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Abstract

Simultaneous diagonal flips in plane triangulations are inves-

tigated. It is proved that every triangulation with at least

six vertices has a simultaneous flip into a 4-connected tri-

angulation, and that it can be computed in linear time. It

follows that every triangulation has a simultaneous flip into

a Hamiltonian triangulation. This result is used to prove

that for any two n-vertex triangulations, there exists a se-

quence of O(log n) simultaneous flips to transform one into

the other. The total number of edges flipped in this se-

quence is O(n). The maximum size of a simultaneous flip

is then studied. It is proved that every triangulation has a

simultaneous flip of at least 1
3
(n − 2) edges. On the other

hand, every simultaneous flip has at most n − 2 edges, and

there exist triangulations with a maximum simultaneous flip

of 6
7
(n − 2) edges.

1 Introduction

A (plane) triangulation is a simple planar graph with
a fixed (combinatorial) plane embedding in which every
face is bounded by a triangle (that is, a 3-cycle). So
that we can speak of the interior and exterior of a cycle,
one face is nominated to be the outerface, although the
choice of outerface will not be important for our results.
Let vw be an edge of a triangulation G. Let (v, w, x)
and (w, v, y) be the faces incident to vw. Then x and y
are distinct vertices, unless G = K3. We say that x and
y see vw. Let G′ be the embedded graph obtained from
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‡Département d’informatique et d’ingénierie, Uni-
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G by deleting vw and adding the edge xy, such that in
the cyclic order of the edges incident to x (respectively,
y), xy is added between xv and xw (yw and yv). If G′ is
a triangulation, then vw is (individually) flippable, and
G is flipped into G′ by vw. This operation is called a
(diagonal) flip, and is illustrated in Figure 1(a). If G′

is not a triangulation and G �= K3, then xy is already
an edge of G; we say that vw is blocked by xy, and xy
is a blocking edge.

In 1936, Wagner [26] proved that a finite sequence of
diagonal flips transform a given triangulation into any
other triangulation with the same number of vertices.
Since then diagonal flips in plane triangulations [10,
11, 14, 15, 17, 18, 20, 22, 24] and in triangulations of
other surfaces [4, 6, 7, 16, 19–23, 27] have been studied
extensively. The number of flips in Wagner’s proof is
O(n2). Komuro [14] improved this bound to O(n). The
best known bound is max{6n−30, 0} due to Mori et al.
[17]. For labelled triangulations, Gao et al. [10] proved
that O(n log n) flips suffice.

Wagner [26] in fact proved that every n-vertex
triangulation can be transformed by a sequence of flips
into the so-called standard triangulation Δn, which
is illustrated in Figure 1(b), and is defined as the
triangulation on n vertices with two dominant vertices
(adjacent to every other vertex). Clearly two n-vertex
triangulations each with two dominant vertices are
isomorphic. To transform one n-vertex triangulation
G1 into another G2, first transform G1 into Δn, and
then apply the flips to transform G2 into Δn in reverse
order. A similar approach is used in this paper in the
context of simultaneous flips in triangulations.

Let S be a set of edges in a plane triangulation
G. The embedded graph obtained from G by flipping
every edge in S is denoted by G〈S〉. If G〈S〉 is a
triangulation, then S is (simultaneously) flippable in G,
and G is flipped into G〈S〉 by S. This operation is called
a simultaneous (diagonal) flip. Note that it is possible
for S to be flippable, yet S contains non-flippable edges,
and it is possible for every edge in S to be flippable,
yet S itself is not flippable. Simultaneous flips have
only previously been studied in the more restrictive
context of geometric triangulations of a point set [9].
Individual flips have also been studied in a geometric
context [12, 13].
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Figure 1: (a) Edge vw is flipped into xy. (b) The standard triangulation and a Hamiltonian cycle.

In Section 2 we characterise flippable sets and give
a number of introductory lemmas. Our first main re-
sult states that every triangulation with at least six
vertices can be transformed by one simultaneous flip
into a 4-connected (and hence Hamiltonian) triangula-
tion. Moreover, this flip can be computed in linear time.
These results are presented in Section 3. In Section 4 we
study simultaneous flips in maximal outerplanar graphs.
We prove that for any two n-vertex maximal outerpla-
nar graphs, there exists a sequence of O(log n) simulta-
neous flips to transform one into the other. The method
used is the basis for the main result in Section 5, which
states that for any two n-vertex triangulations, there
exists a sequence of O(log n) simultaneous flips to trans-
form one into the other. This result is optimal for many
pairs of triangulations. For example, if one triangula-
tion has Θ(n) maximum degree and the other has O(1)
maximum degree, then Ω(log n) simultaneous flips are
needed, since one simultaneous flip can at most halve
the degree of a vertex. This also holds for diameter
instead of maximum degree. Finally in Section 6 the
maximum size of a simultaneous flip is studied. It is
proved that every triangulation has a simultaneous flip
of at least 1

3 (n − 2) edges. On the other hand, every
simultaneous flip has at most n − 2 edges, and there
exist triangulations with a maximum simultaneous flip
of 6

7 (n − 2) edges.

2 Basics
We start with a characterisation of flippable sets that is
used throughout the paper. Two edges of a triangula-
tion that are incident to a common face are consecutive.
If two consecutive edges are simultaneously flipped, then
the two new edges cross, as in Figure 2(a). Thus no two
edges in a flippable set are consecutive. Two edges form
a bad pair if they are seen by the same pair of vertices.
If a bad pair of edges are simultaneously flipped, then
the two new edges are parallel, as in Figure 2(b). Thus
no two edges in a flippable set form a bad pair. If an
edge vw is blocked by an edge pq as in Figure 2(c), then
vw is not individually flippable, but vw can be in a flip-
pable set S as long as pq is also in S. It is easily seen

that these three properties characterise flippable sets.

Lemma 2.1. A set of edges S in a triangulation G �=
K3 is flippable if and only if:
(1) no two edges in S are consecutive,
(2) no two edges in S form a bad pair, and
(3) for every edge vw ∈ S, either vw is flippable or

the edge that blocks vw is also in S.

The proofs of the following lemmas are elementary,
and can be found in the full paper [2]. A cycle C in a
triangulation G is separating if deleting the vertices of
C from G produces a disconnected graph.

Lemma 2.2. An edge in a separating triangle of a
triangulation is individually flippable.

Lemma 2.3. Let vw be an edge of a triangulation that
is seen by vertices p and q. Suppose that p is inside
some cycle C and q is outside C. Then vw ∈ C.

Lemma 2.4. A blocking edge is individually flippable in
a triangulation G �= K4.

Lemma 2.5. Suppose that vw and xy are a bad pair
in a triangulation G, both seen by vertices p and q.
Suppose that vw blocks some edge ab. Then xy and
ab are consecutive, and vw and xy are in a common
triangle.

3 Flipping into a 4-Connected Triangulation

The following is the main result of this section.

Theorem 3.1. Every triangulation G with n ≥ 6 ver-
tices has a simultaneous flip into a 4-connected triangu-
lation that can be computed in O(n) time.

The following sufficient condition will be used to
prove Theorem 3.1.

Lemma 3.1. Let G be a triangulation with n ≥ 6
vertices. Let S be a set of edges in G such that no two
edges in S are in a common triangle, every edge in S
is in a separating triangle, and every separating triangle
contains an edge in S. Then S is flippable and G〈S〉 is
4-connected.
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Figure 2: Obstacles to a flippable set. Dashed edges are flipped to create bold edges. Shaded regions are faces

Proof. We first prove that S is flippable. By Lemma 2.2,
every edge in S is individually flippable. Thus, by
Lemma 2.1, it suffices to prove that no two edges in
S form a bad pair. Suppose that vw, xy ∈ S form
a bad pair. Then vw and xy are seen by the same
pair of vertices p and q. Let T be a separating triangle
containing vw. Then one of p and q is inside T , and the
other is outside T . By Lemma 2.3, xy must be an edge
of T , which implies that vw and xy are in a common
triangle. This contradiction proves that S is flippable.

Since a triangulation is 4-connected if and only if
it has no separating triangle, it suffices to prove that
G〈S〉 contains no separating triangle. Suppose that
T = (u, v, w) is a separating triangle in G〈S〉. Let S′

be the set of edges in G〈S〉 that are not in G. We
proceed by case-analysis on |T ∩ S′| (refer to Figure 3).
Since every separating triangle in G has an edge in S,
|T ∩ S′| ≥ 1.

Case 1. |T ∩ S′| = 1: Without loss of generality,
vw ∈ S′, uv �∈ S′, and uw �∈ S′. Suppose xy was flipped
to vw. Then xy is in a separating triangle xyp in G.
Any vertex adjacent to both v and w must be a ver-
tex of the separating triangle xyp. Thus p = u. Since
G has at least six vertices, at least one of the triangles
{(u, v, x), (u, v, y), (u, w, x), (u, w, y)} is a separating tri-
angle. Thus at least one of the edges in these triangles
is in S. Since xy ∈ S, and no two edges of S appear
in a common triangle, {ux, uy, vx, vy, wx, wy} ∩ S = ∅.
Thus uv or uw is in S. But then uvw is not a triangle
in G〈S〉, which is a contradiction.

Case 2. |T ∩ S′| = 2: Without loss of generality,
uv ∈ S′, vw ∈ S′, and uw �∈ S′. Suppose xy was
flipped to uv, and rs was flipped to vw. Without loss
of generality, y and s are inside uvw in G〈S〉. Then in
G, xy was in a separating triangle xyz, and rs was in a
separating triangle rst. By an argument similar to that
used to prove that S is flippable, z = w and t = u. But
then the subgraph of G induced by {u, v, w, x, y, r, s} is
not planar, or it contains parallel edges in the case that
x = r and y = s.

Case 3. |T ∩ S′| = 3: Suppose xy was flipped to
uv, rs was flipped to vw, and ab was flipped to uw.
Without loss of generality, y, s and b are inside uvw
in G〈S〉. In G, xy was in a separating triangle xyz,
rs was in a separating triangle rst, and ab was in a
separating triangle (a, b, c). By an argument similar to
that used to prove that S is flippable, z = w, t = u,
and c = v. But then the subgraph of G induced by
{u, v, w, x, y, r, s, a, b} is non-planar, or contains parallel
edges in the case that y = s = b and x = r = a. �

Observe that the restriction in Lemma 3.1 to trian-
gulations with at least six vertices is unavoidable. Ev-
ery triangulation with at most five vertices has a vertex
of degree three, and is thus not 4-connected. Now we
consider how to determine a set of edges that satisfy
Lemma 3.1.

Lemma 3.2. Every n-vertex triangulation G has a set
of edges S that contains a prespecified edge, every face
of G has exactly one edge in S, and can be computed in
O(n) time.

Proof. Biedl et al. [1] proved the following strengthening
of Petersen’s matching theorem: Every 3-regular bridge-
less planar graph has a perfect matching that contains
a prespecified edge and can be computed in linear time.
The dual G∗ is a 3-regular bridgeless planar graph with
2n − 4 vertices. A perfect matching in G∗ corresponds
to the desired set S. �

Note that Lemma 3.2 only accounts for triangles
of G that are faces. It can be proved by induction on
the number of separating triangles, applying Lemma 3.2
in the base case, that every triangulation G has a set
of edges S that contain a prespecified edge and every
triangle of G has exactly one edge in S. By taking
those edges in S that are in some separating triangle,
Lemma 3.1 implies that every triangulation with at least
six vertices has a simultaneous flip into a 4-connected
triangulation (Theorem 3.1). However, due to the
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Figure 3: Dashed edges are flipped to create a bold separating triangle. Shaded regions are faces.

presence of separating triangles, it is not obvious how to
implement this step in linear time. We now show how
to do so.

Let T be a separating triangle of a triangulation G.
Thus G \ T has two components, an inner component
(containing no vertex on the outerface) and an outer
component. Denote by int(T ) and ext(T ) the sets of
vertices of the inner and outer components. For two
separating triangles T1 and T2 of G, define T1 
 T2

whenever int(T1) ⊆ int(T2). Clearly 
 is a partial order.
We now describe how to compute a linear extension
R of 
 in linear time. The canonical ordering of de
Fraysseix et al. [8] will be a useful tool. Let G be
a plane triangulation with outerface (a, b, c). A linear
ordering of the vertices (v1 = a, v2 = b, v3, . . . , vn = c)
is canonical if for all 3 ≤ i ≤ n:

• the subgraph Gi induced by {v1, v2, . . . , vi} is 2-
connected, and the boundary of its outerface is a
cycle Ci containing the edge ab; and

• the vertex vi is in the outerface of Gi−1, and the
neighbours of vi in Gi−1 form a subinterval of the
path Ci−1 \ {ab} consisting of at least two vertices
(and v3 is adjacent to v1 and v2).

de Fraysseix et al. [8] proved that every triangu-
lation has a canonical ordering. Define the level of a
separating triangle T as the largest index of a vertex of
T in a given canonical ordering.

Lemma 3.3. For an n-vertex plane triangulation G, a
linear extension R of 
 can be computed in O(n) time.

Proof. First note that a canonical ordering can be
computed in O(n) time [8]. In the full paper [2]
we prove that if all of the separating triangles of G
have different levels, then ordering them by increasing
level gives the linear extension R. What remains is

to order the separating triangles at the same level.
These triangles share a common vertex vi that defines
their level. The neighbours of vi in Gi−1 form a path
P = (p1, p2, . . . , pk) on the boundary of the outerface
of Gi−1. Every separating triangle of G at level i
consists of vi and two non-consecutive vertices of P .
To establish the containment relation between these
triangles, we simply need to look at the indices of the
vertices of P . Let T1 = (vi, pa, pb) and T2 = (vi, pc, pd)
be distinct separating triangles with a < b and c < d. If
a < b ≤ c < d or c < d ≤ a < b then int(T1)∩int(T2) = ∅
by the canonical ordering. It is impossible for a < c <
b < d or c < a < d < b since the graph induced on
P is outerplanar and this would violate planarity. If
a ≤ c < d ≤ b then T2 
 T1, and if c ≤ a < b ≤ d
then T1 
 T2. Since we can compute the graph induced
by {p1, p2, . . . , pk} in O(k) time, all of the separating
triangles at level i can be ordered in O(k) time by
performing a breadth-first search on the graph induced
on P ; see [2] for more details. The result follows since
the sum of the degrees of a plane graph is O(n). �

Denote by FaceSet(G, e) the set S from
Lemma 3.2; that is, every face of G has exactly one
edge in S, and if e is specified then e ∈ S.

Algorithm TriangleSet(G, R)
Input: triangulation G, and

an ordered list R of separating triangles of G.
Output: set S of edges of G such that

every triangle of G has exactly one edge in S.
1: if R = ∅ then
2: return FaceSet(G, unspecified);
3: else
4: let T be the first triangle in R;
5: let S :=TriangleSet(G \ int(T ), R \ T );
6: let e be the edge in S ∩ T ;
7: return S ∪ FaceSet(G \ ext(T ), e);
8: end if
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Lemma 3.4. For every n-vertex triangulation G, the al-
gorithm TriangleSet(G, R) returns a set S consisting
of exactly one edge in every triangle of G. The running
time is O(n).

Proof. We proceed by induction on |R|. If R = ∅ then
every triangle in G is a face, and TriangleSet(G, R)
correctly computes S with a call to FaceSet(G). Now
assume that R �= ∅. Let T be the first triangle in R.
Then T is an innermost separating triangle of G, and
G \ ext(T ) has no separating triangle. Hence R \ T is
a linear extension of the containment relation 
 on the
set of separating triangles of G \ int(T ). By induction,
S := TriangleSet(G\ int(T ), R\T ) consists of exactly
one edge in every triangle of G \ int(T ). Thus there is
exactly one edge e ∈ S∩T . Every triangle in G\ext(T ) is
a face. By Lemma 3.2, FaceSet(G \ ext(T ), e) consists
of exactly one edge in every triangle of G \ ext(T )
including e. Together with S we have the desired set
for G. The running time is described by the recurrence
X(n) = X(n − |int(T )|) + O(|int(T )|) + O(1), which
solves to O(n). �

Note that Algorithm TriangleSet can be easily
modified to guarantee that a prespecified edge is in S.

Proof of Theorem 3.1. By Lemma 3.4, there is a set of
edges S consisting of exactly one edge in every triangle
of G. Let S′ be the set of edges in S that that are
in a separating triangle of G. Then S′ satisfies the
requirements of Lemma 3.1. Thus S′ is flippable and
G〈S′〉 is 4-connected. �

We obtain a stronger result at the expense of
a slower algorithm using the following well known
corollary of the 4-colour theorem [25].

Lemma 3.5. Every n-vertex planar graph G has an edge
3-colouring that can be computed in O(n2) time, such
that every triangle is trichromatic.

Theorem 3.2. Let G be a triangulation with n ≥ 6
vertices. Then G has three pairwise disjoint flippable
sets of edges S1, S2, S3 that can be computed in O(n2)
time, and each G〈Si〉 is 4-connected.

Proof. By Lemma 3.5, G has an edge 3-colouring such
that every triangle is trichromatic. For any of the
three colours, let S be the set of edges receiving that
colour and in a separating triangle. By Lemma 3.1, S
is flippable and G〈S〉 is 4-connected. �

We have the following corollary of Theorems 3.1 and
3.2, since every triangulation on at most five vertices
(that is, K3, K4 or K5 \ e) is Hamiltonian, and every
4-connected triangulation has a Hamiltonian cycle [28]
that can be computed in linear time [5].

Theorem 3.3. Every n-vertex triangulation G has a
simultaneous flip into a Hamiltonian triangulation that
can be computed in O(n) time. Furthermore, G has
three disjoint simultaneous flips that can be computed
in O(n2) time, such that each transforms G into a
Hamiltonian triangulation. �

4 Outerplane Graphs
A plane graph is outerplane if every vertex lies on the
outerface. The other faces are internal. An edge that
is not on the boundary of the outerface is internal.
We consider n-vertex (edge-)maximal outerplane graphs
G. Such graphs are 2-connected, every internal face
is a triangle, and there are 2n − 3 edges and n − 2
internal faces. The dual tree of G, denoted by G∗, is the
dual graph of G without a vertex corresponding to the
outerface. Observe that G∗ is a tree with n− 2 vertices
and maximum degree at most three. The notions of
diagonal flip and flippable set for triangulations are
extended to maximal outerplane graphs in the natural
way, except that only internal edges are allowed to be
flipped. We have the following simple characterisation
of flippable sets in maximal outerplane graphs [2].

Lemma 4.1. A set S of internal edges in a maximal
outerplane graph is flippable if and only if no two edges
in S are consecutive.

The following is the main result of this section. In
the remainder of this paper all logarithms have base 2,
and c1 is the constant 2/ log 6

5 (≈ 7.6).

Theorem 4.1. Let G1 and G2 be (unlabelled) maximal
outerplane graphs on n vertices. There is a sequence of
4c1 log n simultaneous flips to transform G1 into G2.

Two n-vertex maximal outerplane graphs both with
a dominant vertex are isomorphic. Thus the following
lemma proves Theorem 4.1 using the approach of Wag-
ner described in Section 1.

Lemma 4.2. For every maximal outerplane graph G
on n vertices, and for every vertex v of G, there is
a sequence of 2c1 log n simultaneous flips to transform
G into a maximal outerplane graph in which v is
dominant.

Lemma 4.2 is implied by Lemmas 4.3 and 4.4
(with k = c1 log n) to follow. In Lemma 4.3 we
reduce the diameter of the dual tree to c1 log n using
c1 log n simultaneous flips. Then in Lemma 4.4 a
dominant vertex is introduced using a further c1 log n
simultaneous flips.
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Lemma 4.3. Let G be a maximal outerplane graph on
n vertices. Then G can be transformed by a sequence
of at most c1 log n simultaneous flips into a maximal
outerplane graph X such that the diameter of the dual
tree X∗ is at most c1 log n.

Proof. We proceed by induction on n. The result holds
trivially for n = 3. Let G be a maximal outerplane
graph on n vertices. By a theorem of Bose et al. [3],
G has an independent set I of at least n

6 vertices,
and degG(v) ≤ 4 for every vertex v ∈ I. Obviously
degG(v) ≥ 2. For d ∈ {2, 3, 4}, let Id be the set of
vertices v ∈ I with degG(v) = d. For every vertex
v ∈ I3 ∪ I4, add one internal edge incident to v to a set
S. Since I is independent, |S| = |I3|+ |I4|. Suppose for
the sake of contradiction that there are two consecutive
edges xu, xv ∈ S. Then x �∈ I3 ∪ I4, which implies that
u, v ∈ I3∪I4. Since every internal face of G is a triangle,
uv is an edge of G, which contradicts the independence
of I. Thus no two edges in S are consecutive. By
Lemma 4.1, S is flippable in G. Let G′ := G〈S〉. Every
vertex v ∈ I2 ∪ I3 has degG′(v) = 2, and every vertex
v ∈ I4 has degG′(v) = 3. Since I4 is an independent set
of G, and any edge in G′ that is incident to a vertex in
I4 is also in G, I4 is an independent set of G′. Let S′ be
the set of internal edges of G′ incident to a vertex in I4.
Thus |S′| = |I4|, and by the same argument used for S,
no two edges in S′ are consecutive in G′. By Lemma 4.1,
S′ is flippable in G′. Let G′′ := G′〈S′〉. Every vertex
v ∈ I has degG′′(v) = 2.

Thus G can be transformed by two simultaneous
flips into a maximal outerplane graph G′′ containing
at least n

6 vertices of degree two. Let G′′′ be the
maximal outerplane graph obtained from G′′ by deleting
the vertices of degree two. Then G′′′ has at most 5

6n
vertices. By induction, G′′′ can be transformed by a
sequence of at most c1 log 5

6n simultaneous flips into a
maximal outerplane graph X such that the diameter of
X∗ is at most c1 log 5

6n. Consider a vertex v ∈ I. Since
degG′′(v) = 2, there is one internal face incident to v
in G′′, which corresponds to a leaf in G′′∗. Thus X∗ is
obtained by adding leaves to G′′∗. Hence the diameter
of X∗ is at most the diameter of G′′∗ plus two, which is
2+ c1 log 5

6n = c1 log n. We have used two simultaneous
flips, S and S′, to transform G into G′′, and then
c1 log 5

6n simultaneous flips to transform G′′ into X .
The total number of flips is 2 + c1 log 5

6n = c1 log n.
�

Lemma 4.4. Let v be a vertex of a maximal outerplane
graph G for which G∗ has diameter at most k. Then G
can be transformed by at most k simultaneous flips into
a maximal outerplane graph in which v is dominant.

Proof. Define the distance of each internal face f of G
to be the minimum number of edges in a path of G∗

between the vertex that corresponds to f and a vertex
of G∗ that corresponds to a face incident with v. Since
the diameter of G∗ is at most k, every internal face
has distance at most k. Let S be the set of internal
edges that are seen by v. Clearly no two edges in S
are consecutive. By Lemma 4.1, S is flippable. As
illustrated in Figure 4, by flipping S, the distance of
each internal face that is not incident with v is reduced
by one. By induction, at most k simultaneous flips are
required to reduce the distance of every internal face to
zero, in which case v is dominant. �

5 Simultaneous Flips Between Given
Triangulations

In this section we prove the following theorem, which
is an analogue of Theorem 4.1 for triangulations.
Throughout, c1 is the constant from Section 4, and c2

is the constant 2/ log 54
53 (≈ 74.2).

Theorem 5.1. Let G1 and G2 be (unlabelled) triangu-
lations on n vertices. There is a sequence of 2 + 4(c1 +
c2) log n simultaneous flips to transform G1 into G2.

The proof of Theorem 5.1 uses the approach of Wag-
ner described in Section 1. We first apply Theorem 3.3
to obtain a Hamiltonian triangulation with one simulta-
neous flip. Thus it suffices to prove that a Hamiltonian
triangulation can be transformed into Δn. A Hamilto-
nian cycle H of a triangulation G naturally divides G
into two maximal outerplane subgraphs: an ‘inner’ sub-
graph consisting of H and the edges inside H , and an
‘outer’ subgraph consisting of H and the edges outside
of H . At this point, it is tempting to apply Lemma 4.2
twice, once on the inner subgraph to obtain one domi-
nant vertex, and then on the outer subgraph to obtain
a second dominant vertex, thus reaching the standard
triangulation. However, Lemma 4.2 cannot be applied
directly since we need to take into consideration the in-
teraction between these two outerplane subgraphs. The
main problem is that an internal edge in the inner sub-
graph may be blocked by an edge in the outer subgraph.
The bulk of this section is dedicated to solving this im-
passe.

First some definitions. A chord of a cycle C in a
triangulation G is an edge of G that is not in C and
whose endpoints are both in C. A chord e of C is
classified as internal or external depending on whether e
is contained in the interior or exterior of C (with respect
to the outerface of G). For our inductive arguments to
work we need to consider a more general type of cycle
than a Hamiltonian cycle. A cycle C of a triangulation
G is empty if the interior of C contains no vertices of
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v v

Figure 4: Making v a dominant vertex in Lemma 4.4.

G. Obviously a Hamiltonian cycle is empty. For an
empty cycle C of a triangulation G, let G{C} denote the
subgraph of G whose vertices are the vertices of C, and
whose edges are the edges of C along with the internal
chords of C. Then G{C} is a maximal outerplane graph,
and the boundary of the outerface of G{C} is C. The
following elementary lemma is proved in the full paper
[2].

Lemma 5.1. Let C be an empty cycle of a triangulation
G �= K4. Let vw be an internal chord of C that is blocked
by some edge pq. Then pq is an external chord of C that
is flippable in G.

Lemma 5.2. Let C be an empty cycle of a triangulation
G. Let S be a set of internal chords of C, no two of
which are consecutive. Then there is a flippable set T of
edges in G such that (a) T ∩C = ∅, (b) |S ∩ T | ≥ 1

3 |S|,
and (c) every edge in T \ S is an external chord of C
and |T \ S| ≤ |S ∩ T |.

Proof. Let S′ be the set of edges in S that are individ-
ually flippable in G. Let S′′ := S \ S′. By Lemma 5.1,
there is an external chord that blocks each edge e ∈ S′′.
Distinct edges e1, e2 ∈ S′′ are blocked by distinct ex-
ternal chords, as otherwise e1 and e2 would be a bad
pair, and the outerplane graph G{C} would contain a
subdivision of K4. Let B be this set of blocking exter-
nal chords. Thus |B| = |S′′|. By Lemma 3.5, B can
be 3-coloured such that no two monochromatic edges
in B are consecutive in G. Let P be the largest set of
monochromatic edges in B. Then |P | ≥ 1

3 |B|. Let Q
be the set of edges in S′′ that are blocked by edges
in P . Then |Q| = |P |. Let T := S′ ∪ P ∪ Q. It
is straightforward to verify each of the conditions of

Lemma 2.1 for T . Thus T is flippable. Observe that
T ∩C = ∅. This proves (a). Now T ∩S = S′ ∪Q. Since
S′ ∩ Q = ∅, we have |T ∩ S| = |S′| + |Q| = |S′| + |P | ≥
|S′|+ 1

3 |B| ≥ 1
3 |S′|+ 1

3 |S′′| = 1
3 |S|. This proves (b). Now

T \ S = P , all of whose elements are external chords.
Since |S ∩ T | = |S′| + |P |, we have |P | ≤ |S ∩ T |. Since
T \ S = P , we have |T \ S| ≤ |S ∩ T |. This proves (c).
�

The following result extends Lemma 4.3 for outer-
plane graphs to the case of triangulations.

Lemma 5.3. Let G be a triangulation, and let C be
an empty cycle of G with n vertices. (G may have
more than n vertices.) Then G can be transformed by
a sequence of at most c2 log n simultaneous flips into a
triangulation X in which C is an empty cycle and the
diameter of X{C} is at most c2 log n. Moreover, every
edge of G that is incident to a vertex not in C remains
in X.

Proof. We proceed by induction on n. The result holds
trivially for n = 3. Now G{C} is maximal outerplane.
As in Lemma 4.3, construct a degree-4 independent set
I of G{C}, define Id := {v ∈ I : degG{C}(v) = d} for
d ∈ {2, 3, 4}, and construct a set S of non-consecutive
internal edges of G{C} such that there is exactly one
internal edge in S incident to every vertex v ∈ I3 ∪ I4.
By Lemma 5.2, there is a flippable set T of edges in G,
such that T ∩C = ∅ and |S ∩T | ≥ 1

3 |S| = 1
3 (|I3|+ |I4|).

Moreover, every edge in T \ S is an external chord of
C in G. For d ∈ {3, 4}, let I ′d be the set of vertices
in Id incident to an edge in S ∩ T . Thus |I ′3| + |I ′4| ≥
1
3 (|I3| + |I4|).

Let G′ := G〈T 〉. Since T ∩ C = ∅, C is an empty
cycle of G′. Every vertex v ∈ I2 ∪ I ′3 has degG′{C}(v) =
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2. Every vertex v ∈ I ′4 has degG′{C}(v) = 3. An edge
in G′{C} that is incident to a vertex in I ′4 is also in
G{C}. Since I ′4 is an independent set of G{C}, it is
also an independent set of G′{C}. Let S′ be the set of
internal chords of C in G′ that are incident to a vertex
in I ′4. Thus |S′| = |I ′4|, and by the same argument used
for S, no two edges in S′ are consecutive in G′. By
Lemma 5.2, there is a flippable set of edges T ′ in G′,
such that T ′ ∩ C = ∅ and |S′ ∩ T ′| ≥ 1

3 |S′| = 1
3 |I ′4|.

Moreover, every edge in T ′ \ S′ is an external chord of
C in G′. Let I ′′4 be the set of vertices in I ′4 incident to an
edge in S′ ∩ T ′. Thus |I ′′4 | ≥ 1

3 |I ′4|. Let G′′ := G′〈T ′〉.
Since T ′ ∩ C = ∅, C is an empty cycle of G′′. Every
vertex v ∈ I2 ∪ I ′3 ∪ I ′′4 has degG′′{C}(v) = 2. Now
|I2 ∪ I ′3 ∪ I ′′4 | ≥ |I2|+ |I ′3|+ 1

3 |I ′4| ≥ |I2|+ 1
3 (|I ′3|+ |I ′4|) ≥

|I2| + 1
9 (|I3| + |I4|) ≥ 1

9 (|I2| + |I3| + |I4|) = 1
9 |I| ≥

n
54 .

In summary, G can be transformed by two simul-
taneous flips into a triangulation G′′ in which C is
an empty cycle, and G′′{C} has an independent set L
(= I2∪I ′3∪I ′′4 ) such that |L| ≥ n

54 and degG′′{C}(v) = 2
for every vertex v ∈ L. Consider a vertex v ∈ L. Say
(u, v, w) is the 2-edge path in C. Since L is indepen-
dent, u �∈ L and w �∈ L. Since degG′′{C}(v) = 2, uw
is an internal chord of C in G′′. Let D be the cycle of
G obtained by replacing the path (u, v, w) in C by the
edge uw (for all v ∈ L). Thus D is an empty cycle of
G′′, and |D| = n − |L| ≤ 53

54n. By induction applied to
D and G′′, G′′ can be transformed by a sequence of at
most c2 log 53

54n simultaneous flips into a triangulation
X in which D is an empty cycle and the diameter of
X{D}∗ is at most c2 log 53

54n. Moreover, every edge of
G′′ that is incident to a vertex not in D remains in X .

Consider a vertex v ∈ L. Say (u, v, w) is the 2-edge
path in C. Since v is not in D, the edges uv and vw
of G are in X . Thus C is an empty cycle of X . Since
uw is an edge of D, uvw is a face of X . The vertex
in the dual tree X{C}∗ that corresponds to uvw is a
leaf in X{C}∗. Thus the dual tree X{C}∗ is obtained
by adding leaves to the dual tree X{D}∗. Hence the
diameter of X{C}∗ is at most the diameter of X{D}∗
plus two, which is at most 2 + c2 log 53

54n = c2 log n. We
have used two simultaneous flips, T and T ′, to transform
G into G′′, and then c2 log 53

54n simultaneous flips to
transform G′′ into X . The total number of flips is
2 + c2 log 53

54n = c2 log n. Since every edge in T is a
chord of C in G, and every edge in T ′ is a chord of C
in G′, every edge of G that is incident to a vertex not
in C remains in X . �

Proof of Theorem 5.1. Let G := G1. First apply
Theorem 3.3 to transform G with one flip into a
triangulation containing a Hamiltonian cycle H . Then
apply Lemma 5.3 (with C = H) to transform G

with c2 log n flips into a triangulation in which H is
a Hamiltonian cycle and the diameter of G{H}∗ is at
most c2 log n. There is a vertex v of G not incident
to any external chords of H . By a similar proof to
that of Lemma 4.4, we can make v dominant in G with
c2 log n flips. Observe that G\v is a maximal outerplane
graph, in which the vertices are ordered on the outerface
according to the cyclic order of the neighbours of v. Let
C be the cycle bounding the outerface of G \ v. By
Lemma 4.2 there is a sequence of at most 2c1 log(n− 1)
simultaneous flips to transform G \ v into a maximal
outerplane graph with a dominant vertex. Each of
these flips is valid in G since C has no internal chords
(cf. Lemma 5.2). Thus G now has two dominant
vertices; that is, G is the standard triangulation Δn.
The number of flips is at most 1+2(c1+c2) log n. Finally
compute an analogous sequence of flips to transform G2

into Δn, and apply them in reverse order. �

Although each of the O(log n) simultaneous flips in
Theorem 5.1 may involve a linear number of edges, the
total number of flipped edges is linear [2].

6 Large Simultaneous Flips

Let msf(G) denote the maximum cardinality of a flip-
pable set of edges in a triangulation G. In related work,
Gao et al. [10] proved that every triangulation has at
least n− 2 (individually) flippable edges, and every tri-
angulation with minimum degree four has at least 2n+3
(individually) flippable edges. Galtier et al. [9] proved
that every geometric triangulation has a set of at least
1
6 (n− 4) simultaneously flippable edges. In this section
we prove bounds on msf(G). Our main contribution is
the following lower bound.

Theorem 6.1. For every triangulation G with n ≥ 4
vertices, msf(G) ≥ 1

3 (n − 2).

Proof. Let G be a (vertex) minimum counterexample
with n vertices. It is easily seen that n ≥ 7. By
Lemma 3.5, there is a 3-colouring {E1, E2, E3} of the
edges of G such that every triangle is trichromatic. Let
Si be set of edges in Ei that are not in a bad pair with
another edge in Ei. We claim that each Si is flippable.
Since every triangle is trichromatic, no two edges in Si

are consecutive. This is condition (1) in Lemma 2.1.
Condition (2) in Lemma 2.1 holds by the definition of
Si. Suppose that an edge ab ∈ Si is blocked by an
edge vw. To show that condition (3) of Lemma 2.1 is
satisfied, we need to prove that vw ∈ Si. First suppose
that vw �∈ Ei. Since (v, a, w) is a triangle, one of av
and bv is in Ei, which implies that this edge and ab are
consecutive and both in Ei. This contradiction proves
that vw ∈ Ei. Now suppose that vw and some edge xy
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form a bad pair. By Lemma 2.5, vw and xy are in a
common triangle. Thus xy �∈ Ei and vw does not form
a bad pair with another edge in Ei. Therefore vw ∈ Si

as desired. By Lemma 2.1, Si is flippable.
We now prove that every face has at least one edge

in S1∪S2∪S3. The neighbours of a degree-3 vertex form
a separating triangle. In the full paper [2] we prove that
every edge in a separating triangle is in S1 ∪ S2 ∪ S3.
Thus every face incident to a degree-3 vertex has an edge
in S1 ∪ S2 ∪ S3. In the full paper [2] we prove that in a
minimum counterexample, every edge seen by a degree-
4 vertex is not in a bad pair. Thus every face incident
to a degree-4 vertex has an edge in S1 ∪ S2 ∪S3. In the
full paper [2] we prove that every face not incident to
degree-3 or degree-4 vertex has an edge that is not in a
bad pair, and is thus in S1 ∪ S2 ∪ S3. Thus every face
has an edge in S1∪S2∪S3. There are 2(n−2) faces and
every edge is in two faces. Thus |S1 ∪ S2 ∪ S3| ≥ n− 2,
and |Si| ≥ 1

3 (n − 2) for some i. Therefore G is not a
counterexample, and since G was minimum, there are
no counterexamples. �

It is easily seen that msf(G) ≤ n − 2 for every n-
vertex triangulation G. We have the following existen-
tial upper bound.

Lemma 6.1. There exist n-vertex triangulations G with
msf(G) = 6

7 (n − 2) for infinitely many n.

Proof. Let G be the triangulation obtained from an ar-
bitrary triangulation G0 by adding a triangle inside each
face (u, v, w), each vertex of which is adjacent to two of
{u, v, w}. As in Figure 5(a)–(c), a straightforward case-
analysis [2] shows that for every face of G0, at least one
of the seven corresponding faces of G does not have an
edge in any flippable set S. It follows that |S| ≤ 6

7 (n−2).
As in Figure 5(d), a flippable set of 6

7 (n− 2) edges in G
is easily constructed [2]. �

An obvious open problem is to close the gap be-
tween the lower bound of 1

3 (n−2) and the upper bound
of 6

7 (n− 2) in the above results. In the full paper [2] we
improve the lower bound for 5-connected triangulations
G to msf(G) = n − 2.
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