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ANAGRAM-FREE COLORINGS OF GRAPH SUBDIVISIONS\ast 

TIM E. WILSON\dagger AND DAVID R. WOOD\dagger 

Abstract. An anagram is a word of the form WP where W is a non-empty word and P is
a permutation of W . A vertex coloring of a graph is anagram-free if no subpath of the graph is
an anagram. Anagram-free graph coloring was independently introduced by Kam\v cev, \Luczak, and
Sudakov [Combin. Probab. Comput., 27 (2018), pp. 623--642] and ourselves [Electron. J. Combin.,
25 (2018), pp. 2--20]. In this paper we introduce the study of anagram-free colorings of graph
subdivisions. We show that every graph has an anagram-free 8-colorable subdivision. The number of
division vertices per edge is exponential in the number of edges. For trees, we construct anagram-free
10-colorable subdivisions with fewer division vertices per edge. Conversely, we prove lower bounds,
in terms of division vertices per edge, on the anagram-free chromatic number for subdivisions of the
complete graph and subdivisions of complete trees of bounded degree.
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1. Introduction. An anagram is a word of the form WP where W is a non-
empty word and P is a permutation of W . A vertex coloring of a graph is anagram-free
if the sequence of colors on every path in the graph is not an anagram. The anagram-
free chromatic number, \phi (G), of a graph G, is the minimum number of colors in an
anagram-free coloring of G. Alon et al. [1] proposed anagram-free coloring as a subject
of study as a generalization of square-free coloring. A square is a word of the form
WW where W is a non-empty word. A graph coloring is square-free if the sequence
of colors on every path in the graph is not a square. A square-free graph coloring
is also called a nonrepetitive coloring. The square-free chromatic number, \pi (G), of a
graph G, is the minimum number of colors in a square-free coloring of G.

Square-free words and anagram-free words both originate from the study of the
combinatorics of words. Square-free words are known as nonrepetitive words and
anagram-free words are known as abelian square-free or strongly nonrepetitive. Both
types of words can be arbitrarily long with a bounded number of distinct symbols. In
particular, Thue [16] constructed arbitrarily long square-free words on three symbols.
Ker\"anen [12, 13] constructed arbitrarily long anagram-free words on four symbols.
The longest square-free or anagram-free words on two symbols have length 3. The
longest anagram-free words on three symbols have length 7 [5]. Words are equivalent
to colorings of paths, so \pi (P ) \leqslant 3 and \phi (P ) \leqslant 4 for all paths P .

Square-free coloring was introduced by Alon et al. [1] and has since received much
attention [3, 4, 6, 7, 8, 9, 10]. A central area of study has been to bound \pi (G) by
a function of maximum degree, \Delta (G). Alon et al. [1] proved a result that implies
\pi (G) \leqslant c\Delta (G)2 for some constant c. Several subsequent works improved the value of
c [8, 10], with the best known value being c = 1 + o(1) [6]. Lower bounds for square-
free coloring apply to anagram-free coloring because \phi (G) \geqslant \pi (G) for all graphs G.
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ANAGRAM-FREE COLORINGS OF GRAPH SUBDIVISIONS 2347

Indeed, a square is an anagram with the identity permutation, so for a coloring to
be anagram-free it must also be square-free. Anagram-free colorings were recently
introduced by Kam\v cev, \Luczak, and Sudakov [11] and Wilson and Wood [17], both
proving, among other results, that \phi is not bounded by a function of maximum degree.

In this paper we study \phi on graph subdivisions, with a focus on constructing
subdivisions with bounded anagram-free chromatic number. A subdivision of a graph,
G, is a graph obtained from G by replacing each edge vw \in E(G) by a path with
endpoints vw. If an edge uv of G is replaced by a path uw1w2 . . . wi - 1v of length
i, then we say that uv was subdivided i times and call the vertices w1, . . . , wi - 1

division vertices. The k-subdivision of G is the subdivision in which every edge of
G is subdivided exactly k times. Similarly, a (\leqslant k)-subdivision of G is a subdivision
in which every edge of G is subdivided at most k times. Graphs with many division
vertices are locally paths or stars, so one would expect highly subdivided graphs to
have relatively low anagram-free chromatic number. Square-free coloring has been
studied on subdivisions of graphs, and here this intuition is known to hold. Grytczuk
[7] showed that every graph has a subdivision, S, with \pi (S) \leqslant 5, with the bound later
improved to 4 by Bar\'at and Wood [2], and finally to 3 by Pezarski and Zmarz [15].

Before introducing our results, we summarize the known results for \pi and \phi on
trees. For a rooted tree, T , with root r, the depth of a vertex v in T is the distance
between v and r. A d-ary tree is a rooted tree with at most d children per vertex.
The complete d-ary tree of height h is the rooted tree such that every non-leaf vertex
has d children and every leaf has depth h. The complete 2-ary tree is called the
complete binary tree. Bre\v sar et al. [3] studied square-free colorings of trees, showing
that \pi (T ) \leqslant 4 for every tree T , and that T has a subdivision, S, with \pi (S) \leqslant 3. By
contrast, \phi is unbounded on trees [11]. In particular, Kam\v cev, \Luczak, and Sudakov
[11] prove the following bounds for the complete binary tree.

Theorem 1 (Kam\v cev, \Luczak, and Sudakov [11]). Let Th be the complete binary
tree of height h. Then \sqrt{} 

h

log2 h
\leqslant \phi (Th) \leqslant h + 1.

The upper bound, \phi (T ) \leqslant h + 1, holds for every tree, T , of height h, and is
obtained by coloring vertices by their depth. Wilson and Wood [17] show that this
upper bound is almost best possible on general trees by proving that \phi (T ) \geqslant h, where
T is the (h - 1)h-ary tree of height h.

1.1. Subdivisions of trees. We now introduce the results in the present paper.
Our results complement the bounds on \phi for trees proved in [11, 17]. We construct
anagram-free 8-colorable subdivisions of binary trees.

Theorem 2. Every binary tree, T , of height h, has a (\leqslant 3h - 1  - 1)-subdivision,
S, with \phi (S) \leqslant 8.

More generally, we construct anagram-free 10-colorable subdivisions of d-ary
trees.

Theorem 3. Every d-ary tree, T , of height h, has a
\bigl( 
\leqslant 2d(d + 1)h - 1

\bigr) 
-subdivision,

S, with \phi (S) \leqslant 10.

The number of division vertices per edge is exponential in the height for Theorems
2 and 3. This raises the question of whether better constructions exist. In particu-
lar, does every tree of bounded degree have an anagram-free c-colorable subdivision
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2348 TIM E. WILSON AND DAVID R. WOOD

with the number of division vertices per edge growing slower than exponentially with
height? We answer this question in the negative with the lower bound in the following
theorem.

Theorem 4. The k-subdivision, S, of the complete d-ary tree of height h satisfies\sqrt{} 
h

logmin\{ d,(h(k+1))2\} (h(k + 1))
\leqslant \phi (S) \leqslant 

10h

logd+1 (k/2d)
+ 14.

Theorem 4 implies that, for sufficiently large height h, the number of division
vertices per edge in an anagram-free c-colorable subdivision of the complete d-ary
tree is at least

k \geqslant 
dh/c

2

h
 - 1,

which is exponential in h for fixed c. The upper bound in Theorem 4 is obtained by
applying Theorem 3 to appropriate subtrees of the complete d-ary tree. The lower
bound is a generalization of Theorem 1; see Theorem 12 for details.

1.2. Subdivisions of general graphs. We also study \phi on subdivisions of
general graphs and prove the following theorems in this direction. The first has fewer
division vertices per edge, while the second has fewer colors.

Theorem 5. Every graph G has a (\leqslant 3(2)2| E(G)|  - 1  - 1)-subdivision, S, with
\phi (S) \leqslant 14.

Theorem 6. Every graph G has a (\leqslant 45
\bigl( 
75
9 + 1

\bigr) 2| E(G)|  - 1
)-subdivision, S, with

\phi (S) \leqslant 8.

The bound \phi (S) \leqslant 8 in Theorem 6 is our best bound on \phi , notably better than
the bound for subdivisions of trees (Theorem 3). On the other hand, Theorem 3 uses
fewer division vertices. Indeed, if T is the complete d-ary tree, then the number of
division vertices per edge is polynomial in | E(T )| .

To investigate the optimality, in terms of division vertices per edge, of Theorems
5 and 6, we prove a lower bound on \phi (Kn), the complete graph on n vertices. Such
results exist for \pi ; in particular, Ne\v set\v ril, Ossona de Mendez, and Wood [14] proved
the following theorem.

Theorem 7 (Ne\v set\v ril, Ossona de Mendez, and Wood [14]). For k \geqslant 2, the
k-subdivision of Kn, denoted by S, satisfies\Bigl( n

2

\Bigr) 1/(k+1)

\leqslant \pi (S) \leqslant 9
\Bigl\lceil 
n1/(k+1)

\Bigr\rceil 
.

Since \phi (G) \geqslant \pi (G), the lower bound in Theorem 7 implies that k \geqslant logc (n/2)  - 
1 for every anagram-free c-colorable k-subdivision of Kn. We prove the following
improvement.

Theorem 8. Let S be a (\leqslant k)-subdivision of Kn. If S is anagram-free c-colorable,
then

k \geqslant 
\Bigl( 
c!
\Bigl( n
c
 - 1
\Bigr) \Bigr) 1/c

 - c.

For fixed c, the bound in Theorem 8 is k \geqslant \Omega 
\bigl( 
n1/c

\bigr) 
, which is larger than the

logarithmic bound implied by Theorem 7. Still, this lower bound is much less than
the exponential upper bound implied by Theorem 5. We expect that both our upper
and lower bounds on k can be significantly improved.
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ANAGRAM-FREE COLORINGS OF GRAPH SUBDIVISIONS 2349

2. Basic observations. This section contains basic observations and definitions
that will be used throughout the rest of the paper. A color multiset of size n on c
colors is a multiset of size n with entries from [c] := \{ 1, 2, . . . , c\} . Let \scrM n,c be the
set of all color multisets of size n on c colors, and let \scrM \leqslant n,c be the set of all color
multisets of size at most n on c colors. For a colored graph G, define the following.
Let M(G) be the multiset of colors assigned to the vertices of G. For a subset, C, of
the colors, let MC(G) be M(G) restricted to C. Let VC(G) be the vertices of G that
have a color from C.

Call a path even if it has an even number of vertices. Define LR to be the split of
an even path, P , if | L| = | R| and P = LR. Note that a colored path, P , is an anagram
if and only if M(L) = M(R). Equivalently, P is not an anagram if MC(L) \not = MC(R)
for some set of colors C. For a path P and set of colors C, define P restricted to
C to be the word \omega C(P ) := f(v1)f(v2) . . . f(vx), where v1, v2, . . . , vx are the vertices
in VC(P ), in the order defined by P , and f is the vertex coloring of P . Similarly,
for a word W = w1w2 . . . wn and set of symbols C, define W restricted to C to be
\omega C(W ) := f(w1)f(w2) . . . f(wn), where f(w) = w if w \in C and f(w) is the empty
character otherwise. We use these observations in the form of the following lemma.

Lemma 9. A path, P , colored by C, is an anagram if and only if for all C \prime \subseteq C,
P restricted to C \prime is an anagram or the empty word.

Proof. We first prove the forward implication. Let C \prime \subseteq C be such that \omega C\prime (P )
is nonempty since the empty case is trivial. Let LR be the split of P . Note that
MC\prime (L) = M(\omega C\prime (L)) and MC\prime (R) = M(\omega C\prime (R)). Since P is an anagram,

M(\omega C\prime (L)) = MC\prime (L) = MC\prime (R) = M(\omega C\prime (R)).

Therefore \omega C\prime (P ) is an anagram.
To prove the back implication, take C \prime = C. Then P restricted to C \prime , which is

all of P , is an anagram.

The midedge of an even path P with split LR is the edge of P not contained in L
or R. For a connected graph G, define the distance between an edge ab and a vertex
v to be the minimum of dist(a, v) and dist(b, v).

3. Subdivisions of trees. This section contains our results for trees. For every
vertex v in a rooted tree T , define AT (v) to be the set of ancestors and descendants
of v in T . A branch vertex is a vertex of a rooted tree with at least two children.

3.1. Subdivisions of binary trees.

Theorem 2. Every binary tree, T , of height h, has a (\leqslant 3h - 1  - 1)-subdivision,
S, with \phi (S) \leqslant 8.

Proof. 2-color the edges of T with \{ 1, 2\} such that for every branch vertex, v \in 
V (T ), with children c1 and c2, the edge vci receives color i. Color the remaining edges
arbitrarily from \{ 1, 2\} . Let S be the subdivision of T such that edges at distance x
from the root are subdivided 3h - x - 1  - 1 times. Note that edges incident with leaves
of depth h are not subdivided.

Let r be the root of S. Label the vertices of S according to the edge 2-coloring
of T as follows:

\bullet Label division vertices with the color of the corresponding edge in T .
\bullet Label r with 1.
\bullet Label the original non-root vertices with the label of their parent edge in T .
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2350 TIM E. WILSON AND DAVID R. WOOD

Let W = w1w2 . . . be an anagram-free word on \{ 1, 2, 3, 4\} . Define V\ell (S) to be the
set of vertices with label \ell in S. Color every vertex v \in V (S) by (\ell , wx) where \ell is the
label of v and x is the number of vertices with label \ell on the vr-path. We now show
that this 8-coloring of S is anagram-free.

Let P be an even order path in S. Consider the case where there is some \ell \in 
\{ 1, 2\} such that AS(v) = V\ell (P ) for all vertices v \in V\ell (P ). If V\ell (P ) = \emptyset , then
P is not an anagram because, by construction, S restricted to a label is anagram-
free. So now consider V\ell (P ) \not = \emptyset and let C \prime = \{ \ell \} \times \{ 1, 2, 3, 4\} . Then \omega C\prime (P ) =
(\ell , wy)(\ell , wy+1) . . . (\ell , wy+| V\ell (P )| ), for some integer y, because the number of \ell labelled
vertices on the vr-path increments by 1 for all vertices v \in V (P\ell ) along P . Therefore
\omega C\prime (P ) is a subword of W . Thus, by Lemma 9, P is not an anagram.

Now consider the case where for every \ell \in \{ 1, 2\} there exists a v \in V\ell (P ) such
that AS(v) \not = V\ell (P ). Let u be the minimum depth vertex in V (P ). Both labels have
vertices that are not mutual ancestors or descendants. Thus, u has two children in T ,
x, y \in V (T ), and, in addition, x, y \in V (P ).

Partition V (P ) into X := (V (P ) \cap AS(x)) \setminus \{ u\} and Y := V (P )\cap AS(y). Let LR
be the split of P such that, without loss of generality, u \in V (R). Also without loss of
generality, choose x and y such that Y \subseteq V (R). Since Y \cap V (L) = \emptyset ,

| X \cap V (L)| = | V (L)| = | V (R)| = | X \cap V (R)| + | Y \cap V (R)| .

Let z be the integer such that 3z + 1 is the order of the ux-path in S. We will
prove an upper bound on | X \cap V (R)| to show that the midedge of P is ``close"" to u.
First, note that

| Y \cap V (R)| \geqslant 3z + 2

because the edge uy was subdivided 3z  - 1 times. Since | X| is at most the length of
a path from u to a leaf,

| X \cap V (L)| \leqslant 3z + 3z - 1 + \cdot \cdot \cdot + 31 + 1  - | X \cap V (R)| =
3

2
3z  - 1

2
 - | X \cap V (R)| .

Therefore

| X \cap V (R)| = | X \cap V (L)|  - | Y \cap V (R)| \leqslant 3

2
3z  - 1

2
 - | X \cap V (R)|  - 3z  - 2.

Thus

| X \cap V (R)| \leqslant 1

4
3z  - 3

4
.

Without loss of generality, let x have label 1 and y have label 2. Indeed, the labels
of x and y are distinct because edges ux and uy have different colors in T . Since all
vertices on the ux-path (except possibly u) have label 1,

| V1(L)| \geqslant 3z  - | X \cap V (R)| \geqslant 3

4
3z +

3

4
.

To put an upper bound on | V1(R)| , assume the worse case, that u has label 1. Then

| V1(R)| \leqslant | X \cap V1(R)| + 1 + 3z - 1 + 3z - 2 + \cdot \cdot \cdot + 31 + 1

\leqslant 
1

4
3z  - 3

4
+ 1 +

3

2
3z - 1  - 1

2

=
3

4
3z  - 5

4
.

It follows that | V1(R)| < | V1(L)| . Therefore P is not an anagram.
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ANAGRAM-FREE COLORINGS OF GRAPH SUBDIVISIONS 2351

3.2. Subdivisions of \bfitd -ary trees. The construction in Theorem 2 does not
extend to a good bound on \phi for subdivisions of complete d-ary trees. The obvious
extension, using d labels for the edge coloring, shows that the complete d-ary tree has
a 4d-colorable subdivision. We prove the following result for complete d-ary trees.

Theorem 10. The complete d-ary tree, T , of height h, has a
\bigl( 
\leqslant 2d(d + 1)h - 1

\bigr) 
-

subdivision, S, with \phi (S) \leqslant 10.

Proof. Let r be the root of T . For all x \in [h] and y \in [d], let tx,y = y(d + 1)x - 1.
Define the labelling \ell : E(T ) \rightarrow [d] such that edges incident with the same parent
vertex receive distinct labels. Let S be the subdivision of T such that every edge
e \in E(T ) is subdivided 2th - z,\ell (e) times where z is the depth of e. Note that z \in 
\{ 0, . . . , h - 1\} .

Let \ell T : V (T ) \rightarrow \{ black,white\} be a proper vertex 2-coloring of T . Define the
labelling \ell S : V (S) \rightarrow \{ black,white, red, green\} as follows. If v \in V (S) is an original
vertex, then \ell S(v) := \ell T (v). Otherwise, let v\prime \in V (S) be the closest original vertex to
v and e \in E(T ) be the edge such that v is a division vertex of e. If v\prime is the parent of
e, then \ell S(v) := red; otherwise, \ell S(v) := green. Note that v\prime is well defined because
all edges of T have an even number of division vertices. See Figure 1 for an example
of this construction.

2t2,1
2t2,2

2t2,3

2t1,1
2t1,2

2t1,3 2t1,1
2t1,2

2t1,3 2t1,1
2t1,2

2t1,3

Fig. 1. S for the complete 3-ary tree of height 2. The edges represent a number of division
vertices denoted by their label. Each edge has a dotted half representing its red division vertices and
a solid half representing its green division vertices.

Define the red-depth of a vertex v \in V (S) to be the number of red vertices on
the vr-path in S, and define green-depth analogously. Let W = w1w2 . . . be a long
anagram-free word on \{ 1, 2, 3, 4\} . Define the vertex coloring f as follows. If v \in V (S)
is an original vertex, then color v by \ell S(v). Otherwise, let i be the \ell S(v)-depth of v
and define f(v) := (wi, \ell S(v)). A vertex has label black or white if and only if it is an
original vertex. Thus, f is a 10-coloring of S.

Let P be a path in S, and assume for the sake of contradiction that P is an
anagram. P contains at least one division vertex because the original vertices have a
proper coloring in T , and all edges not incident with leaves have at least one division
vertex. Let u be the vertex with minimum depth in P .

First, consider the case where u is an endpoint of P . In this case, V (P ) \subseteq AS(v)
for all vertices v \in V (P ). Without loss of generality, P contains a red division vertex.
Therefore the red-depth increments by one for red vertices along P . It follows that
the sequence of colors along the red vertices of P is a subword of W . Thus, \omega red(P )
is not an anagram. Therefore, by Lemma 9, P is not an anagram.

The remaining case is where u is not an endpoint of P . In this case, u is an
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2352 TIM E. WILSON AND DAVID R. WOOD

original vertex. For all e \in E(T ), let De be the division vertices of e. Say that P hits
e if De \cap V (P ) \not = \emptyset and that P contains e if De \subseteq V (P ). Let \alpha be the largest edge
in T (the edge with most division vertices in S) hit by P and \beta be the second largest
edge in T hit by P . Since tx,y > tx\prime ,y\prime for all y, y\prime , and x > x\prime , the edges of T are
larger nearer the root. Thus, both \alpha and \beta are adjacent to u. Let v\alpha and v\beta be the
endpoints of P denoted such that the uv\alpha -path hits D\alpha .

Let C \prime = \{ red, green\} \times \{ 1, 2, 3, 4\} and define WL, W\alpha , W\beta , and WR so that the
concatenation WLW\alpha W\beta WR = \omega C\prime (P ) and

\bullet WL is the subword corresponding to the division vertices in V (uv\alpha -path)\setminus D\alpha ,
\bullet W\alpha is the subword corresponding to the vertices V (P ) \cap D\alpha ,
\bullet W\beta is the subword corresponding to the vertices V (P ) \cap D\beta , and
\bullet WR is the subword corresponding to the remaining division vertices of P .

Note that each of WL and WR may be the empty word.
Let x\alpha , y\alpha , and y\beta be such that | D\alpha | = 2tx\alpha ,y\alpha 

and | D\beta | = 2tx\alpha ,y\beta 
. First,

| WL| \leqslant b := 2

x\alpha  - 1\sum 
i=1

ti,d

because | WL| is at most the number of division vertices on the longest path from the
child of \alpha to a leaf of S. Similarly, | WR| \leqslant b. For all x \in [h],

tx,1 = 1 +

x - 1\sum 
i=1

ti,d

because, by induction on x,

tx,1 = (d + 1)tx - 1,1 = (d + 1)

\Biggl( 
1 +

x - 2\sum 
i=1

ti,d

\Biggr) 
= (d + 1) +

x - 1\sum 
i=2

ti,d = 1 +

x - 1\sum 
i=1

ti,d.

Therefore

| D\alpha | = 2tx\alpha ,y\alpha \geqslant 2tx\alpha ,1 = 2 + 2

x\alpha  - 1\sum 
i=1

ti,d > b.

Similarly, | D\beta | > b. Also,

| D\alpha | = 2y\alpha tx\alpha ,1 \geqslant 2y\beta tx\alpha ,1 + 2tx\alpha ,1 = 2tx\alpha ,y\beta 
+ 2 + 2

x\alpha  - 1\sum 
i=1

ti,d > | D\beta | + b.

Recall that the vertex coloring of T is a proper 2-coloring and that V (P ) contains
an original vertex. The shortest anagram in a proper 2-coloring has four vertices.
Therefore, by Lemma 9, both L and R contain at least two original vertices. Thus,
P contains at least three edges of T . This implies that at least one of WL and WR is
not the empty word. Thus at least one of \alpha and \beta is contained in P . Let LR be the
split of P with v\alpha \in V (L).

Consider the case where \alpha is not contained in P . Since | W\beta | = | D\beta | > b \geqslant | WR| ,
WR is a subword of \omega C\prime (R). This implies that L only contains one original vertex,
which is a contradiction. Thus, P is not an anagram.
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ANAGRAM-FREE COLORINGS OF GRAPH SUBDIVISIONS 2353

Now consider the case where \alpha is contained in P . Then | W\alpha | = | D\alpha | . Since
exactly half the division vertices of each edge are labelled red,

| \omega red(W\alpha )| = | \omega green(W\alpha )| =
| W\alpha | 

2
,

| \omega green(W\beta )| \leqslant | W\beta | 
2

,

| \omega red(WL)| \leqslant b

2
,

| \omega green(WR)| \leqslant b

2
.

If all vertices corresponding to \omega green(W\alpha ) are in L, then

| \omega green(L)| \geqslant | \omega green(W\alpha )| > | D\beta | + b

2
\geqslant | \omega green(W\beta )| + | \omega green(WR)| \geqslant | \omega green(R)| .

Thus P is not an anagram. If all vertices corresponding to \omega red(W\alpha ) are in R, then

| \omega red(R)| \geqslant | \omega red(W\alpha )| > b

2
\geqslant | \omega red(WL)| \geqslant | \omega red(L)| .

Thus P is not an anagram. This covers all cases since v\alpha \in V (L).

Theorem 3 is a simple corollary of Theorem 10.

Theorem 3. Every d-ary tree, T , of height h, has a
\bigl( 
\leqslant 2d(d + 1)h - 1

\bigr) 
-subdivision,

S, with \phi (S) \leqslant 10.

Proof. Apply Theorem 10 to the complete d-ary tree of height h, and take the
appropriate subgraph of the resulting subdivision.

The next section shows that the exponential upper bound on the number of
division vertices per edge in Theorem 3 is necessary.

3.3. Lower bounds. This subsection extends Theorem 1, for complete binary
trees, by Kam\v cev, \Luczak, and Sudakov [11]. We generalize their method of proof to
obtain a result about subdivisions of high degree trees. The following definitions are
extensions of those found in their original paper.

Let T be a rooted tree with root r. The effective vertices of T are its leaves and
branch vertices. The effective root of T is the closest effective vertex to r, including
r. The effective height of T is the minimum, over the leaves of T , of the number of
branch vertices on each root to leaf path.

Call T essentially i-monochromatic if all of its effective vertices are colored i.
Call T essentially monochromatic if it is essentially i-monochromatic for some i. For
d \geqslant 2, a d-branch tree is a rooted tree such that every branch vertex has at least d
children.

Lemma 11. For all integers a1, . . . , ac \geqslant 0 and d \geqslant 2, every d-branch tree with
vertices colored by [c] and effective height at least

\sum c
i=1 ai contains an essentially

i-monochromatic d-branch subtree of effective height at least ai for some i \in [c].

Proof. We proceed by induction on
\sum c

i=1 ai. The base case, a1 = \cdot \cdot \cdot = ac = 0, is
satisfied by taking a single vertex as the required d-branch subtree.

Let T be a d-branch tree of effective height a1 + \cdot \cdot \cdot +ac \geqslant 1 with vertices colored
by [c]. Without loss of generality, its effective root, v, has color 1. Let v1, . . . , vd

c\bigcirc 2018 Tim E. Wilson and David R. Wood

D
ow

nl
oa

de
d 

10
/0

7/
18

 to
 1

30
.1

94
.2

0.
17

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2354 TIM E. WILSON AND DAVID R. WOOD

be children of v. Let Tj be the subtree rooted at vj . Note that Tj has effective
height at least (a1  - 1) + a2 + \cdot \cdot \cdot + ac. If, for some j \in [d] and i \in \{ 2, . . . , c\} , Tj

contains an essentially i-monochromatic subtree of effective height ai, then we are
done. Otherwise, by induction, each Tj contains an essentially 1-monochromatic d-
branch subtree of effective height a1  - 1. These subtrees, together with v, are an
essentially 1-monochromatic d-branch subtree of T , as required.

We now prove a lower bound on \phi by using an essentially monochromatic subtree
to find anagrams in sufficiently large trees.

Theorem 12. Let T be a d-branch tree of effective height at least h\prime and height
at most h \geqslant max\{ 2,

\surd 
d\} . Then

\phi (T ) \geqslant c :=

\Biggl\lceil \sqrt{} 
h\prime 

logd h

\Biggr\rceil 
.

Proof. If c \leqslant 1, the theorem follows trivially, so assume c > 1. Let T be colored
with x colors where 1 \leqslant x \leqslant c - 1. Our goal is to show that T contains an anagram.
For i \in [x], define ai \in \{ \lfloor h\prime /x\rfloor , \lceil h\prime /x\rceil \} such that

\sum x
i=1 ai = h\prime . By Lemma 11,

and without loss of generality, T contains an essentially 1-monochromatic d-branch
subtree, S, of effective height at least \lfloor h\prime /x\rfloor .

Let r be the root of S. There are at least d\lfloor h
\prime /x\rfloor paths from r to the leaves of

S, and the coloring of each path defines a multiset of order at most h+ 1. Since each
path shares the color of r, there are at most hx distinct multisets that can occur on
the paths. Since x \leqslant c - 1,

\#multisets \leqslant hx < h(c2/x) - 2.

Since h \geqslant 
\surd 
d,

h(c2/x) - 2 \leqslant 
1

d
h(c2/x).

Therefore

\#multisets <
1

d
h(c2/x) =

1

d

\Bigl( 
h

1
logd h

\Bigr) (h\prime /x)

= d(h
\prime /x) - 1 \leqslant d\lfloor h

\prime /x\rfloor \leqslant \#paths.

So there is a multiset that occurs on two different paths, P1 and P2, from r to the
leaves of S. Let v be the lowest common vertex of P1 and P2, and let \ell i be the leaf
endpoint of Pi. Since M(P1) = M(P2), by definition, M(P1  - P2) = M(P2  - P1).
Since S is essentially 1-monochromatic, the vertices v, \ell 1, and \ell 2 have color 1. Thus,
((P1  - P2) \setminus \{ \ell 1\} )((P2  - P1) \setminus \{ v\} ) is an anagram.

3.4. Bounds for subdivisions of the complete \bfitd -ary tree. We now use
Theorem 10 to prove an upper bound on \phi for some subdivision of a given tree.

Corollary 1. For every k \geqslant 0 and every complete d-ary tree of height h\prime , T ,
there exists a (\leqslant k)-subdivision, S, such that

\phi (S) \leqslant c := 10

\biggl\lceil 
h\prime 

logd+1(k/2d)

\biggr\rceil 
.

Proof. Let x := c/10, and let B \subseteq E(T ) be the set of edges with depths i\lceil h\prime /x\rceil  - 1
for i \in \{ 0, . . . , x  - 1\} , recalling that the depth of an edge is the minimum depth of
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ANAGRAM-FREE COLORINGS OF GRAPH SUBDIVISIONS 2355

its endpoints. Let F := T  - B, and note that F is a forest where each component
is a complete d-ary tree of height at most \lceil h\prime /x\rceil . Let \scrC be the set of components of
F . Root each component, C \in \scrC , at the vertex r \in V (C) with minimum depth in T .
The depth of r is i\lceil h\prime /x\rceil for some i \in \{ 0, . . . , x - 1\} . Define the depth of C to be i.

By the definition of c and x,

logd+1

\biggl( 
k

2d

\biggr) 
\geqslant 

h\prime 

x
.

This implies

k \geqslant 2d(d + 1)
h\prime 
x \geqslant 2d(d + 1)

\Bigl\lceil 
h\prime 
x

\Bigr\rceil 
 - 1

.

Therefore, by Theorem 10, for every C \in \scrC , there exist a (\leqslant k)-subdivision, SC , with
\phi (SC) \leqslant 10 since C has height at most \lceil h\prime /x\rceil . Anagram-free color SC using colors
\{ 10i + 1, . . . , 10(i + 1)\} where i is the depth of C. Let S = B + \cup C\in \scrC SC . Note that
S is a (\leqslant k)-subdivision of T with a 10x coloring. We now show that this coloring of
S is anagram-free.

Let P be a subpath of S. Let j \in \{ 0, . . . , x - 1\} be the minimum depth of compo-
nent C \in \scrC such that SC has a non-empty intersection with P . By the construction
of S, P intersects with exactly one C \prime \in \scrC \prime of depth j. Therefore P restricted to
the colors of C \prime corresponds to a subpath of C \prime , and, since C \prime is anagram-free, the
restriction is not an anagram. Therefore, by Lemma 9, P is not an anagram.

The following lemma generalizes results for (\leqslant k)-subdivisions to k-subdivisions.
Note that the k-subdivision a graph, G, is a subdivision of every (\leqslant k)-subdivision
of G.

Lemma 13. If S is a subdivision of G, then \phi (S) \leqslant \phi (G) + 4.

Proof. Fix an anagram-free \phi (G)-coloring of G, and apply the coloring to the
original vertices of S. The graph induced by the division vertices of S is a forest of
paths. Color all of these paths with an anagram-free coloring on four new colors. By
Lemma 9, this coloring of S is anagram-free.

We now prove Theorem 4, introduced in section 1.1.

Theorem 4. The k-subdivision, S, of the complete d-ary tree of height h\prime satisfies\sqrt{} 
h\prime 

logmin\{ d,(h\prime (k+1))2\} (h\prime (k + 1))
\leqslant \phi (S) \leqslant 

10h\prime 

logd+1 (k/2d)
+ 14.

Proof. Theorem 12 proves the lower bound. Corollary 1 and Lemma 13 prove the
upper bound.

4. Subdivisions of general graphs. Now we construct subdivisions of arbi-
trary graphs with bounded anagram-free chromatic number. Let t = t1, t2, . . . be a
sequence of positive integers. A subdivision, S, of a bipartite graph G, is a t-sequence-
subdivision of G if there is a bijection, \ell : V (G) \rightarrow [| V (G)| ], that satisfies the following
two conditions. The first condition is that there is a proper 2-coloring of G, with col-
ors white and black, such that \ell (u) > \ell (v) for every white vertex u \in V (G) and black
vertex v \in V (G). The second condition requires some definitions. For every edge,
e \in E(G), define w(e) to be the white vertex incident with e and b(e) be the black
vertex incident with e. Define the bijection, \ell \prime : E(G) \rightarrow [| E(G)| ], that orders edges
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2356 TIM E. WILSON AND DAVID R. WOOD

in E(G), first by the label of their white endpoint and second by the label of their
black endpoint. That is, \ell \prime (x) > \ell \prime (y) for edges x, y \in E(G) if \ell (w(x)) > \ell (w(y)) or if
\ell (w(x)) = \ell (w(y)) and \ell (b(x)) > \ell (b(y)). Note that \ell \prime is determined by \ell . The second
condition on \ell is that every edge, e \in E(G), has 3t\ell \prime (e) division vertices.

Let G be a graph, t be a sequence of positive integers, and S be a t-sequence-
subdivision G with corresponding vertex and edge labellings \ell and \ell \prime . We now define
the functions X, Y , and Z to divide subdivision vertices of every edge of G into
disjoint subpaths. For each edge uv \in E(G), with u colored white, define X(uv),
Y (uv), and Z(uv) such that uX(uv)Y (uv)Z(uv)v is the path replacing uv in the
subdivision S, with | V (X(e))| = | V (Y (e))| = | V (Z(e))| = t\ell \prime (e). Define sets of these
subpaths, \scrX := X(E(G)), \scrY := Y (E(G)), and \scrZ := Z(E(G)). A vertex coloring of S
is discriminating if the following conditions hold.

(1) The original vertices of S are colored by the proper 2-coloring of G, and these
two colors only occur on the original vertices.

(2) Every anagram in S contains at least one original vertex.
(3) For all Q \in \{ X,Y, Z\} , there exists a nonempty set of colors, C(Q), that occur

only on the vertices of paths in Q(E(G)).
(4) For all Q \in \{ X,Y, Z\} and q \in E(G),\sum 

e\in E(G):\ell \prime (e)<\ell \prime (q)

| VC(Q)(Q(e))| < | VC(Q)(Q(q))| .

Note that whether S has a discriminating vertex coloring depends on the sequence t.
For example, the sequence ti = 1, for all i, causes condition (4) to fail for sufficiently
large G.

Theorem 14. Let S be a t-sequence-subdivision of a graph G with sequence t.
Every discriminating vertex coloring of S is anagram-free.

Proof. Let \ell and \ell \prime be the associated vertex and edge labellings of G, respectively.
Let f be a discriminating vertex coloring of S.

Let P be a path in S, and assume for the sake of contradiction that P is an
anagram. By condition (2), V (P ) contains at least one original vertex. Since G is
properly 2-colored, all subpaths of G that are anagrams have order at least 4. The
2-coloring of G is applied to the original vertices of S. Thus, by Lemma 9, P contains
at least four original vertices. Therefore P has at least one subpath from each of \scrX , \scrY ,
and \scrZ . Let x, y, z \in E(G) be the edges maximizing \ell \prime such that V (P )\cap V (X(x)) \not = \emptyset ,
V (P ) \cap V (Y (y)) \not = \emptyset , and V (P ) \cap V (Z(z)) \not = \emptyset .

A path, P \prime , partially intersects P if V (P \prime ) \nsubseteq V (P ) and V (P \prime )\cap V (P ) \not = \emptyset . There
are at most two paths in \scrX , \scrY , and \scrZ that partially intersect P since every division
vertex has degree 2 in S. Therefore at least one of X(x), Y (y), and Z(z) is a subpath
of P . Define q \in \{ x, y, z\} and Q \in \{ X,Y, Z\} such that Q(q) \in \{ X(x), Y (y), Z(z)\} is
a subpath of P . Since f is a discriminating coloring,\sum 

e\in E(G):\ell \prime (e)<\ell \prime (q)

| VC(Q)(Q(e))| < | VC(Q)(Q(q))| .

Therefore, by the maximality of \ell \prime (q), there are more vertices in Q(q) colored by C(Q)
than there are vertices colored by C(Q) in the rest of of P . Thus | VC(Q)(Q(q))| >
1
2 | VC(Q)(P )| . Let LR be the split of P . By Lemma 9, VC(Q)(L) = VC(Q)(R) =
1
2 | VC(Q)(P )| . Thus, both L and R intersect Q(q). Therefore the midedge of P is an
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ANAGRAM-FREE COLORINGS OF GRAPH SUBDIVISIONS 2357

edge of Q(q). Since the midedge of P is unique, exactly one of X(x), Y (y), and Z(z)
is a subpath of P .

Since G is properly 2-colored, every subpath of G that is an anagram has a white
endpoint and a black endpoint. Therefore one of the endmost original vertices of P is
white; call this vertex \alpha . Since P partially intersects exactly two of X(x), Y (y), and
Z(z), there is a black vertex \beta \in N\alpha (G) such that \alpha \beta \in \{ x, y, z\} , where N\alpha (G) is the
neighborhood of \alpha . Recall that both L and R contain at least two original vertices
and the midpoint of P is in Q(q). Therefore neither endpoint of q is an endmost
original vertex of P , and so \alpha \not = w(q). Also, there is a black vertex, \gamma \in N\alpha (G),
such that the division vertices of \alpha \gamma are all in P . Since \alpha \beta \in \{ x, y, z\} and \alpha \beta \not = q,
there is an A \in \{ X,Y, Z\} such that A(\alpha \beta ) \in \{ X(x), Y (y), Z(z)\} for some A \not = Q. It
follows that \ell \prime (\alpha \beta ) > \ell \prime (q) because A(q) is a subpath of P and \ell \prime (\alpha \beta ) is maximal.
Therefore \ell (\alpha ) > \ell (w(q)), and so \ell \prime (\alpha \gamma ) > \ell \prime (q). This contradicts the maximality of
\ell \prime (q) because Q(\alpha \gamma ) is a subpath of P .

We now use Theorem 14 to prove Theorem 5.

Theorem 5. Every graph G\prime has a (\leqslant 3(2)2| E(G\prime )|  - 1)-subdivision, S, with \phi (S) \leqslant 
14.

Proof. Let G be the 1-subdivision of G\prime , and note that G has a proper 2-coloring.
Define the sequence t by ti = 2i - 1 for i \geqslant 1. Let S be a t-sequence-subdivision of
G. Since G has 2| E(G\prime )| edges and 3t2| E(G\prime )| = 3(2)2| E(G\prime )|  - 1, S satisfies the bound
on division vertices per edge required by the theorem. Let \ell and \ell \prime be the associated
vertex and edge labellings of G.

Let f be the vertex coloring of S defined as follows. Color the original vertices
of S with the proper 2-coloring of G that corresponds to \ell . Assign a disjoint set of
four colors to each of \scrX , \scrY , and \scrZ . Color each of the paths in \scrX , \scrY , and \scrZ with an
anagram-free 4-coloring with their assigned set of four colors.

We now show that f is discriminating. Conditions (1) and (3) are satisfied triv-
ially. Condition (2) is satisfied because each of the paths in \scrX , \scrY , and \scrZ is anagram-
free and they use their own set of colors. Thus, every anagram in S contains an
original vertex. Condition (4) is satisfied because for all Q \in \{ X,Y, Z\} and q \in E(G),
| VC(Q)(Q(q))| = | V (Q(q))| , and\sum 
e\in E(G):\ell \prime (e)<\ell \prime (q)

| V (Q(e))| = 2\ell 
\prime (q) - 2 + \cdot \cdot \cdot + 1 = 2\ell 

\prime (q) - 1  - 1 < 2\ell 
\prime (q) - 1 = | V (Q(q))| .

Therefore f is an anagram-free 14-coloring of S.

We use Theorem 5 to bound \phi on subdivisions of graphs in terms of division
vertices per edge.

Theorem 15. For every graph G and k \in \BbbZ +, there exists a (\leqslant 3(4)\lceil | E(G)| /k\rceil )-
subdivision, S, of G with \phi (S) \leqslant 2 + 12k.

Proof. Take k subgraphs of G with an equitable number of edges per subgraph.
Subdivide and color them using Theorem 5. Merge these subdivisions to obtain an
anagram-free 2 + 12k coloring of G.

We now optimize our use of Theorem 14 to improve the upper bound on \phi .

Theorem 6. Every graph G\prime has a (\leqslant 45
\bigl( 
1 + 75

9

\bigr) 2| E(G\prime )|  - 1
)-subdivision, S, with

\phi (S) \leqslant 8.
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2358 TIM E. WILSON AND DAVID R. WOOD

Proof. Let G be the 1-subdivision of G\prime , and note that G has a proper 2-coloring.
Define the sequence t with t1 = 8 and

tn = 15 +

\Biggl\lfloor 
25

3

n - 1\sum 
i=1

ti

\Biggr\rfloor 
.(1)

Let S be a t-sequence-subdivision of G. It is straightforward to verify that tn \leqslant 
15
\bigl( 
1 + 75

9

\bigr) n - 1
. Thus, S satisfies the limit on division vertices per edge required by

the theorem. Let \ell and \ell \prime be the associated vertex and edge labellings of G.
Define the coloring f : V (S) \rightarrow \{ 1, 2, 3, 4, 5, 6,white,black\} as follows. Original

vertices are colored white or black according to \ell . For every e \in E(G), define Pe =
v1 . . . v3t\ell \prime (e) to be the division vertices of e. Let W be an anagram-free word on

\{ 1, 2, 3, 4\} of length 3\ell \prime (e), and color Pe as follows. For all vi \in V (Pe), if Wi \in \{ 1, 2, 3\} ,
then f(vi) := Wi. Otherwise, f(vi) := 4 if vi \in V (X(e)), f(vi) := 5 if vi \in V (Y (e)),
and f(vi) := 6 if vi \in V (Z(e)).

We now show that f is discriminating. Condition (1) is satisfied trivially. Condi-
tion (2) is satisfied because Pe is colored by an anagram-free word for all e \in E(G).
Condition (3) is satisfied by C(X) = \{ 4\} , C(Y ) = \{ 5\} , and C(Z) = \{ 6\} . We now
show that condition (4) is satisfied.

Let Q \in \{ X,Y, Z\} and q \in E(G). The same symbol cannot occur twice in a row.
Thus, | VC(Q)(Q(q))| \leqslant 5

9 | V (Q(q))| since | V (Q(q))| \geqslant 8. Therefore

\sum 
e\in E(G):\ell \prime (e)<\ell \prime (q)

| VC(Q)(Q(e))| \leqslant 5

9

\sum 
e\in E(G):\ell \prime (e)<\ell \prime (q)

| V (Q(e))| .

Every anagram-free word of length 8 contains at least four distinct symbols. Therefore
| VC(Q)(Q(q))| \geqslant 1

15 | V (Q(q))| . By (1),

5

9

\sum 
e\in E(G):\ell \prime (e)<\ell \prime (q)

| V (Q(e))| =
5

9

n - 1\sum 
i=1

ti \leqslant 
1

15
tn  - 1.

Therefore

\sum 
e\in E(G):\ell \prime (e)<\ell \prime (q)

| VC(Q)(Q(e))| \leqslant 5

9

n - 1\sum 
i=1

ti <
1

15
tn =

1

15
| V (Q(e))| \leqslant | VC(Q)(Q(q))| .

Thus condition (4) is satisfied. Thus, f is an anagram-free 8-coloring of S.

Theorem 6 uses naive bounds on the density of symbols in anagram-free words.
Better bounds on density would improve the base of the exponential in Theorem 6.

4.1. Subdivisions of complete graphs. Recall that \scrM k,c is the set of color
multisets on c symbols of size k and that \scrM \leqslant k,c is the set of color multisets of c
symbols of size at most k.

Theorem 8. Let S be a (\leqslant k)-subdivision of Kn. If S is anagram-free c-colorable,
then

k \geqslant 
\Bigl( 
c!
\Bigl( n
c
 - 1
\Bigr) \Bigr) 1/c

 - c.
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Proof. Suppose for the sake of contradiction that

k <
\Bigl( 
c!
\Bigl( n
c
 - 1
\Bigr) \Bigr) 1/c

 - c.(2)

Fix an anagram-free coloring of S. Color each edge e \in E(Kn) with the color multiset
of the subdivision vertices of e in S, and color each vertex of Kn with its color in S.
Note that there are

| \scrM \leqslant k,c| =

k\sum 
i=0

\biggl( 
i + c - 1

c - 1

\biggr) 
=

\biggl( 
k + c

c

\biggr) 
\leqslant 

(k + c)c

c!

possibilities for the color of each edge. Let x := \lceil n/c\rceil , and let G be a vertex-
monochromatic Kx subgraph of Kn. Note that

| E(G)| =
x

2
(x - 1) \geqslant 

x

2

\Bigl( n
c
 - 1
\Bigr) 
.

Therefore, by (2),

| E(G)| \geqslant x

2

\Bigl( n
c
 - 1
\Bigr) 
>

x

2

(k + c)c

c!
\geqslant 

x

2
| \scrM \leqslant k,c| \geqslant 

x

2
\#colors.

So there is a set of more than x/2 edges that have the same color. Therefore there is
a vertex, v \in V (G), that is incident with at least two edges, \alpha , \beta \in E(G), with the
same color. Let u be the other endpoint of \alpha , P\alpha be the path induced by the division
vertices of \alpha , and P\beta be the path induced by the division vertices of \beta . Then uP\alpha vP\beta 

is an anagram in S.
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