , 2h(vw)). Finally
extend the points representing the vertices into Z -lines of length m. Since each edge lies
in a unique Z -plane, one can easily verify that we obtain a crossing-free drawing with
bounding box 2

⌈√
n
⌉× 2

⌈√
n
⌉× m.

Theorem 6 is particularly appropriate for multilayer VLSI as there are no vertical
edge segments or “cross-cuts”; see [2].

4. Conclusions and Open Problems. In this paper we provided asymptotically match-
ing upper and lower bounds on the volume of three-dimensional orthogonal box-
drawings, under various restrictions on the shape of vertex boxes.

In particular, we showed that any algorithm to create three-dimensional orthogonal
drawings that have bounded aspect ratios or are degree-restricted cannot do better than

(m3/2) volume. Then we gave an algorithm that matches this bound, i.e., constructs
three-dimensional degree-restricted orthogonal cube-drawings with O(m3/2) volume.

If there are no restrictions on the drawing, then we showed that no algorithm can do
better than 
(m

√
n) volume. We gave a second algorithm that matches this bound, i.e.,

constructs three-dimensional orthogonal drawings with O(m
√

n) volume.
Thus, no more asymptotic improvements are possible for the volume of drawings.

We do see room for improvement with respect to the number of bends per edge. In
particular, (a) does every graph have a 5-bend degree-restricted cube-drawing with
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O(m3/2) volume, and (b) does every graph have a 3-bend drawing withO(m
√

n) volume?
Note that Kn does have a O(n5/2) = O(m√n) volume 3-bend drawing [8].

Table 1 suggests a trade-off between the number of bends per edge and the bounding
box volume. Can such a trade-off be proved? What are lower bounds for drawings where
edges are allowed to have at most k bends per edge, for k = 1, . . . , 5? (Note that some
graphs do not have a drawing without bends [8], [14], and lower bounds for drawings
with one bend per edge were given in [4].)
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