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INDUCED SUBGRAPHS OF BOUNDED DEGREE

AND BOUNDED TREEWIDTH

PROSENJIT BOSE, VIDA DUJMOVIĆ, AND DAVID R. WOOD

ABSTRACT. We prove that for all integers k ≥ t ≥ 0 and d ≥ 2k, every
graph G with treewidth at most k has a ‘large’ induced subgraph H,
where H has treewidth at most t and every vertex in H has degree at
most d in G. The order of H depends on t, k, d, and the order of G. With
t = k, we obtain large sets of bounded degree vertices. With t = 0, we
obtain large independent sets of bounded degree. In both these cases, our
bounds on the order of H are tight. For bounded degree independent sets
in trees, we characterise the extremal graphs. Finally, we prove that an
interval graph with maximum clique size k has a maximum independent
set in which every vertex has degree at most 2k.

1. INTRODUCTION

The ‘treewidth’ of a graph has arisen as an important parameter in the
Robertson/Seymour theory of graph minors and in algorithmic complex-
ity. See Bodlaender [2] and Reed [8] for surveys on treewidth. The main
result of this paper, proved in Section 5, states that every graph G has a
large induced subgraph of bounded treewidth in which every vertex has
bounded degree in G. The order of the subgraph depends on the treewidth
of G, the desired treewidth of the subgraph, and the desired degree bound.
Moreover, we prove that the bound is best possible in a number of cases.

Before that, in Sections 2 and 3 we consider two relaxations of the main
result, firstly without the treewidth constraint, and then without the de-
gree constraint. That is, we determine the minimum number of vertices
of bounded degree in a graph of given treewidth (Section 2), and we deter-
mine the minimum number of vertices in an induced subgraph of bounded
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treewidth, taken over all graphs of given treewidth (Section 3). This latter
result is the first ingredient in the proof of the main result. The second
ingredient is proved in Section 4, where we consider the structure of the
subgraph of a k-tree induced by the vertices of bounded degree. In partic-
ular, we prove that this subgraph has surprisingly small treewidth.

A graph with treewidth 0 has no edges. Thus our results pertain to in-
dependent sets for which every vertex has bounded degree in G. Here our
bounds are tight, and in the case of trees, we characterise the extremal trees.
Furthermore, by exploiting some structural properties of interval graphs
that are of independent interest, we prove that every interval graph with
no (k + 2)-clique has a maximum independent set in which every vertex
has degree at most 2k. These results are presented in Section 6.

Bounded degree independent sets in planar graphs have been previously
studied due to applications in computational geometry [1, 6, 7, 9]. Our
results for bounded degree independent sets in outerplanar graphs (which
have treewidth 2) form an essential component of a proof by Bose et al. [3]
about flips in planar triangulations.

1.1. Preliminaries. Let G be a graph. All graphs considered are finite,
undirected, and simple. The vertex-set and edge-set of G are denoted by
V(G) and E(G), respectively. The number of vertices of G is denoted by
n = |V(G)|. The subgraph induced by a set of vertices S ⊆ V(G) has vertex
set S and edge set {vw ∈ E(G) : v, w ∈ S}, and is denoted by G[S].

A k-clique (k ≥ 0) is a set of k pairwise adjacent vertices. Let ω(G) denote
the maximum number k such that G has a k-clique. A chord of a cycle C is an
edge not in C whose endpoints are both in C. G is chordal if every cycle on at
least four vertices has a chord. The treewidth of G is the minimum number
k such that G is a subgraph of a chordal graph G′ with ω(G′) ≤ k + 1.

A vertex is simplicial if its neighbourhood is a clique. For each vertex
v ∈ V(G), let G \ v denote the subgraph G[V(G) \ {v}]. The family of
graphs called k-trees (k ≥ 0) are defined recursively as follows. A graph G
is a k-tree if one of the following conditions are satisfied:

(a) G is a (k + 1)-clique, or
(b) G has a simplicial vertex v whose neighbourhood is a k-clique, and

G \ v is a k-tree.

By definition, the graph obtained from a k-tree G by adding a new vertex
v adjacent to each vertex of a k-clique C is also a k-tree, in which case we
say v is added onto C. Every k-tree G on n vertices satisfies the following
obvious facts:

• ω(G) = k + 1
• G has minimum degree k

• G has kn − 1
2 k(k + 1) edges, and thus has average degree 2k − k(k +

1)/n.
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It is well known that the treewidth of a graph G equals the minimum
number k such that G is a spanning subgraph of a k-tree.

We express our results using the following notation. Let G be a graph.
Let Vd(G) = {v ∈ V(G) : degG(v) ≤ d} denote the set of vertices of G with
degree at most d. Let Gd = G[Vd(G)]. A subset of Vd(G) is called a degree-d
set. For an integer t ≥ 0, a t-set of G is a set S of vertices of G such that the
induced subgraph G[S] has treewidth at most t. Let α

t(G) be the maximum
number of vertices in a t-set of G. Let α

t
d(G) be the maximum number of

vertices in a degree-d t-set of G. Observe that α
t
d(G) = α

t(Gd).

Let G be a family of graphs. Let α
t(G) be the minimum of α

t(G), and
let α

t
d(G) be the minimum of α

t
d(G), taken over all G ∈ G. Let Gn,k be the

family of n-vertex graphs with treewidth k. Note that every graph in Gn,k

has at least k + 1 vertices. These definitions imply the following. Every
graph G ∈ G has α

t
d(G) ≥ α

t
d(G) and α

t(G) ≥ α
t(G). Furthermore, there

is at least one graph G for which α
t
d(G) = α

t
d(G), and there is at least one

graph G for which α
t(G) = α

t(G). Thus the lower bounds we derive in this
paper are universal and the upper bounds are existential.

As described above, our main result is a lower bound on α
t
d(Gn,k) that

is tight in many cases. Here, lower and upper bounds are ’tight’ if they
are equal when ignoring the terms independent of n. Many of our upper

bound constructions are based on the k-th power of an n-vertex path Pk
n .

This graph has vertex set {v1, v2, . . . , vn} and edge set {vivj : |i − j| ≤ k}.

Obviously Pk
n is a k-tree.

For t = k, a degree-d t-set in a graph G with treewidth k is simply a set of

vertices with degree at most d. Thus in this case, α
k
d(G) = |Vd(G)|. At the

other extreme, a graph has treewidth 0 if and only if it has no edges. A set
of vertices I ⊆ V(G) is independent if G[I] has no edges. Thus a 0-set of G is
simply an independent set of vertices of G. As is standard, we abbreviate

α
0(G) by α(G), α

0
d(G) by αd(G), etc1. An independent set I of G is maximum

if |I| ≥ |J| for every independent set J of G. Thus α(G) is the cardinality of
a maximum independent set of G.

2. LARGE SUBGRAPHS OF BOUNDED DEGREE

In this section we prove tight lower bounds on the number of vertices
of bounded degree in graphs of treewidth k. The following result of Bose
et al. [4] is useful.

Lemma 2.1 ([4]). Let G be a graph on n vertices, with minimum degree δ, and
with average degree α. Then for every integer d ≥ δ,

|Vd(G)| ≥

(

d + 1 − α

d + 1 − δ

)

n .

1Some authors define a degree-d independent set to consist of vertices of degree strictly
less than d.
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Theorem 2.2. For all integers k ≥ 0 and d ≥ 2k − 1,

lim
n→∞

α
k
d(Gn,k)

n
=

d − 2k + 1

d − k + 1
.

Proof. First we prove a lower bound on α
k
d(Gn,k). Let G be a graph in Gn,k

with α
k
d(G) = α

k
d(Gn,k). If a vertex v of G has degree at most d in a spanning

supergraph of G, then v has degree at most d in G. Thus we can assume
that G is a k-tree. Hence G has minimum degree k and average degree
2k − k(k + 1)/n. By Lemma 2.1,

α
k
d(Gn,k) = |Vd(G)| ≥

(

d + 1 − 2k + k(k + 1)/n

d + 1 − k

)

n

=

(

d − 2k + 1

d − k + 1

)

n +
k(k + 1)

d − k + 1
.

(2.1)

Now we prove an upper bound on α
k
d(Gn,k) for all n ≡ 2k (mod d − k +

1), and for all k ≥ 0 and d ≥ 2k − 1. Let s be the integer such that n − 2k =
s(d − k + 1). Then s ≥ 0. We now construct a graph G ∈ Gn,k. Initially

let G = Pk
(s+2)k

be the k-th power of the path (v1, v2, . . . , v(s+2)k). Let r =

d− 2k + 1. Then r ≥ 0. Add r vertices onto the clique (vik+1, vik+2, . . . , vik+k)
for each 1 ≤ i ≤ s. Thus G is a k-tree, as illustrated in Figure 1. The number
of vertices in G is

(2.2) (s + 2)k + sr = (s + 2)k + s(d− 2k + 1) = s(d− k + 1) + 2k = n .

Each vertex vi, k + 1 ≤ i ≤ (s + 1)k, has degree 2k + r = d + 1. Hence such
a vertex is not in a degree-d set. The remaining vertices all have degree at
most d. Thus

α
k
d(Gn,k) ≤ α

k
d(G) = |Vd(G)| = rs + 2k

=

(

d − 2k + 1

d − k + 1

)

n +
2k2

d − k + 1
.

(2.3)

r r r

k k k k k

FIGURE 1. The graph G with k = 3, d = 7, and s = 3 (and
thus r = 2).
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Before we prove the limit that it is claimed in the theorem, note that the
difference between the lower and upper bounds in (2.1) and (2.3) is only

2k2 − k(k + 1)

d + 1 − k
=

k(k − 1)

d + 1 − k
≤ k − 1 .

Given any n ≥ 2k, there is an integer n′ such that n ≤ n′ ≤ n + d − k and
n′ ≡ 2k (mod d − k + 1). Hence

α
k
d(Gn,k) ≤ α

k
d(Gn′,k) ≤

(

d − 2k + 1

d − k + 1

)

n′ +
2k2

d − k + 1

≤

(

d − 2k + 1

d − k + 1

)

n +
(d − 2k + 1)(d − k) + 2k2

d − k + 1
.

By (2.1), for all n,

k(k + 1)

(d − k + 1)n
≤

α
k
d(Gn,k)

n
−

d − 2k + 1

d − k + 1
≤

(d − 2k + 1)(d − k) + 2k2

(d − k + 1)n
.

Therefore for all ǫ > 0, there is an n0 such that for all n ≥ n0,

0 ≤
α

k
d(Gn,k)

n
−

d − 2k + 1

d − k + 1
≤ ǫ .

Therefore the sequence {α
k
d(Gn,k)/n : n ≥ 2k} converges to d−2k+1

d−k+1 . �

3. LARGE SUBGRAPHS OF BOUNDED TREEWIDTH

We now prove a tight bound on the maximum order of an induced sub-
graph of bounded treewidth in a graph of treewidth k.

Theorem 3.1. For all integers n and 0 ≤ t ≤ k,

α
t(Gn,k) =

(

t + 1

k + 1

)

n .

Proof. First we prove the lower bound. Let G be a graph in Gn,k. First sup-
pose that G is a k-tree. By definition, V(G) can be ordered (v1, v2, . . . , vn)
so that for each vertex vi, the predecessors {vj : j < i, vivj ∈ E(G)} of vi are a
clique of min{k, i − 1} vertices. Now colour G greedily in this order. That
is, for i = 1, 2, . . . , n, assign to vi the minimum positive integer (a colour)
not already assigned to a neighbour of vi. Clearly k + 1 colours suffice. Let
S be the union of the t + 1 largest colour classes (monochromatic set of ver-
tices). Thus |S| ≥ (t + 1)n/(k + 1). For each vertex vi in S, the predecessors
of vi that are in S and vi itself form a clique, and thus have pairwise distinct
colours. Thus vi has at most t predecessors in S, and they form a clique in
G[S]. Hence G[S] has treewidth at most t, and S is the desired t-set. Now
suppose that G is not a k-tree. Then G is a spanning subgraph of a k-tree
G′. Thus G′ has a t-set S with at least (t + 1)n/(k + 1) vertices. Now G[S]
is a subgraph of G′[S]. Thus G[S] also has treewidth at most t.

For the upper bound, we now show that every t-set of Pk
n has at most (t +

1)n/(k + 1) vertices. First suppose that t = 0. A 0-set is an independent set.
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Clearly every independent set of Pk
n has at most n/(k + 1) vertices. Now

consider the case of general t. Let S be a t-set of Pk
n . By the above bound,

Pk
n [S] has an independent set I of at least |S|/(t + 1) vertices. Now I is

also an independent set of Pk
n . Thus |I| ≤ n/(k + 1). Hence |S|/(t + 1) ≤

n/(k + 1), and |S| ≤ (t + 1)n/(k + 1). �

4. STRUCTURE OF BOUNDED DEGREE SUBGRAPHS

In this section we study the structure of the subgraph of a k-tree induced
by the vertices of bounded degree. We first prove that in a k-tree with suf-
ficiently many vertices, not all the vertices of a clique have low degree. A
clique C = (v1, v2, . . . , vk) of a graph G is said to be ordered by degree if
degG(vi) ≤ degG(vi+1) for all 1 ≤ i ≤ k − 1.

Theorem 4.1. Let G be a k-tree on n ≥ 2k + 1 vertices. Let (u1, u2, . . . , uq) be a
clique of G ordered by degree. Then degG(ui) ≥ k + i − 1 for all 1 ≤ i ≤ q.

Note that Theorem 4.1 is not true if n ≤ 2k, as the statement would
imply that a (k + 1)-clique has a vertex of degree n. Thus the difficulty in
an inductive proof of Theorem 4.1 is the base case. Theorem 4.1 follows
from the following stronger result with n ≥ 2k + 1 ≥ k + q.

Lemma 4.2. Let G be a k-tree on n vertices. Let C = (u1, u2, . . . , uq) be a clique
of G ordered by degree. If n ≥ k + q then

(4.1) degG(ui) ≥ k + i − 1, 1 ≤ i ≤ q ;

otherwise n ≤ k + q − 1, and

(4.2) degG(ui) ≥

{

k + i − 1 if 1 ≤ i ≤ n − k − 1 ,

n − 1 if n − k ≤ i ≤ q .

Proof. We proceed by induction on n. In the base case, G is a (k + 1)-clique,
and every vertex has degree k. The claim follows trivially. Assume the
result holds for k-trees on less than n vertices. Let C be a q-clique of a k-tree
G on n ≥ k + 2 vertices. Since every k-tree on at least k + 2 vertices has two
non-adjacent simplicial vertices [5], at least one simplicial vertex v is not in
C. Since n ≥ k + 2 and v is simplicial, the graph G1 = G \ v is a k-tree on
n− 1 vertices. Now C is a q-clique of G1. Let C = (u1, u2, . . . , uq) be ordered
by degree in G1. By induction, if n ≥ k + q + 1 then

(4.3) degG1
(ui) ≥ k + i − 1, 1 ≤ i ≤ q ;

otherwise n ≤ k + q, and

(4.4) degG1
(ui) ≥

{

k + i − 1 if 1 ≤ i ≤ n − k − 2 ,

n − 2 if n − k − 1 ≤ i ≤ q .

First suppose that n ≥ k + q + 1. Then by (4.3), degG(ui) ≥ degG1
(ui) ≥

k + i − 1, and (4.1) is satisfied. Otherwise n ≤ k + q.
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Let B = {un−k−1, un−k, . . . , uq}. Then |B| ≥ 2, and by (4.4), every vertex
in B has degree n − 2 in G1. That is, each vertex in B is adjacent to every
other vertex in G1. Let X be the set of neighbours of v. Since v is simplicial,
X is a k-clique. At most one vertex of B is not in X, as otherwise X ∪ B
would be a (k + 2)-clique of G1. Without loss of generality, this exceptional
vertex in B, if it exists, is un−k−1. The other vertices in B are adjacent to one
more vertex, namely v, in G than in G1. Thus degG(ui) ≥ k + i − 1 for all
1 ≤ i ≤ n − k − 1, and degG(ui) = n − 1 for all n − k ≤ i ≤ q. Hence (4.2)
is satisfied. �

We can now prove the main result of this section.

Theorem 4.3. For all integers 1 ≤ k ≤ ℓ ≤ 2k, and for every k-tree G on
n ≥ ℓ + 2 vertices, the subgraph Gℓ of G induced by the vertices of degree at most
ℓ, has treewidth at most ℓ − k.

Proof. Let C = (u1, u2, . . . , uq) be a clique of G ordered by degree. Suppose,
for the sake of contradiction, that there are at least ℓ − k + 2 vertices of C
with degree at most ℓ. Let j = ℓ − k + 2. Since C is ordered by degree,
deg(uj) ≤ ℓ. Since n ≥ ℓ + 2, we have j ≤ n − k. By Lemma 4.2, deg(uj) ≥
k + j − 1 (unless j = n − k, in which case deg(uj) = n − 1 ≥ ℓ + 1, which
is a contradiction). Hence k + j − 1 ≤ ℓ. That is, k + (ℓ − k + 2) − 1 ≤ ℓ,
a contradiction. Thus C contributes at most ℓ − k + 1 vertices to Gℓ, and
ω(Gℓ) ≤ ℓ− k + 1. Now, Gℓ is an induced subgraph of G, which is chordal.
Thus Gℓ is chordal. Since ω(Gℓ) ≤ ℓ − k + 1, Gℓ has treewidth at most
ℓ − k. �

Note the following regarding Theorem 4.3:

• There are graphs of treewidth k ≥ 2 for which the theorem is not
true. For example, for any p ≥ k + 1, consider the graph G consist-
ing of a (k + 1)-clique C and a p-vertex path with one endpoint v in
C. Then G has at least 2k + 1 vertices, has treewidth k, and every ver-
tex of G has degree at most k, except for v which has deg(v) = k + 1.
For ℓ = k, Gℓ is comprised of two components, one a k-clique and
the other a path, in which case Gℓ has treewidth k − 1 > ℓ − k = 0.
For k + 1 ≤ ℓ ≤ 2k − 1, Gℓ = G has treewidth k > ℓ − k.

• The theorem is not true if k ≤ n ≤ ℓ + 1. For example, for any
1 ≤ k ≤ ℓ ≤ 2k − 1, the k-tree obtained by adding ℓ + 1 − k vertices
onto an initial k-clique has ℓ + 1 vertices, maximum degree ℓ, and
treewidth k > ℓ − k.

• The case of ℓ = k is the well-known fact that in a k-tree with at
least k + 2 vertices, distinct simplicial vertices are not adjacent. Put
another way, the set of simplicial vertices of a k-tree with at least
k + 2 vertices is a 0-set.
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5. LARGE SUBGRAPHS OF BOUNDED TREEWIDTH AND BOUNDED

DEGREE

The following theorem is the main result of the paper.

Theorem 5.1. For all integers k ≥ t ≥ 0, d ≥ max{2k − 1, 1}, and n ≥ 2k + 1,

α
t
d(Gn,k) ≥





d − 2k + 1

d − 3
2 k + 1 + t(t+1)

2(k+1)





(

t + 1

k + 1

)

n +
k(t + 1)

d − 3
2 k + 1 + t(t+1)

2(k+1)

Proof. Let G be a graph in Gn,k with α
t
d(G) = α

t
d(Gn,k). A degree-d t-set of

a spanning supergraph of G is a degree-d t-set of G. Thus we can assume
that G is a k-tree.

Consider ℓ with k + t ≤ ℓ ≤ 2k. By Theorem 4.3, Gℓ has treewidth at
most ℓ − k. Since t ≤ ℓ − k, by Theorem 3.1,

α
t(Gℓ) ≥

(

t + 1

ℓ − k + 1

)

|Vℓ(G)| .

Since ℓ ≤ d, α
t(Gℓ) ≤ α

t
d(G), which implies that

(5.1) |Vℓ(G)| ≤

(

ℓ − k + 1

t + 1

)

α
t
d(G) .

Now, G has kn − 1
2 k(k + 1) edges and minimum degree k. Let ni be the

number of vertices of G with degree exactly i. Thus,

∑
i≥k

i · ni = 2|E(G)| = 2kn − k(k + 1) = −k(k + 1) + ∑
i≥k

2k · ni .

Thus,

∑
i≥2k

(i − 2k)ni = −k(k + 1) +
2k−1

∑
i=k

(2k − i)ni = −k(k + 1) +
2k−1

∑
i=k

|Vi(G)| ,

and

∑
i≥2k

(i − 2k)ni = −k(k + 1) +
k+t−1

∑
i=k

|Vi(G)| +
2k−1

∑
i=k+t

|Vi(G)| .

By (5.1),
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∑
i≥2k

(i − 2k)ni ≤ −k(k + 1) + t · |Vk+t(G)| +
2k−1

∑
i=k+t

(i − k + 1) · α
t
d(G)

t + 1

≤ −k(k + 1) + t · α
t
d(G) +

α
t
d(G)

t + 1

k

∑
i=t+1

i

= −k(k + 1) + α
t
d(G)

(

t +
1

t + 1

(

k(k + 1) − t(t + 1)

2

))

= −k(k + 1) + α
t
d(G)

(

t(t + 1) + k(k + 1)

2(t + 1)

)

.

Since d ≥ 2k − 1,

−k(k + 1) + α
t
d(G)

(

t(t + 1) + k(k + 1)

2(t + 1)

)

≥ ∑
i≥d+1

(i − 2k)ni

≥ (d − 2k + 1) ∑
i≥d+1

ni .
(5.2)

If d = 2k − 1 then it is easily verified that (5.2) implies the result. Now
assume that d ≥ 2k. Hence,

|Vd(G)| = n− ∑
i≥d+1

ni ≥ n +
k(k + 1)

d − 2k + 1
− α

t
d(G)

(

t(t + 1) + k(k + 1)

2(t + 1)(d − 2k + 1)

)

.

By Theorem 3.1,

α
t
d(G) = α

t(Gd)

≥
t + 1

k + 1
|Vd(G)|

≥
(t + 1)n

k + 1
+

k(t + 1)

d − 2k + 1
− α

t
d(G)

(

t(t + 1) + k(k + 1)

2(k + 1)(d − 2k + 1)

)

.

Thus
(

1 +
t(t + 1) + k(k + 1)

2(k + 1)(d − 2k + 1)

)

α
t
d(G) ≥

(t + 1)n

k + 1
+

k(t + 1)

d − 2k + 1
.

That is,
(

2(k + 1)(d − 2k + 1) + t(t + 1) + k(k + 1)

2(k + 1)(d − 2k + 1)

)

α
t
d(G)

≥
(d − 2k + 1)(t + 1)n + k(k + 1)(t + 1)

(k + 1)(d − 2k + 1)
.

Hence
(

(2d − 3k + 2)(k + 1) + t(t + 1)
)

α
t
d(G)

≥ 2(d − 2k + 1)(t + 1)n + 2k(k + 1)(t + 1) .
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Therefore

α
t
d(G) ≥

2(d − 2k + 1)(t + 1)n + 2k(k + 1)(t + 1)

(2d − 3k + 2)(k + 1) + t(t + 1)

≥
(d − 2k + 1)(t + 1)n + k(k + 1)(t + 1)

(d − 3
2 k + 1)(k + 1) + 1

2 t(t + 1)
.

The result follows. �

A number of notes regarding Theorem 5.1 are in order:

• Theorem 5.1 with t = k is equivalent to the lower bound in Theo-
rem 2.2.

• For d < 2k, no result like Theorem 5.1 is possible, since α
t
d(Pk

n) =
2(t + 1).

• The proof of Theorem 5.1 is similar to a strategy developed by Biedl
and Wilkinson [1] for finding bounded degree independent sets in
planar graphs.

Theorem 5.1 implies that there is a degree-d t-set whose cardinality is
arbitrarily close to the best possible bound without any degree restriction
(Theorem 3.1).

Corollary 5.2. For every ǫ > 0 and for all integers 0 ≤ t ≤ k, there exists
d = d(ǫ, k, t) such that for all n ≥ 2k + 1,

α
t
d(Gn,k) ≥ (1 − ǫ)

(

t + 1

k + 1

)

n .

Proof. By Theorem 5.1 it suffices to solve

1 − ǫ

k + 1
=

d − 2k + 1

(d − 3
2 k + 1)(k + 1) + 1

2 t(t + 1)
.

That is,

d ≥

⌈

1

2

(

1 −
1

ǫ

)(

3k − 2 −
t(t + 1)

k + 1

)

+
2k − 1

ǫ

⌉

.

�

We now prove an existential upper bound on the cardinality of a degree-
d t-set.

Theorem 5.3. For all integers k ≥ 1 and d ≥ 2k− 1 such that 2(d− 2k + 1) ≡ 0
(mod k(k + 1)), there are infinitely many values of n, such that for all 0 ≤ t < k,

α
t
d(Gn,k) ≤

(

d − 2k + 1

d − 3
2 k + 1

)

(

t + 1

k + 1

)

n

+
(k − 1)(t + 1)(d − 2k + 1) + k(t + 1)(k + 1)

(d − 3
2 k + 1)(k + 1)

.
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Proof. Our construction employs the following operation. Let G be a k-
tree containing an ordered k-clique C = (v1, v2, . . . , vk). A block at C con-
sists of k + 1 new vertices {x1, x2, . . . , xk+1} where x1 is added onto the k-
clique {v1, v2, . . . , vk}; x2 is added onto the k-clique {v1, v2, . . . , vk−1, x1}; x3

is added onto the k-clique {v1, v2, . . . , vk−2, x1, x2}; and so on, up to xk+1

which is added onto the k-clique {x1, x2, . . . , xk}. Clearly the graph ob-
tained by adding a block to a k-clique of a k-tree is also a k-tree

Our graph is parameterised by the positive integer n0 ≥ 2k + 3. Ini-
tially let G be the k-th power of a path (v1, v2, . . . , vn0). Note that any
k + 1 consecutive vertices in the path form a clique. Let r be the non-
negative integer such that 2(d − 2k + 1) = rk(k + 1). Add r blocks to G at
(vi, vi+1, . . . , vi+k−1) for each 3 ≤ i ≤ n0 − k − 1, as illustrated in Figure 2.

v 1 v 2 v 3 b b b

v k
+
2

v n
0

v n
0
−

1

v n
0
−

2
b b b

v n
0
−

k
−

1

FIGURE 2. The graph G with k = 3 and d = 11 (and thus r = 1).

G is a k-tree with n = n0 + r(k + 1)(n0 − (k + 3)) vertices. Let S be a
maximum degree-d t-set of G. Consider a vertex vi for k + 2 ≤ i ≤ n0 − k −
1. Since n0 ≥ 2k + 3 there is such a vertex. The degree of vi is

2k + r
k

∑
i=1

i = 2k + 1
2 rk(k + 1) = d + 1 .

Thus vi 6∈ S. Since each block {x1, x2, . . . , xk+1} is a clique, and treewidth-t
graphs have no (t + 2)-clique, at most t + 1 vertices from each block are in S.
Similarly, since {v1, v2, . . . , vk+1} and {vn0−k, vn0−k+1, . . . , vn0} are cliques,
at most t + 1 vertices from each of these sets are in S. Thus

(5.3) α
t
d(Gn,k) ≤ α

t
d(G) = |S| ≤ (t + 1)

(

r(n0 − (k + 3)) + 2
)

.

Substituting the equality n0 = n+r(k+1)(k+3)
1+r(k+1)

into (5.3),

α
t
d(Gn,k)

t + 1
≤

r(n + k − 1) + 2

1 + r(k + 1)
.(5.4)

The claimed bound on α
t
d(Gn,k) follows by substituting the equality r =

2(d−2k+1)
k(k+1)

into (5.4). Observe that n is a function of n0 and n0 is independent

of d. Thus there are infinitely many values of n for each value of d. �
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6. BOUNDED DEGREE INDEPENDENT SETS

Intuitively, one would expect that a maximum independent set would
not have vertices v of high degree, as this would prevent the many neigh-
bours of v from being in the independent set. In this section, we explore
the accuracy of this intuition in the case of k-trees. Recall that αd(G) is the
maximum cardinality of a degree-d independent set of G.

Motivated by applications in computational geometry, the previously
known results regarding bounded degree independent sets have been for
planar graphs [1, 6, 7, 9]. The best results were obtained by Biedl and
Wilkinson [1], who proved tight bounds (up to an additive constant) on
αd(G) for planar G with d ≤ 15. For d ≥ 16 there is a gap in the bounds.

Theorem 3.1 with t = 0 proves that every n-vertex graph G with tree-

width k has α(G) ≥ n/(k + 1), and that this bound is tight for Pk
n . Theo-

rem 5.1 with t = 0 gives the following lower bound on the size of a degree-d
independent set in a graph of treewidth k (for all k ≥ 1 and d ≥ 2k):

αd(Gn,k) ≥

(

d − 2k + 1

d − 3
2 k + 1

)

(

n

k + 1

)

+
k

d − 3
2 k + 1

.

Note that such a bound is not possible for d < 2k since αd(Pk
n) = 2 for

d < 2k.
Theorem 5.3 proves the corresponding upper bound. In particular, for

all k ≥ 1, there are infinitely many values of d, and for each such d, there
are infinitely many values of n for which

αd(Gn,k) ≤

(

d − 2k + 1

d − 3
2 k + 1

)

(

n

k + 1

)

+
(k − 1)(d − 2k + 1) + k(k + 1)

(d − 3
2 k + 1)(k + 1)

.

These lower and upper bounds are tight. In fact, they differ by at most one.
We conclude that

lim
n→∞

lim
d→∞

αd(Gn,k)

n
=

d − 2k + 1

(d − 3
2 k + 1)(k + 1)

.

6.1. Trees. Gn,1 is precisely the family of n-vertex forests. Observe that The-
orems 5.1 and 5.3 with k = 1 and t = 0 prove that for all d ≥ 1,

(6.1) αd(Gn,1) =
(d − 1)n + 2

2d − 1
.

A tree T for which αd(T) = (d−1)n+2
2d−1 is called αd-extremal. In this section

we characterise the αd-extremal trees. A tree is d-regular if every vertex has
degree 1 or d, and there is at least one vertex of degree d.

Theorem 6.1. Let d be a positive integer. A tree T on n ≥ 5 vertices is αd-
extremal if and only if T is obtained from a (d + 1)-regular tree by subdividing
every leaf-edge once.



100 PROSENJIT BOSE, VIDA DUJMOVIĆ, AND DAVID R. WOOD

Note that a tree T is α1-extremal if α1(T) = 2. Every tree that is not
a path has three independent leaves. Thus the only α1-extremal trees are
paths, and Theorem 6.1 holds trivially for d = 1. In the remainder of this
section we consider the d ≥ 2 case. We use the following notation. For
all trees T, let L(T) be the set of leaves in T; let P(T) be the set of degree-2
vertices in T; and let Q(T) be the set of vertices in P(T) that are not adjacent
to a leaf. The following lemma is well-known.

Lemma 6.2. For d ≥ 2, every (d + 1)-regular tree T with n vertices satisfies

|L(T)| =
(d − 1)n + 2

d
.

Proof. T has n − |L(T)| vertices of degree d + 1 and has n − 1 edges. Thus
|L(T)|+ (d + 1)(n − |L(T)|) = 2(n − 1). The result follows. �

Proof of Theorem 6.1 (⇐). Let T be a (d + 1)-regular tree on n vertices. By
Lemma 6.2, d|L(T)| = (d − 1)n + 2. Let T′ be the tree obtained by subdi-
viding every leaf-edge of T. Then T′ has n′ = n + |L(T)| vertices. Thus
d|L(T)| = (d − 1)(n′ − |L(T)|) + 2, which implies that |L(T)|(2d − 1) =
(d − 1)n′ + 2. Now T′ has 2|L(T)| vertices of degree at most d, and they
induce a matching. Thus αd(T′) = |L(T)| = ((d − 1)n′ + 2)/(2d − 1), as
claimed. �

We now prove a lower bound on αd(T) that is more precise than Theo-
rem 5.1 with k = 1 and t = 0.

Lemma 6.3. Let T be a tree with n ≥ 3 vertices. Let ni be the number of vertices
of T with degree exactly i. For all d ≥ 1,

αd(T) ≥
1

2d − 1

(

(d − 1)n + 2 +
d

∑
i=3

(i − 2)ni + ∑
i≥d+2

(i − d − 1)ni

)

.

Proof. We proceed as in Theorem 5.1. We have

∑
i≥1

i · ni = 2|E(T)| = 2n − 2 = −2 + ∑
i≥1

2ni .

Thus,

n1 = 2 + ∑
i≥3

(i − 2)ni .
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Since n ≥ 3, no two leaves are adjacent. Thus αd(T) ≥ n1, and

αd(T) ≥ 2 + ∑
i≥3

(i − 2)ni

= 2 +
d

∑
i=3

(i − 2)ni + ∑
i≥d+1

(i − d − 1)ni + (d − 1) ∑
i≥d+1

ni

= 2 +
d

∑
i=3

(i − 2)ni + ∑
i≥d+2

(i − d − 1)ni

+ (d − 1)(n − |Vd(T)|)

(d − 1)|Vd(T)| ≥ 2 − αd(T) + (d − 1)n +
d

∑
i=3

(i − 2)ni + ∑
i≥d+2

(i − d − 1)ni .

The subgraph of T induced by Vd(T) is 2-colourable. The larger colour class

is a degree-d independent set of T. Thus αd(T) ≥ 1
2 |Vd(T)|, which implies

that

2(d − 1)αd(T) ≥ 2 − αd(T) + (d − 1)n +
d

∑
i=3

(i − 2)ni

+ ∑
i≥d+2

(i − d − 1)ni .

Hence

(2d − 1)αd(T) ≥ 2 + (d − 1)n +
d

∑
i=3

(i − 2)ni + ∑
i≥d+2

(i − d − 1)ni .

The result follows. �

The following result is an immediate corollary of Lemma 6.3.

Corollary 6.4. For d ≥ 1, every vertex in an αd-extremal tree has degree in
{1, 2, d + 1}. �

Lemma 6.5. For d ≥ 2, every n-vertex tree T in which every vertex has degree in
{1, 2, d + 1} satisfies

αd(T) ≥
(d − 1)n + 1

2 |Q(T)|+ 2

2d − 1
.

In particular, if T is αd-extremal, then Q(T) = ∅.

Proof. By Lemma 6.2 applied to the (d + 1)-regular tree obtained from T by
contracting every vertex of degree two,

|L(T)| =
(d − 1)(n − |P(T)|) + 2

d
.
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There is at most one vertex in P(T) adjacent to each leaf. Thus |P(T)| ≤
|L(T)|+ |Q(T)|. Hence

|L(T)| ≥
(d − 1)(n − |L(T)| − |Q(T)|) + 2

d
,

which implies that

|L(T)| ≥
(d − 1)n − (d − 1)|Q(T)|+ 2

2d − 1
.

The subgraph of T induced by Q(T) is a forest of paths, no vertex of which

is adjacent to a leaf. Thus αd(T) ≥ |L(T)|+ 1
2 |Q(T)|. Hence,

αd(T) ≥
(d − 1)n − (d − 1)|Q(T)|+ 2

2d − 1
+

|Q(T)|

2

=
(d − 1)n + 1

2 |Q(T)|+ 2

2d − 1
,

as desired. �

Lemma 6.6. For d ≥ 2, every αd-extremal tree T on n ≥ 5 vertices has |P(T)| ≥
|L(T)|.

Proof. By Corollary 6.4, every vertex in T has degree in {1, 2, d + 1}. T is

not a path as otherwise αd(T) ≥ 1
2 n > ((d − 1)n + 2)/(2d − 1) for n ≥ 5.

Let T′ be the tree obtained from T by contracting every vertex of degree
two. Then T′ is (d + 1)-regular, and has n′ = n − |P(T)| vertices and |L(T)|
leaves. By Lemma 6.2,

(6.2) |L(T)| =
(d − 1)n′ + 2

d
.

Clearly, αd(T) ≥ |L(T)|. Since T is αd-extremal,

(d − 1)n′ + 2

d
= |L(T)| ≤ αd(T) =

(d − 1)n + 2

2d − 1
.

Now n = n′ + |P(T)|. Thus

(d − 1)n′ + 2

d
≤

(d − 1)(n′ + |P(T)|) + 2

2d − 1

(2d − 1)(d − 1)n′ + 2(2d − 1) ≤ d(d − 1)(n′ + |P(T)|) + 2d

(d − 1)2n′ + 2(d − 1) ≤ d(d − 1)|P(T)|

(d − 1)n′ + 2 ≤ d|P(T)| .

By (6.2), |P(T)| ≥ |L(T)|, as claimed. �

Proof of Theorem 6.1 (⇒). Let T be an αd-extremal tree. By Corollary 6.4,
every vertex of T has degree in {1, 2, d + 1}. By Lemma 6.5, Q(T) = ∅.
That is, every degree-2 vertex is adjacent to a leaf. By Lemma 6.6, |P(T)| ≥
|L(T)|. That is, there are at least as many degree-2 vertices as leaves. Hence
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|P(T)| = |L(T)|, and T is obtained from a (d + 1)-regular tree by subdivid-
ing every leaf-edge once. �

6.2. Outerplanar Graphs. A plane embedding of a graph in which every
vertex is on a single face is called outerplanar. A graph is outerplanar if it
has an outerplanar embedding. Let OPn denote the class of n-vertex out-
erplanar graphs. It is well known that the outerplanar graphs are a proper
subset of the class of graphs with treewidth at most two (see [2]). How-
ever, the graphs constructed in the upper bound in Theorem 5.3 with k = 2
are not outerplanar. We have the following upper bound for outerplanar
graphs.

Theorem 6.7. For all d ≥ 4 and n ≥ 5,

αd(OPn) ≥

(

d − 3

3d − 6

)

n +
2

d − 2
.

Conversely, for all even d ≥ 6 and for infinitely many values of n,

αd(OPn) ≤

(

d − 4

3d − 10

)

(n − 6) + 3 .

Proof. The lower bound follows from Theorem 5.1 with k = 2.
For the upper bound, let r = (d− 4)/2. Since d ≥ 6 is even, r is a positive

integer. Our graph G is parameterised by an integer n0 ≥ 6. Initially let
G = P2

n0
be the square of a path (v1, v2, . . . , vn0). That is, vivj is an edge

whenever |i − j| ≤ 2. For each vertex vi, 3 ≤ i ≤ n0 − 2, G has r triangles
{ai,j, bi,j, ci,j}, 1 ≤ j ≤ r, where vi is adjacent to each ai,j and bi,j. In addition,
for 3 ≤ i ≤ n0 − 4, the edge viai+2,1 is in G. Finally there are two additional
vertices x and y; x is adjacent to vn0−3 and vn0−1, and y is adjacent to vn0−2

and vn0 . G has n = n0 + (n0 − 4)3r + 2 vertices. As illustrated in Figure 3,
there is an outerplanar embedding of G.

r r r r r

r r r r r

FIGURE 3. The outerplanar graph G for r = 2.
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Say S is a degree-d independent set of G. Each vertex vi, 3 ≤ i ≤ n0 − 2,
has degree 4 + 2r + 1 = d + 1, and is thus not in S. At most one vertex from
each triangle {ai,j, bi,j, ci,j} is in S. It follows that |S| ≤ r(n0 − 4) + 3. Now

n0 =
n + 12r − 2

3r + 1
.

Thus

|S| ≤ r

(

n + 12r − 2

3r + 1
− 4

)

+ 3 =
d − 4

3d − 10
(n − 6) + 3 .

The result follows. �

Note that the upper and lower bound in Theorem 6.7 are tight for d = 6.
That is, every n-vertex outerplanar graph G has an degree-6 independent

set on 1
4 n −O(1) vertices, and for infinitely many values of n, there is an

n-vertex outerplanar graph in which at most 1
4 n + O(1) vertices form a

degree-6 independent set. Recall that without any degree restriction, every

outerplanar graph has an independent set on at least 1
3 n vertices. An inter-

esting open problem is to derive upper and lower bounds on αd(OPn) that
are tight for infinitely many values of d.

6.3. Interval Graphs. A graph G is an interval graph if one can assign to
each vertex v ∈ V(G) a closed interval [Lv, Rv] ⊆ R such that vw ∈ E(G)
if and only if [Lv, Rv] ∩ [Lw, Rw] 6= ∅. An interval graph G has tree-width
equal to ω(G) + 1. (In fact, it has path-width equal to ω(G) + 1.) Thus
the previous results of this paper apply to interval graphs. However, for
bounded degree independent sets in interval graphs, we can say much
more, as we show in this section. In an interval graph, it is well known
that we can assume that the endpoints of the intervals are distinct. A ver-
tex w is dominated by a vertex v if L(v) < L(w) < R(w) < R(v).

Lemma 6.8. Let G be an interval graph with ω(G) ≤ k + 1. Suppose G has a
vertex v with deg(v) ≥ 2k + 1. Then there is a vertex w that is dominated by v
and deg(w) ≤ 2k − 1.

Proof. For each vertex y ∈ V(G), let A(y) = {x ∈ V(G) : L(x) < L(y) <

R(x)} and B(y) = {x ∈ V(G) : L(x) < R(y) < R(x)}. Observe that x
is dominated by y if and only if xy ∈ E(G) but x 6∈ A(y) ∪ B(y). Also
|A(y)| ≤ k as otherwise A(y) ∪ {y} would be a clique of at least k + 2
vertices. Similarly |B(y)| ≤ k. Thus |A(y) ∪ B(y)| ≤ 2k.

Now consider the given vertex v. Since deg(v) ≥ 2k + 1, v has a neigh-
bour u 6∈ A(v) ∪ B(v). Thus u is dominated by v. Let w be a vertex with
the shortest interval that is dominated by v. That is, if u and w are domi-
nated by v, then R(w) − L(w) ≤ R(u) − L(u). Thus w does not dominate
any vertex, and every neighbour of w is in A(w) ∪ B(w). Now |A(w)| ≤ k,
|B(w)| ≤ k, and v ∈ A(w) ∩ B(w). Thus deg(w) ≤ 2k − 1. �
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Note that Lemma 6.8 with k = 1 is the obvious statement that a vertex of
degree at least three in a caterpillar is adjacent to a leaf.

Theorem 6.9. Every interval graph G with ω(G) ≤ k + 1 has a degree-2k max-
imum independent set. That is, α2k(G) = α(G).

Proof. Let I be a maximum independent set of G. If I contains a vertex v
with deg(v) ≥ 2k + 1, apply Lemma 6.8 to obtain a vertex w dominated
by v such that deg(w) ≤ 2k − 1. Replace v by w in I. The obtained set is
still independent, since every neighbour of w is also adjacent to v, and is
thus not in I. Apply this step repeatedly until every vertex in I has degree
at most 2k. Thus α2k(G) ≥ |I| = α(G). By definition, α2k(G) ≤ α(G).
Therefore α2k(G) = α(G). �

The bound of 2k in Theorem 6.9 is best possible, since Pk
n is an interval

graph with ω(G) ≤ k + 1 and only 2k vertices of degree at most 2k − 1.

Thus α(Pk
n) = ⌈n/(k + 1)⌉ ≫ α2k−1(Pk

n).
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eds., Recent Advances in Algorithms and Combinatorics, Springer, 2003, 85–107.
[9] J. Snoeyink and M. van Kreveld, Linear-time reconstruction of Delaunay triangulations

with applications, In Rainer E. Burkhard and Gerhard J. Woeginger, eds., Proc. 5th An-
nual European Symp. on Algorithms (ESA ’97), vol. 1284 of Lecture Notes in Comput. Sci.,
Springer, 1997, 459–471.

SCHOOL OF COMPUTER SCIENCE, CARLETON UNIVERSITY, OTTAWA, CANADA

E-mail address: jit@scs.carleton.ca

SCHOOL OF COMPUTER SCIENCE, CARLETON UNIVERSITY, OTTAWA, CANADA.
E-mail address: vida@scs.carleton.ca
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