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Abstrat

The visualisation of relational information has many appliations in diverse domains

suh as software engineering and artography. Relational information is typially mod-

elled by an abstrat graph, where verties are entities and edges represent relationships

between entities. The aim of graph drawing is to automatially produe drawings of

graphs whih learly reet the inherent relational information.

Numerous graph drawing styles have been proposed in the literature. Orthogonal

graph drawings have been widely studied due to their appropriateness in a variety of

visualisation appliations and in the design of VLSI iruitry. Most of the researh

onduted in graph drawing, inluding orthogonal drawings, has dealt with drawings

in the plane. With the widespread availability of graphis workstations and the de-

velopment of software systems for three-dimensional graphis, there has been reent

interest in the design and analysis of algorithms for three-dimensional graph drawing.

This thesis is primarily onerned with problems related to the automati generation

of three-dimensional orthogonal graph drawings. Our methods also have appliation to

two-dimensional orthogonal graph drawing and generalise to higher dimensional spae.

In partiular, we develop a number of models for three-dimensional orthogonal graph

drawing, and within eah model, algorithms are presented whih explore trade-o�s be-

tween the established aestheti riteria. The main ahievements inlude (1) an algo-

rithm for produing three-dimensional orthogonal box-drawings with optimal volume

for regular graphs, (2) an algorithm for produing degree-restrited three-dimensional

orthogonal ube-drawings with optimal volume, (3) an algorithm whih establishes the

best known upper bound for the total number of bends in three-dimensional orthogonal

point-drawings, and (4) an algorithm whih establishes the best known upper bound

for the volume of 3-D orthogonal point-drawings with three bends per edge route.

As a by-produt of this investigation, we develop methods for a number of om-

binatorial problems of independent interest, inluding the balaned vertex ordering

problem, equitable edge-olouring of multigraphs, and the maximum lique problem.
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Chapter 1

Introdution

In this hapter we provide a broad overview of graph drawing appliations

and onventions, surveying the theoretial bakground to the development of

algorithms for drawing graphs. This provides the setting and motivation for

the results presented in the remainder of the thesis.

1.1 Graph Drawing

Graph drawing is onerned with the automati generation of geometri representations

of relational information, often for visualisation purposes. The typial data struture

for modelling relational information is a graph whose verties represent entities and

whose edges orrespond to relationships between entities. Most appliations of graph

drawing all for two-dimensional drawings, although with the widespread availability of

graphis workstations, there has been onsiderable reent interest in three-dimensional

graph drawing. As an be seen in the three-dimensional representation of network traÆ

in Figure 1.1, drawing graphs in three dimensions allows for more exible drawings than

if we restrit the drawing to the plane.

Software engineering has provided onsiderable motivation for the development of

graph drawing algorithms. The method for laying out data-ow diagrams due to Knuth

[128℄ was one of the �rst graph drawing algorithms for visualisation purposes. More

reently, methods for drawing in three-dimensional spae have been developed for vi-

sualising objet-oriented lass strutures by Robertson et al. [180℄, Koike [131℄, Ware

2
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Figure 1.1: A 3-D drawing representing NSFNET traÆ, ourtesy of the NCSA.

(http://www.nsa.uiu.edu)

et al. [214℄ and Reiss [179℄. Batini et al. [15℄ present an algorithm for the display of

entity-relationship diagrams in database systems. Munzner and Burhard [158℄ have

explored the use of graph drawing tehniques for visualising the world wide web in

three dimensions, In Figure 1.2 we present a three-dimensional representation of the

organisation of an internet site.

An important area for the appliation of graph drawing tehniques is the automati

layout of VLSI iruit shematis. In two dimensions suh algorithms have been de-

veloped by Quinn Jr. and Breuer [177℄, Leiserson [141℄, Bhatt and Leighton [22℄ and

Shlag et al. [191℄ (see also Lengauer [143℄). Three-dimensional VLSI layouts have

been investigated by Preparata [173℄, Rosenberg [185, 186℄, Leighton and Rosenberg

[140℄ and Aboelaze and Wah [1℄. Three-dimensional �eld-programmable gate arrays

(FPGAs) have been designed by Veretennio� et al. [210℄, and in the Rothko projet

at Northeastern University, Leeser et al. [138, 139℄ and Meleis et al. [153℄ onstrut

three-dimensional FPGAs with interonnetions between layers of ative devies.
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Figure 1.2: A 3-D drawing representing the organisation of part of the

web site for the journal Nature Neurosiene, ourtesy of Dynami Diagrams

(http://www.dynamidiagrams.om).

Other sienti� appliations for graph drawing inlude biology (evolutionary trees),

hemistry (moleular drawings), arhiteture (oor plan maps) and artography (map

shematis). The drawing of graphs whih arise in mathematis, suh as ommutativity

diagrams, is an often overlooked appliation domain for graph drawing.

1.2 Algorithmi Graph Theory

Algorithms for drawing graphs are typially based on some graph-theoreti deom-

position or insight into the struture of the graph. We now survey the development

of algorithmi graph theory, highlighting the algorithmi approahes employed in this

thesis.

For many years in the shadow of topology, abstrat graph theory is now a well-

developed theory with important onnetions to number theory, logi, algebra, knot

theory and probability (see Beineke and Wilson [18℄). Reent deep strutural results,
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most notably the minor theorem of Robertson and Seymour [182℄ (see Diestel [76℄ for a

omprehensive overview), have plaed graph theory at the forefront of ombinatoris.

Furthermore, graph theory is now providing new insights into topology inluding the

simple graph-theoreti proof due to Thomassen [207℄ of the notoriously diÆult Jordon-

Sh�onies Curve Theorem. Reent highlights in topologial graph theory inlude a

new proof of the four-olour theorem by Robertson et al. [181℄, and the disovery of

forbidden minor haraterisations of graphs admitting ertain topologial embeddings,

as disussed below.

Graph theory is often used to model real world algorithmi problems, suh as

sheduling and transportation. Furthermore many important issues in omputational

omplexity theory are illustrated with graph-theoreti problems. For example, three of

the six basi NP-omplete problems in Garey and Johnson [105℄ deal with graphs. The

theory of omputational omplexity dates from the study of the fundamental apabil-

ities and limitations of omputation by logiians suh as G�odel, Churh and Turing.

Our understanding of omputational omplexity made great advanes with the devel-

opment of the theory of NP-ompleteness (see Garey and Johnson [105℄) in the 1970s.

The explosion of interest in the theory of algorithms in the past three deades has

motivated muh researh in the �eld of graph theory. The growth of graph drawing as

a disipline of Computer Siene is a natural byprodut of this development.

As we shall see many graph drawing problems are NP-omplete. Exat solutions to

NP-omplete problems, using integer programming formulations or branh and bound

tehniques, have exponential time omplexity. An example of this approah is given in

Appendix C, where we provide a branh and bound algorithm for the maximum lique

problem, whih ombined with eÆient heuristis to provide lower and upper bounds,

solves relatively small instane of the maximum lique problem in a realisti amount

of time.

Unless P=NP, exat polynomial time algorithms annot be obtained for NP-omplete

problems. Muh reent researh has foused on lassifying the approximability of prob-

lems, and the development of approximation algorithms whih guarantee near-optimal

solutions or at least have tight worst ase performane bounds. For many of the graph

drawing problems investigated in this thesis, we present approximation algorithms and
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heuristis with tight worst ase bounds. Graph algorithms, suh as topologial order-

ing, mathing and vertex- and edge-olouring form the basis of the many of the methods

presented in this thesis.

1.3 Graph Embeddings and Representations

Many approahes to graph drawing, for example the topology-shape-metris approah

disussed in Setion 3.2.2, and the algorithms presented in Setions 9.1 and 5.5, are

based on graph embeddings. A graph embedding desribes the essential topologial

features of a graph drawing. We now provide a review of the prinipal results from the

theory of graph embeddings, onentrating on three-dimensional graph embeddings.

Planar Embeddings

One of the most famous result in graph theory is Kuratowski's haraterisation of planar

graphs. Kuratowski [137℄ showed that a graph is is planar if and only if it ontains

neither K

5

nor K

3;3

as a topologial minor. The result was extended to general minors

by Wagner [212℄. Sine these early results, the theory of planar graphs has been widely

studied. Notable are the linear time algorithms for reognising planar graphs, for

example that of Hoproft and Tarjan [119℄.

Reently, relationships between graph embeddings and an algebrai graph invariant

� introdued by Colin de Verdi�ere [61, 62℄ have been disovered. Colin de Verdi�ere

shows that �(K

n

) = n � 1 and haraterises those graphs G with �(G) � k for eah

k � 3. In partiular, �(G) � 1 if and only if G is a disjoint union of paths; �(G) � 2

if and only if G is outerplanar; and �(G) � 3 if and only if G is a planar. For eah

�xed k, the lass of graphs with � � k is losed under taking minors, so by the minor

theorem there is a �nite forbidden minor haraterisation of suh graphs. Note that

Colin de Verdi�ere onjetures that �(G) � �(G)�1, a result whih implies the 4-olour

theorem.
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Surfae Embeddings

Embeddings of graphs in surfaes provide a natural generalisation of plane graphs.

Informally, the genus of a graph G is the minimum k suh that there is a embedding

of G in the surfae onstruted from the sphere with k `handles'. The sphere with

one handle, alled the torus, an be thought of as a retangle whose sides have been

identi�ed. The drawing in Figure 1.3 ofK

7

embedded in the torus is an elegant example

of a surfae embedding.

Figure 1.3: A straight-line drawing of K

7

on the `square' torus.

A signi�ant orollary of the minor theorem is that for every surfae S there is a

�nite forbidden minor haraterisation of those graphs embeddable in S [183℄. Apart

from the plane, the only surfae where the omplete list of forbidden minors is known is

the projetive plane, where the 35 minor-minimal graphs were disovered by Arhdea-

on [6℄. Mohar [155℄ presents a linear time algorithm, whih for a �xed surfae S,

�nds an embedding of a given graph in S or identi�es a subgraph homeomorphi to a

forbidden minor for S.

Linkless Embeddings

A spatial embedding of a graph is an embedding in R

3

. A spatial embedding is linkless

if there is no pair of disjoint linked yles. A graph with a linkless embedding is said to

be linkless, otherwise it is self-linked. Conway and Gordon [63℄ and Sahs [188℄ showed

that K

6

is self-linked (see Figure 1.4).

A �Y -exhange in a graph replaes a triangle by a 3-star, while a Y�-exhange
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Figure 1.4: Linked spatial embedding of K

6

.

replaes a 3-star by a triangle. Sahs [188℄ establishes that the six graphs obtained from

K

6

by a sequene of �Y -exhanges and Y�-exhanges, alled the Petersen Family (as

the Petersen graph is a member), are also self-linked. Robertson et al. [184℄ show

that these graphs omprise a forbidden minor haraterisation of the lass of linkless

graphs

1

. Furthermore they show that a linkless graph has � � 4. Their onjeture that

the onverse is also true was established by Lov�asz and Shrijver [149℄.

Knotless Embeddings

A spatial embedding of a graph is said to knotted if there is a yle whih forms a

non-trivial knot. We all a graph knotless if it has a spatial embedding whih is not

knotted, and self-knotted otherwise. Conway and Gordon [63℄ and Shimabara [196℄

respetively showed that K

7

and K

5;5

are self-knotted.

Up until the proof of the minor theorem it was unknown if there is an algorithm

for deiding the knotlessness of a given graph. The lass of knotless graphs is losed

under taking minors, so by the minor theorem, remarkably there is an O(n

3

) algorithm

to deide if a given graph is knotless, although no one knows what the algorithm is. It

is a tantalising open problem to determine whether the knotless graphs are preisely

those graphs with � � 5.

1

The proof of this result announed by Motwani et al. [157℄ was refuted by Kohara and Suzuki [130℄.
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Book Embeddings

A book onsists of a line in 3-spae, alled the spine, and some number of pages (eah

a half-plane with the spine as boundary). A book embedding of a graph is a spatial

embedding onsisting of an ordering of the verties, alled the spine ordering, along the

spine of a book and an assignment of edges to pages so that edges assigned to the same

page an be drawn on that page without rossings; i.e., for any two edges vw and xy,

if v < x < w < y in the spine ordering then vw and xy are assigned di�erent pages.

The minimum number of pages in whih a graph an be embedded is its pagenumber.

Figure 1.5: A 3-page book embedding of a graph

Yannakakis [226℄ showed that the maximum pagenumber of a planar graph is four.

By the four-olour theorem [4, 5, 181℄, the maximum pagenumber and maximum hro-

mati number are equal for planar graphs. Similarly, Endo [88℄ showed that the pa-

genumber of a toroidal graph is at most seven. Sine eah toroidal graph is vertex

7-olourable [116℄, the maximum pagenumber is no more than the maximum hromati

number. It is a fasinating open problem (see [88℄) to determine if the maximum

pagenumber and maximum hromati number are equal for all surfaes.

Heath and Istrail [115℄ proved that the pagenumber of a genus g graph is O(g),

and onjetured the orret bound is O(

p

g). This onjeture was on�rmed by Malitz

[150℄. As a orollary of this result, and proved independently by Malitz [151℄, the

pagenumber of a graph with m edges is O(

p

m). These results are non-deterministi

in nature, and Las Vegas algorithms are presented to ompute book embeddings with

O

�

p

g

�

pages. Book embeddings, and in partiular these results of Malitz, form the

basis of our algorithms presented in Setions 5.5 and 9.1.
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Graph Representations

A representation of a graph, loosely speaking, desribes the verties by some set of

geometri objets and the edges by some relationship between the objets. Examples

inlude the visibility representations desribed in Setion 3.2.1 and touhing irle and

sphere representations of graphs. Koebe [129℄ �rst proved that the verties of a pla-

nar graph an be represented by non-overlapping irles in the plane, so that verties

are adjaent if and only if the orresponding irles are tangent. Kotlov et al. [134℄

have reently disovered relationships between the invariant � and the touhing sphere

representations of graphs in R

3

.

1.4 Graph Drawing Conventions

We now desribe the ommon onventions, or styles, of graph drawings for whih algo-

rithms have been developed. We onentrate on those onventions that have been used

for three-dimensional graph drawing. For a omplete summary see Di Battista, Eades,

Tamassia, and Tollis [71℄. While the riteria for deiding the quality of a given graph

drawing is somewhat dependent on the appliation domain, for eah graph drawing

onvention there is a ommonly aepted set of aestheti riteria by whih the quality

of a drawing is judged. For any graph and any style there is (typially) an in�nite num-

ber of possible drawings. The goal of graph drawing algorithms is to produe drawings

whih satisfy the aestheti riteria. More often than not we need to make a trade-o�

between the various aestheti riteria. The study of trade-o�s between various aestheti

riteria is at the heart of the study of graph drawing algorithms.

1.4.1 Grid Drawings

So that the area (or volume in three dimensions) of a graph drawing an be measured

in a onsistent fashion, we often require verties to have integer oordinates. We say

the verties are plaed at grid-points and suh a drawing is alled a grid drawing.

The smallest retangle (or box in three-dimensions) whih surrounds a grid drawing

is alled the bounding box. The area (or volume) of the bounding box is perhaps the

most ommonly used quantity to measure the aestheti quality of grid drawings. For
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example, drawings with small area an be drawn with greater resolution on a �xed-size

page. In some three-dimensional appliations, for example when visualising the drawing

on a omputer sreen, it may be more important to minimise the `depth' of the drawing.

We therefore have the following possible aestheti riteria for grid drawings.

� Minimise the bounding box volume.

� Minimise the minimum bounding box side length.

� Minimise the maximum bounding box side length.

An alternative to grid drawings is to stipulate that verties are at least unit distane

apart.

1.4.2 Straight Line Drawings

It is natural to draw eah edge of a graph as a straight line between its end-verties.

So-alled straight-line graph drawings are one of the earliest graph drawing onventions

to be investigated. In Figure 1.6 we present examples of straight-line graph drawings.

(a) (b)

Figure 1.6: Straight-line drawings of the otahedron graph: (a) plane drawing, (b) 3-D

drawing.

Aestheti riteria for straight-line graph drawings inlude the following.

� Minimise edge rossings (in 2-D non-planar drawings).

� Maximise the angular resolution; i.e., the angle between edges inident at a om-

mon vertex.
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� Minimise the edge separation; i.e., the distane between edges not inident to a

ommon vertex.

� Minimise the total length of edge routes.

� Minimise the maximum length of an edge route.

� Preserve the symmetry of the graph.

Note that Purhase et al. [176℄ and Purhase [175℄ onluded from their experimen-

tal study of the human pereption of 2-D graph drawings that minimising the number

of edge rossings and minimising the number of bends were both signi�ant aestheti

riteria for inreasing the understandability of drawings of graphs.

That every planar graph has a straight-line plane drawing was proved indepen-

dently by Wagner [211℄, F�ary [94℄ and Stein [198℄. In a reent extension of this result,

Brightwell and Sheinerman [45℄ show that a planar graph and its dual an be simul-

taneously represented in the plane with straight-line edge routes suh that the edges of

the graph ross the dual edges at right angles. These authors were only really interested

in proving the existene of straight-line embeddings and not with produing algorithms

for graph drawing. In partiular, if we stipulate minimum unit distane between ver-

ties then exponential area may be required by these methods. de Fraysseix et al. [66℄

and Shnyder [192℄ independently developed algorithms for planar straight-line grid

drawing with O(n

2

) area.

Every simple graph has a straight-line 3-D grid drawing with no rossings, and

for this reason we only onsider rossing-free 3-D graph drawings. To onstrut suh

a drawing of a graph with vertex set fv

1

; v

2

; : : : ; v

n

g, verties are positioned along a

moment urve; i.e., v

i

is at (i; i

2

; i

3

) 2 Z

3

. It is easily seen that no two straight lines

between verties an interset. This drawing has O(n

6

) bounding box volume. Cohen

et al. [60℄ showed that by plaing vertex v

i

at (i mod p; i

2

mod p; i

3

mod p) 2 Z

3

for

some prime p, n < p < 2n, no two edge routes ross and we obtain a grid drawing

with O(n

3

) bounding box volume. This result has been strengthened by Pah et al.

[161℄ who show that every k-olourable graph, for some �xed k, has a 3-D straight-line

grid drawing with O(n

2

) volume. Instead of requiring verties to be at grid-points,

Garg et al. [108℄ stipulate that distint verties are at least unit distane apart in a
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3-D straight-line graph drawing. Their algorithm establishes bounds on the bounding

box volume, aspet ratio and edge separation of suh drawings. Simulated annealing

tehniques for generating 3-D straight-line graph drawings have been developed by Cruz

and Twarog [65℄ and Monien et al. [156℄.

One of the earliest graph drawing methods, namely the baryentre method, was

developed by Tutte [208, 209℄. Here a �xed set of verties are plaed on a stritly

onvex polygon, and the remaining verties, said to be free, are repeatedly plaed at

the baryentre of their neighbours until the oordinates of the free verties onverges.

If the input graph is trionneted and planar, then the drawing produed is planar and

eah fae is a onvex polygon. The baryentre method has been extended to produe

3-D straight-line graph drawings by Chilakamarri et al. [55℄.

The baryentre method is an example of the fore-direted approah for graph

drawing. Here the graph is viewed as a physial system with fores ating between

the onstituent bodies. For example, edges an be modelled as springs and verties as

harged partiles whih repel eah other (see Di Battista et al. [71℄ for details and ref-

erenes). Fore direted methods for produing 3-D graph drawings have been studied

by Ostry [160℄ and Bru� and Frik [48℄. As noted by Eades and Lin [83℄, an advantage

of fore direted algorithms is that symmetries of the graph are often preserved in the

drawing.

A relationship between the fore-direted approah to graph layout and graph on-

netivity was disovered by Linial et al. [144℄, later extended to the ase of digraphs

by Cheriyan and Reif [54℄. They prove that a (di)graph G is k-onneted (k � 2) if

and only if for any X � V (G) with jXj = k there is a onvex-X embedding of G; i.e.,

the verties of G an be represented by points in general position in R

k�1

(i.e., no k

verties are on a ommon hyperplane), so that eah vertex, exept for the k spei�ed

verties in X, is in the onvex hull of its (out)neighbours. This result generalises the

notion of st-orderings (used extensively in graph drawing; see Setions 3.2.3 and 4.2) to

arbitrary dimensions. The proof is based on a physial model where the edges are ideal

springs and the verties settle into equilibrium. Although the authors do not note this,

for k � 4, edges drawn as straight lines annot ross sine the verties are in general

position.
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An interesting graph invariant related to multi-dimensional straight-line graph draw-

ing is that of the dimension of a graph. Erd}os, Harary, and Tutte [89℄ de�ne the dimen-

sion of a graph to be the minimum number of dimensions in whih it an be embedded

with eah edge a unit length straight-line (possibly with rossings). They showed that

the dimension of the omplete graph K

n

is n � 1, and the dimension of the omplete

bipartite graph K

a;b

is four, among other results.

1.4.3 Orthogonal Drawings

In a polyline graph drawing eah edge onsists of a sequene of ontiguous line segments.

Di Battista et al. [71℄ desribe algorithms for onstruting planar polyline drawings. In

a polyline grid drawing, the bends on edge routes as well as the verties are required to

be at grid points. If eah segment of an edge in a polyline grid drawing is parallel to some

axis then the drawing is alled orthogonal. (Preise de�nitions are given in Chapter 2.)

A feature of the orthogonal drawing style is its very good angular resolution. For this

reason, it is ommonly used for many appliations inluding data-ow diagrams, and

in VLSI iruit design where eletrial wires must be axis-parallel. Examples of `real-

world' orthogonal graph drawings in two and three dimensions are shown in Figures 1.7

and 1.2, respetively.

We say an orthogonal graph drawing is orientation-dependent if, loosely speaking,

the drawing is signi�antly di�erent when viewed with respet to one partiular di-

mension; otherwise we say it is orientation independent. For example, the following

properties are indiative of orientation-independent drawings.

� The bounding box is a ube.

� The box surrounding the verties is a ube.

� It is equally likely that an edge inident with a partiular vertex, is routed using

any port on that vertex.

Whether or not orientation-dependene is a desirable quality in orthogonal draw-

ings is often an appliation-spei� question. We shall take the view that orientation-

independent orthogonal drawings are more aesthetially pleasing than orientation-

dependent orthogonal drawings. Orientation dependene is a partiularly appropriate
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Figure 1.7: An orthogonal drawing of a omputer network, ourtesy of Tom Sawyer

Software (http://www.tomsawyer.om)

onsideration for 3-D orthogonal drawings. Biedl [27℄ desribes orientation independent

3-D orthogonal drawings as being `truly three-dimensional'.
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Orthogonal graph drawings with many bends appear luttered and are diÆult

to visualise. Existing algorithms for two-dimensional orthogonal graph drawing have

bounds on the maximum number of bends per edge route as well as the total number of

bends. Up until now, algorithms for 3-D orthogonal graph drawing have onentrated

only on the maximum number of bends per edge route. The algorithms for orthogonal

graph drawing presented in Chapter 5 initiate the study of the total number of bends

in 3-D orthogonal drawings. As well as the aestheti riteria already disussed in the

previous setion, orthogonal graph drawings should exhibit the following properties.

� Minimise the maximum number of bends per edge route.

� Minimise the total number of bends.

� Drawings should be orientation-independent.

For orthogonal graph drawings a number of tradeo�s between aestheti riteria,

most notably between the maximum number of bends per edge route and the bounding

box volume, have been observed in existing algorithms [87℄. In this thesis we shall also

observe a tradeo� between orientation-independene and bounding box volume, and

between orientation-independene and the maximum number of bends per edge route.

In Figure 1.8 we present orthogonal drawings of the otahedron whih demonstrate

some of the aestheti riteria for suh drawings.

If we represent eah vertex by a point, as in the above examples, for a graph to

admit a two-dimensional orthogonal drawing eah vertex must have degree at most

four. In three dimensions eah vertex must have degree at most six. Overoming this

restrition has motivated the onsideration of orthogonal box-drawing where verties

are represented by retangles in two dimensions and by boxes in three dimensions.

Box-drawings also have the advantage that a label an be attahed to eah vertex.

For orthogonal box-drawings the size and shape of the boxes representing the ver-

ties is also onsidered an important measure of aestheti quality. For the purposes of

visualisation, the ideal shape for a box is a small ube, as this most losely resembles

a point. How losely a vertex resembles a point an be measured by its aspet ratio

whih is de�ned to be the ratio of the length of the longest side to that of the shortest.
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(a) (b)

(c) (d)

Figure 1.8: Orthogonal drawings of the otahedron graph: (a) 3-bend plane, (b) 2-bend

planar with rossings, () 3-D with few bends and small volume, (d) 3-D orientation-

independent.

While other appliations, suh as 3-D VLSI, may make di�erent demands on the size

and shape of verties, we shall take the view that the following riteria are desirable

features of orthogonal box-drawings.

� Vertex surfae area is proportional to vertex degree.

� Verties have bounded aspet ratio.

This thesis is onerned with the development of algorithms for orthogonal graph

drawing. In Chapter 3 we survey existing algorithms and models for produing orthog-

onal graph drawings.
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1.4.4 Other 3-D Graph Drawing Conventions

Three-dimensional graph drawings in the following styles have also been onsidered.

� Convex drawings [56, 80℄.

� Spline urve drawings [110℄.

� Multilevel drawings of lustered graphs [79, 97℄.

� Upward drawings [160℄.

1.5 Contributions and Outline of this Thesis

In this thesis we present and analyse methods for the generation of orthogonal graph

drawings, onentrating on algorithms for produing 3-D drawings. We now outline

the struture of this thesis and summarise the prinipal results obtained. Figure 1.9

illustrates this struture, highlighting the relationships between various parts of this

thesis.

Part I: Orthogonal Graph Drawing

� Chapter 1 provides a broad overview of graph drawing, providing the motivation

for the results presented in the remainder of this thesis.

� Chapter 2 introdues de�nitions and the notation used in this thesis.

� Chapter 3 surveys the existing results for orthogonal graph drawing, and ompares

these results with those presented in this thesis.

Part II: General Position Orthogonal Graph Drawing

� Chapter 4 presents heuristi and loal minimum methods for solving the so-alled

balaned ordering problem. This one-dimensional problem is used as a basis for

a number of 2-D and 3-D graph drawing algorithms presented in subsequent

hapters.
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1

Graph Drawing Models

Methods in

this Thesis

`External'

Methods

Book

Embed-

ding

Square

Paking

Vertex

Colouring

� Greedy

� Brook's

Cyle

Cover

Deomp-

osition

Maximum

Clique

Equitable

k-Edge-

Colouring

Balaned

Vertex

Ordering

� Median

Plaement

� Loal-

Minimum

6. 2-D General Pos. Box-Drawing

� . . . . 6.2.3. Balaned Vertex Layout . . . .�

� . . 6.2.1. Layout-Based Ar-Routing . . �

9. 3-D Coplanar Drawing

� . . . . . . . . 9.1. 1-Bend Algorithm . . . . . . . .�

� . . . . . . . . . . 9.2. Line-Drawing . . . . . . . . . . �

� . . . . . . . . . 9.3. Cube-Drawing . . . . . . . . . �

10. 3-D Non-Collinear Drawing

� . . . . . . . . . 10.1. Cube-Drawing . . . . . . . . . �

� . . . . . . . . . 10.2. Point-Drawing . . . . . . . . . �

5. 3-D Gen. Pos. Point-Drawing

� . . 5.5.3. Diagonal 3-Bend Algorithm . . �

� 5.2.1. Diagonal Bend-Min. Algorithm �

� 5.5.2. Arb. Layout 3-Bend Algorithm �

� . 5.2.2. Arb. Layout Bend-Min. Algor. .�

� . . . . 5.3. Routing-Based Algorithm . . . . �

� . . . . . . . . 5.4. D.L.M. Algorithm . . . . . . . .�

7. General Pos. Box-Drawing

� . . 7.2.1. Layout-Based Ar-Routing . . �

� . . . . 7.2.3. Balaned Vertex Layout . . . .�

� 7.3. 3-D Routing-Based Vertex Layout �

� . . . . . . 7.3.1. Ayli Ar-Routing . . . . . .�

11. Min.-Dim. Point-Drawing

� . . . . . . . 11.1. K

n

Construtions . . . . . . . �

� . . . . . . . 11.2. 6-Bend Algorithm . . . . . . . �

Figure 1.9: Dependene between setions of this thesis.

� Chapter 5 develops the general position layout model for 3-D orthogonal point-

drawing. Ahievements inlude an algorithm for minimising the total number of

bends in diagonal layout 3-D orthogonal point-drawing (Setion 5.2.1), establish-

ing the best known upper bound for the total number of bends in 3-D orthogonal

point-drawings (Setion 5.4), and proving the best known upper bound for the

volume of 3-bend 3-D orthogonal point-drawings (Setion 5.5.3).
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� Chapter 6 develops an algorithm for 2-D orthogonal graph drawing in the general

position model whih establishes the best known upper bound for the degree-

restrition of verties. This algorithm is generalised to multi-dimensional orthog-

onal graph drawing in Chapter 7.

� Chapter 7 develops the general position model for multi-dimensional orthogonal

box-drawing, establishing the best known bound for the degree-restrition of 3-D

orthogonal box-drawings.

Part III: Other Orthogonal Graph Drawing Models

� Chapter 8 provides an algorithm for equitable edge-olouring of multigraphs. This

algorithm is used in the graph drawing algorithms presented in Setion 9.1 and

Chapter 10.

� Chapter 9 develops the oplanar vertex layout model for 3-D orthogonal draw-

ing, providing algorithms for produing 3-D orthogonal box-drawings with one

bend per edge route (Setion 9.1), 3-D orthogonal box-drawings with optimal

volume for regular graphs (Setion 9.2), and degree-restrited 3-D orthogonal

ube-drawings with optimal volume (Setion 9.2).

� Chapter 10 introdues the non-ollinear vertex layout model for produing

orientation-independent 3-D orthogonal point-drawings with optimal volume, and

3-D orthogonal box-drawings with optimal volume for regular graphs.

� Chapter 11 presents an algorithm for multi-dimensional point-drawing with a

bounded number of bends per edge route.

Part IV: Conlusion

� Chapter 12 summarises the main ahievements of this thesis, the open problems in

3-D orthogonal graph drawing whih have been identi�ed, and disusses avenues

for future work in 3-D graph drawing.
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Part V: Appendies

� Appendix A provides the only known non-trivial lower bounds for the total num-

ber of bends in 3-D orthogonal point-drawings.

� Appendix B presents a number of 3-D orthogonal point-drawings with two bends

per edge route. Some of these drawings were found using the algorithm for �nding

maximum liques presented in Appendix C.

� Appendix C presents an algorithm for the maximum lique problem and provides

an extensive experimental analysis of its performane. This algorithm whih is

of independent interest, has been applied to the searh for 2-bend orthogonal

point-drawings (see Setion 5.2.2).

1.6 Publiations

Muh of the material in this thesis has appeared or will appear in the following publi-

ations.

Journal Publiations:

� An Algorithm for Finding a Maximum Clique in a Graph, Oper. Res. Lett., 21(5),

pages 211-217, 1997. [218℄

� (with T. Biedl and T. Thiele) Three-Dimensional Orthogonal Graph Drawing

with Optimal Volume, submitted. (see [34℄)

� (with T. Biedl and M. Kaufmann) Area-EÆient Algorithms for Orthogonal

Graph Drawing, in preparation. (see [30, 222℄)

� (with T. Biedl) Three-Dimensional Orthogonal Graph Box-Drawing with Few

Bends, in preparation. (see [27, 222℄)

� Algorithms for Three-Dimensional Orthogonal Graph Drawing in the General

Position Model, in preparation. (see [220, 221℄)
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� Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph

Drawings, in preparation. (see [224℄)

Refereed Conferene Publiations:

� (with T. Biedl and T. Thiele) Three-Dimensional Orthogonal Graph Drawing

with Optimal Volume, In J. Marks (ed.), Pro. 8th International Symposium on

Graph Drawing (GD'00), Leture Notes in Comput. Si., to appear. [34℄

� Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph

Drawings, In J. Marks (ed.), Pro. 8th International Symposium on Graph Draw-

ing (GD'00), Leture Notes in Comput. Si., to appear. [224℄

� Multi-Dimensional Orthogonal Graph Drawing with Small Boxes, In J. Kratohvil

(ed.), Pro. 7th International Symp. on Graph Drawing (GD'99), Leture Notes

in Comput. Si., vol. 1731, pages 311-322, Springer, 1999. [222℄

2

� A New Algorithm and Open Problems in Three-Dimensional Orthogonal Graph

Drawing, In R. Raman, J. Simpson (eds.), Pro. 10th Australasian Workshop

on Combinatorial Algorithms (AWOCA'99), pages 157-167, Curtin University of

Tehnology, Perth, 1999. [223℄

� An Algorithm for Three-Dimensional Orthogonal Graph Drawing, In S. White-

sides (ed.), Pro. of Graph Drawing : 6th International Symp. (GD'98), Leture

Notes in Comput. Si., vol. 1547, pages 332-346, Springer, 1998. [221℄

� Towards a Two-Bends Algorithm for Three-Dimensional Orthogonal Graph Draw-

ing, In V. Estivill-Castro (ed.), Pro. 8th Australasian Workshop on Combinato-

rial Algorithms (AWOCA'97), pages 102-107, Queensland University of Tehnol-

ogy, 1997. [220℄

� On Higher-Dimensional Orthogonal Graph Drawing, In J. Harland (ed.), Pro. of

Computing: the Australasian Theory Symp. (CATS'97), pages 3-8, Maquarie

University, 1997. [219℄

2

Awarded the best student paper prize at GD'99.



Chapter 2

Preliminaries

In this hapter we introdue de�nitions and the notation used in this thesis.

Unde�ned terms from graph theory an be found in Chartrand and Lesniak

[53℄, and from graph drawing in Di Battista et al. [71℄.

2.1 Graphs

Throughout this thesis G = (V;E) is a graph with vertex set V (G) = V and edge

set E(G) = E. We assume G is undireted unless expliitly alled a digraph. Graphs

and digraphs are simple; i.e., there are no parallel edges, although a digraph may have

a 2-yle. A multigraph allows parallel edges but no loops, while a pseudograph is a

multigraph possibly with loops. We denote the number of verties of a graph G by

n = jV (G)j and the number of edges of G by m = jE(G)j. For a (di)graph G, the

set of verties fw : vw 2 E(G)g adjaent to a vertex v 2 V (G) is denoted by V

G

(v),

and the set of (outgoing) edges fvw 2 E(G)g inident with v is denoted E

G

(v). The

(out)degree jG(v)j of a vertex v 2 V (G) is denoted (out)deg (v). G has maximum

(out)degree �(G). The subgraph of G indued by S � V (G) is denoted G[S℄.

Assoiated with any graph G is the digraph

 !

G with vertex set V (

 !

G ) = V (G) and

ar set E(

 !

G ) = f(v; w); (w; v) : fv; wg 2 E(G)g. We denote E(

 !

G ) by A(G). The ar

(v; w) 2 A(G) is alled the reversal of (w; v). The set of outgoing ars f(v; w) 2 A(G)g

at a vertex v 2 V (G) is denoted by A

+

G

(v) or simply A

G

(v), and set of inoming

ars f(w; v) 2 A(G)g at v is denoted by A

�

G

(v). For ease of notation, vw refers to

23
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the undireted edge fv; wg, and

�!

vw may refer to the direted edge (v; w) or the ar

(v; w) 2 A(G) (for some graph G).

2.2 Cliques and Colourings

A lique of a graph is a set of pairwise adjaent verties; i.e., a lique indues a omplete

subgraph. In Appendix C we present an algorithm for �nding a lique of maximum

size in a given graph.

A (proper) vertex-olouring of a graph is an assignment of olours, usually repre-

sented by positive integers, to the verties suh that adjaent verties reeive di�erent

olours. A vertex-olouring with k olours is alled a vertex k-olouring.

A sequential greedy strategy for vertex-olouring a graph is to assign to eah vertex,

in turn, the minimum olour not assigned to an adjaent vertex (see for example Biggs

[35℄). This is equivalent to assigning the �rst olour to every vertex available; repeating

for the seond olour, and so on, until all the verties are oloured. This algorithm,

whih we all Greedy Vertex-Colour, applied to a graph G uses at most �(G)+ 1

olours.

An edge-olouring of a graph is an assignment of olours to the edges. If all edges

inident to a ommon vertex reeive di�erent olours then the edge-olouring is proper.

Suppose ol : X ! C is a olouring of some lass of objets X, e.g., verties, edges

or ars. We denote the olour lass of objets reeiving some olour  2 C by X[℄; i.e.,

X[℄ = fx 2 X : ol(x) = g. In partiular, if A(G) is oloured, then

 !

G [i℄, for some

olour i, denotes the subgraph of

 !

G indued by the ars oloured i.

2.3 Orthogonal Grid

The D-dimensional orthogonal grid (D � 2) is the D-dimensional ubi lattie, on-

sisting of grid-points in Z

D

, together with the oordinate-axis-parallel grid-lines deter-

mined by these points. A positive integer i, 1 � i � D, used to index the oordinates

of a grid-point in Z

D

, is alled a dimension, and a non-zero integer d, 1 � jdj � D, is

alled a diretion, as illustrated in Figure 2.1. For D = 2 and D = 3, we also refer to the

dimensions as fX;Y g and fX;Y;Zg, and diretions as fX

�

; Y

�

g and fX

�

; Y

�

; Z

�

g,
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respetively.

2

1

3

Y

X

Z

(a) Dimensions

+2

+1

+3

�2

�1

�3

Y

+

X

+

Z

+

Y

�

X

�

Z

�

(b) Diretions

Figure 2.1: Dimensions and diretions in the 3-D orthogonal grid.

The (i = K)-hyperplane, for some dimension i, 1 � i � D, and integer K 2 Z,

is alled a grid-hyperplane. For D = 3 a grid hyperplane is alled a grid-plane. For

eah dimension i, 1 � i � D, a grid-line parallel to the i-axis is alled an i-line, and a

grid-(hyper)plane perpendiular to the i-axis is alled an i-(hyper)plane.

A grid-box B in the D-dimensional orthogonal grid is a region

�

(a

1

; a

2

; : : : ; a

D

) 2 R

D

: l

i

(B) � a

i

� r

i

(B); 1 � i � D

	

:

for some l

i

(B); r

i

(B) 2 Z, 1 � i � D. The grid-points (l

1

(B); l

2

(B); : : : ; l

D

(B)) and

(r

1

(B); r

2

(B); : : : ; r

D

(B)) are referred to as the minimum orner and maximum orner

of B, respetively. The size of B is �

1

(B) � �

2

(B) � � � � � �

D

(B) where �

i

(B) =

r

i

(B)� l

i

(B) + 1. Note that �

i

(B) is the not the atual side length of B in dimension

i. This onvention enables us to onsistently speak of the volume (and area in two

dimensions) of a possibly degenerate grid-box as the number of grid-points in the box;

i.e.

volume (B) =

Y

1�i�D

�

i

(B) :

For a two-dimensional �

X

� �

Y

box, the side lengths �

X

and �

Y

are alled the

width and height of the box, respetively. For a three-dimensional �

X

� �

Y

� �

Z

box,

the side lengths �

X

, �

Y

and �

Z

are alled the width, depth and height of the box,

respetively.

For eah diretion d, 1 � jdj � D, the set of grid-points in a grid-box B whih are

extremal in diretion d is alled the d-fae of B. At eah grid-point on the d-fae of a
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box we say there is a port. A port is onsidered to extend out from the surfae of the

box in diretion d, as illustrated in Figure 2.2.

(a) (b) () (d)

Figure 2.2: Ports on grid-boxes:

(a) 1� 1 2-D point with volume 1 and surfae 4,

(b) 3� 2� 1 3-D retangle with volume 6 and surfae 22,

() 3� 2� 2 3-D box with volume 12 and surfae 32,

(d) 2� 2� 2� 2 4-D hyperbox with volume 16 and surfae 64.

A port in diretion d, 1 � jdj � D, is alled a d-port, and for any dimension i,

1 � i � D, a (�i)-port is also alled an i-port. The number of ports on the (i

+

)-fae of

B (whih obviously equals the number of ports on the (i

�

)-fae) is referred to as the

surfae

i

(B); i.e.,

surfae

i

(B) =

Y

1�j�D

j 6=i

�

j

(B) :

The total number of ports on B is the surfae (B); i.e.,

surfae (B) = 2

X

1�i�D

surfae

i

(B) :

2.4 Orthogonal Graph Drawing

A D-dimensional orthogonal drawing of a graph G, alled an orthogonal drawing, rep-

resents eah vertex v 2 V (G) by a grid box B

v

suh that

8v; w 2 V (G); v 6= w ) B

v

\B

w

= ; :

The graph-theoreti term `vertex' will also refer to the orresponding box. Allowing

verties to degenerate to retangles or lines is the approah taken in [27, 32, 33, 222,
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223℄, but not in [166, 168℄; enlarging verties to remove this degeneray inreases the

volume by a multipliative onstant.

A grid-polyline in the D-dimensional orthogonal grid is a polyline onsisting of

ontiguous segments of grid-lines, possibly bent at grid-points. An orthogonal drawing

of G represents eah edge vw 2 E(G) by a grid-polyline, alled an edge route, between

grid-points on the boundaries of B

v

and B

w

, not interseting any verties exept at

these boundary points. The interior of edge routes are pairwise non-overlapping, and

only for D = 2 are edge routes allowed to ross. A segment of an edge route parallel

to the i-axis, for some dimension i, is alled an i-segment.

Two-dimensional and three-dimensional orthogonal drawings are alled 2-D and 3-

D orthogonal drawings, respetively. A 2-D orthogonal drawing without edge rossings

is a plane 2-D orthogonal drawing.

Port Assignment and Routings

An orthogonal drawing of a graph G assigns eah ar

�!

vw 2 A(G) a unique port at v,

referred to as the port(

�!

vw). The set of ports at a vertex v is denoted by ports(v), and

we de�ne ports(G) to be the set of ports of a graph G; i.e.,

ports (G) =

[

v2V (G)

ports (v) :

If, in a D-dimensional orthogonal drawing of a graph G, for some verties v; w 2

V (G) and dimension i, 1 � i � D, the (i

+

)-fae of v has i-oordinate less than the i-

oordinate of the (i

�

)-fae of w then we say w is in diretion i

+

from v, v is in diretion

i

�

from w, an (i

+

)-port at v points toward w, and an (i

�

)-port at v points away from

w.

If for some ar

�!

vw 2 A(G) and dimension i, 1 � i � D, the port(

�!

vw) is an i-port

then we onsider

�!

vw to be oloured i. In this manner a D-dimensional orthogonal

drawing of a G determines a D-olouring of A(G). We all a D-olouring of A(G) a

(D-dimensional) routing of A(G). An orthogonal drawing is routing-preserving if the

drawing determines a given routing.

For point-drawings, at eah vertex v and diretion d, there is exatly one port at

v in diretion d. We denote this port by port(v; d). We say port(v; d) is opposite to
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port(v;�d), for eah vertex v and diretion d. A D-dimensional orthogonal point-

drawing of G determines a routing with at most two outgoing ars at eah vertex

reeiving the same olour; i.e., jA

G

(v)[i℄ j � 2 for every vertex v and dimension i,

1 � i � D. We all a routing with this property a (D-dimensional) point-routing of

A(G).

Note that a routing of a graph G does not fully desribe the edge routes in an

orthogonal drawing of G. It merely desribes the axes whih the �rst and last segments

of eah edge route are parallel to. In the general position model (see Chapters 6, 5 and

7), we show that a routing suÆes as a data struture for representing the edge routes.

Aestheti Criteria

We now make preise de�nitions for the riteria by whih we measure the aestheti

quality of an orthogonal box-drawing. The minimum-sized box enlosing an orthogo-

nal drawing is alled the bounding box of the drawing. We refer to the volume of the

bounding box as the volume of the drawing. An orthogonal drawing with a maximum

of b bends per edge route is alled a b-bend orthogonal drawing. An orthogonal draw-

ing with a partiular \shape" of grid-box representing every vertex, e.g., point, line,

retangle, square, ube or hyperube, is alled an orthogonal shape-drawing for eah

partiular \shape", as illustrated in Figure 2.3.

(a) (b) ()

Figure 2.3: Orthogonal drawings of K

5

: (a) 1-bend 2-D square-drawing, (b) 2-bend

3-D point-drawing, () 0-bend 3-D line-drawing.

A D-dimensional orthogonal drawing of a graph G is said to be stritly �-degree-
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restrited if there exists a onstant � suh that for every vertex v 2 V (G),

surfae (v) � � � deg(v) :

Suh a drawing is said to be stritly degree-restrited.

For some orthogonal graph drawing algorithm, the minimum � suh that the draw-

ings produed by the algorithm are stritly �-degree-restrited does not neessarily

reet the asymptoti relationship between the surfae and the degree of the verties.

We therefore say that in an orthogonal drawing of a graph G, a vertex v 2 V (G) is

�-degree-restrited if

surfae (v) � � � deg(v) + o (deg(v)) :

If for some onstant �, every vertex v 2 V (G) is �-degree-restrited, then the

drawing is said to be (�)-degree-restrited. This de�nition enables us to ompare the

asymptoti behaviour of � for various algorithms.

Clearly, if a drawing is stritly degree-restrited then it is also degree-restrited.

Conversely, it is easily seen that all degree-restrited drawings produed by algorithms

presented in this thesis are also stritly degree-restrited. Hene for our purposes the

two notions oinide, although one an ontrive examples where this is not the ase.

It is neessary to distinguish the two terms as the lower bound in Theorem 3.2 is for

stritly degree-restrited drawings.

The aspet ratio of a vertex v is:

aspet ratio (v) =

�

max

1�i�D

�

i

(v)

�

.

�

min

1�i�D

�

i

(v)

�

:

A hyperube has aspet ratio one, while a k � 1� 1 � � � � � 1 line has aspet ratio

equal to k.

2.5 Cyle Cover Deomposition

A yle over of a digraph is a spanning subgraph onsisting of direted yles. We

now desribe an algorithm for the deomposition of a graph into yle overs. This

algorithm will often form the preproessing step in the graph drawing algorithms to

ome. This step was �rst used by Eades et al. [86℄ in their 3-D orthogonal point-drawing
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algorithm for maximum degree six graphs. The following generalisation to arbitrary

degree graphs an be found in [87, 219℄. The result an be onsidered as repeated

appliation of the lassial result of Petersen that \every regular graph of even degree

has a 2-fator" [172℄.

Theorem 2.1. If G is a multigraph and d = d�(G)=2e then there exists a direted

multigraph G

0

suh that:

1. G is a subgraph of the underlying undireted multigraph of G

0

.

2. Eah vertex of G

0

has in-degree d and out-degree d.

3. The ars of G

0

an be partitioned into d edge-disjoint yle overs.

G

0

and the edge-disjoint yle overs an be omputed in O(�

2

n) time.

Proof. Initially let G

0

= G. The number of verties of odd degree in any multigraph

must be even. So that eah vertex of G

0

has even degree we pair the odd degree verties

and add an edge between eah pair. For eah vertex v 2 V (G

0

), add d� deg(v)=2 self-

loops to v, to reate a 2d-regular pseudograph. Sine eah vertex of G

0

has even degree

it is Eulerian. Diret the edges of G

0

by following an Eulerian tour through G

0

. Eah

vertex of G

0

now has in-degree d and out-degree d.

For eah vertex v 2 V (G

0

), de�ne V

out

= fv

out

: v 2 V (G

0

)g, V

in

= fv

in

: v 2 V (G

0

)g,

where v

out

= fw 2 V (G

0

) :

�!

vw 2 E(G

0

)g and v

in

= fu 2 V (G

0

) :

�!

uv 2 E(G

0

)g. Now

onstrut an undireted bipartite graph H with V (H) = V

out

[ V

in

, and E(H) =

ffu

out

; v

in

g : (u; v) 2 E(G

0

)g.

Sine H is d-regular and bipartite, by Hall's Theorem [114℄, H ontains a perfet

mathing; olour its edges 1 and remove them. The remaining graph is (d� 1)-regular

and bipartite, so it also ontains a perfet mathing; olour its edges 2 and remove them.

Continue this proess, to reate d edge-disjoint perfet mathings in H. Colouring

eah ar

�!

uv 2 E(G

0

) the same olour given to fu

out

; v

in

g in H gives eah node of G

0

exatly one inoming ar and one outgoing ar for eah olour. Hene the ars of G

0

are partitioned into d distint subgraphs C

1

; C

2

: : : ; C

d

, orresponding to eah olour

1; 2; : : : ; d, eah of whih is a yle over for G

0

. This partition into perfet mathings

is sometimes referred to as K�onig's Theorem [133℄.
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Shrijver [194℄ desribes an algorithm for determining all perfet mathing of a k-

regular n-vertex bipartite graph in O(k

2

n) time. H is d-regular with 2n verties, so the

alulation of the perfet mathings whih form the partition of H, whih is the most

time-onsuming stage of the algorithm, takes O(�

2

n) time.



Chapter 3

Approahes to Orthogonal Graph

Drawing

In this hapter we survey existing results for orthogonal graph drawing,

desribing the models and algorithms employed for the prodution of suh

drawings, and ompare these results with those presented in this thesis.

This hapter is organised as follows. Setion 3.1 reviews the known NP-hardness

results for the optimisation of various aestheti riteria in orthogonal graph drawings.

2-D orthogonal graph drawing is surveyed in Setion 3.2, inluding an introdution

to the general position model for 2-D orthogonal graph drawing whih is the model

employed in Chapter 6. Table 3.1 summarises the known bounds, inluding those

presented in this thesis, for 2-D orthogonal drawings possibly with rossings. We then

onsider orthogonal graph drawing on surfaes (other than the plane) in Setion 3.3.

Setion 3.4 surveys models and algorithms for 3-D orthogonal graph drawing, and

introdues the algorithms presented in this thesis. In Setion 3.5 we onlude with a

disussion of the known bounds and prinipal open problems for 3-D orthogonal graph

drawing. Tables 3.2 and 3.3 summarise the known bounds for aestheti riteria of 3-D

orthogonal point-drawings and 3-D orthogonal box-drawings, respetively.

32
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3.1 Complexity

It is NP-hard to optimise many of the aestheti riteria for orthogonal graph drawings

disussed in Chapter 1. In partiular, for a given maximum degree four graph, minimis-

ing eah of the following aestheti riteria is NP-hard for 2-D orthogonal point-drawing.

� Total number of bends (Garg and Tamassia [106℄).

� Bounding box area

(Dolev et al. [78℄, Storer [199℄, Kramer and van Leeuwen [135℄).

� Maximum edge length (Bhatt and Cosmadakis [21℄, Gregori [111℄).

Garg and Tamassia [106℄ establish that it is NP-hard to even approximate the

minimum number of bends in a planar graph withO

�

n

1��

�

error, for any � > 0. Shermer

[195℄ shows that it is NP-omplete to reognise weak retangle visibility graphs (see

Setion 3.2.1), and hene it is NP-hard to minimise the number of bends in a 2-D

orthogonal box-drawing of a given graph.

Using straightforward extensions of the orresponding 2-D NP-hardness results,

Eades et al. [85℄ show that it is NP-hard to minimise eah of the following aestheti

riteria in a 3-D orthogonal point-drawings.

� Bounding box volume.

� Total number of bends.

� Total edge length.

These methods an be applied with the NP-ompleteness result of Shermer [195℄

disussed above to show that it is NP-hard to minimise the total number of bends in a

3-D orthogonal box-drawing of a given graph.

3.2 2-D Orthogonal Drawings

Algorithms for produing 2-D orthogonal drawings have been extensively studied in

the literature. We now disuss the prinipal approahes employed.
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3.2.1 Visibility Approah

Plane Drawings

Plane orthogonal drawings with straight-line edge routes (with no bends) are aestheti-

ally very pleasing sine the relational information represented in the graph is learly

expressed. A losely related idea to that of a straight-line orthogonal drawing is that

of a visibility representation. A (weak) visibility representation of a graph G represents

eah vertex v 2 V (G) by a horizontal segment in the plane, and represents eah edge

vw 2 E(G) by a vertial segment between the horizontal segments representing v and

w and not interseting any other horizontal segments. A graph admitting a visibility

representation is learly planar. Tamassia and Tollis [202℄ and Rosenstiehl and Tarjan

[187℄ independently show that every planar graph has a visibility representation, and

hene a straight-line orthogonal drawing, whih an be omputed in linear time.

Various types of visibility representations an be de�ned, depending on whether ver-

ties are segments or intervals and whether visible verties must be adjaent. Tamassia

and Tollis [202℄ and Wismath [216℄ haraterise those planar graphs whih admit eah

possible type. The disadvantage of the visibility representation method for produing

plane orthogonal drawings is that the verties are not neessarily degree-restrited and

have high aspet ratio.

Drawings with Crossings

In a (weak) retangle visibility representation of a graph, verties are represented by

retangles, and adjaent verties an `see' eah other by some axis-aligned `band of

visibility' not interseting any other vertex (see Dean and Huthinson [67℄ for preise

de�nitions). It follows that a graph has a straight-line 2-D orthogonal box-drawing if

and only if it has a weak retangle visibility representation. The subgraphs indued by

the horizontal and vertial edges of suh a graph are planar, so the graph has thikness

at most two. Bose et al. [37℄ establish that numerous lasses of graphs with thikness

two admit straight-line 2-D orthogonal box-drawings. Sine K

9

has thikness three (see

Beineke [16℄), the straight-line 2-D orthogonal drawing of K

8

presented by Dean and

Huthinson [67℄ is the largest omplete graph admitting suh a drawing. K

5;6

has a
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straight-line 2-D orthogonal box-drawing, as shown in Figure 3.1.

Figure 3.1: Straight-line 2-D orthogonal drawing of K

5;6

.

Even though K

5;n

(7 � n � 12) and K

6;n

(6 � n � 8) have thikness two [17℄,

it is unknown if these graphs admit 2-D straight-line orthogonal box-drawings. We

onjeture that K

5;7

and K

6;6

do not admit suh drawings. Bose et al. [37℄ show that

K

4;n

(n � 1) has a 2-D straight-line orthogonal box-drawing.

3.2.2 Topology-Shape-Metris Approah

A number of algorithms for 2-D orthogonal graph drawing an be grouped under the so

alled topology-shape-metris approah approah (see Di Battista et al. [71, hap. 5℄).

These methods onsist of the following three main steps.

Planarisation: Determine a planar embedding of the graph with few rossings, and

represent eah rossing by a dummy vertex.

Orthogonalisation: Determine the shape of the drawing.

Compation: Determine the oordinates of the verties and bends to minimise the

area.

The development of these algorithms an be traed to the lassial algorithm of

Tamassia [200℄ for determining a bend-minimum orthogonal point-drawing whih pre-
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serves a given planar embedding of a graph with maximum degree four (see also Batini

et al. [14℄). This algorithm models the bend-minimisation problem using network ow

tehniques, and takes O

�

n

2

log n

�

time (subsequently improved to O

�

n

7=4

p

logn

�

by

Garg and Tamassia [107℄). Biedl [26℄ has sine obtained bounds on the area and the

number of bends for this algorithm.

Tamassia et al. [201℄ present the Giotto algorithm for orthogonal drawing of non-

planar graphs of arbitrary degree, whih is based on Tamassia's algorithm for planar

graphs. To ater for arbitrary degree verties, eah vertex v of degree d � 4 is replaed

by a yle of d verties where eah vertex of the yle is inident to one of the edges

formally inident to v, as illustrated in Figure 3.2. Experimental results on�rming the

suess of this approah are reported in Di Battista et al. [72℄.

v

=) =)

v

Figure 3.2: Replaing v by a yle.

The Kandinsky model for 2-D orthogonal drawings, whih has been investigated

by F�o�meier and Kaufmann [103, 104℄ and F�o�meier et al. [102℄, onsists of a 2-D

(sparse) grid with uniform distane � between the grid lines. The verties have side

length less than �, and the entres of the verties are plaed at the intersetion of

the grid lines; this ensures that no vertex is interseted by any grid line exept those

de�ning its position, and ensequently no two verties interset. Edges are routed on

the underlying orthogonal grid. Under the assumption that verties are represented

by uniformly small squares and that eah fae is a non-empty region, the algorithm

in [103℄, given a planar graph embedding, minimises the number of bends in a 2-D

orthogonal drawing in the Kandinsky model. F�o�meier and Kaufmann [104℄ extend

the Kandinsky model to ater for non-planar graphs and to remove the requirement

in [103℄ that verties have the same size.
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In reent developments the algorithm of Di Battista et al. [70℄ determines an

embedding-preserving 2-D orthogonal drawing where the size of eah vertex is spe-

i�ed by the user. The drawings produed have the minimum number of bends among

a wide lass of drawings.

Di Battista et al. [73℄ introdue the notion of spirality of planar orthogonal point-

drawings and explore the onnetion between spirality and the number of bends. In

partiular, they present polynomial time algorithms for determining bend-minimum

orthogonal point-drawings for series-parallel graphs and for planar graphs of maximum

degree three. Bertolazzi et al. [20℄ and Didimo and Liotta [75℄ use advaned data

strutures to represent all the planar embeddings of a given graph in their algorithms

to determine bend-minimum 2-D orthogonal drawing. Their algorithms run in time

exponential in the number of verties with degree greater than four.

3.2.3 Geometri Approah

We now desribe algorithms for orthogonal graph drawing whih are purely geometri,

as opposed to the algorithms desribed above whih are based on topologial embed-

dings. Bertolazzi et al. [20℄ alls this the draw-and-adjust approah.

Plane Point-Drawings

Numerous algorithms have been proposed in the literature for drawing planar orthog-

onal point-drawings. Algorithms for drawing ubi graphs inlude those of Papakostas

and Tollis [163℄, Rahman et al. [178℄, Calamoneri and Petreshi [50, 51℄ and Biedl [23℄.

For maximum degree four graphs, algorithms inlude those of Tamassia and Tollis [203℄,

Liu et al. [146℄, Kant [124℄, Biedl [24℄ and Biedl and Kant [29℄. We now outline two of

the approahes used by these algorithms.

The algorithm of Tamassia and Tollis [203℄ for 2-D orthogonal point-drawing of

planar graphs, is based on a visibility representation of the given graph. The horizontal

segments representing verties in the visibility representation are replaed by points and

bends are added to the edge routes. The algorithm, whih runs in linear time, produes

2-D orthogonal plane drawings with O

�

n

2

�

area, at most four bends per edge route,

and a total of at most 12n=5 + 2 bends.
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The algorithm of Biedl and Kant [29℄, for a bionneted graph G of maximum de-

gree four, determines in linear time an orthogonal point-drawing with at most 2n+ 2

bends and n � n bounding box. Every edge has at most two bends (unless G is

the otahedron graph whih is shown by Even and Granot [91℄ not to have a 2-bend

plane orthogonal point-drawing; see Figure 1.8(a)). This algorithm is based on an

st-ordering of the verties (see Setion 4.2). A modi�ed algorithm determines an

orthogonal point-drawing of a onneted graph G with at least one ut vertex with

(n � 1) � (n � 1) bounding box, at most two bends per edge, and at most m bends

in total. For trionneted graphs the algorithm of Kant [124℄, improved by Biedl [24℄,

establishes an upper bound on the number of bends of d4n=3e+ 4.

Point-Drawings with Crossings

Algorithms whih do not guarantee plane drawings even for planar graphs have been

onsidered by Sh�a�ter [190℄ and Papakostas and Tollis [165℄. The latter algorithm

determines in linear time an orthogonal point-drawing of a given maximum degree four

graph having area at most 0:76n

2

and at most 2n + 2 bends. Lower bounds for 2-D

orthogonal point-drawing have been established by Tamassia et al. [205℄ and Biedl [25℄.

Plane Box-Drawings

Motivated by the desire to overome the inherent restrition on the maximum degree

of graphs admitting orthogonal point-drawings, there has been reent interest in the

development of algorithms for 2-D orthogonal box-drawing.

Even and Granot [92℄ studied 2-D orthogonal box-drawings where the size of eah

vertex and the port assignments are given as part of the input. This approah is

partiularly appliable to VLSI layout problems where the omponents of the iruit

have prede�ned sizes. They present two algorithms. The �rst, whih is for planar

drawings, is based on a visibility representation of the graph. The seond algorithm

employs a diagonal layout of the verties. The drawings produed have at most four

bends per edge and (W +m)�(H+m) bounding box, whereW and H are respetively

the total width and height of the boxes representing verties.

Using the `yle of low degree verties' method illustrated in Figure 3.2, the al-
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gorithm of Biedl and Kant [29℄ is extended to produe planar drawings of arbitrary

degree planar graphs. The disadvantage of this approah is that the verties are not

neessarily degree-restrited. This algorithm an also ater for drawings of non-planar

graphs.

Box-Drawings with Crossings

We now disuss box-drawing algorithms whih are appliable to arbitrary graphs but

do not guarantee a planar drawing even for planar graphs. This is the approah taken

by the 2-D orthogonal box-drawing algorithm presented in Chapter 6. (In Chapter 7

this algorithm is generalised to a multi-dimensional setting.) Table 3.1 summarises the

known upper bounds for this lass of 2-D orthogonal graph drawings.

Table 3.1: Upper Bounds for 2-D Orthogonal Box-Drawing

Box

Shape

Area

Max.

Bends

Degree-

Restrition

Aspet

Ratio

Referene

line (m� 1)� (

m+1

2

) 1 2 � deg(v)=2 [164, 169℄

line (

m+n

2

)� (

m+n

2

) 1 2 � deg(v)=2 [30℄

retangle

�

3m+2n

4

�

�

�

3m+2n

4

�

1 2 2 [30℄

retangle

�

3m+4n+2

4

�

�

�

3m+4n+2

4

�

1

3

2

2 Theorem 6.3

square

�

3m

4

+

5n

8

�

�

�

3m

4

+

5n

8

�

1 2 1 Theorem 6.4

The algorithms of Papakostas and Tollis [164, 169℄ and Biedl and Kaufmann [30℄

(whih is an example of the uni�ed approah to orthogonal graph drawing alled the

three-phase method [31℄) were the �rst to produe degree-restrited 2-D orthogonal

box-drawings. Eah vertex v has aspet ratio at most deg(v)=2 and eah edge route

has at most one bend. For sparse graphs (m < (1 +

p

2)n to be preise), the algorithm

in [164, 169℄ requires less area than that in [30℄. A seond algorithm in [30℄ produes

drawings in whih eah vertex has aspet ratio at most two, at the expense of an

inrease in area.



CHAPTER 3. APPROACHES TO ORTHOGONAL GRAPH DRAWING 40

The algorithm of Biedl and Kaufmann [30℄ produes drawings suh that no two

verties are interseted by a single grid-line. We all suh drawings general position

2-D orthogonal drawings. An introdutory version of the algorithm of Papakostas and

Tollis [164, 169℄ also produes general position 2-D orthogonal drawings; in a re�ned

version ertain pairs of verties share a row or olumn.

The algorithms presented in Chapter 6 also produe general position 2-D orthogonal

drawings. In Setion 3.4.4 we introdue the general position model for D-dimensional

orthogonal graph drawing and lassify algorithms for produing suh drawings as

layout- or routing-based. The algorithms in [30℄ and [164, 169℄ an be lassi�ed as

routing-based.

Maintaining the aspet ratio bound of two in [30℄, the layout-based algorithm pre-

sented in Setion 6.2.3 produes 3=2-degree-restrited 2-D orthogonal drawings. Using

a diagonal layout, our algorithm desribed in Setion 6.2.4 produes 2-degree-restrited

2-D orthogonal square-drawings. Note that 2-D diagonal layouts have been employed

by Even and Granot [91℄ and Sh�a�ter [190℄. Our bounding box area bounds are slightly

above those in [30℄.

Interative Drawing

As well as onsidering the aestheti riteria already disussed for stati orthogonal

graph drawing, interative graph drawing algorithms should `preserve the mental map'

of the viewer of the drawing when verties and edges are inserted or deleted (see Misue

et al. [154℄, for example). Interative orthogonal point-drawing has been studied by

Papakostas et al. [162℄, F�o�meier [100℄, Bridgeman et al. [44℄, Brandes and Wagner

[42℄ and Papakostas and Tollis [167℄. Biedl et al. [31℄ also desribe how the three-phase

method an be extended to an interative setting.

3.3 Orthogonal Drawings on Surfaes

A natural, yet little studied generalisation of plane orthogonal drawings, is that of

orthogonal drawings on surfaes. An embedding of a graph in an orientable surfae

other than the plane an be drawn in an orthogonal surfae, as illustrated in Figure 3.3
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(see Garrido and M�arquez [109℄). Consider the following open problem.

Problem 3.1. SURFACE POINT-DRAWING

Instane: An embedding � of a graph G (with maximum degree four) in the orientable

surfae of genus g, and a positive integer B 2 Z

+

.

Question: Is there an orthogonal point-drawing of G in the orthogonal surfae of genus

g whih preserves � and with at most B bends?

1 2

� � � g � 1

Figure 3.3: An orthogonal drawing of a graph in the surfae of genus g.

Garrido and M�arquez [109℄ sketh proofs, that for any �xed orientable surfae S

(exept the plane), it is NP-omplete to test whether a given graph embedding in S

has an essentially equivalent

1

straight-line orthogonal point-drawing in an orthogonal

surfae orresponding to S. Hene minimising the number of bends in an orthogonal

drawing essentially equivalent to a given embedding is NP-hard.

3.4 Models for 3-D Orthogonal Graph Drawing

In this setion we survey models and algorithms for the generation of 3-D orthogonal

graph drawings, inluding those presented in this thesis. We lassify models for vertex

layout by the minimum integers a and b, 1 � a; b � 2 suh that

� all verties are interseted by a single a-dimensional orthogonal grid, and

� no two verties are interseted by a single b-dimensional orthogonal grid.

1

The term essentially equivalent is not preisely de�ned.



CHAPTER 3. APPROACHES TO ORTHOGONAL GRAPH DRAWING 42

Here a 1-dimensional (respetively, 2-dimensional) grid refers to a grid-line (grid-

plane) within the 3-dimensional orthogonal grid.

3.4.1 Visibility Representations

Visibility representations of graphs in the plane (see Setion 3.2.1) naturally extend

to three dimensions. In the so-alled ZPR (Z-Parallel Representation) model for

straight-line 3-D orthogonal graph drawing, eah vertex is a retangle parallel to the

XY -plane, and edges are routed parallel to the Z-axis. Bose et al. [38℄ showed that

there does not exist a ZPR of K

n

for n > 56. The proof is based on deep results

onerning unimaximal subsequenes. They also found a ZPR of K

22

using simulated

annealing tehniques. Representing verties by squares of the same size, Fekete et al.

[95℄ showed that K

7

has a ZPR, but K

n

for n � 8 does not. The ZPR model was

extended to arbitrary dimensions by Cobos et al. [59℄, establishing that every graph

has a ZPR in some number of dimensions.

In a straight-line D-dimensional orthogonal graph drawing, the axis eah edge is

parallel to de�nes a edge D-olouring of the graph. As pointed out by Biedl et al.

[32, 33℄ in the ase of D = 3, eah olour lass indues a ZPR, so by the above K

56

ZPR

non-existene result, it follows that there does not exist a 3-D straight-line orthogonal

drawing of K

n

for n greater than the Ramsey number R(56; 56; : : : ; 56) (with D 56's).

In three dimensions this upper bound has been signi�antly improved to K

184

by Fekete

and Meijer [96℄ (their proof is still based on the non-existene of a ZPR of K

56

). Based

on the ZPR ofK

22

mentioned above, Fekete and Meijer also onstrut the largest known

straight-line 3-D orthogonal drawing of a omplete graph, namely K

56

, and establish

a number of bounds on the size of omplete graphs admitting suh drawings when the

shape of the boxes and the number of di�erent sized boxes is restrited

2

.

This K

56

onstrution immediately generalises to multiple dimensions, providing a

straight-line D-dimensional orthogonal box-drawing of K

22(D�1)+12

. For D � 2 and

n � 1, the bipartite graph K

2D;n

has a D-dimensional orthogonal drawing without

2

The lower bound of K

56

for 3-D straight-line orthogonal drawings and the upper bound of K

56

for

ZPR's is a oinidene. Hithhikers are disappointed that the previous best lower bound of K

42

due to

Bose et al. [40℄ is not optimal.
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bends. To onstrut this drawing, plae the n verties along a D-dimensional diagonal,

and plae the remaining verties on the sides of the D-dimensional box surrounding the

interior verties. This onstrution is a generalisation of the ase D = 2 due to Bose

et al. [37℄.

We now provide a simple suÆient ondition for the existene of a straight-line 3-D

orthogonal line-drawing.

Theorem 3.1. Every vertex 3-olourable graph has a straight-line 3-D orthogonal line-

drawing.

Proof. We will onstrut a straight-line 3-D orthogonal line-drawing of the omplete

tripartite graph K

n;n;n

. Consider the verties of K

n;n;n

to be oloured with olours

fX;Y;Zg with orresponding olour lasses fu

1

; u

2

; : : : ; u

n

g, fv

1

; v

2

; : : : ; v

n

g and

fw

1

; w

2

; : : : ; w

n

g. As illustrated in Figure 3.4, a vertex u

i

, v

j

or w

k

, 1 � i; j; k;� n is

represented by the following line parallel to the X-, Y or Z-axis, respetively.

� u

i

: (2; 2i + 1; 2i)! (2n+ 1; 2i + 1; 2i)

� v

j

: (2j; 2; 2j + 1)! (2j; 2n + 1; 2j + 1)

� w

k

: (2k + 1; 2k; 2) ! (2k + 1; 2k; 2n + 1)

A vertex u

i

has odd/even Y /Z-oordinates, a vertex v

j

has even/oddX/Z-oordinates,

and a vertex w

k

has odd/even X/Y -oordinates, so no two verties interset.

The edge routes for the edges u

i

v

j

, u

i

w

k

and v

j

w

k

, 1 � i; j; k;� n, are respetively

parallel to the Z-, Y - and X-axes as follows.

� u

i

: (2j; 2i + 1; 2i)! (2j; 2i + 1; 2j + 1) :v

j

� u

i

: (2k + 1; 2i; 2i) ! (2k + 1; 2k; 2i) :w

k

� v

j

: (2j; 2k; 2j + 1)! (2k + 1; 2k; 2j + 1) :w

k

An edge route u

i

v

j

has even/oddX/Y -oordinates, an edge route u

i

w

k

has odd/even

X/Z-oordinates, and an edge route v

j

w

k

has even/odd Y /Z-oordinates, so no two

edge routes interset.
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Figure 3.4: Vertex layout for a straight-line 3-D orthogonal line-drawing of a vertex

3-olourable graph.

Suppose an edge route u

i

v

j

intersets some vertex x. Then x has a oordinate

(2j; 2i+1; Z

x

), whih implies that x = u

i

or x = v

j

, and similarly for edge routes u

i

w

k

and v

j

w

k

. Hene eah edge route only intersets its end-verties.

This result suggests the following open problem.

Open Problem 3.1. What is the maximum k 2 Z

+

suh that every k-olourable

graph has a straight-line 3-D orthogonal box-drawing? By Theorem 3.1 and sine K

184

does not have suh a drawing we know 3 � k < 184.

3.4.2 Coplanar Vertex Layout Model

A 3-D orthogonal graph drawing is in the oplanar vertex layout model, alled a oplanar

3-D orthogonal graph drawing, if there exists a single grid-plane interseting every

vertex. Of ourse, suh drawings are inherently orientation-dependent.
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Coplanar Grid Vertex Layout

One strategy for produing 3-D orthogonal graph drawings in the oplanar vertex layout

model, is to position the verties in a plane grid. This model was �rst employed by

Hagihara et al. [113℄ for produing degree-restrited 3-D orthogonal ube-drawings,

although it is understood that all subsequent researh in 3-D orthogonal graph drawing,

inluding that presented in this thesis, was ompleted without knowledge of this paper.

The Compat algorithm of Eades et al. [86, 87℄ introdued this model for 3-D

orthogonal point-drawing, and produed drawings with optimal volume. Verties are

positioned in the (Z = 0)-plane in a O(

p

n)�O(

p

n) grid, and edges are routed either

within, above or below the (Z = 0)-plane. A sequene of re�ned algorithms in [87℄

explore the tradeo� between bounding box volume and the maximum number of bends

per edge route.

In Chapter 9 we present two algorithms for produing oplanar 3-D orthogonal

drawings of arbitrary degree graphs. The �rst represents verties by Z-lines in an

O(

p

n)�O(

p

n) grid, and produes drawings with optimal volume for regular graphs.

The seond algorithm positions verties in the (Z = 0)-plane in a O(

p

m) � O(

p

m)

grid, and produes degree-restrited ube-drawings with optimal volume.

Non-Collinear Coplanar Vertex Layout

A seond approah to produing oplanar 3-D orthogonal drawings is to position the

verties suh that no two verties lie in the same grid-line. A ommonly used strategy

for produing suh drawings is to position the verties along a 2-D diagonal.

Biedl et al. [32, 33℄ onstrut oplanar 3-D orthogonal line-drawings of K

n

(and

hene for any simple graph), using a 2-D diagonal layout with O

�

n

3

�

volume and

one bend per edge route

3

. Biedl [27℄ alls this the Lifting-Edges algorithm. This

onstrution represents the verties as Z-lines of length n positioned in a 2-D diagonal

layout, and routes eah edge with one bend in some Z-plane. In Chapter 9 we present

an algorithm for produing 1-bend 3-D orthogonal drawings using a similar strategy

3

Biedl et al. [32, 33℄ also desribe 3-D orthogonal drawings of K

n

with O

�

n

3

�

volume and two bends

per edge route. Sine all the verties in this onstrution are interseted by a single grid-line, we say

this drawing is in the ollinear vertex layout model.



CHAPTER 3. APPROACHES TO ORTHOGONAL GRAPH DRAWING 46

based on book embeddings.

Biedl [27℄ introdued an algorithm alled Lifting-Half-Edges, whih improves on

the Lifting-Edges algorithm, for produing degree-restrited line-drawings with two

bends per edge route. This algorithm starts with a 1-bend 2-D general position point-

drawing possibly with overlapping edges (see Setion 3.2.3), and extends the verties to

form Z-lines. X-segments are routed above the (Z = 0)-plane, Y -segments are routed

below the (Z = 0)-plane, and Z-segments are added to the edges in suh a way to avoid

edge route rossings. A modi�ed algorithm produes degree-restrited ube-drawings.

Closson et al. [58℄ present an algorithm for produing oplanar 3-D orthogonal

point-drawings with a 2-D diagonal vertex layout, whih supports the on-line insertion

and deletion of verties and edges. In Chapter 11 we present an algorithm for multi-

dimensional orthogonal point-drawing with a bounded number of bends per edge whih

also positions the verties in a 2-D diagonal.

3.4.3 Non-Collinear Model

A 3-D orthogonal graph drawing is in the non-ollinear vertex layout model, alled a

non-ollinear 3-D orthogonal drawing, if no two verties lie in the same grid-line. The

spiral layout algorithm of Closson et al. [58℄ for 3-D orthogonal point-drawing was the

�rst for produing drawings in this model. This algorithm starts with the verties in a

O(

p

n)�O(

p

n) grid, and then assigns eah vertex a unique height in a spiral manner.

The bounding box has volume O(

p

n)�O(

p

n)�O(n), so the drawings are somewhat

orientation-dependent.

In Chapter 10 we present algorithms for generating orientation-independent non-

ollinear orthogonal box- and point-drawings. Our vertex layout algorithm positions the

verties suh that eah grid-plane intersets at most d

p

ne verties. The point-drawings

produed have optimal volume, and for regular graphs, the box-drawings produed also

have optimal volume. These are the only known algorithms for produing orientation-

independent drawings with optimal volume. For point-drawings with optimal volume,

we observe a tradeo� between orientation-independene and the maximum number of

bends per edge.
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3.4.4 General Position Model

A D-dimensional orthogonal graph drawing (D � 2) is in the general position model,

alled a general position orthogonal drawing, if no two verties are interseted by a

single (D � 1)-dimensional grid-hyperplane

4

. In a general position 2-D orthogonal

drawing, no two verties are interseted by a single grid-line (see Setion 3.2.3), and in

a general position 3-D orthogonal drawing, no two verties are interseted by a single

grid-plane

5

. A simple general position vertex layout is onstruted by positioning the

verties along the main diagonal of a hyperube, alled a diagonal general position

vertex layout.

General position drawings typially have few bends per edge route (but relatively

many bends in total) and are degree-restrited. Many algorithms for general position

orthogonal graph drawing produe orientation-independent drawings. The disadvan-

tage of this model is that the drawings neessarily have large volume ompared to the

other models.

Chapters 5, 6 and 7 desribe algorithms for produing general position 3-D point-

drawings, general position 2-D box-drawings and general position D-dimensional (D �

3) box-drawings, respetively. Our algorithms for produing general position orthogonal

drawings have the following three major steps, whih loosely orrespond to those in the

three-phase method [31℄.

Vertex Layout: Determine the relative positions of the verties.

Ar Routing: Determine the `shape' of eah edge route.

Port Assignment: Construt vertex boxes, assign ports for eah edge route, and

remove edge rossings.

We lassify algorithms for generating general position orthogonal graph drawings

as being layout- or routing-based. In a layout-based algorithm, the vertex layout stage

4

In omputational geometry a set of points in R

D

are in general position if no D+1 points are in a

ommon (D� 1)-dimensional hyperplane. Stritly speaking we should therefore say a general position

orthogonal drawing is in general grid position.

5

This is alled the Unique Coordinates Model in [221℄.
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is ompleted initially followed by the ar routing step. In a routing-based algorithm,

the vertex layout is determined with respet to a pre-determined ar-routing. The port

assignment stage is always ompleted last.

Point-Drawings

A 3-D diagonal vertex layout is used by the 3-Bends algorithm of Eades et al. [86, 87℄

for orthogonal point-drawing. We present a layout-based algorithm for 3-D orthogonal

point-drawing in Setion 5.2.1, whih given a �xed diagonal layout, minimises the total

number of bends. A modi�ation of the 3-bends algorithm of Eades et al. [86, 87℄

desribed in Setion 5.5.3, produes 3-bend point-drawings with the best known volume

upper bound.

A routing-based algorithm for 3-D orthogonal point-drawing is presented in Se-

tion 5.3. The Diagonal Layout and Movement (Dlm in Table 3.2) algorithm

presented in Setion 5.4 ombines the layout- and routing-based approahes, and es-

tablishes the best known upper bound for the total number of bends in 3-D orthogonal

point-drawings.

Box-Drawings

Algorithms for produing general position 3-D orthogonal box-drawings with two bends

per edge route have been developed by Papakostas and Tollis [166, 168℄ and Biedl [27℄.

The inremental algorithm in [166, 168℄ inserts eah new vertex as a ube, and as new

neighbours are inserted a vertex may grow in di�erent diretions, produing drawings

whih one would expet in pratie to be orientation-independent. No bound on the

aspet ratio of a vertex is established. We refer to this algorithm as Inremental.

Our layout-based algorithm for multi-dimensional orthogonal box-drawing, pre-

sented in Setion 7.2, in the ase of three dimensions, establishes improved bounds

on the degree-restrition of verties ompared to the algorithms in [27, 166, 168℄. A

routing-based algorithm for general position 3-D orthogonal box-drawing is presented

in Setion 7.3.



CHAPTER 3. APPROACHES TO ORTHOGONAL GRAPH DRAWING 49

3.4.5 Ad-ho Methods for 3-D Point-Drawing

Other approahes for 3-D orthogonal point-drawing inlude that of Papakostas and

Tollis [166, 168℄. Their algorithm, whih allows for the on-line insertion of verties in

onstant time, produes 3-D orthogonal point-drawings with at most three bends per

edge route. The split and push approah to 3-D orthogonal point-drawing, developed

by Di Battista et al. [74℄, starts with a degenerate drawing with all verties on one

point and repeatedly inserts planes splitting the drawing apart until all rossings are

removed. Experimental tests in [74, 168, 221℄ show this method works well only on

relatively small graphs, and no bounds on the number of bends or volume are presented.

3.5 Bounds for 3-D Orthogonal Graph Drawing

We now summarise the known bounds for the number of bends and the volume of 3-D

orthogonal drawings, initially for point-drawings and then for box-drawings.

3.5.1 Point-Drawings

Table 3.2 shows the tradeo� between the bounding box volume and the maximum

number of bends per edge apparent in algorithms for 3-D orthogonal point-drawing of

graphs of maximum degree � � 6.

Bounds on the volume

An early result in 3-D orthogonal point-drawing due to Kolmogorov and Barzdin [132℄

6

established a lower bound of 
(n

3=2

) for the bounding box volume. Rosenberg [186℄

independently proved the same result.

The Compat algorithm of Eades et al. [86, 87℄ determines orthogonal point-

drawings in the oplanar vertex layout model with O

�

n

3=2

�

bounding box volume and

at most seven bends per edge route. As disussed above, this volume bound is asymp-

totially best possible. The same bound is ahieved by the orientation-independent

Non-Collinear algorithm presented in Chapter 10, at the expense of needing eight

6

This paper has been repeatedly ited inorretly in the literature, with the word `set' replaing

`net' in the title.
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Table 3.2: Upper Bounds for 3-D Orthogonal Point-Drawing

Algorithm

Max.

(Avg.)

Bends

Volume

Orientation

Independent

Referene

Non-Collinear 8 �(n

3=2

) yes Theorem 10.2

Compat 7 �(n

3=2

) no [86, 87℄

Compat1 6 O

�

n

2

�

no [87℄

Dynami 5 O

�

n

2

�

no [58℄

Compat2 5 O

�

n

5=2

�

no [87℄

Compat3 4 O

�

n

3

�

no [87℄

Dlm 4 (7/3) 2:37n

3

yes Theorem 5.4

3-Bends 3 8n

3

yes [86, 87℄

Inremental 3 4:63n

3

yes [166, 168℄

Modified 3-Bends 3 n

3

+ o

�

n

3

�

yes Theorem 5.6

Dlm (� � 5) 2 n

3

yes Theorem 5.4

Compat (� � 4) 3 O

�

n

2

�

no [86℄

bends for some edge routes. Improving the bound on the maximum number of bends

per edge route in an O

�

n

3=2

�

volume 3-D orthogonal point-drawing is an interesting

open problem.

Open Problem 3.2. Does every maximum degree six graph have a 6-bend 3-D or-

thogonal point-drawing with O

�

n

3=2

�

bounding box volume?

In a series of re�nements of the Compat algorithm, referred to as Compat1,

Compat2 and Compat3, the tradeo� between the bounding box volume and the

maximum number of bends per edge route is explored. For O

�

n

2

�

volume 3-D point-

drawings, the Dynami algorithm of Closson et al. [58℄ improves the upper bound for

the maximum number of bends per edge route from six [87℄ to �ve.



CHAPTER 3. APPROACHES TO ORTHOGONAL GRAPH DRAWING 51

Bounds on the maximum number of bends per edge

The 3-Bends algorithm of Eades et al. [86, 87℄ and the Inremental algorithm of

Papakostas and Tollis [166, 168℄ established an upper bound of three for the maximum

number of bends per edge route. Both algorithms take O(n) time

7

. Note that the

authors of the 3-Bends algorithm were not interested in improving the onstant in the

27n

3

bounding box volume bound| by deleting eah grid plane not ontaining a vertex

or a bend, it an easily be shown that the volume is at most 8n

3

. A modi�ation of the

3-Bends algorithm presented in Setion 5.5.3 improves this bound to n

3

+o

�

n

3

�

. This

is the best known upper bound for the volume of 3-bend orthogonal point-drawings.

There are few non-trivial lower bounds for the number of bends in 3-D orthogonal

point-drawings. Obviously any orthogonal point-drawing of K

3

has at least one bend.

Less obvious is the result, proved in Theorem 11.1, that in any 3-D orthogonal point-

drawing of K

5

there is an edge route with at least two bends. In Appendix A we give

a formal proof of the well-known result that a 3-D orthogonal point-drawing of the

multigraph onsisting of two verties and six edges requires an edge route with at least

three bends.

The di�erene between the lower bound of two and the upper bound of three for

the maximum number of bends per edge route in 3-D orthogonal point-drawings of

maximum degree six graphs motivates the following 2-Bends Problem.

Open Problem 3.3. [86, 87℄ Does every maximum degree six graph admit a 2-bend

3-D orthogonal point-drawing?

The Diagonal Layout and Movement algorithm (Dlm in Table 3.2) presented

in Setion 5.4 solves the 2-Bends Problem in the aÆrmative for graphs of maximum

degree �ve. This result establishes the only known lass of graphs for whih 2-bend

3-D orthogonal point-drawings exist.

A natural andidate for a simple graph requiring an edge route with at least three

bends in every 3-D orthogonal point-drawing is K

7

, as onjetured by Eades et al. [86℄.

A ounterexample to this onjeture, namely a 3-D orthogonal point-drawing of K

7

7

In Eades et al. [86℄ an O(n

3=2

) time bound is stated. In Eades et al. [87℄ this is redued to O(n) using

the algorithm of Shrijver [194℄ in the alulation of the yle over deomposition (see Setion 2.5).
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with at most two bends per edge route, was �rst exhibited by Wood [219℄. A more

symmetri 3-D orthogonal point-drawing

8

of K

7

with at most two bends per edge route

is shown in Figures 3.5 and 3.6 (see also Appendix B). This drawing has the interesting

feature of rotational symmetry about the line X = Y = Z.

X

Y

Z

Figure 3.5: Components of a 2-bend 3-D orthogonal point-drawing of K

7

.

8

A physial model of this drawing is on display at the Shool of Computer Siene and Software

Engineering, Monash University, Clayton.
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X

Y

Z

Figure 3.6: A 2-bend 3-D orthogonal point-drawing of K

7

.

One may onsider the other 6-regular omplete multi-partite graphs K

6;6

, K

3;3;3

and K

2;2;2;2

to be potential examples of simple graphs requiring an edge route with at

least three bends. In Appendix B we present 2-bend 3-D orthogonal point-drawings of

these graphs.

Bounds on the total number of bends

In ertain appliations it may be more important to minimise the total number of

bends in 3-D orthogonal point-drawings rather than to minimise the maximum number

of bends on any edge route. The Diagonal Layout and Movement algorithm

presented in Setion 5.4, whih solves the 2-Bends Problem for graphs of maximum

degree �ve, uses a total of at most 7m=3 bends for drawings of m-edge simple graphs
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with maximum degree six. A related algorithm presented in Setion 5.2.1 minimises the

total number of bends in a 3-D orthogonal point-drawing for a �xed diagonal layout.

Improving the upper bound for the total number of bends in a 3-D orthogonal point-

drawing is an interesting open problem.

Open Problem 3.4. Does every maximum degree six graph with m edges have a 3-D

orthogonal point-drawing with fewer than 7m=3 bends?

In Appendix A we establish the �rst non-trivial lower bounds for the total number of

bends in 3-D orthogonal point-drawings. In partiular, we prove that a 3-D orthogonal

point-drawing of K

5

has at least seven bends. (A drawing of K

5

with seven bends is

shown in Figure 2.3(b) on page 28.) We also show that a 3-D orthogonal point-drawing

of the multigraph onsisting of two verties and six edges has at least twelve bends.

(Suh a drawing is shown in Figure A.7 on page 228.)

Open Problem 3.5. Are there better lower bounds than 7m=10 (for simple graphs)

and 2m (for multigraphs) on the total number of bends in a 3-D orthogonal point-

drawing of an m-edge graph with maximum degree six.

In Figure 3.7 we show a 3-D orthogonal point-drawing of K

7

with a total of 24

bends (ompared with the total of 42 bends for the drawing shown in Figures 3.5 and

3.6). Most edge routes are straight-lines or have one bend, and three edge routes have

four bends. We onjeture that there is no 3-D orthogonal point-drawing of K

7

with

fewer than 24 bends.

3.5.2 Box-Drawings

Lower Bounds

The �rst lower bounds for 3-D orthogonal box-drawings were due to Hagihara et al.

[113℄. They show that the volume of a degree-restrited 3-D orthogonal ube-drawing

of a simple graph is




�

max

n

�

2

n; (�n= log n)

3=2

o�

:

For an arbitrary graph G, let vol(G; r; �) denote the minimum bounding box volume

of the 3-D orthogonal drawings of G whih are stritly �-degree-restrited and every
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X

Y

Z

Figure 3.7: A 4-bend 3-D orthogonal point-drawing of K

7

with 24 bends.

vertex has aspet ratio at most r. Let vol(n;m; r; �) be the maximum of vol(G; r; �)

where G is a graph with n verties and m edges. Thus, vol(n;m; r; �) desribes a

volume bound within whih all graphs with n verties and m edges an be drawn suh

that eah vertex v has aspet ratio at most r and surfae at most � � deg(v). Biedl,

Thiele, and Wood [34℄ establish the following results.

Theorem 3.2.

� vol (n;m;1;1) = 
 (m

p

n)

� vol (n;m; r;1) = 


�

m

3=2

=

p

r

�

� vol (n;m;1; �) = 


�

m

3=2

=�

�

Hene the volume of arbitrary 3-D orthogonal box-drawings is 
(m

p

n), and for

degree-restrited drawings or drawings with eah vertex having bounded aspet ratio,

the volume is 
(m

3=2

). This result inludes the lower bound of 
(n

5=2

) for the volume

of 3-D orthogonal drawings of K

n

due to Biedl et al. [32, 33℄. In fat, the proof is based
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on tehniques developed in that paper generalised for sparse graphs. Biedl et al. [32, 33℄

also establish the lower bound of 
(n

2

) for the number of bends in a 3-D orthogonal

drawings of K

n

. For general position 3-D orthogonal drawings, Biedl [27℄ establishes

a lower bound of 


�

max

�

n

3

;m

2

	�

for the bounding box volume, and onjetures the

lower bound of 
(n

2

m).

Upper Bounds

The algorithm presented in Setion 9.1, whih generalises the Lifting-Edges algo-

rithm of Biedl et al. [32, 33℄ for simple graphs, establishes that every multigraph

has a 1-bend 3-D orthogonal box-drawing. As disussed in Setion 3.4.1, there exist

graphs with no straight-line 3-D orthogonal box-drawing, so these results are optimal

for the maximum number of bends per edge route. Sine the drawings produed are

orientation-dependent and are not degree-restrited, the following open problem is of

interest.

Open Problem 3.6. Does every graph have an orientation-independent or degree-

restrited 3-D orthogonal box-drawing with at most one bend per edge route?

The algorithm of [34℄ produes 3-D orthogonal box-drawings with O(m

p

n) volume

and at most four bends per edge route. By Theorem 3.2 this bound is optimal. A

simpli�ed version of this algorithm, presented in Setion 9.2, produes drawings with

O

�

�n

3=2

�

volume, whih for regular graphs is the same as O(m

p

n). Reduing the

number of bends in optimal volume box-drawings is an important open problem.

Open Problem 3.7. Does every graph have a 3-D orthogonal box-drawing with

O(m

p

n) volume and at most three bends per edge route? (Note that K

n

does have a

3-bend box-drawing with O

�

n

5=2

�

= O(m

p

n) volume [32, 33℄.)

We now onsider upper bounds for the volume of degree-restrited 3-D orthogo-

nal box-drawings. The Inremental algorithm of Papakostas and Tollis [166, 168℄

�rst established that every graph has a 2-bend degree-restrited 3-D orthogonal box-

drawing. Their upper bound of O

�

m

3

�

for the bounding box volume has subsequently

been improved by the Lifting Half-Edges algorithm of Biedl [27℄ to O

�

n

2

�

�

.



CHAPTER 3. APPROACHES TO ORTHOGONAL GRAPH DRAWING 57

The algorithm presented in Setion 9.3 produes degree-restrited ube-drawings

with O

�

(m+ n)

3=2

�

volume. By Theorem 3.2 this upper bound is optimal for degree-

restrited drawings or drawings with eah vertex having bounded aspet ratio (assuming

m = 
(n), whih is true for most graphs). This algorithm uses at most six bends per

edge route. The following problem is therefore of interest.

Open Problem 3.8. Does every graph have a 5-bend degree-restrited 3-D orthogo-

nal box-drawing with O

�

(m+ n)

3=2

�

bounding box volume and bounded aspet ratio

verties?

Table 3.3 summarises the known bounds for 3-D orthogonal box-drawings (of n-

vertex m-edge graphs with maximum degree � and genus g (� m)). We onsider

four groupings of algorithms, depending on whih aestheti riteria (out of orientation-

independent, bounded aspet ratio and degree-restrited) are satis�ed by the drawings

produed. Within eah grouping a tradeo� between the bounding box volume and the

maximum number of bends per edge route is observed.
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Table 3.3: Bounds for 3-D Orthogonal Box-Drawings.

Volume

Bends Model Graphs Time Referene

orientation-independent / bounded aspet ratio / degree-restrited

O

�

(nm)

3=2

�

2 general position simple O(m) [27℄ (Thms. 7.5,7.6)

O

�

(n�)

3=2

�

6 non-ollinear multigraphs O(m) Theorem 10.1

orientation-dependent / bounded aspet ratio / degree-restrited

O

�

nm

p

�

�

2 lifting

1

2

-edges multigraphs O(m) [27℄

O(m(m+ n))

5 oplanar multigraphs O(m) Theorem 9.5

O

�

(n�)

3=2

�

10 oplanar simple ? [113℄

�((m+ n)

3=2

)

6 oplanar multigraphs O

�

m

p

m+ n

�

Theorem 9.4

orientation-dependent / no bounds on aspet ratio / degree-restrited

O

�

n

2

�

�

2 lifting

1

2

-edges simple O(m) [27℄

�((m+ n)

3=2

)

6 oplanar multigraphs O

�

m

p

m+ n

�

Theorem 9.4

orientation-dependent / no bounds on aspet ratio / not degree-restrited

O

�

n

3

�

1 lifting edges simple O(m) [32, 33℄

O

�

nm

p

g

�

1 diagonal oplanar multigraphs - Theorem 9.1

O

�

n

5=2

�

3 lifting edges simple O(m) [32, 33℄

O(nm)

3 oplanar multigraphs O(m) Theorem 9.3

�(m

p

n)

4 oplanar multigraphs O

�

m

2

=

p

n

�

[34℄ (see Thm. 9.2)



CHAPTER 3. APPROACHES TO ORTHOGONAL GRAPH DRAWING 59

Tables 3.4, 3.5 and 3.6 provide preise bounds on the aestheti riteria for eah the

�rst three groups disussed above.

Table 3.4: Orientation-independent, Degree-restrited 3-D Orthogonal Drawing with

Bounded Aspet Ratio.

Bends Volume Degree-

Restrition

Aspet

Ratio

Model Referene

2 O

�

(nm)

3=2

�

6 1 general position [27℄

2 O

�

(nm)

3=2

�

5=3 2 general position Theorem 7.5

2 O

�

(nm)

3=2

�

4 1 general position diagonal Theorem 7.6

6 O

�

(n�)

3=2

�

8 1 non-ollinear

9

Theorem 10.1

Table 3.5: Degree-restrited 3-D Orthogonal Cube-Drawing Algorithms.

Bends Volume Degree

Restrition

Aspet

Ratio

Model Referene

2 O

�

n

2

m

�

6 1 lifting

1

2

-edges [27℄

5 O(m(m+ n)) 12 1 oplanar layout Theorem 9.5

6 O

�

(m+ n)

3=2

�

12 1 oplanar layout Theorem 9.4

Table 3.6: Degree-restrited 3-D Orthogonal Drawing with Unbounded Aspet Ratio.

Bends Volume Degree-

Restrition

Aspet

Ratio

Model Referene

2 O

�

m

3

�

6 - inremental [166, 168℄

2 O

�

n

2

�

�

2 deg(v)=2 lifting

1

2

-edges [27℄

2 O

�

n

2

m

�

2 deg(v)=2 general position [27℄

2 O

�

n

2

m

�

2 deg(v)=2 general position diagonal Theorem 7.7

2 O

�

�(nm)

3=2

�

2 deg(v)=4 general position Theorem 7.8

9

4-degree-restrited for simple graphs.
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Chapter 4

Balaned Vertex Ordering

In this hapter we desribe and analyse methods for determining `balaned'

orderings of the verties of a graph. Here balaned means that the neigh-

bours of eah vertex v are evenly distributed to the left and right of v in the

ordering. This problem is of theoreti interest in its own right, and forms

an important part of the graph drawing algorithms to be presented in Chap-

ters 5, 6 and 7. In partiular, we de�ne the ost of a vertex ordering as

a measure of its imbalane, and present a linear time heuristi with tight

worst ase bounds for the ost of the vertex orderings produed. Furthermore

we establish useful properties of vertex orderings whih loally minimise the

ost.

4.1 Introdution

A number of the algorithms for produing general position orthogonal graph drawings

involve the manipulation of an ordering of the verties of a graph. Given a (di)graph

G, a total ordering < on V (G) indues a numbering (v

1

; v

2

; : : : ; v

n

) of V (G) and vie

versa. We shall refer to both < and (v

1

; v

2

; : : : ; v

n

) as a vertex ordering of G.

Consider a vertex ordering < of a graph G. For eah edge vw 2 E(G) with v < w,

we say the ar

�!

vw 2 A(G) is a suessor ar of v and w is a suessor of v; similarly

the ar

�!

wv is a predeessor ar of w and v is a predeessor of w. Now onsider a vertex

ordering < of a digraph G. For eah edge vw 2 E(G), if v < w we say

�!

vw is a suessor

61
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ar of v and w is a suessor of v, and if w < v we say

�!

vw is a predeessor ar of v and

w is a predeessor of v.

For eah vertex v 2 V (G), the number of suessor and predeessor ars of v are

denoted s

<

(v) and p

<

(v), respetively. Where the vertex ordering < is lear from the

ontext we use s(v) and p(v) instead of s

<

(v) and p

<

(v), respetively. Note that, for

digraphs, we only ount the outgoing edges at a vertex v in p(v) and s(v).

We say a vertex v in a given vertex ordering is positive if s(v) > p(v), negative

if p(v) > s(v) and balaned if s(v) = p(v). For positive and balaned verties v and

for k > 0 (respetively, k < 0), v

k

denotes the k

th

suessor (predeessor) of v to the

right (left) of v in the ordering. For negative v and for k > 0 (respetively, k < 0), v

k

denotes the k

th

predeessor (suessor) of v to the left (right) of v in the ordering. Two

adjaent verties v; w with v < w are opposite if v is positive and w is negative.

As illustrated in Figure 4.1, we shall say a vertex v is eah of the following types.

� p(v)-s(v) vertex

� (minfp(v); s(v)g ;max fp(v); s(v)g)-vertex

� max fp(v); s(v)g-vertex.

v

v

�1

v

�2

v

1

v

2

v

3

v

4

Figure 4.1: In a vertex ordering, v is a 4-2 vertex, a (2; 4)-vertex, and a 4-vertex.

In a vertex ordering of a (di)graph G, we measure the imbalane of a vertex by

de�ning the ost of v to be (v) = js(v)� p(v)j. Note that a vertex has even ost if and

only if it has even (out)degree, and the ost of an odd (out)degree vertex is at least

one. We �rstly note that,

2 �min fs(v); p(v)g + (v) = (out)deg (v) = 2 �max fs(v); p(v)g � (v) (4.1)

The total ost of a vertex ordering is the sum of the osts of the verties. In a vertex

ordering of an undireted graph G, the total ost is equal to the total ost of the same
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vertex ordering of the digraph

 !

G . Hene we model a vertex ordering of an undireted

graph G by a vertex ordering of the digraph

 !

G . We are interested in the following

problem.

Problem 4.1. BALANCED VERTEX ORDERING

Instane : A (di)graph G, integer K � 0.

Question : Does G have a vertex ordering with total ost

X

v2V (G)

(v) � K?

We onjeture that the BALANCED VERTEX ORDERING problem is NP-

omplete. To establish bounds for this problem we employ a heuristi approah in

Setion 4.3, and a loal minimum approah in Setion 4.4. Obviously any vertex order-

ing of the omplete graph has the same total ost, thus providing an important lower

bound for the balaned ordering problem.

Lemma 4.1. In any vertex ordering of the omplete graph K

n

, the total ost

X

v

(v) =

�

n

2

2

�

= m+

j

n

2

k

:

Proof. In a vertex ordering (v

1

; v

2

; : : : ; v

n

) the total ost is

X

1�i�n

js(v

i

)� p(v

i

)j = 2

X

1�i�bn=2

(n� 2i+ 1)

= 2

0

�

bn=2 (n+ 1)� 2

X

1�i�bn=2

i

1

A

= 2

�

bn=2 (n+ 1)� bn=2 (bn=2+ 1)

�

=

�

n

2

=2

�

= m+ bn=2 :

4.2 st-Orderings

A vertex ordering (v

1

; v

2

; : : : ; v

n

) of a (di)graph G is an st-ordering if v

1

= s, v

n

= t,

and for every other vertex v

i

, 1 < i < n, with (out)deg (v

i

) � 2, we have p(v

i

) � 1 and

s(v

i

) � 1. Lempel et al. [142℄ show that for any bionneted undireted graph G and

for any s; t 2 V (G), there exists an st-ordering of G. Reently Cheriyan and Reif [54℄

extended this result to digraphs.
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Even and Tarjan [93℄ develop a linear time algorithm to ompute an st-ordering of an

undireted bionneted graph. It is an open problem to develop a linear time algorithm

for �nding an st-ordering of a bionneted digraph. To determine a vertex ordering

of a onneted graph based on st-orderings of its bionneted omponents (bloks),

number the bloks B

1

; B

2

; : : : ; B

k

aording to a depth-�rst-searh of the blok-tree,

and onatenate s

i

t

i

-orderings of eah B

i

, where s

i

(respetively, t

i

) is hosen wherever

possible to be a ut-vertex with some blok B

j

, j < i (j > i). We obtain the following

easy result.

Lemma 4.2. Every graph G has a vertex ordering, whih an be omputed in O(n+m)

time, with at most +k verties v having p(v) = 0 or s(v) = 0, where  is the number of

onneted omponents of G, and k is the number of end-bloks in the blok deomposition

of G. (An end-blok orresponds to a leaf of the blok-forest. Note that an isolated edge

ontributes one onneted omponent and one end-blok.)

4.3 Median Plaement Ordering

We now desribe a heuristi for the balaned vertex ordering problem whih provides

a tight upper bound for the total ost of the vertex orderings produed, and forms

a ritial part of many of the graph drawing algorithms presented in this thesis. The

algorithm inserts eah vertex, in turn, mid-way between its already inserted neighbours.

At any stage of the algorithm we refer to the ordering under onstrution as the urrent

ordering. Similar methods were introdued by Biedl and Kaufmann [30℄ and Biedl et al.

[31℄.

Algorithm 4.1. Median Plaement Ordering

Input: � (di)graph G.

� vertex ordering (u

1

; u

2

; : : : ; u

n

) of G (alled the insertion ordering).

Output: vertex ordering of G.

for i = 1; 2; : : : ; n do

Suppose the predeessors of u

i

in the insertion ordering
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are ordered w

1

; w

2

; : : : ; w

k

in the urrent ordering.

if k = 0 then Insert u

i

arbitrarily into the urrent ordering.

else if k is even then Insert u

i

arbitrarily between w

k=2

and w

k=2+1

.

else (k is odd) Insert u

i

immediately before or after w

(k+1)=2

.

end-for

Output the urrent ordering.

It is easily seen that for undireted graphs the Median Plaement Ordering

algorithm, at eah iteration, inserts the vertex u

i

to minimise the total ost of the

urrent ordering. For digraphs this is not the ase, as the example in Figure 4.2

illustrates.

u v

1-1

w x

2-0

y

2-0

=

)

(a) median plaement insertion

u w x

1-1

y

1-1

v

2-0

=

)

(b) minimum ost insertion

Figure 4.2: Inserting vertex v into a vertex ordering of a digraph.

Lemma 4.3. The algorithm Median Plaement Ordering determines a vertex

ordering of a (di)graph G, in O(m+ n) time, with total ost

X

v2V (G)

(v) � k +

X

1�i�n

s(u

i

), and

X

v2V (G)

max fs(v); p(v)g � m+

1

2

0

�

k +

X

1�i�n

s(u

i

)

1

A

:

where, in the insertion ordering, s(u

i

) is the number of suessors of u

i

and k is the

number of verties u

i

2 V (G) with odd p(u

i

).

Proof. When a vertex u

i

is inserted into the urrent ordering it has ost (u

i

) = 0 if

p(u

i

) is even and (u

i

) = 1 if p(u

i

) is odd. So, even if all the suessors of u

i

(in the

insertion ordering) are inserted on the one side of u

i

, in the �nal ordering, the ost
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(u

i

) � s(u

i

) if p(u

i

) is even, and (u

i

) � s(u

i

) + 1 if p(u

i

) is odd. So the total ost is

at most k +

P

i

s(u

i

). By (4.1) we have

X

v

max fs(v); p(v)g �

X

v

deg(v) + (v)

2

= m+

1

2

 

k +

X

i

s(u

i

)

!

Using the median-�nding algorithm of Blum et al. [36℄, and the algorithm of Dietz

and Sleator [77℄ to maintain the vertex ordering and orderings of the adjaeny lists of

G, the algorithm an be implemented in O(m+ n) time.

For an important lass of graphs, if the insertion ordering is hosen arefully, the

Median Plaement Ordering algorithm is optimal.

Theorem 4.1. A minimum-ost vertex ordering of an ayli (di)graph an be deter-

mined in O(m+ n) time.

Proof. Using a reverse topologial ordering as the insertion ordering in the Median

Plaement Ordering algorithm, eah vertex v has s(v) = 0 in the insertion ordering,

so no neighbours of v are inserted into the urrent ordering after v. Hene (v) = 1 if

p(v) is odd, and (v) = 0 if p(v) is even. Sine p(v) = (out)deg (v) the ordering has

minimum ost. A topologial ordering an be determined in O(m+n) time [64℄, as an

the algorithm Median Plaement Ordering (see Lemma 4.3).

For undireted graphs,

P

i

s(u

i

) = m in any ordering, and sine k � n, we obtain

the following immediate orollary.

Corollary 4.1. The Median Plaement Ordering algorithm, with any insertion

ordering, determines a vertex ordering of an undireted graph G with total ost

X

v2V (G)

(v) � m+ n , and

X

v2V (G)

max fs(v); p(v)g �

3m+ n

2

:

If we hoose a partiular insertion ordering we an obtain improved upper bounds on

the total ost of the vertex orderings produed by theMedian Plaement Ordering

algorithm. As indiated by Lemma 4.3, there are two approahes for determining a

`good' insertion ordering.

1. Determine an insertion ordering with a small number of verties with an odd

number of predeessors. We present an algorithm for doing so in Setion 4.3.1.
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2. Determine an insertion ordering with small

P

i

s(u

i

). For undireted graphs,

P

i

s(u

i

) = m in any ordering, so this approah is only appliable for digraphs.

We desribe methods for determining an insertion ordering with small

P

i

s(u

i

)

in Setion 4.3.2.

4.3.1 Verties with an Odd Number of Predeessors

We now desribe an algorithm for determining a vertex ordering with few verties

having an odd number of predeessors. The ordering is onstruted from right to left;

i.e., from v

n

to v

1

.

Algorithm 4.2. Insertion Ordering

Input: (di)graph G.

Output: vertex ordering of G.

Set i jV (G)j.

while E(G) 6= ; do

Choose an edge vw 2 E(G).

if (out)deg (v) is even then Set u

i

 v; u

i�1

 w; else Set u

i

 w; u

i�1

 v.

Remove v and w (and their inident edges) from G.

Set i i� 2.

end-while

while V (G) 6= ; do

Choose v 2 V (G).

Set u

i

 v.

Remove v from G.

Set i i� 1.

end-while

Output (u

1

; u

2

; : : : ; u

n

).

Lemma 4.4. The algorithm Insertion Ordering determines a vertex ordering

(u

1

; u

2

; : : : ; u

n

) of G with at most bn=2 verties u

i

having odd p(u

i

).
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Proof. Consider an iteration of the �rst while-loop in the algorithm. If (out)deg (v) is

even then p(v) = (out)deg (v), otherwise if (out)deg (v) is odd then p(v) = (out)deg (v)�

1. In either ase, the vertex v will have an even number of predeessors in (u

1

; u

2

; : : : ; u

n

).

So at least half of the verties added to the ordering in the �rst stage of the algorithm

have an even number of predeessors. During the seond while-loop every vertex v has

p(v) = 0 and thus has an even number of predeessors in (u

1

; u

2

; : : : ; u

n

). The result

follows.

Combining Lemma 4.3 and Lemma 4.4 we obtain the following result.

Theorem 4.2. Every undireted graph G has a vertex ordering, whih an be omputed

in O(n+m) time, with total ost

X

v2V (G)

(v) � m+

j

n

2

k

, and

X

v2V (G)

max fs(v); p(v)g �

3m

2

+

n

4

:

By Lemma 4.1, the vertex ordering of the undireted omplete graph K

n

has total

ost m+ bn=2, so for K

n

we have a tight bound on the total ost.

4.3.2 Feedbak Ar Set Problem

We now desribe the seond method for improving the bound on the total ost of

vertex orderings produed by the Median Plaement Ordering algorithm. This

method is only appliable for digraphs. We wish to determine an insertion ordering

(u

1

; u

2

; : : : ; u

n

) with small

P

i

s(u

i

).

A feedbak ar set of a digraph G is a set of ars of G whose removal makes the

graph ayli. A vertex ordering < of a digraph determines a feedbak ar set onsisting

of the edges fvw 2 E(G) : v < wg. Conversely, given a feedbak ar set F � E(G), a

topologial ordering < of G[F ℄ has j fvw 2 E(G) : v < wg j = jF j. So determining an

insertion ordering with minimum

P

i

s(u

i

) is equivalent to the problem of determining

a feedbak ar set of minimum size. This problem, alled the FEEDBACK ARC SET

problem, is NP-hard [125℄. For any vertex ordering of a digraph,

min

(

X

v

s(v);

X

v

p(v)

)

� m=2 :
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So trivially every digraph has a vertex ordering with

P

i

s(u

i

) � m=2.

Berger and Shor [19℄ establish an asymptotially tight bound for the FEEDBACK

ARC SET problem

1

. They show that, for digraphs of maximum degree � and without

2-yles, the minimum of

P

i

s(u

i

) (taken over all vertex orderings) ism=2��(m=

p

�),

and a vertex ordering with

P

i

s(u

i

) = m=2��(m=

p

�) an be determined in O(mn)

time. Using suh an ordering as the insertion ordering in algorithm Median Plae-

ment Ordering, by Lemma 4.3 with k � n, we obtain the following result.

Theorem 4.3. Every digraph without 2-yles has a vertex ordering, whih an be

omputed in O(mn) time, with total ost

X

v

(v) � n+

m

2

��

�

m

p

�

�

:

Only for small values of � is the onstant in the �(m=

p

�) term evaluated. The

linear time greedy heuristi for the FEEDBACK ARC SET problem due to Eades et al.

[84℄ provides an exat bound on

P

i

s(u

i

), whih in a number of instanes, provides a

tighter upper bound than that in [19℄. They show that every digraph without 2-yles

has a vertex ordering (u

1

; u

2

; : : : ; u

n

) with

P

i

s(u

i

) � m=2� n=6. Using this ordering

as the insertion ordering in algorithmMedian Plaement Ordering, by Lemma 4.3

with k � n, we obtain the following result.

Theorem 4.4. Every digraph without 2-yles has a vertex ordering, whih an be

omputed in O(m+ n) time, with total ost

X

v

(v) �

m

2

+

5n

6

:

In the ase of ubi graphs, the (more) greedy heuristi of Eades and Lin [82℄ de-

termines, in O(mn) time, a vertex ordering with

P

i

s(u

i

) � m=4. Using this ordering

as the insertion ordering in the Median Plaement Ordering algorithm produes

a vertex ordering with total ost at most n+m=4.

1

Berger and Shor atually onsider the orresponding maximisation problem alled the MAXIMUM

ACYCLIC SUBGRAPH problem.
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4.4 Loal Minimum Approah

We now desribe a method for the balaned ordering problem whih �nds a loal

minimum of the total ost. A vertex ordering (v

1

; v

2

: : : ; v

n

) of a graph G is k-balaned

if moving any k verties does not redue the total ost of the ordering.

4.4.1 Undireted Graphs

Consider the following rule for moving a vertex in a vertex ordering.

M1(v,w): If w = v

k

is opposite to v for some k, 1 � k � d(v)=2e (exept if (v) is

odd, k = d(v)=2e and (w) = 1), then move v to immediately past w, as in Figure 4.3.

: : : : : : : : :

u

v

u

w = v

i

=)

: : : : : : : : :

u

w

u

v

Figure 4.3: The move M1 for a 1-5 vertex v and a 4-2 vertex w = v

2

.

Lemma 4.5. A vertex ordering is 1-balaned if and only if M1 annot be applied.

Proof. Suppose a vertex v in a given vertex ordering, with (v) = s(v)� p(v), gains �

suessors and loses � predeessors in the ordering. Then (v) beomes j(s(v) + �) �

(p(v)��)j = j(v) + 2�)j, so the hange in (v), denoted 

�

(v), is j(v) + 2�j � j(v)j.

The following ases summarise the possible values of 

�

(v).

1. (v) + 2� � 0

(a) (v) � 0: 

�

(v) = (v) + 2�+ (v) = 2((v) + �)

(b) (v) < 0: 

�

(v) = (v) + 2�� (v) = 2�

2. (v) + 2a < 0

(a) (v) � 0: 

�

(v) = �(v)� 2�+ (v) = �2�
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(b) (v) < 0: 

�

(v) = �(v)� 2�� (v) = �2((v) + �)

Applying M1 redues (v) by at least 2k and for eah i, 1 � i � k � 1, (v

i

) is

inreased by at most two. The ost of all other verties remains unhanged. Thus the

total ost dereases by at least two. So if M1 is appliable then the vertex ordering is

not 1-balaned.

Now, suppose a given vertex ordering is not 1-balaned. Then there exists a vertex

v and a neighbour w = v

k

of v suh that moving v past w redues the total ost. Eah

neighbouring vertex v

i

, 1 � jij � jkj (i the same sign as k), that v moves past will gain

one suessor and lose one predeessor if v moves to the right, or lose one suessor and

gain one predeessor if v moves to the left. In these respetive ases the ost hange at

eah v

i

is



1

(v

i

) =

8

>

>

>

>

>

<

>

>

>

>

>

:

�2; if (v

i

) � �2;

0; if (v

i

) = �1;

2; if (v

i

) � 0.



�1

(v

i

) =

8

>

>

>

>

>

<

>

>

>

>

>

:

2; if (v

i

) � �2;

0; if (v

i

) = 1;

�2; if (v

i

) � 0.

Suppose that v is balaned. Then the new ost of v will be 2jkj. The ost of eah

vertex v

i

will derease by at most 2, so the total ost annot derease. Hene v annot

be balaned.

Suppose k < 0. Moving v past w will inrease the ost of v by 2jkj, while the

derease in ost for eah vertex v

i

, k � i < 0, is at most 2. Thus the inrease in ost of

v annot be o�set by the derease in the ost of the neighbours of v. Hene k > 0.

We selet the minimum k � 1 suh that moving v past w = v

k

redues the total

ost; i.e., moving v past any u = v

i

, 1 � i < k, does not redue the total ost. Sine

M1 does redue the total ost, eah of the neighbours v

i

, 1 � i � d(v)=2e, must be

not opposite to v (unless (v

i

) = 1 and i = d(v)=2e).

Suppose k > d(v)=2e. Then moving v past w inreases the ost of eah vertex v

i

,

1 � i � d(v)=2e, by 2. The new ost (v) beomes 2k � (v), so the hange in (v) is

2(k � (v)). The ost of v

i

, d(v)=2e � i � k, an derease by at most 2. Adding up

the ost hanges, it follows that the total ost annot derease. So k � d(v)=2e.

Suppose w is not opposite to v. Then the ost inrease at w is 2 (unless (w) = 1),

so while (v) dereases by 2k, the ost inrease at v

i

, 1 � i � k, is 2. Hene the total
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ost hange is 0. So w is opposite to v and 1 � k � d(v)=2e (exept if (v) is odd,

k = d(v)=2e and (w) = 1), and the result follows.

We have the following immediate orollary.

Corollary 4.2. For every vertex v in a 1-balaned vertex ordering, eah of the verties

v

1

; v

2

; : : : ; v

b(v)=2

is not opposite to v.

We now present an algorithm for determining a 1-balaned vertex ordering. Let

M1(

�!

vw) be a funtion whih, for a given ar

�!

vw 2 A(G), returns true if and only if v

is moved past w by rule M1.

Algorithm 4.3. 1-Balaned Vertex Ordering

Input: undireted graph G.

Output: vertex ordering of G.

Determine an arbitrary vertex ordering of G.

Set A A(G).

while A 6= ; do

Choose an ar

�!

vw 2 A.

if M1(

�!

vw) then

for x 2 V

G

(v) do Set A A [A

+

G

(x) [A

�

G

(x).

else

Set A A n f

�!

vwg.

end-if

end-while

Output the urrent ordering.

Lemma 4.6. The algorithm 1-Balaned Vertex Ordering determines a 1-balaned

vertex ordering of G in O

�

�

2

m

�

time.

Proof. We shall prove that at all times the set A ontains all ars in A(G) for whih

M1 is possibly appliable. At the start of the algorithm this is true, sine A = A(G).
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Consider an adjaeny list representation of G where eah adjaeny list is ordered

aording to the urrent vertex ordering.

Suppose the ar

�!

vw is hosen from A. If M1(

�!

vw) is not applied then, of ourse,

E n f

�!

vwg ontains all ars in A(G) for whih M1 is possibly appliable.

SupposeM1(

�!

vw) is applied, and v moves past w in the urrent vertex ordering. The

only verties whose ost may hange are v and its neighbours, and only the adjaeny

lists of v and its neighbours are hanged. For an ar

�!

pq 2 A(G) where p and q are

both not adjaent to v or one of the neighbours of v, the adjaeny lists of p and q do

not hange, and the ost of every vertex adjaent to p or q does not hange. Hene if

M1(

�!

pq) is not appliable before moving v past w then M1(

�!

pq) will not be appliable

after moving v past w.

Therefore, by adding to A the sets of ars A

+

G

(x) and A

�

G

(x) for eah neighbour x of

v, we maintain the ondition that A ontains all ars in A(G) for whihM1 is possibly

appliable. The algorithm ontinues until A = ;, at whih point there are no ars for

whih M1 is appliable. By Lemma 4.5, the �nal vertex ordering is 1-balaned.

The total ost of a vertex ordering is at most 2m. M1 redues the total ost by at

least two, so M1 is applied at most m times. Whenever M1 is applied, O

�

�

2

�

ars

are added to A. Hene the algorithm inserts O

�

�

2

m

�

ars into A, so M1 is heked

O

�

�

2

m

�

times.

Using the order maintenane algorithm of Dietz and Sleator [77℄, the vertex order-

ing and adjaeny lists of eah vertex an be maintained in onstant time under the

move operation. Hene M1 an be heked in onstant time, so the algorithm runs in

O

�

�

2

m

�

time.

We now present rules for moving two verties in a vertex ordering.

M2: If v is opposite to w and v < w

j

< v

i

< w for some i; j (1 � i � d(v)=2e,

1 � j � d(w)=2e, 2i+ 2j < (v) + (w) + 2), then move v up to v

i

and move w up to

w

j

, as in Figure 4.4.
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: : : : : : : : : : : : : : :

t

v

t

w

1

t

v

2

t

w

=)

: : : : : : : : : : : : : : :

t

w

1

t

w

t

v

t

v

2

Figure 4.4: The move M2 for a 1-5 vertex v and a 4-2 vertex w.

M3: If v is opposite to w and v < v

i

= w

j

< w for some i; j (1 � i � b(v)=2,

1 � j � b(w)=2, 2i+2j < (v)+ (w)) then move v to immediately past v

i

and move

w to immediately past w

j

, as in Figure 4.5.

: : :: : :: : :: : :

t

v

t

v

2

= w

1

t

w

=)

: : : : : : : : : : : :

t

w

t

v

t

v

2

= w

1

Figure 4.5: The move M3 for a 0-5 vertex v and a 5-1 vertex w.

ApplyingM2 orM3 redues (v) by at least 2i and for eah k, 1 � k � i�1, (v

k

)

is inreased by at most two, (w) is redued by at least 2j and for eah k, 1 � k � j�1,

(w

k

) is inreased by at most two. The ost of all other verties remains unhanged.

Thus the total ost dereases by at least four.

Note that there are other rules for moving two verties in a vertex ordering to

redue the total ost, thus M1, M2 and M3 alone annot guarantee a 2-balaned

vertex ordering. For our purposes, however, these rules suÆe (see Algorithm 5.8

Diagonal Layout and Movement). Let M2(vw) and M3(vw) be funtions that,

given an edge vw 2 E(G), return true if and only if v and w move under rule M2 and

M3, respetively. The following algorithm determines a vertex ordering in whih M1,

M2 and M3 are not appliable.
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Algorithm 4.4. Almost 2-Balaned Vertex Ordering

Input: undireted graph G.

Output: vertex ordering of G.

Determine an arbitrary vertex ordering of G.

Set E  E(G).

while E 6= ; do

Choose an edge vw 2 E.

if M1(

�!

vw) or M1(

�!

wv) or M2(vw) or M3(vw) then

for x 2 V

G

(v) [ V

G

(w) do Set E  E [E

G

(x).

else Set E  E n fvwg.

end-while

Output the urrent ordering.

Lemma 4.7. The algorithm Almost 2-Balaned Vertex Ordering determines

a vertex ordering of G in O

�

�

3

m

�

time in whih M1, M2 and M3 are not appliable.

Proof. The proof is essentially the same as that for Lemma 4.6 exept that M2 and

M3 take O(�) time.

4.4.2 Direted Graphs

For a digraph without 2-yles and of maximum outdegree two, a loal minimum ap-

proah establishes the following bound for the total ost. We shall apply this result in

Setion 5.3.

Theorem 4.5. A 2-balaned vertex ordering of a maximum outdegree two digraph G

has total ost

X

v2V (G)

(v) � n :
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Proof. In a vertex ordering of a maximum outdegree two digraph, eah vertex is either

a (0,2)-vertex, a (1,1)-vertex or a (0,1)-vertex. Consider a (0,2)-vertex v in a 1-balaned

vertex ordering. If there is no ar

�!

xv with x between v and v

1

, or there is suh an x

but x is opposite to v, then, as in Figure 4.6, we an move v past v

1

to redue the total

ost. ((v) beomes 0 and the ost of all other verties does not inrease.) Hene, in

a 1-balaned vertex ordering, for every (0,2)-vertex v, there must be an ar

�!

xv from a

(1,1)-vertex x between v and v

1

. We say x bloks v.

v

0-2

x

v

1

v

2

)

x

v

1

v

1-1

v

2

Figure 4.6: Move v past v

1

.

Suppose a (1,1)-vertex x bloks distint verties v and w. x must be between v and

w, as otherwise x would be a (0,2)-vertex. Suppose v < x < w. As in Figure 4.7, if

we move v past v

1

and move w past w

1

then both v and w beome balaned and (x)

remains zero. The ost of all other verties does not hange. In partiular, (v

1

) and

(w

1

) do not hange sine the graph ontains no 2-yles.

v

0-2

w

1

x

1-1

v

1

w

2-0

=)

w

1-1

w

1

x

1-1

v

1

v

1-1

Figure 4.7: Move v past v

1

and move w past w

1

.

Hene in a 2-balaned vertex ordering a (1,1)-vertex an blok at most one (0,2)-

vertex. The total ost of the ordering is twie the number of (0,2)-verties plus the

number of (0,1)-verties. Sine every (0,2)-vertex has a bloker whih is a (1,1)-vertex,

and a (1,1)-vertex bloks at most one (0,2)-vertex, the number of (0,2)-verties is at

most the number of (1,1)-verties. So the total ost is at most the number of (0,2)-

verties plus the number of (0,1)-verties plus the number of (1,1)-verties, whih is at
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most n.

Using a similar analysis to that in Lemma 4.6, it is easily seen that the algorithm

desribed in the previous proof runs in O(n) time. We therefore have the following

result.

Corollary 4.3. A vertex ordering of a maximum outdegree two digraph with total ost

at most n an be determined in O(n) time.



Chapter 5

The General Position Model for

Three-Dimensional Orthogonal

Point-Drawing

In this hapter we desribe the general position model for produing 3-D or-

thogonal point-drawings. We present a number of algorithms for produing

orthogonal point-drawings in this model. Among other results we establish

the best known upper bound for the total number of bends in 3-D orthogonal

point drawings, and the best known upper bound for the volume of 3-bend

orthogonal point-drawings.

A 3-D orthogonal point-drawing is said to be a general position 3-D orthogonal

point-drawing if no two verties lie in a ommon grid plane. We are interested in the

following problem.

Problem 5.1. BEND-MINIMUM GENERAL POSITION 3-D

POINT-DRAWING

Instane: A graph G with �(G) � 6.

Output : A general position 3-D orthogonal point-drawing of G with the minimum

number of bends.

78
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This hapter is organised as follows. Setion 5.1 desribes a representation for gen-

eral position 3-D orthogonal point-drawings, thus forming a foundation for the main

algorithms to follow. We initially onentrate on the problem of minimising the total

number of bends per edge in general position 3-D orthogonal point-drawings. As dis-

ussed in Setion 3.4.4, algorithms for produing general position orthogonal drawings

an be lassi�ed as layout-based or routing-based.

In Setion 5.2 we present our layout-based approah for 3-D orthogonal point-

drawing. Firstly, we desribe an algorithm whih minimises the total number of bends

for a �xed diagonal vertex layout. We also desribe a method, based on a maximum-

lique formulation, for searhing for bend-minimum drawings given a �xed general

position vertex layout.

Our routing-based approah for produing 3-D orthogonal point-drawings is de-

sribed in Setion 5.3. The Diagonal Layout and Movement algorithm desribed

in Setion 5.4 ombines the layout- and routing-based approahes. It establishes the

best known upper bound for the total number of bends in 3-D orthogonal point-

drawings of simple graphs, and is a 7=6-approximation algorithm for the problem

BEND-MINIMUM GENERAL POSITION 3-D POINT-DRAWING. Furthermore, the

same algorithm produes 2-bend point-drawings for maximum degree �ve graphs.

In Setion 5.5 we onsider the problem of minimising the maximum number of

bends per edge route in a orthogonal point-drawing. We present two algorithms, both

of whih follow the layout-based approah. The �rst algorithm, given a �xed general

position vertex layout, determines an orthogonal point-drawing with three bends per

edge. We then desribe a modi�ation of the 3-Bends algorithm of Eades et al. [86, 87℄

whih produes 3-D orthogonal point-drawings using a diagonal vertex layout with

n

3

+ O

�

n

5=2

�

volume. This is the best known upper bound for the volume of 3-bend

3-D orthogonal point-drawings.

Finally, in Setion 5.6 we present lower bounds for the number of bends in general

position orthogonal point-drawings. These results have important impliations for the

nature of any solution to the 2-bends problem (see Setion 3.5.1). Figure 5.1 provides

an overview of the algorithms presented in this hapter.
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Layout-Based Approah
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Book Embedding
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Layout
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� Cyle Cover
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Layout
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� Cyle Cover
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Bend-Min. Routing
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Routing-Based
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� Cyle Cover
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Vertex Layout
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+
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� onstrut graph H
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+

Routing determines
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Algorithm 5.1 General Position 3-D Point-Drawing

� Port Assignment � Construt Edge Routes � Remove Crossings � Remove Empty Planes

Max. Bends 3 3 4 4 4 4

Avg. Bends 3 3 2
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�
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�
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3

n

�

3

Figure 5.1: Algorithms for general position 3-D orthogonal point-drawing. The bounds are for 6-regular graphs.
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5.1 Representation

Consider a general position 3-D orthogonal point-drawing of a graph G with maximum

degree �(G) � 6. Sine no two verties share a ommon oordinate, this drawing

de�nes X-, Y -, and Z-vertex orderings of G, representing the relative oordinates of

the verties. The assignment of ports to edge routes de�nes a (non-proper) 3-olouring

of A(G), where an ar

�!

vw 2 A(G) is oloured i 2 fX;Y;Zg if the edge route vw uses an

i-port at v. Clearly, for eah vertex v 2 V (G), there are at most two ars

�!

vw 2 A(G)

reeiving the same olour. We therefore represent a general position 3-D orthogonal

point-drawing of G by:

� A (3-D general position) vertex layout, onsisting of X-, Y -, and Z-vertex order-

ings (x

1

; x

2

; : : : ; x

n

), (y

1

; y

2

; : : : ; y

n

) and (z

1

; z

2

; : : : ; z

n

) of G.

� A (3-D) point-routing, onsisting of a 3-olouring of A(G) suh that for eah

vertex v 2 V (G), there are at most two ars

�!

vw 2 A(G) reeiving the same

olour; i.e., �

�

 !

G [i℄

�

� 2, for eah olour i 2 fX;Y;Zg.

In a general position vertex layout, for an edge vw to have a 2-bend edge route, it

is neessary for the reversal ars

�!

vw;

�!

wv 2 A(G) to be oloured di�erently. If for every

edge vw 2 E(G), the reversal ars

�!

vw;

�!

wv 2 A(G) are oloured di�erently, then we all

the point-routing a 2-bend point-routing.

As disussed in Setion 3.4.4, algorithms for produing general position 3-D or-

thogonal drawings an be lassi�ed as layout-based or routing-based. Our layout-based

algorithms determine a vertex layout initially, followed by the omputation of a point-

routing. Our routing-based algorithm determines the vertex layout with respet to a

pre-determined point-routing.

The following algorithm forms the �nal step of all our algorithms. Given a ver-

tex layout and a point-routing, it onstruts a layout- and routing-preserving general

position 3-D orthogonal point-drawing (possibly with rossings) in linear time. By a

sequene of port assignment swaps, the algorithm then removes all edge route rossings

from the drawing in quadrati time in the worst ase.

Algorithm 5.1. General Position 3-D Point-Drawing
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Input: � graph G with �(G) � 6.

� general position 3-D vertex layout of V (G).

� point-routing of G (with 3 olours).

Output: general position 3-D orthogonal point-drawing of G

1. For eah vertex v 2 V (G),

if v = x

i

= y

j

= z

k

then initially position v at (3i; 3j; 3k).

2. Apply Algorithm 5.2 Determine Port Assignment.

3. Apply Algorithm 5.3 Construt Edge Routes.

4. Apply Algorithm 5.4 Point-Drawing Remove Edge Crossings.

5. Delete eah grid-plane not ontaining a vertex or a bend.

In what follows we desribe the details of the omponents of Algorithm General

Position 3-D Point-Drawing.

5.1.1 Edge Routes

As a �rst step in onstruting edge routes for a given vertex layout and point-routing of

a graph, we determine the assignment of ports to ars. The following algorithm assigns

ports to ars so that, whenever possible, the port at a vertex v assigned to an ar

�!

vw

points toward w. Reall that A

G

(v)[i℄ is the set of outgoing ars at a vertex v 2 V (G)

whih are oloured i 2 fX;Y;Zg.

Algorithm 5.2. Determine Port Assignment

Input: � graph G with �(G) � 6

� general position 3-D vertex layout of G

� point-routing of G (with 3 olours)

Output: routing-preserving assignment of ports to A(G)
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for eah vertex v 2 V (G), for eah olour i 2 fX;Y;Zg do

if A

G

(v)[i℄ = f

�!

vwg then

Assign to

�!

vw the i-port at v pointing towards w.

else if A

G

(v)[i℄ = f

�!

vu;

�!

vwg (u 6= w) then

if v is between u and w in the i-ordering then

Assign to

�!

vu and

�!

vw the i-ports at v pointing towards u and w.

else if

�!

uv 2 A

G

(u)[i℄ then

Assign to

�!

vu the i-port at v pointing away from u.

Assign to

�!

vw the i-port at v pointing towards w.

else if

�!

wv 2 A

G

(w)[i℄ then

Assign to

�!

vw the i-port at v pointing away from w.

Assign to

�!

vu the i-port at v pointing towards u.

else

Arbitrarily assign the i-ports at v to

�!

vu and

�!

vw.

end-if

end-if

end-for

The following algorithm, for a given port assignment, determines eah edge route

with the minimum number of bends.

Algorithm 5.3. Construt Edge Routes

Input: � graph G with �(G) � 6

� general position 3-D vertex layout of G

� port assignment for G

Output: general position 3-D point-drawing of G (possibly with rossings)

For eah edge vw 2 E(G),

1. If port(

�!

vw) is perpendiular to port(

�!

wv), port(

�!

vw) points toward w, and port(

�!

wv)

points toward v then route vw with the 2-bend edge route shown in Figure 5.2.
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w

Figure 5.2: 2-bend edge route vw.

2. If exatly one of port(

�!

vw) or port(

�!

wv) points away from w or v respetively then,

supposing

�!

vw does, use a 3-bend edge route for vw, said to be anhored at v, as

illustrated in Figure 5.3.

v

w

1

v

w

(a) perpendicular ports

1

(b) parallel ports

v

w

1

(a) anchored at v

v

w

1

(b) anchored at w

v

w

1

1

(a) perpendicular ports

v

w

1

1
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w

Figure 5.3: 3-bend edge routes vw anhored at v.

3. If port(

�!

vw) points toward w, port(

�!

wv) points toward v, and port(

�!

vw) is parallel

to port(

�!

wv), then hoose v or w arbitrarily and, as in Figure 5.4, route vw with

the 3-bend edge route said to be anhored at the hosen vertex.
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Figure 5.4: 3-bend edge routes.
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4. If port(

�!

vw) points away from w and port(

�!

wv) points away from v then use a

4-bend edge route for vw as in Figure 5.5. We say the edge route vw is anhored

at v and at w.
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1
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1

(a) anchored at v

v

w

1

(b) anchored at w
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1

1

(a) perpendicular ports

v

w

1

1

(b) parallel ports

v

w

Figure 5.5: 4-bend edge routes vw anhored at v and at w.

For a given assignment of ports, eah edge route uses the minimum number of bends,

so in a general position 3-D orthogonal point-drawing the only edge routes needed are

those desribed above (assuming that edge rossings are allowed). If the edge route vw

is anhored at v then we say the ar

�!

vw has been anhored. Note that if for some edge

vw, the ars

�!

vw and

�!

wv are oloured the same, then the edge route vw needs at least

three bends; i.e., at least one of

�!

vw and

�!

wv is anhored. The drawings produed have

preisely 2m+ k bends where k is the number of anhored ars.

Lemma 5.1. The algorithms Determine Port Assignment and Construt Edge

Routes onstrut a general position 3-D orthogonal point-drawing (possibly with edge

rossings) with preisely one anhored ar for eah instane of the following onditions

(see Figure 5.6).

� For some vertex v and olour i 2 fX;Y;Zg,

(a)

�!

vu;

�!

vw 2 A

G

(v)[i℄ (u 6= w), and

(b) v is not between u and w in the i-ordering.

(5.1)
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� For some edge vw 2 E(G) and olour i 2 fX;Y;Zg,

(a)

�!

vw;

�!

vu 2 A

G

(v)[i℄ (w 6= u),

(b)

�!

wv;

�!

wx 2 A

G

(w)[i℄ (v 6= x),

() v is between u and w in the i-ordering, and

(d) w is between v and x in the i-ordering.

(5.2)

Proof. In Algorithm Construt Edge Routes, there is one anhored ar in Cases

2 and 3, and two anhored ars in Case 4. Case 3 ours preisely when (5.2) ours.

If Case 2 ours there is one instane of (5.1), and if Case 4 ours then there are

two instanes of (5.1). Hene there is one anhored ar for eah instane of (5.1) and

(5.2).

(a) Case (5.1)

v u w

(b) Case (5.2)

u v w x

Figure 5.6: Cases with anhored ars (with verties in the i-ordering and ars oloured

i).

5.1.2 Removing Edge Crossings

We now haraterise all possible intersetions between edge routes onstruted by the

previous algorithm. As illustrated in Figure 5.7, eah edge route an be onsidered to

onsist of a 2-bend edge route possibly with unit length segments attahed at either

end. The segments of the 2-bend omponent of an edge route vw in order from v to w

are alled the v-segment, the middle segment, and the w-segment of vw.

For a vertex v = x

i

= y

j

= z

k

, we say that the (X = 3i � 1)-plane, the (X = 3i)-

plane and the (X = 3i+ 1)-plane belong to v, and similarly for Y - and Z-oordinates.

Note that the middle segment of an edge route vw ontains grid-points belonging to

v and w and no other verties. Grid-points ontained in the v-segment of vw, exept

for the grid-point at the intersetion of the v-segment of vw and the middle segment

of vw, only belong to v.
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Figure 5.7: Segments of the 2-bend omponent of an edge route.

Suppose in a drawing produed by the algorithm Construt Edge Routes the

edge routes vw and xy interset. If vw and xy are non-adjaent then the grid-point

of intersetion must belong to eah of v, w, x and y, whih implies that two of these

verties are oplanar. Sine the verties are in general position, two of fv; w; x; yg are

equal. Hene interseting edge routes must be inident to a ommon vertex. Suppose

the edge routes vu and vw interset.

In all edge routes, there are no onseutive unit length segments, and an edge

rossing involving a unit-length segment must also involve the adjaent non-unit-length

segment, so we need only onsider intersetions between non-unit-length segments.

Case 1 | The v-segments of vu and vw interset: Clearly both of vu and

vw must be anhored at v, and they must interset as in Figure 5.8. Swapping the

ports assigned to

�!

vu and

�!

vw, and removing both anhors eliminates the edge rossing.

Doing so introdues no new edge rossings.
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Figure 5.8: Case 1 | Rerouting interseting v-segments (whih must be anhored).

Case 2 | The v-segment of vw intersets the middle segment of vu:

Case 2(a) | vw is not anhored: Clearly vu must be anhored. Sine the

middle segment of vu is parallel with the port assigned to

�!

vu, the ports assigned to

�!

vu

and

�!

uv must be perpendiular. As shown in Figure 5.9, by swapping the ports assigned



CHAPTER 5. GENERAL POSITION 3-D POINT-DRAWING 88

to

�!

vu and

�!

vw, anhoring

�!

vw, and unanhoring

�!

vu, the edge rossing is removed. Note

that the new edge routes ontain no new grid points belonging to u or w, so there are

no new edge rossings introdued by this operation.
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Figure 5.9: Case 2(a) | Rerouting interseting v-segment of vw and middle segment

of vu if vw is not anhored.

Case 2(b) | vw is anhored (see Figure 5.10): The edge route vu may be

anhored at v, and if it is, then as in Case 2(a), the ports assigned to

�!

vu and

�!

uv must

be perpendiular. By swapping the ports at v assigned to

�!

vu and

�!

vw the edge rossing

is removed. The ar

�!

vu is now not anhored, if

�!

vu was anhored then

�!

vw is now

anhored, and if

�!

vu was unanhored then

�!

vw is now unanhored. Hene an anhor, and

thus a bend, is eliminated. Note that this operation may introdue new edge rossings

between uv and some other edge inident to u.
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Figure 5.10: Case 2(b) | Rerouting interseting v-segment of anhored vw and middle

segment of vu.

Case 3 | The middle segments of vu and vw interset (See Figure 5.11):

Note that

�!

vu and

�!

vw may or may not be anhored. If

�!

vu is anhored then the edge

route vu must use perpendiular ports at v and u, and similarly, if

�!

vw is anhored then

the edge route vw must be assigned perpendiular ports at v and w. Swapping the

ports assigned to

�!

vu and

�!

vw, and swapping any anhors, removes the edge rossing.

Note that the sum of the lengths of the new middle segments of vu and vw is stritly
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Figure 5.11: Rerouting interseting middle-segments.

less than the previous sum. This operation may introdue new edge rossings between

uv and some other edge at u, or between wv and some other edge at w.

The following algorithm summarises the rossing removal phase of our algorithm.

Algorithm 5.4. Point-Drawing Remove Edge Crossings

Input: � graph G with �(G) � 6

� general position 3-D orthogonal point-drawing of G (possibly with rossings)

generated by the Construt Edge Routes algorithm.

Output: general position 3-D orthogonal point-drawing of G (without rossings).

V  V (G)

while V 6= ; do

Choose v 2 V , and set V  V n fvg.

for eah Case 2(b) or Case (3) rossing between edges vu and vw do

Swap the ports at v assigned to

�!

vu and

�!

vw.

Reroute the edge routes vu and vw aording

to Algorithm 5.3 Construt Edge Routes.

Set V  V [ fv; u; wg.

end-for

end-while

for eah vertex v 2 V (G) do

for eah Case (1) or Case 2(a) rossing between edges vu and vw do

Swap the ports at v assigned to vu and vw.

end-for

end-for
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Lemma 5.2. The algorithm Point-Drawing Remove Edge Crossings removes

all rossings from the given 3-D orthogonal point-drawing in O

�

n

2

�

time.

Proof. In Case 3 and Case 2(b), but not Cases 2(a) and Case 1, swapping ports may

reate new edge route rossings between uv and some other edge route inident to u,

or similarly at w. Therefore removing all Case 3 and Case 2(b) rossings in the �rst

phase of the algorithm, and removing all Cases 2(a) and Case 1 edge rossings in the

seond phase of the algorithm, removes all rossings from the drawing.

In Case 3 the sum of the lengths of the middle segments of vu and vw is redued

(see the segments in bold). The length of eah middle segment is O(n) and there are

at most 3n middle segments in total, so the sum of the lengths of the middle segment

is O

�

n

2

�

.

In Case 2(b) (and also in Case 1) at least one anhored ar (and thus a bend) is

eliminated. The number of anhored ars is at most 6n.

Hene the sum of the lengths of the middle segments plus the number of anhored

ars is O

�

n

2

�

, and every Case 3 or Case 2(b) port swap redues this number by at least

one. Therefore the algorithm exeutes O

�

n

2

�

Case 3 or Case 2(b) port swaps. With

eah suh port swap three verties are added to V for re-heking. Hene, Case 2(b)

and Case 3 needs to be heked for some vertex O

�

n

2

�

times. To hek Case 2(b) and

Case 3 for a partiular vertex v involves omparing the oordinates of a O(1) number

of pairs of edge routes inident to v. Hene the �rst phase of the algorithm takes O

�

n

2

�

time.

Similarly, for a partiular vertex, Case 1 and Case 2(a) an be heked in onstant

time. So the seond phase of the algorithm takes O(n) time, and the algorithm removes

all edge rossings in O

�

n

2

�

time.

We an now prove the main result of this setion.

Theorem 5.1. Suppose G is a graph with �(G) � 6, and we are given a general posi-

tion vertex layout and point-routing of G with k instanes of (5.1) and (5.2). Then the

algorithm General Position 3-D Point-Drawing will, in O

�

n

2

�

time, onstrut a

layout-preserving 3-D orthogonal point-drawing of G with at most four bends per edge

route and at most 2m+k bends in total. The bounding box volume is at most (n+k=3)

3

.
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Proof. As disussed earlier there is one anhored ar for eah ourrene of (5.1) and

(5.2). Clearly, a grid-plane not ontaining a vertex or a bend an be removed without

a�eting the drawing. The (X = 3i� 1)-plane belonging to a vertex v = x

i

ontains a

bend if and only if there is an anhored ar

�!

vw assigned an X-port (i.e., oloured X)

with its v-segment lying in this plane. Similarly for Y -planes and Z-planes. Therefore,

after removing grid-planes not ontaining a vertex or a bend, the bounding box is

(n + k

X

) � (n + k

Y

) � (n + k

Z

), where k

i

is the number of anhored ars oloured i,

i 2 fX;Y;Zg. It is well-known that of the boxes with �xed sum of side length the ube

has maximum volume (see for example Kazarino� [126℄). So if k is the total number of

anhored ars then the bounding box volume is maximised when k

X

= k

Y

= k

Z

= k=3,

so the bounding box volume is at most (n+ k=3)

3

.

5.2 Layout-Based Algorithms

We now desribe our layout-based approah for produing general position 3-D orthog-

onal point-drawings. Here we are onerned with the following problem.

Problem 5.2. LAYOUT-BASED GENERAL POSITION 3-D POINT-

DRAWING

Instane: A general position 3-D vertex layout of a graph G with �(G) � 6.

Output : A layout-preserving 3-D orthogonal point-drawing of G with the minimum

number of bends.

This problem amounts to �nding a point-routing of G with the minimum number

of instanes of (5.1) and (5.2). We onjeture that it is NP-hard.

5.2.1 Diagonal General Position Vertex Layout

We initially onsider layout-based algorithms with a diagonal layout of the verties.

A diagonal layout was �rst used for 3-D orthogonal point-drawing by the 3-BENDS

algorithm of Eades et al. [86, 87℄. Consider a diagonal layout of a maximum de-

gree six graph G with orresponding vertex ordering <. A vertex v 2 V (G) has

max fmax fs

<

(v); p

<

(v)g � 3; 0g ars inident to v whih must be assigned a port at v

whih point away from their destination. Suh ars must be anhored. Eah edge route
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has at least two bends and eah anhored ar ontributes one further bend. Therefore

the total number of bends in a diagonal layout 3-D orthogonal point-drawing is at least

2m +

X

v2V (G)

max fmax fs

<

(v); p

<

(v)g � 3; 0g : (5.3)

The following algorithm determines a diagonal layout 3-D orthogonal point-drawing

with preisely this number of bends, thus solving the LAYOUT-BASED GENERAL

POSITION 3-D POINT-DRAWING problem in the ase of a diagonal layout.

Algorithm 5.5. Diagonal General Position 3-D Point-Drawing

Input: � graph G with �(G) � 6

� vertex ordering < of G

Output: diagonal layout 3-D point-drawing of G

1. Construt a graph H with V (H) = A(G).

2. For eah vertex v 2 V (G), add liques

�

vv

A

; vv

B

; vv

C

	

and

�

vv

D

; vv

E

; vv

F

	

to

E(H), aording to Table 5.1. (Refer to Setion 4.1 for the relevant de�nitions.

If deg(v) < 6 then some of vv

A

, vv

B

, vv

C

, vv

D

, vv

E

and vv

F

will not be de�ned,

so the above-mentioned liques may be empty or onsist of a single edge.)

Table 5.1: De�nition of vv

A

, vv

B

, vv

C

, vv

D

, vv

E

and vv

F

v vv

A

vv

B

vv

C

vv

D

vv

E

vv

F

�-vertex (� � 3) vv

�3

vv

�2

vv

�1

vv

1

vv

2

vv

3

4-vertex vv

�2

vv

�1

vv

1

vv

2

vv

3

vv

4

5-vertex vv

�1

vv

1

vv

2

vv

3

vv

4

vv

5

6-vertex vv

1

vv

2

vv

3

vv

4

vv

5

vv

6

3. For eah edge vw 2 E(G), add the edge f

�!

vw;

�!

wvg to E(H) (alled an `r'-edge),

as illustrated in Figure 5.12.

4. Determine a point-routing of G from a vertex 3-olouring of H.
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vv

1

vv

�1

vv

�2

`r'

`r'

`r'

vv

2

vv

3

vv

4

`r'

`r'

`r'

Figure 5.12: The subgraph of H orresponding to a 2-4 vertex v.

5. Apply Algorithm 5.1 General Position 3-D Point Drawing.

Lemma 5.3. The algorithm Diagonal General Position 3-D Point-Drawing

determines, in O(n) time, a diagonal layout 3-D orthogonal point-drawing of G with

2m +

X

v2V (G)

max fmax fs

<

(v); p

<

(v)g � 3; 0g :

bends and at most four bends per edge route. The volume is

0

�

n +

1

3

X

v2V (G)

max fmax fs

<

(v); p

<

(v)g � 3; 0g

1

A

3

:

Proof. A vertex of H is inident with one `r'-edge and at most two unlabelled edges,

so the graph H has maximum degree �(H) � 3, and is not K

4

, so by Brooks' The-

orem [47℄, H is vertex 3-olourable. The proof of Brook's Theorem due to Lov�asz

[147℄ and simpli�ed by Bryant [49℄ desribes an algorithm for vertex 3-olouring H in

O(jE(H)j) = O(n) time. The 3-olouring of V (H) determines a 3-olouring of A(G).

The unlabelled edges ensure that at most two ars at a vertex v an reeive the same

olour, so the olouring is a point-routing of G.

Applying Theorem 5.1 with the given diagonal layout and this point-routing de-

termines a 3-D orthogonal point-drawing with 2m + k bends where k is the number

of instanes of (5.1) and (5.2). Sine all pairs of reversal ars are oloured di�erently

there are no instanes of (5.2).

Suppose

�!

vu;

�!

vw 2 A

G

(v)[i℄ (u 6= w) for some vertex v and olour i 2 fX;Y;Zg.

Then we an assume

�!

vu 2

�

vv

A

; vv

B

; vv

C

	

and

�!

vw 2

�

vv

D

; vv

E

; vv

F

	

. An instane of
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(5.1) ours if v is not between u and w in the i-ordering. This ours if and only if

vu = vv

i

for some i, 1 � i � max fmax fs

<

(v); p

<

(v)g � 3; 0g. So there are

k =

X

v2V (G)

max fmax fs

<

(v); p

<

(v)g � 3; 0g :

anhored ars. By Theorem 5.1 the volume bound holds.

Consider the algorithm Point-Drawing Remove Edge Crossings applied with

a diagonal layout. Clearly Case 3 annot our. If Case 2(b) ours then

�!

vw must

be anhored and port(

�!

vw) points towards w. However, in Algorithm Diagonal Gen-

eral Position 3-D Point-Drawing if an ar

�!

vw is anhored then port(

�!

vw) points

away from w. Hene Cases 3 and 2(b) annot our when we apply Point-Drawing

Remove Edge Crossings, so it takes O(n) time. Therefore eah step of Diagonal

Layout 3-D Point-Drawing takes O(n) time. The result follows.

Combining (5.3) and Lemma 5.3 we obtain the following result.

Theorem 5.2. The problem LAYOUT-BASED GENERAL POSITION 3-D POINT-

DRAWING an be solved in O(n) time in the ase of a diagonal layout.

We now an haraterise those 2-bend 3-D orthogonal point-drawings with a diag-

onal layout, a result �rst established by Wood [220℄.

Corollary 5.1. A diagonal layout of a graph G admits a 2-bend 3-D orthogonal point-

drawing if and only if every vertex v in the orresponding vertex ordering has s(v) � 3

and p(v) � 3.

Proof. By Theorem 5.2, a diagonal layout admits a 2-bend point-drawing if and only

if, for every vertex v, max fmax fs(v); p(v)g � 3; 0g = 0; i.e., max fs(v); p(v)g � 3; i.e.,

s(v) � 3 and p(v) � 3.

If we apply algorithmDiagonal General Position 3-D Point-Drawing with a

diagonal layout whose vertex ordering is determined using st-orderings (see Setion 4.2)

we obtain the following result.

Corollary 5.2. If a graph G with maximum degree �(G) � 6 has  onneted ompo-

nents and k end-bloks, then there exists a diagonal layout 3-D orthogonal point-drawing
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of G, whih an be determined in O(n) time, with at most 3m � n+  + k bends and

at most ((2n +m +  + k)=3)

3

volume. If G is 6-regular and has a onstant number

of bionneted omponents then the number of bends is at most 8m=3 + O(1) and the

volume is at most (5n=3)

3

+O

�

n

5=2

�

.

Proof. Firstly, remove eah vertex with degree one and its inident edge from G. Sup-

pose the remaining graph, alled G

0

, has n

0

verties, m

0

edges, 

0

onneted omponents

and k

0

end-bloks. Let n

i

be the number of verties v 2 V (G

0

) with deg

G

0

(v) = i. By

Lemma 4.2, G

0

has a vertex ordering < with 

0

+ k

0

verties having zero predeessors

or zero suessors. For suh a vertex v, max fs(v); p(v)g = deg(v), so

max fmax fs(v); p(v)g � 3; 0g =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

0; if deg

G

(v) � 3;

1; if deg

G

(v) = 4;

2; if deg

G

(v) = 5;

3; if deg

G

(v) = 6.

For all other verties v we have

max fmax fs(v); p(v)g � 3; 0g �

8

>

>

>

>

>

<

>

>

>

>

>

:

0; if deg

G

(v) � 4;

1; if deg

G

(v) = 5;

2; if deg

G

(v) = 6.

Hene

X

v2V (G

0

)

max fmax fs(v); p(v)g � 3; 0g � n

5

+ 2n

6

+ 

0

+ k

0

:

If we determine a 3-D orthogonal point-drawing of G

0

with Algorithm 5.5 Diago-

nal General Position 3-D Point-Drawing using the vertex ordering <, then by

Lemma 5.3 there is at most

2m

0

+

X

v2V (G

0

)

max fmax fs(v); p(v)g � 3; 0g � 2m

0

+ n

5

+ 2n

6

+ 

0

+ k

0

bends. Now,

0 � n

3

+ 2n

4

+ n

5
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2n

5

+ 4n

6

� n

3

+ 2n

4

+ 3n

5

+ 4n

6

2n

5

+ 4n

6

� (2n

2

+ 3n

3

+ 4n

4

+ 5n

5

+ 6n

6

)� 2n

0

2n

5

+ 4n

6

� 2m

0

� 2n

0

n

5

+ 2n

6

� m

0

� n

0

2m

0

+ n

5

+ 2n

6

+ 

0

+ k

0

� 3m

0

� n

0

+ 

0

+ k

0

:

So the number of bends in the drawing of G

0

is at most 3m

0

�n

0

+

0

+k

0

. It is easily

seen that the verties with degree one an be reinserted into the diagonal layout, and

eah inident edge routed with two bends. Hene the number of bends in the drawing

of G is 3m

0

� n

0

+ 

0

+ k

0

+ 2(m�m

0

) = m

0

� n

0

+ 

0

+ k

0

+ 2m.

Now, (n�n

0

) = (� 

0

) + (k� k

0

). So (n�n

0

) � (m�m

0

) + (� 

0

) + (k� k

0

), and

hene m

0

� n

0

+ 

0

+ k

0

� m� n+ + k. So the number of bends in the drawing of G

is at most 3m� n+ + k.

The number of anhored ars is at most m�n+ +k, so the volume of the drawing

of G is at most (n+ (m� n+ + k)=3)

3

= ((2n+m+ + k)=3)

3

.

If G is 6-regular and has a onstant number of bionneted omponents then the

number of bends is 8m=3 +O(1) and the volume is (5n=3)

3

+O

�

n

5=2

�

.

By Lemmas 4.2 and 5.3, the st-orderings and the drawing itself an be determined

in O(n) time, respetively.

If we use Algorithm 4.1 Median Plaement Ordering to determine the vertex

ordering of a diagonal layout, we obtain the following result.

Corollary 5.3. A graph G with maximum degree �(G) � 6 has a diagonal layout

3-D orthogonal point-drawing, whih an be determined in O(n) time, with at most

5m=2 + n=4 bends and at most (m=6 + 13n=12)

3

volume. For 6-regular graphs the

number of bends is at most 31m=12 and the volume is at most (19n=12)

3

.

Proof. Let < be a vertex ordering of G determined by Algorithm 4.1 Median Plae-

ment Ordering (with insertion ordering determined by Algorithm 4.2 Insertion

Ordering). Suppose G has n

i

verties with degree i. Determine a diagonal layout

3-D point-drawing, with orresponding vertex ordering <, using the algorithm Di-

agonal General Position 3-D Point-Drawing. By Lemma 5.3, the number of
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anhors is

X

v2V (G)

max fmax fs

<

(v); p

<

(v)g � 3; 0g :

A degree one or two vertex v has max fs

<

(v); p

<

(v)g � 1, so

max fmax fs

<

(v); p

<

(v)g � 3; 0g � (max fs

<

(v); p

<

(v)g � 3) + 2 :

A degree three or four vertex v has max fs

<

(v); p

<

(v)g � 2, so

max fmax fs

<

(v); p

<

(v)g � 3; 0g � (max fs

<

(v); p

<

(v)g � 3) + 1 :

A degree �ve or six vertex v has max fs

<

(v); p

<

(v)g � 3, so

max fmax fs

<

(v); p

<

(v)g � 3; 0g = max fs

<

(v); p

<

(v)g � 3 :

Hene the number of anhored ars is at most

X

v2V (G)

(max fs

<

(v); p

<

(v)g � 3) + 2n

1

+ 2n

2

+ n

3

+ n

4

�

3m

2

+

n

4

� 3n+ 2n

1

+ 2n

2

+ n

3

+ n

4

(by Theorem 4.2)

�

m

2

+

1

2

(n

1

+ 2n

2

+ 3n

3

+ 4n

4

+ 5n

5

+ 6n

6

)�

11

4

(n

1

+ n

2

+ n

3

+ n

4

+ n

5

+ n

6

)

+ 2n

1

+ 2n

2

+ n

3

+ n

4

=

m

2

+

1

4

(�n

1

+ n

2

� n

3

+ n

4

� n

5

+ n

6

)

�

m

2

+

n

4

:

By Lemma 5.3 the total number of bends is at most 5m=2 + n=4, and volume is at

most (n + (m=2 + n=4)=3)

3

= (m=6 + 13n=12)

3

. For 6-regular graphs the number of

bends is at most 31m=12 and the volume is at most (19n=12)

3

.

By Theorem 4.2 and Lemma 5.3, the vertex ordering and the drawing itself an be

determined in O(n) time, respetively.

For graphs with average degree at least �ve, using the Median Plaement Or-

dering algorithm to determine the diagonal layout produes drawings with fewer bends

and less volume than the algorithm based on st-orderings.
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5.2.2 Arbitrary General Position Vertex layout

In this setion we onsider the layout-based approah for minimising the number of

bends in 3-D orthogonal point-drawings given a �xed general position layout. Although

the methods developed run in exponential time, they have proved to be e�etive in

searhing for 2-bend drawings of reasonably small graphs.

Maximum Clique Formulations

We now present a method for searhing for solutions to LAYOUT-BASED GENERAL

POSITION 3-D POINT-DRAWING using a maximum weight lique formulation. Con-

sider the edge route graph R onsisting of a vertex for every possible edge route. For

eah edge vw 2 E(G) there are 36 possible edge routes, one for eah ombination of

ports at v and w. Verties are adjaent in R if and only if their orresponding edge

routes an o-exist in the drawing; i.e., verties of R orresponding to edge routes for

the same edge are non-adjaent, and verties orresponding to edge routes whih use

the same port are non-adjaent. All other pairs of verties in R are adjaent. A ver-

tex is in a lique of R if and only if the orresponding edge route is in the drawing.

The weight of the vertex orresponding to an edge route vw is 4�#bends (vw). So a

maximum weight lique will de�ne a bend-minimum drawing.

Lemma 5.4. A general position vertex layout of a graph G has a layout-preserving

3-D orthogonal point-drawing with B bends if and only if the graph R has a lique of

weight 4m�B.

In Appendix C we review the existing lique �nding algorithms and present a simple

algorithm whih performs well in omparison to the established methods. The graph R

has 36m verties and is quite dense, so even for relatively small graphs G, this method

for solving LAYOUT-BASED GENERAL POSITION 3-D POINT-DRAWING is not

pratial. We shall now introdue a related problem whose maximum lique formulation

an be solved for relatively small instanes.

Problem 5.3. LAYOUT-BASED 2-BEND 3-D POINT-DRAWING

Instane: A general position vertex layout of a graph G with �(G) � 6.
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Output : A layout-preserving 2-bend 3-D orthogonal point-drawing of a subgraph G

1

�

G with the maximum number of edges.

We onjeture that this problem is also NP-hard. The problem LAYOUT-BASED

2-BEND 3-D POINT-DRAWING suggests an approah for produing 3-D orthogonal

point-drawings where we �nd a partial 2-bend point-routing and then arbitrarily extend

it to a point-routing of G. We shall desribe two methods for the solution of LAYOUT-

BASED 2-BEND 3-D POINT-DRAWING, the �rst in terms of a maximum lique

formulation and the seond involving hypergraph mathing.

Consider the ar route graph R with vertex set V (R) = A(G) � fX;Y;Zg. There

is an edge in R between `ompatible' ar routes. We de�ne the (omplement of the)

edge set of R as follows. Sine eah ar

�!

vw 2 A(G) an be oloured at most one,

for eah pair of distint olours i; j 2 fX;Y;Zg, the edge f(

�!

vw; i); (

�!

vw; j)g 62 E(R).

For a 2-bend edge route vw, reversal ars must be oloured di�erently, so for eah

olour i 2 fX;Y;Zg, the edge f(

�!

vw; i); (

�!

wv; i)g 62 E(R). Sine di�erent ars must

be assigned di�erent ports, for eah vertex v 2 V (G), for eah pair of ars

�!

vu;

�!

vw 2

A

G

(v) and for eah olour i 2 fX;Y;Zg, if v <

i

u;w or u;w <

i

v, then the edge

f(

�!

vu; i); (

�!

vw; i)g 62 E(R). All other pairs of verties of R are adjaent. The next result

follows immediately from the de�nition of R, where inluding a vertex (

�!

vw; i) 2 V (R)

in a lique of R orresponds to olouring the ar

�!

vw with olour i.

Lemma 5.5. For a �xed general position vertex layout of a maximum degree six graph

G, there is a layout-preserving 2-bend 3-D orthogonal point-drawing of a subgraph G

1

�

G if and only if R has a lique of size 2jE(G

1

)j.

Given a lique Q of R, to determine a point-routing of G n G

1

, olour those ars

�!

vw 2 A(G) without a orresponding vertex inQ, with whatever spare olour is available,

so that there are at most two outgoing ars at eah vertex v reeiving the same olour.

Clearly, the ar route graph an be used if a partial routing of the ars is spei�ed.

Moreover, if we relax the general position model so that some verties share a om-

mon oordinate, we an speify a partial routing of the edges by 2-bend non-planar

edge routes, and use the ar route graph formulation to searh for 2-bend general po-

sition point-drawings in the remainder of the graph. This approah was used to �nd
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some of the 2-bend point-drawings of the omplete multi-partite graphs presented in

Appendix B.

Hypergraph Mathing Formulation

We now formulate the LAYOUT-BASED 2-BEND 3-D POINT-DRAWING problem

as a hypergraph mathing problem. Consider the hypergraph P with vertex set

V (P ) = A(G) [ ports (G) [ (E(G) � fX;Y;Zg) ;

and edge set onsisting of two edges eah of size three, for eah edge

�!

vw 2 E(G) and

olour i 2 fX;Y;Zg. If v <

i

w then

(

�!

vw;port(v;+i); (fv; wg ; i)); (

�!

wv;port(v;�i); (fv; wg ; i)) 2 E(P ) ;

and if w <

i

v then

(

�!

vw;port(v;�i); (fv; wg ; i)); (

�!

wv;port(v;+i); (fv; wg ; i)) 2 E(P ) :

P is 3-uniform and 3-olourable. The vertex orresponding to an ar

�!

vw 2 A(G)

has degree three, the vertex orresponding to a positive (respetively, negative) i-port

at a vertex v 2 V (G) has degree s

i

(v) (p

i

(v)), and the vertex orresponding to a pair

(

�!

vw; i) has degree two.

Lemma 5.6. There is a layout-preserving 2-bend 3-D orthogonal point-drawing of a

subgraph G

1

� G if and only if P has a mathing M with jM j = 2jE(G

1

)j.

Proof. Inluding an edge (

�!

vw;port(v;�i); (fv; wg ; i)) in a mathing M of P orre-

sponds to assigning the ar

�!

vw 2 A(G) the olour i in a point-routing of G. By

onstrution the ar vw will be assigned the i-port at v pointing towards w when edge

routes are determined.

Given a mathing M of P , for eah ar

�!

vw 2 A(G) there is at most one edge

in M inident to the vertex orresponding to vw, so eah ar is oloured at most

one. For eah (i

�

)-port at a vertex v there is at most one edge in M inident to

the vertex orresponding to port(v;�i), so eah port is used at most one. Sine

the edges (

�!

vw;port(v;�i); (fv; wg ; i)) and (

�!

wv;port(v;�i); (fv; wg ; i)) have a ommon
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vertex, namely (fv; wg ; i), they annot both be in M . So reversal ars are oloured

di�erently, and a 2-bend point-routing of G is determined. By the reverse argument, a

layout-preserving 2-bend 3-D orthogonal point-drawing of a subgraph G

1

determines a

mathing of size 2jE(G

1

)j.

A mathing of the hypergraph P de�nes a mathing in the graph P

0

formed from P

by removing the verties (fv; wg ; i) and their inident edges. Hall's marriage theorem

[114℄ thus provides the following neessary ondition for the existene of a mathing

in P , and thus a neessary ondition for the LAYOUT-BASED 2-BEND 3-D POINT-

DRAWING problem.

At eah vertex v 2 V (H), for any set S � A

G

(G

1

) v, the number of ports

at v whih point toward a vertex w for some ar

�!

vw 2 S is at least jSj.

(5.4)

This implies that the number of neighbours of a vertex v in a single otant relative

to v is at most three, in a single quadrant is at most four, in half-spae must be at

most �ve. The following example illustrates why (5.4) is not suÆent for our problem.

Consider adjaent verties v and w, suh that s

Z

(v) = 5, p

Z

(w) = 5, and w <

Z

v.

Both vw and

�!

wv must be oloured Z, as in Figure 5.13.

v

w

Figure 5.13: A layout satisfying (5.4) but without a 2-bend routing.

The Gallai-Edmonds mathing struture theorem (see [148℄) provides a mehanism

desribing all maximum mathings of any (bipartite or non-bipartite) graph. We an

use this tehnique to evaluate all the maximum mathings of P

0

suh that reversal ars



CHAPTER 5. GENERAL POSITION 3-D POINT-DRAWING 102

reeive di�erent olours, thus providing a method for the solution of LAYOUT-BASED

2-BEND 3-D POINT-DRAWING. Unfortunately there may be an exponential number

of suh mathings, so this algorithm is not polynomial.

5.3 Routing-Based Algorithm

We now desribe a routing-based algorithm for produing general position 3-D orthog-

onal point-drawings. This method determines a general position vertex layout with

respet to a pre-determined point-routing. Our aim is to produe drawings with as

many 2-bend edge routes as possible. Hene the routing whih is determined is a

2-bend point-routing. Initially we present two algorithms for determining a 2-bend

point-routing of a given graph. The routing-based vertex-layout algorithm itself is

desribed in Setion 5.3.2.

5.3.1 2-Bend Routing Algorithms

Cyle Cover Deomposition

Our �rst method for determining a 2-bend point-routing is based on the algorithm for

determining a disjoint yle over deomposition desribed in Setion 2.5.

Algorithm 5.6. 2-Bend 3-D Point-Routing

Input: graph G with �(G) � 6

Output: 2-bend 3-D general position point-routing of G.

1. Determine a yle over deomposition of G with red, green and blue yle overs.

2. For eah edge vw in the red yle over, set ol(

�!

vw) X and ol(

�!

wv) Y .

3. For eah edge vw in the green yle over, set ol(

�!

vw) Y and ol(

�!

wv) Z.

4. For eah edge vw in the blue yle over, set ol(

�!

vw) Z and ol(

�!

wv) X.
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Lemma 5.7. The algorithm 2-Bend 3-D Point-Routing determines a 2-bend point-

routing in O(n) time.

Proof. There are at most two ars at eah vertex v oloured i 2 fX;Y;Zg and reversal

ars are oloured di�erently, so the olouring is a 2-bend point-routing. By Theorem 2.1,

the yle over deomposition and hene the 2-bend point-routing an be found in O(n)

time.

Systems of Transitions

We now desribe a seond method for determining a 2-bend point-routing based on

systems of transitions. Suppose G is an Eulerian graph. (A non-Eulerian graph of

maximum degree six an be augmented to a 6-regular graph, as in Theorem 2.1.) A

transition at a vertex v is a pair of distint edges inident with v. A system of transitions

at v is a partition of fvw 2 E(G)g into transitions at v. A system of transitions of G

is a family T

G

= fT

v

: v 2 V g where T

v

is a system of transitions at v [98, 121℄.

A k-olouring of the transitions in T

G

suh that transitions at a ommon vertex and

transitions with a ommon edge reeive di�erent olours determines a k-olouring of

A(G) suh that reversal ars are oloured di�erently and �(

 !

G [i℄) = 2 for eah olour

i; i.e., a point-routing. We therefore vertex-olour the graph T (G) whose vertex set

onsists of all transitions in T

G

, with verties of T (G) being adjaent if their orre-

sponding transitions in G are (1) at a ommon vertex of G, or (2) ontain a ommon

edge of G.

These two types of edges deompose the graph T (G) into (1) a olletion of vertex-

disjoint liques fC

v

: v 2 V (G)g where jC

v

j = deg

G

(v)=2, and (2) a 2-regular spanning

subgraph. If the system of transitions is determined by following an Eulerian tour of

G, this 2-regular spanning subgraph is, in fat, a Hamiltonian yle.

Hene, for a 6-regular graphG, if we determine the system of transitions by following

an Eulerian tour of G, the graph T (G) has an edge-deomposition into a Hamiltonian

yle and a set of edge-disjoint triangles. Eah triangle represents a vertex of G and

the edges around the Hamiltonian yle orrespond to the Eulerian tour of G.

That a 4-regular graph with suh a `yle plus triangles' deomposition is vertex

3-olourable was onjetured by Erd}os and �rst proved by Fleishner and Stiebitz [99℄
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using a non-onstrutive and non-elementary olouring result of Alon and Tarsi [3℄.

Sahs [189℄ has sine developed a onstrutive and elementary proof. So T (G) is vertex

3-olourable, thus determining a 2-bend point-routing of G.

5.3.2 Determining a Layout

For a �xed routing of a graph G, in a general position 3-D orthogonal point-drawing

with the minimum number of bends, eah i-ordering, i 2 fX;Y;Zg, is an optimal

solution to the balaned ordering problem on the subgraph

 !

G [i℄. In the following

algorithm, to determine eah i-ordering, we use the loal minimum approah for the

balaned ordering problem developed in Chapter 4.

Algorithm 5.7. Routing-Based General Position 3-D Point-Drawing

Input: graph G with �(G) � 6

Output: general position 3-D orthogonal point-drawing of G.

1. Determine a 2-bend point-routing of G using Algorithm 5.6 2-Bend 3-D Point-

Routing.

2. For eah i 2 fX;Y;Zg, set the i-ordering to be a 2-balaned ordering of

 !

G [i℄

(see Theorem 4.5).

3. Apply Algorithm 5.1 General Position 3-D Point-Drawing.

Theorem 5.3. The algorithm Routing-Based General Position 3-D Point-

Drawing determines, in O

�

n

2

�

time, a 4-bend 3-D orthogonal point-drawing of G

with at most 2m+ 3n=2 bends and at most (3n=2)

3

bounding box volume.

Proof. In a 2-bend point-routing, reversal ars are oloured di�erently, so

 !

G [i℄ has

no 2-yles, for eah olour i 2 fX;Y;Zg.

 !

G [i℄ has maximum outdegree two, so by

Theorem 4.5, a 2-balaned vertex ordering of

 !

G [i℄ has total ost at most n. Applying

Theorem 5.1, sine reversal ars are oloured di�erently, there will be no instanes of

(5.2), and in eah i-ordering there will be at most n=2 instanes of (5.1). Hene there
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will be at most n=2 anhored ars oloured i, for eah i 2 fX;Y;Zg. In total there will

be at most 3n=2 anhored ars, so the total number of bends is at most 2m + 3n=2,

and the bounding box volume is at most (n + n=2)

3

= (3n=2)

3

. By Theorem 2.1

alulating the yle overs and by Theorem 4.5 eah vertex ordering takes O(n) time.

The �nal step of the algorithm, whih by Theorem 5.1 takes O

�

n

2

�

time, is the most

time-onsuming. So the overall algorithm takes O

�

n

2

�

time.

5.4 Diagonal Layout and Movement Algorithm

In this setion we desribe an algorithm for 3-D orthogonal point-drawing whih, in

some sense, ombines the layout- and routing-based approahes. Initially the verties

are plaed along the main diagonal of a ube, and a point-routing is determined. This

routing also de�nes the movement of verties away from the diagonal. This algorithm

establishes the best known upper bound for the total number of bends in 3-D orthogonal

point-drawings.

Algorithm 5.8. Diagonal Layout and Movement

Input: graph G with �(G) � 6.

Output: general position 3-D orthogonal point-drawing of G.

1. Determine a vertex ordering< of V (G) using Algorithm 4.4Almost 2-Balaned

Vertex Ordering. Call a vertex v balaned if max fs(v); p(v)g � 3, and unbal-

aned otherwise.

2. Initialise the X-, Y - and Z-orderings of a general position vertex layout to be the

vertex ordering <.

3. For eah unbalaned vertex v 2 V (G), depending on the number of predeessors

and suessors of v in the vertex ordering< (see Setion 4.1), label ars

�!

vw 2 A(G)

as movement or speial ars, aording to Table 5.2.

4. Determine a point-routing of G with Algorithm 5.9 Dlm | Determine Point-

Routing, desribed in Setion 5.4.2.
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Table 5.2: De�nition of movement and speial ars at an unbalaned vertex v.

v (0,4) (1,4) (0,5) (2,4) (1,5) (0,6)

vv

1

movement movement movement speial movement movement

vv

2

- - movement - speial movement

vv

3

- - - - - speial

5. For eah movement ar vw oloured i 2 fX;Y;Zg, move v to immediately past

w in the i-ordering.

6. Apply Algorithm 5.1 General Position 3-D Point-Drawing

5.4.1 Movement of Verties

The general stratgey of theDiagonal Layout and Movement algorithm is to anhor

at most one ar

�!

vw at eah vertex v. The port at a vertex v assigned to an unanhored

ar

�!

vw must point toward w. In the initial diagonal layout, there are three positive

ports whih an be assigned to unanhored suessor ars, and three negative ports

whih an be assigned to unanhored predeessor ars. So, at a balaned vertex v (i.e.,

max fs(v); p(v)g � 3), all of the ars

�!

vw need not be anhored.

If s(v) > 3 (respetively, p(v) > 3) the positive (negative) ports an be assigned to

at most three suessor (predeessor) ars of v. The remaining suessor (predeessor)

ars

�!

vw must be assigned a negative (positive) port at v. These are preisely the

movement and speial ars de�ned in Table 5.2. Note that there is one speial ar

�!

vw

at eah unbalaned degree six vertex v. We shall prove that speial ars will beome

anhored when algorithm General Position 3-D Point-Drawing is applied.

If vw is a movement ar oloured i, then v is moved to immediately past w in the

i-ordering (Step 5 of the algorithm), thus allowing vw to be assigned the port(v;�i) for

positive v and the port(v;+i) for negative v. In Figure 5.14 we illustrate the movement

and anhoring proess in the ase of a positive (0,6)-vertex.

For a vertex v with max fs(v); p(v)g > 3, if vw = vv

k

is a movement or speial
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Figure 5.14: v is a positive (0,6)-vertex, vv

1

is a movement ar oloured X, vv

2

is a

movement ar oloured Y , vv

3

is an speial ar oloured Z; move v to v

0

.

ar then k � b

v

=2, so rule M1 is appliable. Therefore w annot be opposite to v,

and hene

�!

wv annot also be a movement or speial ar. (Consequently when edges are

routed no 4-bend edge routes are onstruted immediately. It is only through swapping

ports to remove rossings that a 4-bend edge route an be introdued.) Furthermore,

if vv

k

is a movement ar then k � b(

v

� 1)=2, so by rules M2 and M3, if v and w are

opposite unbalaned verties then the movement ars of v do not `ross over' or have

the same destination vertex as the movement ars of w.

5.4.2 Determining a Point-Routing

To determine a point-routing we onstrut a graph H with vertex set V (H) = A(G).

Verties are adjaent in H if the orresponding ars must use perpendiular ports. A

3-vertex-olouring of H then determines a point-routing of A(G).

Algorithm 5.9. Dlm | Determine Point-Routing

Input: � graph G with �(G) � 6.

� vertex ordering of G determined in Step 1

of Algorithm Diagonal Layout and Movement.

� lassi�ation of movement and speial ars from Step 3
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of Algorithm Diagonal Layout and Movement.

Output: point-routing of A(G).

1. Construt a graph H with vertex set V (H) = A(G). We distinguish four types

of edges of H as follows.

(a) The �rst type of edge ensures that ars whih `ompete' for the same ports

are oloured di�erently. In Table 5.3 the ars vv

A

, vv

B

, vv

C

, vv

D

, vv

E

and

vv

F

are de�ned for eah type of vertex. (If v is a balaned or a positive

(respetively, negative) unbalaned vertex then vv

A

, vv

B

and vv

C

will be

assigned the negative (positive) ports at v. The ars vv

D

, vv

E

and vv

F

will

be assigned the positive (negative) ports at v.) For eah vertex v 2 V (G),

add a triangle

�

vv

A

; vv

B

; vv

C

	

and

�

vv

D

; vv

E

; vv

F

	

to E(H).

Table 5.3: De�nition of vv

A

, vv

B

, vv

C

, vv

D

, vv

E

and vv

F

v vv

A

vv

B

vv

C

vv

D

vv

E

vv

F

balaned vv

�3

vv

�2

vv

�1

vv

1

vv

2

vv

3

(0,4)-vertex vv

1

- - vv

2

vv

3

vv

4

(1,4)-vertex vv

�1

vv

1

- vv

2

vv

3

vv

4

(2,4)-vertex vv

�2

vv

�1

vv

1

vv

2

vv

3

vv

4

(0,5)-vertex vv

1

vv

2

- vv

3

vv

4

vv

5

(1,5)-vertex vv

�1

vv

1

vv

2

vv

3

vv

4

vv

5

(0,6)-vertex vv

1

vv

2

vv

3

vv

4

vv

5

vv

6

(b) If neither the ar

�!

vw not its reversal ar

�!

wv are speial then add the edge

f

�!

vw;

�!

wvg (labelled `r') to E(H).

() If

�!

vw and

�!

wx are both movement ars for some verties v, w and x, then

add the edge f

�!

vw;

�!

wxg (labelled `�') to E(H). (This ensures that v and w

do not move in the same ordering.)

(d) If vv

2

is a movement ar oloured i then v will move past v

1

in the i-

ordering. To ensure that v

1

v does not use the inorret i-port at v

1

, add the
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edge

�

vv

2

; v

1

v

	

(labelled `��') to E(H). (Observe that in Figure 5.14, v

1

v

annot use the port (v

1

; Y

+

).)

2. Repeatedly remove verties ofH with degree at most two, and merge non-adjaent

verties v; w 2 V (H) in a K

4

n vw subgraph (and replae any parallel edges by a

single edge).

3. Determine a proper vertex-olouring of H with three olours.

4. Colour the removed verties v 2 V (H) in reverse order of their removal, with a

olour di�erent from the (� 2) neighbours of v.

5. Determine a 3-olouring of A(G) from the olouring of V (H).

Lemma 5.8. The graph H is vertex 3-olourable in O(n) time.

Proof. If K

4

n vw is a subgraph of H for some non-adjaent verties v and w, then in

any proper 3-olouring of V (H), v and w must reeive the same olour, so merging

these verties preserves the 3-olourability of H. We now show that after repeatedly

removing verties with degree at most two, and merging pairs of verties in a K

4

n vw

subgraph, H has maximum degree three, and is not K

4

, so by Brooks' Theorem [47℄,

is 3-olourable.

For an unbalaned vertex v, let H

v

be the subgraph of H onsisting of the verties

vv

A

, vv

B

and vv

C

and their inident edges. We shall initially show that H

v

`redues'

to a maximum degree three subgraph.

For a degree six unbalaned vertex v, the vertex of H orresponding to the speial

ar vv

C

is inident with at most two (unlabelled) edges, and therefore an be removed

from H. Sine a (0,6)-vertex and a (0,5)-vertex v both have vv

A

and vv

B

as movement

ars, H

v

is the same for a (0,6)-vertex v (after removing vv

C

) and for a (0,5)-vertex v

(see Figures 5.15 and 5.16). Similarly, for (1,5)- and (2,4)-verties, H

v

is the same as

for (1,4)- and (2,3)- verties respetively. We therefore need only onsider (0,5)-, (1,4)-

or (0,4)- unbalaned verties. Thus the result for graphs with unbalaned degree six

verties in the vertex ordering redues to the result for vertex orderings without suh

verties.
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Consider a (0,5)-vertex v. v

1

may be balaned or a (1,4)-vertex. If v

1

is balaned

then, as in Figure 5.15, vv

1

has degree two and an be removed. In the remaining

graph, vv

2

and v

1

v have degree three.
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Figure 5.15: The subgraph H

v

for a (0,5)-vertex or a (0,6)-vertex v with v

1

balaned.

Now, if v

1

is a (1,4)-vertex then, as in Figure 5.16, vv

2

and v

1

(v

1

)

1

are the non-

adjaent verties in a K

4

n feg subgraph. If we merge these verties then v

1

v and

vv

1

have degree two and an be removed. If v

2

is balaned then there is no edge

fvv

2

; v

2

(v

2

)

1

g. If v

2

is unbalaned then v

2

must be a (1,4)-vertex, and therefore v

2

v

and the edge fvv

2

; v

2

vg (labelled `r') will be removed (see Figure 5.17). In either ase

vv

2

(=v

1

(v

1

)

1

) has degree three.
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Figure 5.16: The subgraph H

v

for a (0,5)-vertex or a (0,6)-vertex v with v

1

a (1,4)-

vertex.

Consider a (1,4)-vertex v, and assume that v

�1

is not a (0,5)-vertex with (v

�1

)

1

= v

(we have already onsidered this ase). As in Figure 5.17, the vertex vv

�1

has degree

two and an be removed. vv

1

now has degree at most three. For a (0,4)-vertex v, H

v

simply onsists of the degree one vertex vv

1

, whih an be removed.

Consider a vertex vv

j

2 V (H) for some j 2 fD;E; Fg, or j 2 fA;B;Cg if v is

balaned. vv

j

is inident with at most two unlabelled edges and to at most one edge

labelled `r'. Unless v

j

is a (0,5)- or (0,6)-vertex and (v

j

)

1

= v (in whih ase vv

j

is

inident with an edge labelled `��' and has already been onsidered), vv

j

has degree at
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Figure 5.17: The subgraph H

v

of H for a (1,4)-vertex or a (1,5)-vertex v.

most three.

We have shown that all remaining verties in H have degree at most three, and it

is easily seen that H is not K

4

, so by Brooks' Theorem [47℄, H is 3-olourable. The

proof of Brook's Theorem due to Lov�asz [147℄ and simpli�ed by Bryant [49℄ desribes

an algorithm for �nding a vertex 3-olouring of H in O(jE(H)j) = O(n) time.

The 3-vertex-olouring of H determines a 3-olouring of A(G). The unlabelled edges

in H ensure that at most two outgoing ars at eah vertex v reeive the same olour. So

the 3-olouring of H determines a point-routing of G (Step 4 of Algorithm Diagonal

Layout and Movement), and hene Algorithm General Position 3-D Point-

Drawing is appliable (Step 6 of Algorithm Diagonal Layout and Movement).

Theorem 5.4. For a given graph G with maximum degree six, the Diagonal Layout

and Movement algorithm will, in O

�

n

2

�

time, determine a 4-bend 3-D orthogonal

point-drawing of G with bounding box volume (4n=3)

3

= 2:37n

3

and at most 7m=3

bends. If G has maximum degree �ve then the bounding box has volume n

3

and eah

edge route has two bends.

Proof. We now alulate the number of bends and the volume of the drawing whih will

result when we apply algorithm General Position 3-D Point-Drawing. To do so,

we ount the number of instanes of (5.1). Suppose the ars

�!

vu;

�!

vw 2 A

G

(v)[i℄ (u 6= w)

for some vertex v and olour i 2 fX;Y;Zg. We an assume that

�!

vu 2 fvv

A

; vv

B

; vv

C

g

and

�!

vw 2 fvv

D

; vv

E

; vv

F

g.

Suppose

�!

vu is a movement ar. Then u is not between v and w in the initial

ordering. v moves past u in the i-ordering, and sine the movement ars originating at

w (if any) do not ross over u, w annot move past u in any ordering. Therefore v is

between u and w in the �nal i-ordering.
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Suppose

�!

vu is neither a movement ar nor a speial ar. Then v is between u and

w in the initial ordering, and v does not move past u or w in any ordering. If u moves

past v then it does so in the same ordering as the olour assigned to the movement ar

�!

uv. Sine f

�!

vu;

�!

uvg 2 E(H) in this ase,

�!

uv is not oloured i, so u does not move in the

i-ordering. Similarly w does not move in the i-ordering, and hene, v is between u and

w in the i-ordering.

So, the only ase where v is not between u and w in the i-ordering is if

�!

vu or

�!

vw is

speial. Sine every vertex is inident to at most one speial ar, every instane of (5.1)

orresponds to a unique speial ar. Hene there are at most k instanes of (5.1) where

k is the number of speial ars, whih is preisely the number of unbalaned degree six

verties.

Now suppose there is an instane of (5.2); i.e., there is a pair of reversal ars

�!

vw;

�!

wv 2 A(G) reeiving the same olour i,

�!

vu 2 A

G

(v)[i℄ (w 6= u),

�!

wx 2 A

G

(w)[i℄

(v 6= x), v is between u and w in the i-ordering, and w is between v and x in the

i-ordering. The `r' edges in H ensure that one of

�!

vw and

�!

wv, say

�!

vw, must be speial.

However, in this ase v will not be between u and w in the i-ordering. So there are no

instanes of (5.2).

If k is the number of speial ars then Theorem 5.1 asserts G has a 4-bend 3-D

orthogonal point-drawing with bounding box volume (n + k=3)

3

and 2m + k bends.

Sine k � n the bounding box volume is at most (n + n=3)

3

= (4n=3)

3

. If d is the

average degree of those verties without speial ars then 6k + d(n� k) = 2m and the

number of bends is 2m + k = 2m + (2m � d(n � k))=6 = 7m=3 � d(n � k)=6. Sine

n � k the drawing has at most 7m=3 total bends.

For maximum degree �ve graphs, no speial ars are introdued by the algorithm

and reversal ars are oloured di�erently, so the point-routing is a 2-bend point-routing.

By the same argument as above, if

�!

vu;

�!

vw 2 A

G

(v)[i℄ (u 6= w) then v is between u and

w in the i-ordering. Hene, the onditions (5.1) and (5.2) do not our. So there are

no anhored ars in the point-drawing produed. With no anhored edge routes, no

new anhors an be introdued by the edge rossing removal stage. So the rossing-free

drawing has two bends per edge route and bounding box volume n

3

.

The 3-olouring of H takes O(jE(H)j)=O(n) time, and by Theorem 5.1, algorithm
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General Position 3-D Point-Drawing takes O

�

n

2

�

time, so the algorithm Diag-

onal Layout and Movement takes O

�

n

2

�

time.

Corollary 5.4. The algorithm Diagonal Layout and Movement is a

7=6-approximation algorithm for the BEND-MINIMUM GENERAL POSITION 3-D

POINT-DRAWING problem.

Proof. Sine every general position 3-D orthogonal point-drawing has at least 2m bends,

and the Diagonal Layout and Movement algorithm determines a general position

3-D orthogonal point-drawing with at most 7m=3 bends, the approximation fator is

at most (7m=3)=(2m) = 7=6.

5.5 3-Bend Algorithms

We now onsider the problem of minimising the maximum number of bends on any edge

route in 3-D orthogonal point-drawings. As disussed in Setion 3.5.1, K

5

provides a

lower bound of two for the maximum number of bends per edge route in 3-D orthogonal

point-drawings. Eades et al. [86, 87℄ �rst established that every maximum degree six

graph has an orthogonal point-drawing with a maximum of three bends per edge route.

Their 3-Bends algorithm is based on an arbitrary diagonal layout of the verties, and a

yle over deomposition of the edges. As stated in their paper the drawings produed

have 27n

3

volume; by simply deleting grid-planes not ontaining a vertex or a bend the

volume is easily seen to be at most 8n

3

.

The Inremental algorithm of Papakostas and Tollis [166, 168℄, using an ad-ho

vertex layout and edge routing strategy, also produes orthogonal point-drawings with

at most three bends per edge. The volume of the drawings produed is at most 4:63n

3

.

This algorithm has the advantage of supporting the on-line insertion of verties in

onstant time.

In this setion we desribe an algorithm, whih given an arbitrary 3-D general po-

sition vertex layout of graph, determines a 3-bend layout-preserving orthogonal point-

drawing. We then present an algorithm, whih is a modi�ation of the 3-Bends al-

gorithm of Eades et al. [86, 87℄, for produing 3-D orthogonal point-drawings with
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n

3

+O

�

n

5=2

�

volume and at most three bends per edge. This is the best known upper

bound for the volume of 3-bend 3-D orthogonal point-drawings.

5.5.1 Edge Routes

In this setion we employ a modi�ed version of Algorithm General Position 3-D

Point-Drawing as the basis for our main algorithms. Given a maximum degree

six graph G, a general position vertex layout and a point-routing of G we position the

verties as in Algorithm General Position 3-D Point-Drawing, however our algo-

rithms diretly speify the port assignment. We again employ Algorithm Construt

Edge Routes, although we only use 2-bend edge routes (see Figure 5.2) and 3-bend

edge routes with parallel ports (see Figures 5.3(b) and 5.4). Furthermore, 3-bend edge

routes using ports pointing in the same diretion are onstruted somewhat di�erently,

as we now desribe.

The minimal box ontaining all verties is alled the inner box. For eah diretion

d 2 fX

�

; Y

�

; Z

�

g, the box extending out from the d-fae of the inner box is alled the

d-outer box , as shown in Figure 5.18.

X

Y

Z

Y

�

-outer box

X

�

-outer box

Z

�

-outer box

Z

+

-outer box

X

+

-outer box

Y

+

-outer box

Figure 5.18: Inner and Outer Boxes.
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2-bend edge routes and 3-bend edge routes vw using opposite ports at v and w are

routed entirely within the inner box exatly as was the ase previously. We all these

edge routes inner. If, for some diretion d, an edge is assigned d-ports at both end-

verties, instead of the edge route shown in Figure 5.3(b), we use the edge route shown

in Figure 5.19, whih is routed to a height h(vw) in the d-outer box. The algorithms

to follow speify the value of h(vw).

h(vw)

v

w

inner box

Figure 5.19: Outer 3-bend edge route.

This approah has the advantage that some edges routed in a partiular outer

box an have the same height, thus reduing the volume. Also, given a drawing only

using the above-mentioned edge routes, we shall prove that the Algorithm 5.4 Point-

Drawing Remove Edge Crossings will not introdue any 4-bend edge routes. A

disadvantage of this approah is that the edge routes are longer.

5.5.2 Arbitrary Layout 3-Bend Algorithm

The following algorithm for produing 3-bend 3-D orthogonal point-drawings whih

preserve a given general position vertex layout, is based on a yle over deomposition

of the graph. Edges in the yle over C

i

, i 2 fX;Y;Zg, are routed using i-ports at

both end-verties. All edges are outer 3-bend edge routes exept in the ase of an odd
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yle where one edge of the yle is an inner 3-bend edge route. Edges in a partiular

outer box are routed with unique height.

Algorithm 5.10. General Position 3-Bend 3-D Point-Drawing

Input: � multigraph G with �(G) � 6

� general position 3-D vertex layout of V (G)

Output: layout-preserving 3-bend 3-D orthogonal point-drawing of G

1. Suppose the X-, Y - and Z-vertex orderings are (x

1

; x

2

; : : : ; x

n

), (y

1

; y

2

; : : : ; y

n

)

and (z

1

; z

2

; : : : ; z

n

), respetively.

2. For eah vertex v 2 V (G), if v = x

i

= y

j

= z

k

then position v at (3i; 3j; 3k).

3. Determine a yle over deomposition C

X

, C

Y

, C

Z

of G (see Setion 2.5).

4. For eah i 2 fX;Y;Zg, and for eah yle C = (v

1

; v

2

; : : : ; v

k

) of C

i

:

� If k is even, then traverse the yle and assign to eah edge alternately the

i

+

/i

�

ports at both end-verties.

� If k is odd, then assign to the edge v

k

v

1

the i-ports at v

k

and v

1

whih point

toward eah other. Traverse the remainder of the yle and assign to eah

edge alternately i

+

/i

�

ports at both end-verties, as shown in Figure 5.20.

v

k

v

1

v

2

v

3

v

k�2

v

k�1

(a) v

k

<

i

v

1

i

+

i

�

i

+

i

+

i

�

i

�

i

+

i

�

i

+

i

+

i

�

i

�

v

k

v

1

v

2

v

3

v

k�2

v

k�1

(b) v

1

<

i

v

k

i

�

i

+

i

�

i

�

i

+

i

+

i

�

i

+

i

�

i

�

i

+

i

+

Figure 5.20: Port assignment for an odd yle in C

i

.

5. For eah d 2 fX

�

; Y

�

; Z

�

g, for eah edge vw assigned d-ports at v and w, assign

to vw a unique height h(vw) � 1.
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6. For eah edge vw 2 E(G) assigned d-ports, for some diretion d, at both v and

w, route vw with the 3-bend edge route shown in Figure 5.19 in the d-outer box.

Route edges assigned opposite ports as in Figure 5.4.

7. Apply Algorithm 5.4 Point-Drawing Remove Edge Crossings.

8. Remove eah grid-plane not ontaining a vertex or a bend.

Theorem 5.5. The algorithm General Position 3-Bend 3-D Point-Drawing

determines, in O

�

n

2

�

time, a layout-preserving 3-D orthogonal point-drawing of G with

8n

3

bounding box volume and three bends per edge route.

Proof. By onstrution, eah edge is assigned unique ports at its end-verties, and

only 3-bend edge routes are used. We now prove that given a general position 3-D

orthogonal point-drawing only using 2-bend edge routes and 3-bend edge routes with

parallel ports (routed as desribed above), the algorithm Point-Drawing Remove

Edge Crossings will not introdue a 4-bend edge route.

For the edge route shown in Figure 5.19, both of the segments in the outer box are

alled middle segments. The segment of suh an edge route inident to the end-vertex

v is alled a v-segment.

Sine middle segments on outer edge routes have unique height, they annot inter-

set. A v-segment parallel to the i-axis has an i-oordinate belonging to v and no other

vertex, so v-segments an only interset as in Case 1 of Algorithm 5.4 Point-Drawing

Remove Edge Crossings. Swapping ports, in this ase, does not introdue any new

edge route rossings, so annot introdue a 4-bend edge route. Therefore the only

possible intersetion is between the middle segments of 2-bend edge routes (Case 3 of

Algorithm 5.4 Point-Drawing Remove Edge Crossings). Swapping ports removes

the rossing, and both edge routes remain two bend edge routes.

The inner box is initially 3n � 3n � 3n. Every edge in yle over C

i

either adds

one i-plane in the outer box or oupies one of the i-planes belonging to one of its

end-verties. Sine there are at most m=3 edges in eah yle over, after removing

grid-planes not ontaining a vertex or a bend, the bounding box volume is at most
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(n+m=3)

3

� 8n

3

. The most time-onsuming step of the algorithm is the removal of

edge rossings whih takes O

�

n

2

�

time.

We now desribe a heuristi for determining sets of edge routes in the same outer box

whih an be routed with the same height, thus reduing the volume of the drawing.

Construt a graph H with vertex set orresponding to the edges of G routed in a

partiular outer box, with edges between verties of H orresponding to edge routes

whih will interset if routed with same height. Then if we determine the heights of the

edge routes from a vertex-olouring of H, then we obtain an intersetion-free drawing.

In general, this method does not provide improved worst ase volume bounds. In the

next setion we desribe an algorithm whih does provide improved volume bounds, by

allowing ertain edges routed in a partiular outer box to have the same height.

5.5.3 Diagonal Layout 3-Bend Algorithm

We now desribe a modi�ation to the 3-Bends algorithm of Eades et al. [86, 87℄,

whih provides the best known upper bound for the volume of 3-bend 3-D orthogonal

point-drawings.

Algorithm 5.11. Diagonal General Position 3-Bend Point-Drawing

Input: multigraph G with �(G) � 6

Output: 3-bend 3-D orthogonal point-drawing of G

1. Determine a book-embedding of G using the algorithm of Malitz [151℄ (See

Setion 1.3). Suppose (v

1

; v

2

; : : : ; v

n

) is the spine ordering, and p : E(G) !

f1; 2; : : : ; Pg is the page numbering where P = O(

p

n).

2. Apply the 3-Bends algorithm of Eades et al. [86, 87℄ using (v

1

; v

2

; : : : ; v

n

) as the

ordering of the verties along the diagonal, and route eah 3-bend edge route vw

as shown in Figure 5.19 with h(vw) = p(vw).

3. Remove eah grid-plane not ontaining a vertex or a bend.
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Theorem 5.6. The algorithm Diagonal General Position 3-Bend Point-

Drawing determines a 3-D orthogonal point-drawing of G with n

3

+O

�

n

5=2

�

bounding

box volume and three bends per edge route.

Proof. Note that the only types of edge routes used in the 3-Bends algorithm of Eades

et al. [86, 87℄ are 2-bend edge routes and 3-bend edge routes with both ports pointing

in the same diretion. So, by the proof of Theorem 5.5, edge routes an only interset

if they are routed with the same height in the same outer box; i.e., they are in the same

page of the book embedding. However, if edges routed at the same height interset in

the outer box, then they would also interset in the book embedding (see Figure 5.21).

Hene there are no edge route rossings.

Figure 5.21: Edges in the same page and routed in the same outer box.

The bounding box is (P + n+ P )� (P + n+ P ) � (P + n+ P ). By Malitz [151℄,

P = O(

p

m) = O(

p

n), so the volume is (n+O(

p

n))

3

= n

3

+O

�

n

5=2

�

.

5.6 Lower Bounds

Sine every edge route in a general position 3-D orthogonal drawing has at least

two bends, there is an obvious lower bound of 2m for the BEND-MINIMUM GEN-

ERAL POSITION 3-D POINT-DRAWING problem. We now present in�nite families
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of graphs whih require more than two bends per edge in any general position 3-D

orthogonal point-drawing. Our results are based on the observation that if an edge is

routed using the X

+

port at the vertex x

n

, then this edge route must be anhored, and

similarly for other `extreme' ports, as in Figure 5.22.

�

�

�

�

�

�

Figure 5.22: Edge routes using `extreme' ports are neessarily anhored.

For 6-regular graphs all ports must be used, so suh a graph requires at least 2m+6

bends in a general position 3-D orthogonal point-drawing. Hene the graph onsisting

of some number of disjoint opies of K

7

provides the following lower bound. Note that

general position 3-D orthogonal point-drawings of K

7

with 2m+ 6 bends do exist.

Lemma 5.9. There exists an in�nite family of graphs, eah with at least 2m + 6n=7

bends in any general position 3-D orthogonal point-drawing.

Note that this lower bound di�ers from our upper bound of 7m=3 (see Theorem 5.4)

by only n=7. For bionneted graphs we have the following lower bound

1

.

Lemma 5.10. There exists an in�nite family of bionneted graphs, eah with at least

2m+ 4n=7 bends in any general position 3-D orthogonal point-drawing.

Proof. Consider the 6-regular graph G

a

(a � 2) formed from a opies of K

7

n e (for

some edge e) with a yle added between the opies, as illustrated in Figure 5.23.

Clearly G

a

is bionneted. Removing an edge from K

7

an save at most two an-

hored ars, so a general position 3-D orthogonal point-drawing of K

7

n e has at least

1

This result was disovered in onjuntion with Therese Biedl.
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K

7

n e K

7

n e K

7

n e
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8 > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > :

a copies

Figure 5.23: The graph G

a

.

2jE(K

7

n e)j + 4 bends. The `yle' edges of G

a

eah have at least two bends, so G

a

has at least 2m+ 4n=7 bends.

Lemma 5.11. There exists an in�nite family of 4-onneted graphs, eah with at least

2m+ 2n=7 bends in any general position 3-D orthogonal point-drawing.

Proof. Consider the 6-regular graph G

a;b

(a; b � 2) formed from the a � b 4-regular

`torus grid' graph replaing eah vertex by K

7

n fe

1

; e

2

g (for some non-inident edges

e

1

, e

2

), as shown in Figure 5.24.

Removing any three verties from G

a;b

annot disonnet the graph, but removing

four verties an, so G

a;b

is 4-onneted. Removing two edges from K

7

an save at most

four anhored ars, so a general position 3-D orthogonal point-drawing of K

7

n fe

1

; e

2

g

has at least 2jE(K

7

n fe

1

; e

2

g)j + 2 bends. Edges not in a K

7

n fe

1

; e

2

g have at least

two bends, so G

a;b

has at least 2m+ 2n=7 bends.

This sequene of lower bounds suggests the following open problem.

Open Problem 5.1. Does every 6-onneted 6-regular graph have a general position

3-D orthogonal point-drawing with at most 2m+ 6 bends?

5.6.1 2-Bends Problem

We now look at the rami�ations of the above lower bounds for the 2-bends problem

disussed in Setion 3.5.1. Edge routes with at most two bends an be lassi�ed as

0-bend, 1-bend, 2-bend planar or 2-bend non-planar, as illustrated in Figure 5.25.

Lemma 5.12. Suppose in a given 2-bend 3-D orthogonal point-drawing of an m-edge

graph G the number of 0-bend edge routes is k

0

and the number of 2-bend planar edge
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Figure 5.24: The graph G

a;b

.

v w

(a) 0-bend

v

w

(b) 1-bend

v

w

(c) 2-bend

planar

v

w

(d) 2-bend

planar

v

w

(e) 2-bend

non-planar

Figure 5.25: Edge routes vw with at most two bends.
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routes is k

2

. Then there exists a general position 3-D orthogonal point-drawing of G

with 2m+ k

0

+ k

2

bends.

Proof.

2

We now show that by inserting planes and adding bends to the edge routes that

the given 2-bend drawing an be transformed into a drawing with a general position

vertex layout and the stated number of bends.

Consider a grid-plane P ontaining k verties (k > 1). As illustrated in Figure 5.26,

replae the plane by k adjaent planes, and position eah of the k verties in a unique

plane.

a

b

d

c

=)

a

b

c

d

Figure 5.26: Removing a plane ontaining many verties.

A 0-bend edge route is split in the middle and replaed by the 2-bend planar edge

route shown in Figure 5.25(). (If the 0-bend edge has length one then an extra plane

perpendiular to the original plane is also inserted.)

Edge segments from an edge with at least one bend and inident to a vertex v are

routed in the plane ontaining v. For a 1-bend edge route vw in the original plane, an

extra segment is inserted perpendiular to P , running between the planes ontaining v

and w. Hene vw is replaed by a 2-bend non-planar edge route.

For a 2-bend edge route vw in the original plane, the middle segment of vw is routed

arbitrarily in the plane ontaining v or w, and a third segment is inserted perpendiular

2

This proof was developed in onjuntion with Antonios Symvonis.
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to P , running between the planes ontaining v and w. Hene vw is replaed by a 3-bend

non-planar edge route.

For a 2-bend non-planar edge route vw inident to one of the k verties, the segment

of vw perpendiular to P is extended in the obvious manner. Similarly, an edge passing

through the original plane and not inident to any of the k verties, is extended so that

it passes through all k planes.

This proess is ontinued until there are no grid-planes ontaining more than one

vertex. Note that a 0-bend edge route will �rstly be replaed by a 2-bend planar edge,

and in a seond transformation will be replaed by a 3-bend edge route (as shown

in Figure 5.26 for edge ab). The resulting drawing has no rossings, has a general

position vertex layout, and every edge has two bends exept for the 0-bend and 2-bend

planar edge routes in the original drawing, whih now have three bends. Hene the

new drawing has 2m+ k

0

+ k

2

bends.

Corollary 5.5. There exists an in�nite family of 6-regular n-vertex graphs, suh that

in any 2-bend 3-D orthogonal point-drawing of any one of the graphs, k

0

+ k

2

� 6n=7.

Proof. By Lemma 5.9, there exists an in�nite family of graphs, eah with at least

2m + 6n=7 bends in any general position 3-D orthogonal point-drawing. If there is a

2-bend point-drawing of suh a graph, then by Lemma 5.12 there is exists a general

position point-drawing with 2m+ k

0

+ k

2

bends. Hene 2m+ k

0

+ k

2

� 2m+6n=7, so

k

0

+ k

2

� 6n=7.

The following two results are obtained using the same argument applied with Lem-

mas 5.10 and 5.11, respetively.

Corollary 5.6. There exists an in�nite family of 6-regular bionneted n-vertex graphs,

suh that in any 2-bend 3-D orthogonal point-drawing of any one of the graphs, k

0

+k

2

�

4n=7.

Note that a 1-fator has n=2 edges, and n=2 < 4n=7, so there exists bionneted

graphs for whih any 2-bend 3-D orthogonal point-drawing has more than a 1-fator of

0-bend and 2-bend planar edge routes.
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Corollary 5.7. There exists an in�nite family of 6-regular 4-onneted n-vertex graphs,

suh that in any 2-bend 3-D orthogonal point-drawing of any one of the graphs, k

0

+k

2

�

2n=7.



Chapter 6

The General Position Model for

Two-Dimensional Orthogonal

Box-Drawing

In this hapter we present algorithms for produing 2-D orthogonal box-

drawings whih establish improved degree-restrition results ompared to ex-

isting algorithms. The methods and results presented in this hapter were

published in Wood [221℄.

A 2-D orthogonal graph drawing is said to be in the general position model if no two

verties are interseted by a single grid-line. We all suh a drawing a general position

2-D orthogonal drawing. This hapter, whih desribes algorithms for produing gen-

eral position 2-D orthogonal drawings, is organised as follows. In Setion 6.1 we present

a framework for the main algorithms to follow. As disussed in Setion 3.4.4 we lassify

suh algorithms as layout- or routing-based. Setion 6.2 desribes our layout-based al-

gorithm. The vertex layout algorithm is based on methods developed in Chapter 4 for

the balaned vertex ordering problem. The ar-routing algorithm, whih an be applied

to an arbitrary general position 2-D vertex layout, onstruts and olours the verties

of a ertain graph. The drawings produed have the smallest known degree-restrition

bound for bounded aspet ratio drawings. This strategy is generalised to a multi-

dimensional setting in Chapter 7. Routing-based approahes to 2-D general position

126
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box-drawing are given by Papakostas and Tollis [164, 169℄ and Biedl and Kaufmann

[30℄.

6.1 Representation

Consider a general position 2-D orthogonal box-drawing of a graph G. Sine no two

verties share a ommon oordinate, this drawing indues X- and Y -vertex orderings

of G, representing the relative oordinates of the verties. The assignment of ports to

edge routes indues a (non-proper) 2-olouring of A(G), where an ar

�!

vw 2 A(G) is

oloured i 2 fX;Y g if the edge route vw uses an i-port at v.

Sine eah pair of verties di�er in both oordinates, an edge route has at least one

bend. Our algorithms use exatly one bend per edge route. The ports used by a 1-bend

edge route must be perpendiular and point toward the other vertex (see Figure 6.1);

i.e., reversal ars are oloured di�erently. We therefore represent a general position 2-D

orthogonal box-drawing of G by:

� A (2-D general position) vertex layout onsisting of vertex orderings (<

X

; <

Y

) of

G, whih represent the relative oordinates of the verties in eah dimension.

� A (2-D general position) ar-routing of G onsisting of a 2-olouring of A(G) suh

that for every edge vw 2 E(G), the reversal ars

�!

vw 2 A(G) and

�!

wv 2 A(G) are

oloured di�erently

1

.

In the X-ordering a predeessor (respetively, suessor) ar of a vertex v is alled

a X-predeessor (X-suessor) ar of v. We denote the number of predeessor and

suessor ars of v in the X-ordering by p

X

(v) and s

X

(v) respetively. The ost of a

vertex v 2 V (G) in the X-ordering, de�ned in Setion 4.1 to be js

X

(v)� p

X

(v)j, is

denoted by 

X

(v). Similarly de�nitions are made for the Y -ordering.

For eah vertex v 2 V (G) and diretion d 2 f�X;�Y g, the set of outgoing ars

�!

vw 2 A(G) with w in diretion d from v, is denoted by A

G

(v)hdi. We represent a

1

A 2-D ar-routing an simply be represented by an orientation of the edges. For an edge vw

oriented from v to w, the ars

�!

vw and

�!

wv are oloured X and Y , respetively. This is the approah

taken by Biedl and Kaufmann [30℄. We use the 2-olouring representation for onsisteny with our

representation for multi-dimensional ar-routings used in Chapters 5 and 7.



CHAPTER 6. GENERAL POSITION 2-D BOX-DRAWING 128

3� 3

3� 2

3� 2

Figure 6.1: 2-D 1-bend edge routes

quadrant relative to v by the orresponding pair of non-opposite diretions. The set of

ars

�!

vw 2 A(G) with w in some quadrant Q relative to v is denoted by A

G

(v)hQi; i.e.,

A

G

(v)hQi =

\

d2Q

A

G

(v)hdi :

Using the notation introdued in Setion 2.1, for some dimension i 2 fX;Y g,

A

G

(v)hi

�

i i refers to the ars in A

G

(v)hi

�

i oloured i. If an ar vw 2 A

G

(v)hX

�

iX,

for example, then the edge route vw will leave v on the left. A vertex v learly must

have width at least

M

X

(v) = max

n

�

�

A

G

(v)




Y

+

�

[Y ℄

�

�

;

�

�

A

G

(v)




Y

�

�

[Y ℄

�

�

o

;

and height

M

Y

(v) = max

n

�

�

A

G

(v)




X

+

�

[X℄

�

�

;

�

�

A

G

(v)




X

�

�

[X℄

�

�

o

:

We now present an algorithm, whih given a 2-D general position vertex layout and

ar-routing of a graph G, determines a general position 2-D orthogonal box-drawing of

G. This algorithm will form the �nal step in our graph drawing algorithms to follow.

Algorithm 6.1. General Position 2-D Box-Drawing

Input: � graph G

� 2-D general position vertex layout of V (G)

� 2-D general position ar-routing of A(G)

Output: general position 2-D box-drawing of G
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1. Represent eah vertex v 2 V (G) by a M

X

(v) �M

Y

(v) retangle with maximum

orner at

0

�

X

w�

X

v

M

X

(w);

X

w�

Y

v

M

Y

(w)

1

A

:

2. For eah vertex v 2 V (G) and i 2 fX;Y g, assign ports on the (�i)-fae of v to the

ars

�!

vw 2 A

G

(v)hi

�

i[i℄. To redue the number of rossings we assign partiular

ports on v to these ars in order of the distane from v to w in the i-ordering, as

illustrated in Figure 6.2.

X

Y

�

A

f

X

+

;Y

+

g

(v)[X℄

�

A

f

X

+

;Y

�

g

(v)[X℄

n

A

f

X

�

;Y

+

g

(v)[X℄

8

>

<

>

:

A

f

X

�

;Y

�

g

(v)[X℄

9 > = > ;

A

f

X

�

;Y

+

g

(v)[Y ℄

�

A

f

X

+

;Y

+

g

(v)[Y ℄

�

A

f

X

�

;Y

�

g

(v)[Y ℄

8 > < > :

A

f

X

+

;Y

�

g

(v)[Y ℄

v

Figure 6.2: Port assignments at a vertex v.

3. For eah edge vw 2 E(G), if the ars

�!

vw and

�!

wv have been assigned an X-port

and a Y -port at v and at w with oordinates of (x

v

; y

v

) and (x

w

; y

w

) respetively,

then the edge vw is routed from v to w with one bend as follows.

(x

v

; y

v

)! (x

w

; y

v

)! (x

w

; y

w

)

The next result follows immediately from the above onstrution.

Lemma 6.1. The algorithm General Position 2-D Box-Drawing determines a
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general position 2-D orthogonal box-drawing of G with bounding box

 

X

v

M

X

(v)

!

�

 

X

v

M

Y

(v)

!

:

Eah vertex v has surfae

2 (M

X

(v) +M

Y

(v)) :

6.2 Layout-Based Approah

In a 2-D general position vertex layout of a graph G, the ost of a vertex v 2 V (G) is

de�ned to be the average

2

ost of v over the X- and Y -orderings; i.e.,

(v) =

1

2

(

X

(v) + 

Y

(v)) :

We are interested in the following problem.

Problem 6.1. 2-D GENERAL POSITION VERTEX LAYOUT

Instane : Graph G, integer K � 0.

Question : Does G have a 2-D general position vertex layout with max

v

(v) � K ?

We onjeture that this problem is NP-omplete. In Setion 6.2.3, we provide an

algorithm whih determines a vertex layout with a tight bound on max

v

(v).

6.2.1 Ar-Routing Algorithm

The following algorithm, given an arbitrary 2-D general position vertex layout of a graph

G, determines a 2-D general position ar-routing of G. To represent the olouring of

A(G) we vertex-olour a graph H with vertex set V (H) = A(G).

Algorithm 6.2. 2-D General Position Ar-Routing

Input: 2-D general position vertex layout of a graph G.

Output: 2-D general position ar-routing of A(G).

2

We use the `average' here rather than the `sum' sine this de�nition will be extended to a multi-

dimensional setting in Chapter 7.
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1. For eah edge vw 2 E(G), add the edge fvw;wvg to E(H) (alled an r-edge).

2. For eah vertex v 2 V (G) and for eah quadrant Q relative to v,

(a) Arbitrarily partition the ars in A

G

(v)hQi into pairs

f

�!

vu

1

;

��!

vw

1

g ; : : : ; f

�!

vu

k

;

��!

vw

k

g, with at most one leftover ar in A

G

(v)hQi not

inluded in a pair.

(b) Add an edge (alled a q-edge) to E(H) between the verties orresponding

to the ars

�!

vu

j

and

�!

vw

j

, 1 � j � k.

3. Split those verties in v 2 V (G) with at least three leftover ars in A

G

(v) into

two groups V

X

and V

Y

of equal size (or di�ering by one).

4. For eah vertex v 2 V (G):

(a) If there are exatly two leftover ars

�!

vu;

�!

vw 2 A

G

(v) then add an edge (alled

an l-edge) between the verties in H orresponding to

�!

vu and

�!

vw.

(b) If v 2 V

i

(i 2 fX;Y g) has exatly three leftover ars then add an edge, alled

an l-edge, between the verties of H orresponding to the two leftover ars at

v whih are both i-suessor ars or both i-predeessor ars (see Figure 6.3).

() If v 2 V

i

(i 2 fX;Y g) has four leftover ars then add edges (alled l-edges)

between the verties of H orresponding to the two leftover i-suessor ars

of v, and between the verties of H orresponding to the two leftover i-

predeessor ars of v (see Figure 6.3).

5. Determine a 2-olouring of A(G) from a vertex-olouring of H with two olours.

Lemma 6.2. The algorithm 2-D General Position Ar-Routing determines a

2-D general position ar-routing of G in O(m+ n) time suh that for eah vertex v,

2(M

X

(v) +M

Y

(v)) � deg(v) + (v) + 4 ;
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(a) v 2 V

X

X

Y

v

(b) v 2 V

Y

X

Y

v

Figure 6.3: Conneting leftover ars at v.

and for eah i 2 fX;Y g,

X

v

M

i

(v) �

m

2

+

1

4

 

3n+ 1 +

X

v



i

(v)

!

:

Proof. A yle in H onsists of alternating r- and (q- or l-) edges and is therefore of

even length. So H is bipartite, and a 2-olouring of H an be omputed in O(jE(H)j) =

O(m) time, thus determining a 2-olouring of A(G). Sine the verties orresponding to

reversal ars

�!

vw and

�!

wv are adjaent in H, this 2-olouring of A(G) is a 2-D ar-routing

of A(G).

For eah quadrant q relative to a vertex v and in eah pair of the partition of

A

G

(v)hQi, the ars

�!

vu

i

and

�!

vw

i

are oloured di�erently, so we have the following

bounds on, for example, the number of X-suessor ars

�!

vw oloured X.

$

�

�

A

G

(v)hfX

+

; Y

+

gi

�

�

2

%

+

$

�

�

A

G

(v)hfX

+

; Y

�

gi

�

�

2

%

�

�

�

A

G

(v)




X

+

�

X

�

�

�

&

�

�

A

G

(v)hfX

+

; Y

+

gi

�

�

2

'

+

&

�

�

A

G

(v)hfX

+

; Y

�

gi

�

�

2

'

:

So,

s

X

(v)

2

� 1 �

�

�

A

G

(v)




X

+

�

X

�

�

�

s

X

(v)

2

+ 1 :

Similarly, we have the following bound on the number of X-predeessor ars oloured
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X.

p

X

(v)

2

� 1 �

�

�

A

G

(v)




X

�

�

X

�

�

�

p

X

(v)

2

+ 1 :

Reall that M

Y

(v) = max fjA

G

(v)hX

+

iXj; jA

G

(v)hX

�

iXjg. So

1

2

max fs

X

(v); p

X

(v)g � 1 �M

Y

(v) �

1

2

max fs

X

(v); p

X

(v)g+ 1

1

4

(deg(v) + 

X

(v))� 1 �M

Y

(v) �

1

4

(deg(v) + 

X

(v)) + 1 (by (4.1))

Using the same argument for the number of Y -suessors and Y -predeessors oloured

Y , for eah i; j 2 fX;Y g (i 6= j),

1

4

(deg(v) + 

j

(v)) � 1 � M

i

(v) �

1

4

(deg(v) + 

j

(v)) + 1 : (6.1)

So

2 (M

X

(v) +M

Y

(v)) � 2

�

1

4

(2 deg(v) + 

X

(v) + 

Y

(v)) + 2

�

= deg(v) +



X

(v) + 

Y

(v)

2

+ 4

= deg(v) + (v) + 4 :

Now, in eah quadrant relative to a vertex v, there is at most one leftover ar at v.

A vertex v with at most two leftover ars has, for eah i 2 fX;Y g,

M

i

(v) �

�

max fs

i

(v); p

i

(v)g

2

�

:

A vertex v 2 V

i

with at least three leftover ars has

M

i

(v) �

�

max fs

i

(v); p

i

(v)g

2

�

, and

M

j

(v) �

max fs

j

(v); p

j

(v)g

2

+ 1 (j 6= i; j 2 fX;Y g) :

So, for eah i 2 fX;Y g,

X

v

M

i

(v) =

X

v 62V

j

M

i

(v) +

X

v2V

j

M

i

(v)

�

X

v 62V

j

max fs

i

(v); p

i

(v)g+ 1

2

+

X

v2V

j

�

max fs

j

(v); p

j

(v)g

2

+ 1

�

=

n

2

+

jV

j

j

2

+

X

v

max fs

i

(v); p

i

(v)g

2
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=

n

2

+

dn=2e

2

+

X

v

deg(v) + 

i

(v)

4

(by (4.1))

�

n

2

+

n+ 1

4

+

m

2

+

X

v



i

(v)

4

�

m

2

+

1

4

 

3n+ 1 +

X

v



i

(v)

!

:

6.2.2 Fixed Vertex Layout Drawings

We now derive results for a �xed general position vertex layout.

Algorithm 6.3. Fixed General Position 2-D Box-Drawing

Input: � graph G

� 2-D general position vertex layout of V (G)

Output: layout-preserving 2-D orthogonal box-drawing of G.

1. Determine an ar-routing with Algorithm 6.2 2-D General Position Ar-

Routing.

2. Apply Algorithm 6.1 General Position 2-D Box-Drawing.

Theorem 6.1. For an arbitrary 2-D general position vertex layout, Algorithm Fixed

General Position 2-D Box-Drawing determines a 2-D orthogonal box-drawing of

G in O(m+ n) time suh that:

� Eah edge route has 1 bend.

� Eah vertex is 2-degree-restrited.

� The aspet ratio of a vertex v is at most 2 + o (deg(v)).

� The bounding box is at most

�

m+

3n+ 1

4

�

�

�

m+

3n+ 1

4

�

:
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Proof. By Lemma 6.2, for every vertex vertex v, surfae (v) � deg(v)+ (v)+4. Sine

(v) � deg(v), v is 2-degree-restrited.

For eah i 2 fX;Y g, 0 � 

i

(v) � deg(v), so by (6.1),

1

4

deg(v)� 1 � M

i

(v) �

1

2

deg(v) + 1 : (6.2)

Hene,

max

�

M

X

(v)

M

Y

(v)

;

M

Y

(v)

M

X

(v)

�

�

deg(v)=2 + 1

deg(v)=4 � 1

= 2 + o (deg(v))

So v has aspet ratio at most 2 + o (deg(v)). The bounding box is

 

X

v

M

X

(v)

!

�

 

X

v

M

Y

(v)

!

Sine 

i

(v) � deg(v) and by Lemma 6.2, the bounding box is

 

m

2

+

1

4

 

3n+ 1 +

X

v

deg(v)

!!

�

 

m

2

+

1

4

 

3n+ 1 +

X

v

deg(v)

!!

=

�

m+

3n+ 1

4

�

�

�

m+

3n+ 1

4

�

:

6.2.3 Balaned Vertex Layout Drawings

We now desribe how the methods developed for the balaned ordering problem in

Setion 4.3 an be applied to �nd `balaned' 2-D general position vertex layouts. By

balaned we mean that there is an upper bound on the ost (v) for eah vertex v.

The following algorithm, whih is similar to the vertex layout tehnique of Biedl and

Kaufmann [30℄, is illustrated in Figure 6.4.
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Algorithm 6.4. Balaned 2-D General Position Vertex Layout

Input: graph G.

Output: 2-D general position vertex layout of G.

1. Determine an arbitrary vertex ordering (v

1

; v

2

; : : : ; v

n

) of G.

2. Determine the X-ordering using Algorithm 4.1Median Plaement Ordering

with insertion ordering (v

1

; v

2

; : : : ; v

n

).

3. Determine the Y -ordering using Algorithm 4.1 Median Plaement Ordering

with insertion ordering (v

n

; v

n�1

; : : : ; v

1

).

v

1

v

3

v

5

v

6

v

4

v

2

Figure 6.4: Balaned 2-D vertex layout of K

6

.

Theorem 6.2. The algorithm Balaned 2-D General Position Vertex Layout

determines a 2-D general position vertex layout of G in O(m+ n) time suh that for

eah vertex v,

(v) � 1 +

1

2

deg(v) :

Proof. For eah vertex v, by Lemma 4.3 onerning the performane of the algorithm

Median Plaement Ordering with arbitrary insertion orderings, 

X

(v) � s(v) + 1

and 

Y

(v) � p(v)+1, where s(v) and p(v) are the number of suessors and predeessors

of v respetively in the vertex ordering (v

1

; v

2

; : : : ; v

n

). So (v) � (s(v) + p(v) + 2)=2 =

deg(v)=2 + 1.
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Note that the above bound is tight up to the additive onstant, sine an extremal

vertex in the X-ordering has 

X

(v) = deg(v), so (v) � deg(v)=2. We now present

our algorithm for 2-D orthogonal box-drawing using a balane general position vertex

layout.

Algorithm 6.5. Balaned General Position 2-D Box-Drawing

Input: graph G.

Output: 2-D orthogonal box-drawing of G.

1. Determine a general position vertex layout with Algorithm 6.4 Balaned 2-D

General Position Vertex Layout.

2. Determine an ar-routing with Algorithm 6.2 2-D General Position Ar-

Routing.

3. Apply Algorithm 6.1 General Position 2-D Box-Drawing.

Theorem 6.3. The algorithm Balaned General Position 2-D Box-Drawing

determines a 2-D orthogonal box-drawing of G in O(m+ n) time suh that:

� Eah edge route has 1 bend.

� Eah vertex is

3

2

-degree-restrited.

� The aspet ratio of a vertex v is 2 + o (deg(v)).

� The bounding box area is

�

3m+4n+2

4

�

�

�

3m+4n+2

4

�

.

Proof. For any vertex v, by Lemma 6.2, surfae (v) = 2(M

X

(v) +M

Y

(v)) � deg(v) +

(v) + 4. By Theorem 6.2, in a 2-D balaned vertex layout, for every vertex v 2 V (G),

(v) � 1 + deg(v)=2. So surfae (v) �

3

2

deg(v) + 5, and eah vertex is 3=2-degree-

restrited. By Lemma 6.2, the bounding box is

 

X

v

M

X

(v)

!

�

 

X

v

M

Y

(v)

!
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�

 

1

4

X

v



X

(v) +

m

2

+

3n+ 1

4

!

�

 

1

4

X

v



Y

(v) +

m

2

+

3n+ 1

4

!

:

The X- and Y -orderings are determined by algorithm Median Plaement Order-

ing, so by Corollary 4.1, the bounding box is at most

�

m+ n

4

+

m

2

+

3n+ 1

4

�

�

�

m+ n

4

+

m

2

+

3n+ 1

4

�

=

�

3m+ 4n+ 2

4

�

�

�

3m+ 4n+ 2

4

�

:

6.2.4 Diagonal Vertex Layout Drawings

We now present an algorithm for produing 2-D orthogonal square-drawings using a

diagonal layout.

Algorithm 6.6. Diagonal General Position 2-D Square-Drawing

Input: graph G.

Output: 2-D orthogonal square-drawing of G.

1. Determine a 2-D diagonal layout of G with the orresponding vertex ordering

determined by Algorithm 4.1 Median Plaement Ordering (with insertion

ordering determined by Algorithm 4.2 Insertion Ordering).

2. Determine a 2-D ar-routing with Algorithm 6.2 2-D General Position Ar-

Routing.

3. Apply Algorithm 6.1 General Position 2-D Box-Drawing.

Theorem 6.4. The algorithm Diagonal General Position 2-D Square-Drawing

determines a diagonal layout 2-D square-drawing in O(m+ n) time suh that:

� Eah edge route has one bend.

� Eah vertex is 2-degree-restrited.
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� The bounding box volume is

�

3m

4

+

5n

8

�

�

�

3m

4

+

5n

8

�

Proof. We represent a vertex v by the max fM

X

(v);M

Y

(v)g � max fM

X

(v);M

Y

(v)g

square. Algorithm 2-D General Position Ar-Routing determines a 2-D ar-

routing suh that,

M

X

(v);M

Y

(v) �

�

max fs(v); p(v)g

2

�

:

Hene

surfae (v) = 4

�

max fs(v); p(v)g

2

�

� 2 (max fs(v); p(v)g + 1)

� 2 deg(v) + 2 :

So eah vertex v is 2-degree-restrited. The bounding box side length is at most

X

v

�

max fs(v); p(v)g

2

�

�

X

v

�

1

2

(max fs(v); p(v)g + 1)

�

�

1

2

�

3m

2

+

n

4

+ n

�

(by Theorem 4.2)

�

3m

4

+

5n

8

:

The bounding box volume bound follows.



Chapter 7

The General Position Model for

Multi-Dimensional Orthogonal

Box-Drawing

In this hapter we present and analyse algorithms for produing general

position D-dimensional orthogonal box-drawings (D � 3) of arbitrary degree

graphs. For D = 3, our results establish improved bounds for the degree-

restrition of verties. This hapter was published in Wood [222℄.

A D-dimensional orthogonal drawing is in the general position model, alled a gen-

eral position orthogonal drawing, if no two verties are interseted by a single (D� 1)-

dimensional grid-hyperplane. This hapter presents algorithms for determining general

position D-dimensional orthogonal drawings, for some onstant D � 3. These algo-

rithms generalise those for general position 2-D orthogonal box-drawing presented in

Chapter 6.

This hapter is organised as follows. Setion 7.1 provides a framework for the

development of the main algorithms to follow. As disussed in Setion 3.4.4, algorithms

for general position orthogonal graph drawing an be lassi�ed as layout- or routing-

based. We present layout-based algorithms in Setion 7.2 and a routing-based algorithm

for general position 3-D drawing in Setion 7.3.

140
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7.1 Framework

Consider a general position D-dimensional orthogonal drawing of a graph G. Sine no

two verties share a ommon oordinate, this drawing indues D vertex orderings of G,

representing the relative oordinates of the verties in eah dimension. The assignment

of ports to edge routes, indues a (non-proper) D-olouring of A(G), where an ar

�!

vw 2 A(G) is oloured i 2 f1; 2; : : : ;Dg if the edge route vw uses an i-port at v. Sine

eah pair of verties di�er in all D oordinates, eah edge route has at least D�1 bends.

The ports used by a (D� 1)-bend edge route must be perpendiular and point toward

the other vertex, as in Figure 7.1, so for eah edge vw the reversal ars

�!

vw;

�!

wv 2 A(G)

are oloured di�erently.

Figure 7.1: (D � 1)-bend edge routes in D = 3 dimensions.

We therefore represent a general position D-dimensional orthogonal drawing of G

by:

� A (D-dimensional general position) vertex layout of V (G), onsisting of D vertex

orderings (<

1

; <

2

; : : : ; <

D

) of G. We all <

i

, 1 � i � D, the i-ordering of the

layout, and for D = 3 we will refer to the 1-, 2-, and 3-orderings as the X-, Y -

and Z-orderings.

� A (D-dimensional general position) ar-routing of A(G), onsisting of aD-olouring

of A(G) suh that for eah edge vw 2 E(G) the reversal ars

�!

vw;

�!

wv 2 A(G) are

oloured di�erently.
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Consider a D-dimensional general position vertex layout of a graph G. In eah

i-ordering, 1 � i � D, a predeessor (respetively, suessor) ar of a vertex v is alled

an i-predeessor (i-suessor) ar of v (see Setion 4.1). We denote the number of

predeessor and suessor ars of v in the i-ordering by p

i

(v) and s

i

(v), respetively. The

ost of a vertex v 2 V (G) in the i-ordering, de�ned in Chapter 4 to be js

i

(v)� p

i

(v)j, is

denoted 

i

(v). The ost of v is de�ned to be the average ost of v over the D orderings;

i.e.,

(v) =

1

D

X

1�i�D



i

(v)

The following problem is of interest.

Problem 7.1. D-DIMENSIONAL GENERAL POSITION VERTEX LAY-

OUT

Instane : graph G, integer K � 0.

Question : Does G have a D-dimensional general position vertex layout with (v) � K

for every vertex v 2 V (G)?

We onjeture that this problem is NP-omplete. In Setion 7.2.3 we provide lower

and upper bounds for this problem. The methods to be desribed in this setion are

summarised in the following algorithm.

Algorithm 7.1. D-Dimensional General Position Box-Drawing

Input: � graph G

� D-dimensional general position vertex layout of V (G)

� D-dimensional general position ar-routing of A(G)

Output: general position D-dimensional box-drawing of G

1. For eah vertex v 2 V (G), determine the size �

1

(v) � �

2

(v)� � � � � �

D

(v) of the

box representing v (see Setion 7.1.1).

2. Position eah vertex v 2 V (G) at the grid-point with maximum i-oordinate of

X

w�v

�

i

(w) :
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Note that the bounding box has size

 

X

v

�

1

(v)

!

�

 

X

v

�

2

(v)

!

� � � � �

 

X

v

�

D

(v)

!

:

3. Assign ports to edges, as desribed in Setion 7.1.2. (An ar

�!

vw 2 A

G

(v)[i℄ will

be assigned a port on the i-fae of v pointing towards w.)

4. For eah edge vw 2 E(G) onstrut a (D�1)-bend edge route as follows. Suppose

the ar

�!

vw 2 A(G) is oloured i 2 f1; 2; : : : ;Dg and its reversal ar

�!

wv is oloured

j > i. The edge route vw onsists of D ontiguous grid-line segments whih

traverse the sides of the hyperube with orners at port(

�!

vw) and port(

�!

wv). These

segments are respetively parallel to the i; (i � 1); : : : ; 1; (i + 1); (i + 2); : : : ; (j �

1);D; (D � 1); : : : ; j axes.

5. Remove edge rossings using Algorithm 7.2 Box-Drawing Remove Edge Cross-

ings.

For a given general position vertex layout, A

G

(v)hdi denotes the set of outgoing

ars at some vertex v 2 V (G) in the diretion d; i.e.,

A

G

(v)hdi =

8

>

<

>

:

f

�!

vw 2 A

G

(v) : v <

d

wg ; if d > 0;

f

�!

vw 2 A

G

(v) : w <

�d

vg ; if d < 0.

For eah diretion d 2 f1; 2; : : : ;Dg and vertex v 2 V (G), the set of ars in

A

G

(v)hdi, whih are oloured i is denoted A

G

(v)hdi[i℄. If an ar

�!

vw 2 A

G

(v)hi

�

i[i℄

then the edge route vw uses an (i

�

)-port at v. The maximum of the number of edges

routed on the (i

+

)-fae and (i

�

)-fae of v is denoted M

i

(v); i.e.,

M

i

(v) = max

n

�

�

A

G

(v)hii[i℄

�

�

;

�

�

A

G

(v)




i

�

�

[i℄

�

�

o

:

Clearly surfae

i

(v) must be at least M

i

(v).

7.1.1 Determining Vertex Size

We now desribe how to determine the size of the grid-box representing a vertex v given

the number of edges routed on eah fae of v. For eah vertex v we wish to determine
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positive integers �

i

(v), 1 � i � D, suh that surfae

i

(v) is at least M

i

(v); i.e.,

determine �

i

(v); 1 � i � D suh that 8i

Y

1�j�D

j 6=i

�

j

(v) �M

i

(v): (7.1)

Our aim is to minimise the surfae (v) suh that (7.1) is satis�ed. For eah i with

M

i

(v) = 0 we replae M

i

(v) by 1. A solution to the new problem with

surfae (v) � k

 

X

i

2M

i

(v)

!

+ k

0

is a solution to the original problem with

surfae (v) � k

 

X

i

2M

i

(v)

!

+

�

k

0

+D

�

:

So we now assume that M

i

(v) � 1.

We de�ne M

�

(v) to be the geometri mean of fM

i

(v) : i = 1; 2; : : : ;Dg; i.e.,

M

�

(v) =

 

Y

i

M

i

(v)

!

1=D

:

Lemma 7.1. A real-valued exat solution to (7.1) an be obtained with �

i

(v) = r

i

(v)

where we de�ne

r

i

(v) =

M

�

(v)

D=(D�1)

M

i

(v)

(7.2)

Proof. For eah i, 1 � i � D,

surfae

i

(v) =

Y

1�k�D

k 6=i

r

k

(v)

=

Y

1�k�D

k 6=i

�

M

�

(v)

D=(D�1)

.

M

k

(v)

�

=

Y

1�k�D

k 6=i

0

B

�

0

�

Y

1�j�D

M

j

(v)

1

A

1=(D�1)

.

M

k

(v)

1

C

A

=

Y

1�k�D

k 6=i

0

B

B

�

 

Y

1�j�D

j 6=k

M

j

(v)

!

.

M

k

(v)

D�2

1

C

C

A

1=(D�1)
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=

0

B

B

�

Y

1�k�D

k 6=i

0

B

B

�

 

Y

1�j�D

j 6=k

M

j

(v)

!

.

M

k

(v)

D�2

1

C

C

A

1

C

C

A

1=(D�1)

=

0

B

B

�

 

M

i

(v)

D�1

Y

1�j�D

j 6=i

M

j

(v)

D�2

!, 

Y

1�k�D

k 6=i

M

k

(v)

D�2

!

1

C

C

A

1=(D�1)

=

�

M

i

(v)

D�1

�

1=(D�1)

=M

i

(v)

This result suggests to obtain an integer-valued solution to (7.1), set �

i

(v) = dr

i

(v)e

for eah i. We now present a tehnial lemma whih will be applied in the analysis of

the algorithms to follow. It essentially says that if the ratios among fM

1

;M

2

; : : : ;M

D

g

are bounded then surfae (v) is asymptotially 2

P

i

M

i

(v), whih is the obvious lower

bound.

Theorem 7.1. If for eah i; j, 1 � i; j � D, M

i

(v)=M

j

(v) � f(v), for some funtion

f : V (G)! R, then setting �

i

(v) = dr

i

(v)e,

surfae (v) � 2

X

i

M

i

(v) + O

�

f(v)

D�2

�

 

X

i

M

i

(v)

!

(D�2)=(D�1)

Proof. We initially show that M

i

(v)=M

j

(v) � f(v) implies r

i

(v)=r

j

(v) � f(v) for all

i; j, 1 � i; j � D.

max

i

r

i

(v) = min

j

r

j

(v) �

 

max

i

M

�

(v)

D=(D�1)

M

i

(v)

!

Æ

 

min

i

M

�

(v)

D=(D�1)

M

i

(v)

!

= M

j

(v)=M

i

(v) ;

where M

i

(v) and M

j

(v) are maximum and minimum of fM

1

(v);M

2

(v); : : : ;M

D

(v)g.

Hene r

i

(v)=r

j

(v) � f(v) for all i; j, 1 � i; j � D.

For eah i, 1 � i � D,

surfae

i

(v) =

Y

j 6=i

�

j

(v) <

Y

j 6=i

(r

j

(v) + 1)
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Sine

Q

j 6=i

r

j

(v) = M

i

(v), our aim to is to show that adding one to r

j

(v) does not

inrease surfae

i

(v) by too muh. To this end, we establish the following result, whose

proof we defer until Lemma 7.2.

If x

1

; x

2

; : : : ; x

n

> 0 with x

i

; x

j

� �(� 1), for all i; j, 1 � i; j � D, then

n

Y

i=1

(x

i

+ 1) =

n

Y

i=1

x

i

+ O

�

�

n�1

�

 

n

Y

i=1

x

i

!

(n�1)=n

(7.3)

Applying (7.3), with fx

1

; x

2

; : : : ; x

n

g = fr

j

: j 6= ig and � = f(v), we obtain

Y

j 6=i

(r

j

+ 1) �

Y

j 6=i

r

j

+ O

�

f(v)

D�2

�

0

�

Y

6=i

r

j

1

A

(D�2)=(D�1)

:

Hene

surfae

i

(v) � M

i

(v) + O

�

f(v)

D�2

�

M

i

(v)

(D�2)=(D�1)

Therefore

surfae (v)

� 2

X

i

M

i

(v) +

X

i

O

�

f(v)

D�2

�

M

i

(v)

(D�2)=(D�1)

� 2

X

i

M

i

(v) + O

�

f(v)

D�2

�

X

i

M

i

(v)

(D�2)=(D�1)

� 2

X

i

M

i

(v) + O

�

f(v)

D�2

�

 

D

1=(D�1)

X

i

M

i

(v)

!

(D�2)=(D�1)

(by Cauhy-Shwarz)

� 2

X

i

M

i

(v) + O

�

f(v)

D�2

�

 

X

i

M

i

(v)

!

(D�2)=(D�1)

Lemma 7.2. If x

1

; x

2

; : : : ; x

n

> 0 (n � 2) with x

i

=x

j

� �, for all i; j, 1 � i; j � D,

then

n

Y

i=1

(x

i

+ 1) �

n

Y

i=1

x

i

+ O

�

�

n�1

�

 

n

Y

i=1

x

i

!

(n�1)=n

(7.4)

Proof. Suppose x

1

� x

2

� � � � � x

n

. Denote

Q

k

i=1

x

i

by P

k

. We proeed by indution

on k with the following indution hypothesis.

k

Y

i=1

(x

i

+ 1) � P

k

+ O

�

�

k�1

�

(P

k

)

(k�1)=k

(7.5)
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Consider the ase of k = 2. Sine x

1

=x

2

� �, we have x

2

� x

1

=� and x

1

x

2

� x

2

1

=�.

So x

1

�

p

x

1

x

2

�. Similarly x

2

�

p

x

1

x

2

�. So (x

1

+1)(x

2

+1) = x

1

x

2

+x

1

+x

2

+1 �

x

1

x

2

+ 2

p

x

1

x

2

� + 1 � x

1

x

2

+ O(�)

p

x

1

x

2

. So the indution hypothesis holds for

n = 2.

Suppose the indution hypothesis holds for all k

0

< k. Then

k

Y

i=1

(x

i

+ 1)

= (x

k

+ 1)

k�1

Y

i=1

(x

i

+ 1)

� (x

k

+ 1)

�

P

k�1

+ O

�

�

k�2

�

(P

k�1

)

(k�2)=(k�1)

�

(by the indution hypothesis)

� P

k

+ x

k

O

�

�

k�2

�

(P

k�1

)

(k�2)=(k�1)

+ P

k�1

+ O

�

�

k�2

�

(P

k�1

)

(k�2)=(k�1)

(7.6)

We now determine upper bounds in terms of � and P

k

for eah omponent of (7.6).

Sine x

k

� x

j

, for j, 1 � j � k � 1, we have x

k�1

k

� P

k�1

. So

x

k

� (P

k�1

)

1=(k�1)

: (7.7)

Now, for all j, 1 � j � k � 1, we have x

j

=x

k

� �. So x

k

� x

j

=�, and hene

x

k�1

k

� P

k�1

=�

k�1

x

k

k

� P

k

=�

k�1

x

k

� (P

k

=�

k�1

)

1=k

x

�1

k

� (�

k�1

=P

k

)

1=k

x

�1

k

� �

(k�1)=k

P

�1=k

k

P

k�1

� �

(k�1)=k

P

1�1=k

k

P

k�1

� (�P

k

)

(k�1)=k

: (7.8)

Now,

x

k

O

�

�

k�2

�

(P

k�1

)

(k�2)=(k�1)

� (P

k�1

)

1=(k�1)

O

�

�

k�2

�

(P

k�1

)

(k�2)=(k�1)

(by (7.7))

� O

�

�

k�2

�

P

k�1
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� O

�

�

k�2

�

(�P

k

)

(k�1)=k

(by (7.8))

� O

�

�

k�1

�

(P

k

)

(k�1)=k

: (7.9)

Now,

O

�

�

k�2

�

(P

k�1

)

(k�2)=(k�1)

� O

�

�

k�2

��

(�P

k

)

(k�1)=k

�

(k�2)=(k�1)

(by (7.8))

� O

�

�

k�2

�

(�P

k

)

(k�2)=k

(by (7.8))

� O

�

�

k�1

�

(P

k

)

(k�2)=k

: (7.10)

Substituting (7.8), (7.9) and (7.10) into (7.6) we obtain,

k

Y

i=1

(x

i

+ 1)

� P

k

+ O

�

�

k�1

�

(P

k

)

(k�1)=k

+ (�P

k

)

(k�1)=k

+ O

�

�

k�1

�

(P

k

)

(k�2)=k

� P

k

+ O

�

�

k�1

�

(P

k

)

(k�1)=k

:

Hene the indution hypothesis holds for k, and by the indution priniple the result

holds.

In D = 3 dimensions we have the following bound for the surfae (v) regardless of

whether M

X

(v), M

Y

(v) and M

Z

(v) have bounded ratios.

Lemma 7.3. For every M

X

(v), M

Y

(v) and M

Z

(v) there is a solution to (7.1) with

surfae (v) � 4 (M

X

(v) +M

Y

(v) +M

Z

(v)) +O(1)

Proof. In what follows fi; j; kg = fX;Y;Zg, and we omit the `(v)' from M

i

(v), r

i

(v),

et. Note that for D = 3, problem (7.1) beomes

determine �

i

; �

j

; �

k

suh that �

i

�

j

�M

k

; �

i

�

k

�M

j

and �

j

�

k

�M

i

: (7.11)

We wish to minimise the surfae (v) = 2 (�

i

�

j

+ �

i

�

k

+ �

j

�

k

). For eah i 2 fX;Y;Zg

the real-valued exat solution to (7.11) is given by

(�

i

=) r

i

=

r

M

j

M

k

M

i

:
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Suppose without loss of generality that M

i

�M

j

and M

i

�M

k

. Then r

i

� r

j

and

r

i

� r

k

. We initially onsider three speial ases for small values of r

i

.

Case 1: r

i

� 1 (i.e., M

i

�M

j

M

k

).

We set �

i

 1, �

j

 M

k

and �

k

 dM

i

=M

k

e. Hene

�

i

�

j

=M

k

; �

i

�

k

�M

i

=M

k

�M

j

and �

j

�

k

�M

k

(M

i

=M

k

) =M

i

:

So a valid solution to (7.11) is determined. We have the following upper bound.

surfae (v) = 2(�

i

�

j

+ �

i

�

k

+ �

j

�

k

)

= 2(M

k

+ dM

i

=M

k

e+M

k

dM

i

=M

k

e)

< 2(M

k

+M

i

=M

k

+ 1 +M

k

(M

i

=M

k

+ 1))

= 2(2M

k

+M

i

=M

k

+M

i

+ 1)

� 2(2M

k

+ 2M

i

+ 1) :

So, in this ase the result stands.

Case 2: 1 < r

i

�

p

2 (i.e., M

j

M

k

=2 �M

i

< M

j

M

k

).

We set �

i

 1, �

j

 M

k

and �

k

 M

j

. Hene

�

i

�

j

=M

k

; �

i

�

k

=M

j

and �

j

�

k

=M

k

M

j

> M

i

:

So a valid solution to (7.11) is determined. We have the following upper bound.

surfae (v) = 2(�

i

�

j

+ �

i

�

k

+ �

j

�

k

)

= 2(M

k

+M

j

+M

k

M

j

)

� 2(M

k

+M

j

+ 2M

i

) :

So, in this ase the result stands.

Case 3:

p

2 < r

i

� 2 (i.e., M

j

M

k

=4 �M

i

< M

j

M

k

=2).

Set �

i

 2. Assume without loss of generality thatM

j

�M

k

, and set �

j

 dM

k

=2e

and �

k

 M

j

. Hene

�

i

�

j

= 2 dM

k

=2e �M

k

;
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�

i

�

k

= 2M

j

> M

j

, and

�

j

�

k

= dM

k

=2eM

j

�M

j

M

k

=2 > M

i

:

So a valid solution to (7.11) is determined. We have the following upper bound.

surfae (v) = 2(�

i

�

j

+ �

i

�

k

+ �

j

�

k

)

= 2(2 dM

k

=2e+ 2M

j

+ dM

k

=2eM

j

)

� 2(M

k

+ 1 + 2M

j

+M

j

M

k

=2 +M

j

=2)

� 2(M

k

+ 1 + 2M

j

+ 2M

i

+M

k

=2)

= 2(2M

i

+ 2M

j

+ 3M

k

=2 + 1)

So, in this ase the result stands.

Case 4: r

i

> 2 for every i 2 f1; 2; 3g.

Set �

i

 dr

i

e, �

j

 dr

j

e, and �

k

 dr

k

e. Obviously this is a valid solution to

(7.11) and we have the following upper bound.

surfae (v) = 2(�

i

�

j

+ �

i

�

k

+ �

j

�

k

)

< 2((r

i

+ 1)(r

j

+ 1) + (r

i

+ 1)(r

k

+ 1) + (r

j

+ 1)(r

k

+ 1))

= 2((r

i

r

j

+ r

i

+ r

j

+ 1) + (r

i

r

k

+ r

i

+ r

k

+ 1) + (r

j

r

k

+ r

j

+ r

k

+ 1))

= 2((M

k

+ r

i

+ r

j

) + (M

j

+ r

i

+ r

k

) + (M

i

+ r

j

+ r

k

) + 3)

It is well-known that x + y � xy for any two real numbers x; y � 2. So r

i

+ r

j

�

r

i

r

j

=M

k

, r

i

+ r

k

� r

i

r

k

=M

j

and r

j

+ r

k

� r

j

r

k

=M

i

. Hene

surfae (v) � 2(2M

i

+ 2M

j

+ 2M

k

+ 3) ;

and, in this ase the result stands.

7.1.2 Determining Port Assignments

Given a general position vertex layout and ar-routing, we now desribe how to assign

ports on a vertex v to the ars inident to v suh that an ar

�!

vw 2 A(v)[i℄ is assigned

an i-port on v pointing toward w. Suppose the k

th

segment of an ar

�!

vw, 1 � k � D,

refers to the k

th

segment of the edge route vw starting at v.
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We �rstly assign ports to ars so that no two edges routed on the same fae an

interset. This algorithm improves on the algorithm of Biedl [27℄ for D = 3, in that we

potentially use all the ports on a fae. This is possible due to the seond stage of our

port assignment method whih eliminates all subsequent edge route rossings.

We now desribe how to assign the ports on the (i

+

)-fae of a vertex v (for some

dimension i), to the ars in A

G

(v)hi

+

i[i℄; i.e. ars

�!

vw oloured i with w in diretion i

+

from v. Assigning ports on the (i

�

)-fae to the ars in A

G

(v)hi

�

i[i℄ is analogous.

We group the ars inA

G

(v)hi

+

i[i℄ aording to the diretion of their seond segment,

whih by the routing of edges desribed in Algorithm 7.1 D-Dimensional General

Position Box-Drawing is one of (i+ 1)

+

, (i+ 1)

�

, (i� 1)

+

and (i� 1)

�

. For these

ases we say an ar in A

G

(v)hii[i℄ is either an up, down, right or left ar, respetively.

Ports are assigned so that the ports `underneath' the seond segment of an ar are

assigned to ars within the same grouping.

Firstly, as illustrated in Figure 7.2(a), we partition the fae into two regions, the

�rst with enough ports for the Down and Right ars, and the seond with enough ports

for the Up and Left ars. Within the �rst region we determine the ports to be used by

the Right ars by numbering the ports starting at the top-right orner in a right-to-left

row-by-row fashion, as in Figure 7.2(a). Similarly, we determine the ports of the seond

region to be used by the Left ars by numbering the ports starting at the bottom-left

orner of the seond region in a left-to-right row-by-row fashion. The remaining ports

in the �rst region are assigned to the Down ars and the remaining ports in the seond

region are assigned to the Up ars, as in Figure 7.2(b).

We assign ports to the ars in eah grouping in turn, and within a grouping we

assign ports to the ars in inreasing order of the length of the �rst segment of the ar.

Sine our graphs are simple this length is unique. For eah ar we hoose an unused

port within its grouping so that the seond segment of the produed edge route has

minimum possible length, as in Figure 7.2(b). Clearly no two edges routed on the same

fae an interset.
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(a) (b)

Down & Right

Up & Left

1 2 3 12

3456

Figure 7.2: Determining port assignments on a fae.

7.1.3 Removing Edge Crossings

We now show how to remove edge route rossings in general position D-dimensional

orthogonal box-drawings (D � 3). The method is a generalisation of the rossing

elimination rule for 3-D orthogonal point-drawings shown in Figure 5.11.

Suppose the edge routes vw and xy interset at some grid-point, and the interseting

segments of vw and xy are a- and b-segments, respetively (for some dimensions a and

b). Label the endpoints of these segments r, s, p and q as shown in Figure 7.3(a).

a

b

v r ws

x

q

y

p

b bb bb b

b

b

b

b

b

b

(a)

v

r

ws

x

q

y

p

bb b

b

b

b

(b)

x

w

v

y

p

s

bb b

b

b

b

()

Figure 7.3: Removing edge rossings in general position.

In what follows we desribe a sequene of segments ontained in an edge route as a

path. Sine the graph is simple, we an assume without loss of generality that y 6= w.

Therefore port(

�!

wv) and port(

�!

yx) di�er in every oordinate. It follows that for every

dimension i exept for a and b, there is an i-segment on the paths from w to s, and
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y to p. This implies there is at most one segment on the paths r to v, and if there

is suh a segment then it is a b-segment. Similarly, there is at most one segment on

the path q to x, and if there is suh a segment then it is an a-segment. This implies

that v and x are oplanar, and sine the verties are in general position, v = x. By

the onstrution used in the previous setion, edge routes are assigned unique ports

on a fae, and no two edge routes on the same fae an interset. So the paths from

r to v (= x) and from q to x (= v) have exatly one segment, and the edge rossing

ours between the seond segments of ars inident to a ommon vertex, as shown

in Figure 7.3(b). Eah suh rossing an be removed by swapping the ports assigned

to these ars, and rerouting the orresponding edge routes as shown in Figure 7.3().

We have the following algorithm for removing edge route rossings in general position

orthogonal drawings.

Algorithm 7.2. Box-Drawing Remove Edge Crossings

Input: D-dimensional general position orthogonal drawing of a graph G (possibly with

rossings)

Output: D-dimensional general position orthogonal drawing of G (without rossings).

A A(G)

while A 6= ; do

Choose

�!

vw 2 A.

Set A A n f

�!

vwg.

if

�!

vw intersets some other ar

�!

vu then

Swap the ports at v assigned to

�!

vw and

�!

vu.

Reroute the edge routes vu and vw as desribed above.

Set A A [ f

�!

vu;

�!

vwg.

if D = 3 then

Set A A [ f

�!

uv;

�!

wvg.

end-if

end-if

end-while
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Lemma 7.4. The algorithm Box-Drawing Remove Edge Crossings removes all

rossings from the given general position orthogonal box-drawing in O(mn�) time.

Proof. We shall prove that at all times the set A ontains all ars whih possibly

interset some other ar. Initially this is true sine A = A(G). As proved above, an ar

�!

vw an only interset another ar inident to v. Hene, if

�!

vw does not interset some

other ar

�!

vu, then

�!

vw does not interset any ar, and

�!

vw an be removed from A.

Suppose that

�!

vw intersets some other ar

�!

vu. After swapping the ports assigned

to

�!

vu and

�!

vw all new edge rossings must involve

�!

vu or

�!

vw (or

�!

uv or

�!

wv if D = 3).

By adding

�!

vu and

�!

vw (and

�!

uv and

�!

wv if D = 3) to A for re-heking, we maintain

the ondition that A ontains all ars whih possibly interset some other ar. The

algorithm ontinues until A = ;, at whih point the drawing must be rossing-free.

For an ar

�!

vw whose seond segment is parallel to the i-axis, let l(

�!

vw) = jp � qj,

where (u

1

; u

2

; : : : ; u

n

) is the i-ordering of the verties and v = u

p

and w = u

q

.

Now l(

�!

vw) = O(n), so

P

�!

vw

l(

�!

vw) = O(mn). Eah port swap between ars

�!

vw and

�!

vu redues l(

�!

vw) + l(

�!

vu). Hene there will be O(mn) port swaps. Therefore O(mn)

ars are added to A, so O(mn) ars are heked for rossings. To test if an ar intersets

some other ar takes O(�) time, so the algorithm takes O(mn�) time.

The e�et of a number of port swaps, all in the same plane, is shown in Figure 7.4.

�
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�

�
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�
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�	

�

���

�	

�

���

�	

�

���

�	

=)

�

�

�

�

�

?

Figure 7.4: Rerouting rossing edge routes.
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Based on the above methods for port assignment and the elimination of edge ross-

ings we have the following result.

Lemma 7.5. Given a D-dimensional general position vertex layout, D-dimensional

general position ar-routing and the size of eah vertex of a graph G, if for every vertex

v 2 V (G) the surfae

i

(v) � M

i

(v) for eah i, 1 � i � D, then a rossing-free assign-

ment of the ports on eah vertex v to the ars A

G

(v) an be determined in O(mn�)

time.

7.1.4 Upper Bounds

We now establish upper bounds for the surfae and volume of the bounding box of a

general position D-dimensional orthogonal box-drawing in terms of the size and shape

of the verties. For eah vertex v we denote the arithmeti, geometri and harmoni

means of �

1

(v); �

2

(v); : : : ; �

D

(v) by �

+

(v), �

�

(v) and �

�

(v) respetively; i.e.,

�

+

(v) =

1

D

X

1�i�D

�

i

(v); �

�

(v) =

0

�

Y

1�i�D

�

i

(v)

1

A

1=D

; �

�

(v) = D

0

�

X

1�i�D

1

�

i

(v)

1

A

�1

:

Obviously volume (v) = �

�

(v)

D

, and also,

surfae (v) = 2

X

1�i�D

Y

1�j�D

j 6=i

�

j

(v)

= 2

X

1�i�D

�

�

(v)

D

�

i

(v)

= 2�

�

(v)

D

X

1�i�D

1

�

i

(v)

=

2D�

�

(v)

D

�

�

(v)

: (7.12)

The arithmeti, geometri and harmoni means of the dimensions of the bounding

box are denoted by �

+

, �

�

and �

�

respetively. As in (7.12) we have,

surfae ( bounding box ) =

2D(�

�

)

D

�

�

: (7.13)

It is well-known that, of the D-dimensional hyperboxes with �xed sum of side

lengths, the D-dimensional hyperube has maximum volume and maximum surfae
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area (see for example Kazarino� [126℄). Given a D-dimensional vertex v, onsider the

hyperube C with the same sum of side lengths as v; i.e., C has side length �

+

(v). We

de�ne the surfae aspet(v) to be the ratio of the surfae(C) to the surfae(v), and the

volume aspet(v) to be the ratio of the volume(C) to the volume(v). Clearly surfae

aspet and volume aspet are both at least one. By (7.12) we have,

surfae aspet (v) =

surfae (C)

surfae (v)

=

�

+

(v)

D�1

�

�

(v)

�

�

(v)

D

; (7.14)

volume aspet (v) =

volume (C)

volume (v)

=

�

�

+

(v)

�

�

(v)

�

D

: (7.15)

Lemma 7.6. For a general position D-dimensional orthogonal box-drawing,

surfae ( bounding box ) � n

D�2

X

v

surfae aspet (v)� surfae (v)

Proof. Sine the surfae aspet of the bounding box is at least one, by (7.14) applied

to the bounding box,

(�

�

)

D

=�

�

� (�

+

)

D�1

;

so by (7.13),

surfae ( bounding box ) =

2D(�

�

)

D

�

�

� 2D

�

�

+

�

D�1

:

The average side `length' of the bounding box is

�

+

=

1

D

X

i

X

v

�

i

(v) :

So the surfae of the bounding box is

2D

 

1

D

X

i

X

v

�

i

(v)

!

D�1

= 2D

 

X

v

1

D

X

i

�

i

(v)

!

D�1

= 2D

 

X

v

�

+

(v)

!

D�1

:

By the Cauhy-Shwarz inequality,

2D

 

X

v

�

+

(v)

!

D�1

� 2Dn

D�2

X

v

�

+

(v)

D�1
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= n

D�2

X

v

�

�

+

(v)

D�1

�

�

(v)

�

�

(v)

D

�

�

�

2D�

�

(v)

D

�

�

(v)

�

= n

D�2

X

v

surfae aspet (v)� surfae (v) :

It is easily seen that this bound is tight for D = 2, for same-sized hyperube draw-

ings and in the ase of n = D pairwise perpendiular lines. The proof of the following

bound on the volume of the bounding box is similar to that of Lemma 7.6.

Lemma 7.7. For a general position D-dimensional orthogonal box-drawing,

volume ( bounding box ) � n

D�1

X

v

volume aspet (v)�

�

surfae (v)

2D

�

D=(D�1)

Proof. The volume of the bounding box is

(�

�

)

D

�

�

�

+

�

D

=

0

�

X

1�i�D

X

v

�

i

(v)

D

1

A

D

=

0

�

X

v

X

1�i�D

�

i

(v)

D

1

A

D

=

 

X

v

�

+

(v)

!

D

:

By the Cauhy-Shwarz inequality,

 

X

v

�

+

(v)

!

D

� n

D�1

X

v

�

+

(v)

D

= n

D�1

X

v

�

�

+

(v)

�

�

(v)

�

D

�

�

(v)

D

= n

D�1

X

v

volume aspet (v)� volume (v)

Of the D-dimensional hyperboxes with �xed surfae S, the ube with side length

(S=2D)

1=(D�1)

has maximum volume [126℄. So

volume ( bounding box ) � n

D�1

X

v

volume aspet (v)�

�

surfae (v)

2D

�

D=(D�1)

:
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Corollary 7.1. For a general position D-dimensional orthogonal box-drawing,

surfae ( bounding box ) � n

D�2

X

v

aspet ratio (v)� surfae (v)

volume ( bounding box ) � n

D�1

X

v

aspet ratio (v)�

�

surfae (v)

2D

�

D=(D�1)

:

Proof. Of the D-dimensional hyperboxes with �xed sum of side lengths, the line has

minimum surfae and minimum volume, so the surfae aspet and volume aspet of a

line is maximum (for the D-dimensional hyperboxes with �xed sum of side lengths).

The surfae aspet and volume aspet of a line are no more than its aspet ratio. The

result follows from Lemma 7.6 and Lemma 7.7.

The next result will be used to establish a bound on the bounding box volume for

the orthogonal graph drawing algorithms presented in Setions 7.2 and 7.3.

Theorem 7.2. A d-degree-restrited general position D-dimensional orthogonal box-

drawing with eah vertex having aspet ratio at most a has

volume ( bounding box ) � a

�

n

D�2

�

dm

D

+ o (m)

��

D=(D�1)

Proof. By Corollary 7.1,

volume ( bounding box ) � n

D�1

X

v

a

�

surfae (v)

2D

�

D=(D�1)

:

By the Cauhy-Shwarz inequality,

volume ( bounding box ) � an

D�1

 

n

(D�1)=D�1

X

v

surfae (v)

2D

!

D=(D�1)

= an

D�1

n

�1=(D�1)

 

X

v

surfae (v)

2D

!

D=(D�1)

= an

D(D�2)=(D�1)

 

X

v

surfae (v)

2D

!

D=(D�1)

= a

 

n

D�2

X

v

surfae (v)

2D

!

D=(D�1)

Sine the drawing is d-degree-restrited,

volume ( bounding box ) � a

 

n

D�2

X

v

d � deg(v) + o (deg(v))

2D

!

D=(D�1)
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= a

�

n

D�2

�

dm

D

+ o (m)

��

D=(D�1)

:

7.2 Layout-Based Algorithms

In this setion we desribe our layout-based approah for determining general position

D-dimensional orthogonal drawings, for some onstant D � 3. In Setion 7.2.1 we

present an algorithm for determining an ar-routing given an arbitrary general position

vertex layout. We derive algorithms using �xed, balaned and diagonal vertex layouts

in Setions 7.2.2, 7.2.3 and 7.2.4.

7.2.1 Ar-Routing Algorithm

We now present an algorithm for determining an ar-routing of A(G) with respet to

a given general position vertex layout of a graph G. To represent the olouring of

A(G) we vertex-olour a graph H with vertex set V (H) = A(G). We represent a D-

dimensional orthant by the orresponding set of D pairwise non-opposite diretions.

For a given vertex v and diretion d, the set of orthants fT : d 2 Tg in diretion d from

v is denoted �

D

d

(v). We denote the set of ars

�!

vw at a vertex v with w in orthant T

by A

G

(v)hT i; i.e.,

A

G

(v)hT i =

\

d2T

A

G

(v)hdi :

Algorithm 7.3. D-Dimensional General Position Ar-Routing

Input: � graph G

� D-dimensional general position vertex layout of V (G)

Output: D-dimensional general position ar-routing of A(G)

1. For eah edge vw 2 E(G), insert the edge f

�!

vw;

�!

wvg to E(H) (alled an `r'-edge).

2. For eah vertex v 2 V (G) and for eah orthant T relative to v,
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(a) Partition the ars in A

G

(v)hT i into sets Q

1

; Q

2

; : : : ; Q

k

, so that jQ

j

j = D,

1 � j < k (see Figure 7.5).

(b) Add a lique (alled `'-edges) to E(H) between the verties of H orre-

sponding to the ars in Q

j

, 1 � j � k.

3. Determine a D-olouring of A(G) from a vertex-olouring of H with D olours.

v

�

(X

+

; Y

+

; Z

�

)-

orthant

�

(X

+

; Y

+

; Z

+

)-

orthant

�

(X

�

; Y

+

; Z

�

)-

orthant

�

(X

�

; Y

+

; Z

+

)-

orthant

�

(X

+

; Y

�

; Z

+

)-

orthant

�

(X

+

; Y

�

; Z

�

)-

orthant

�

(X

�

; Y

�

; Z

+

)-

orthant

�

(X

�

; Y

�

; Z

�

)-

orthant

Figure 7.5: Partitioning of A

G

(v) and onstrution of H for D = 3.

Lemma 7.8. The algorithm D-Dimensional General Position Ar-Routing

determines an ar-routing of A(G) in O(D(m+ n)) time suh that for eah vertex

v 2 V (G),

2

X

i

M

i

(v) � deg(v) + (v) + (D � 1)2

D

:

Proof. A vertex of H is inident with one `r' edge and at most D � 1 `' edges. So the

maximum degree �(H) � D, and sine the omplete graph K

D+1

6� H, by Brooks'

Theorem [47℄, H is vertex D-olourable. The proof of Brook's Theorem due to Lov�asz

[147℄ and simpli�ed by Bryant [49℄ desribes an algorithm for �nding a vertex-olouring
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of H with at most �(H) olours in O(jE(H)j) = O(Dm) time. The vertex-olouring

of H determines a D-dimensional routing of A(G). Sine f

�!

vw;

�!

wvg 2 E(H), reversal

ars are oloured di�erently, so the routing is an ar-routing.

For eah orthant T relative to a vertex v and in eah partition of A

G

(v)hT i, there is

at most one ar

�!

vw oloured i, 1 � i � D. Therefore, for eah dimension i, 1 � i � D,

we have the following bounds on the number of ars

�!

vw oloured i with w in diretion

i

+

from v.

X

T2�

D

i

(v)

$

�

�

A

G

(v)hT i

�

�

D

%

�

�

�

A

G

(v)hii[i℄

�

�

�

X

T2�

D

i

(v)

&

�

�

A

G

(v)hT i

�

�

D

'

:

So,

1

D

0

�

0

�

X

T2�

D

i

(v)

�

�

A

G

(v)hT i

�

�

1

A

� (D � 1)j�

D

i

(v)j

1

A

�

�

�

A

G

(v)hii[i℄

�

�

�

1

D

0

�

0

�

X

T2�

D

i

(v)

�

�

A

G

(v)hT i

�

�

1

A

+ (D � 1)j�

D

i

(v)j

1

A

:

It follows that

1

D

�

s

i

(v)� (D � 1)2

D�1

�

�

�

�

A

G

(v)hii[i℄

�

�

�

1

D

�

s

i

(v) + (D � 1)2

D�1

�

:

Similarly,

1

D

�

p

i

(v)� (D � 1)2

D�1

�

�

�

�

A

G

(v)




i

�

�

[i℄

�

�

�

1

D

�

p

i

(v) + (D � 1)2

D�1

�

:

Sine M

i

(v) = max fjA

G

(v)hii[i℄ j; jA

G

(v)hi

�

i[i℄ jg,

1

D

�

max fs

i

(v); p

i

(v)g � (D � 1)2

D�1

�

� M

i

(v) �

1

D

�

max fs

i

(v); p

i

(v)g + (D � 1)2

D�1

�

:

By (4.1),

1

D

�

1

2

(deg(v) + 

i

(v))� (D � 1)2

D�1

�
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� M

i

(v) �

1

D

�

1

2

(deg(v) + 

i

(v)) + (D � 1)2

D�1

�

: (7.16)

Summing over all dimensions, we obtain,

X

i

M

i

(v) �

X

i

1

D

�

1

2

(deg(v) + 

i

(v)) + (D � 1)2

D�1

�

2

X

i

M

i

(v) �

X

i

1

D

�

deg(v) + 

i

(v) + (D � 1)2

D

�

2

X

i

M

i

(v) � deg(v) + (v) + (D � 1)2

D

:

7.2.2 Fixed Vertex Layout Drawings

We now derive an algorithm for a �xed general position vertex layout.

Algorithm 7.4. Fixed General Position D-Dimensional Box-Drawing

Input: � graph G.

� D-dimensional general position vertex layout of V (G).

Output: layout-preserving D-dimensional orthogonal box-drawing of G.

1. Determine an ar-routing with Algorithm 7.3 D-Dimensional General Posi-

tion Ar-Routing.

2. Apply Algorithm 7.1 D-Dimensional General Position Box-Drawing.

Theorem 7.3. The algorithm Fixed General Position D-Dimensional Box-

Drawing determines a layout-preserving D-dimensional orthogonal box-drawing of G

in O(mn�) time suh that:

� Eah edge route has D � 1 bends.

� Eah vertex is 2-degree-restrited

� The aspet ratio of eah vertex v is at most 2 + o (deg(v)).
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� The bounding box volume is O

�

�

n

D�2

m

�

D=(D�1)

�

.

Proof. By (7.16) and sine 

i

(v) � deg(v),

1

D

�

1

2

deg(v)� (D � 1)2

D�1

�

� M

i

(v) �

1

D

�

deg(v) + (D � 1)2

D�1

�

:

So for all i; j, 1 � i; j;� D,

M

i

(v)

M

j

(v)

�

deg(v) + (D � 1)2

D�1

1

2

deg(v)� (D � 1)2

D�1

�

2 deg(v) + (D � 1)2

D

deg(v)� (D � 1)2

D

�

2

�

deg(v)� (D � 1)2

D

�

+ 3(D � 1)2

D

deg(v)� (D � 1)2

D

� 2 +

3(D � 1)2

D

deg(v)� (D � 1)2

D

:

It follows from Theorem 7.1 with

f(v) = 2 +

3(D � 1)2

D

deg(v)� (D � 1)2

D

that

surfae (v) � 2

X

i

M

i

+

�

2 +

3(D � 1)2

D

deg(v)� (D � 1)2

D

�

D�2

 

X

i

M

i

!

(D�2)=(D�1)

:

For onstant D we have

surfae (v) � 2

X

i

M

i

+

�

2 +O

�

deg(v)

�1

��

D�2

 

X

i

M

i

!

(D�2)=(D�1)

: (7.17)

By Lemma 7.8 and sine (v) � deg(v) with D a onstant we have

2

X

i

M

i

(v) � 2 deg(v) +O(1) :

Hene,

surfae (v) � 2 deg(v) +O(1)

�

2 +O

�

deg(v)

�1

��

D�2

�

deg(v) +O(1)

�

(D�2)=(D�1)

� 2 deg(v) +O

�

deg(v)

(D�2)=(D�1)

�

� 2 deg(v) + o (deg(v)) :
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So v is 2-degree-restrited. Suppose �

i

(v) and �

j

(v) are the maximum and minimum

of f�

1

(v); �

2

(v); : : : ; �

D

(v)g, respetively. Then

aspet ratio (v) = �

i

(v)=�

j

(v)

=

0

�

�

i

(v)

Y

k 6=i;j

�

k

(v)

1

A

Æ

0

�

�

j

(v)

Y

k 6=i;j

�

k

(v)

1

A

=

0

�

Y

k 6=j

�

k

(v)

1

A

Æ

0

�

Y

k 6=i

�

k

(v)

1

A

=

surfae

j

(v)

surfae

i

(v)

:

Now,

surfae

j

(v) � M

j

(v) + O

�

f(v)

D�2

�

M

j

(v)

(D�2)=(D�1)

� M

j

(v) +

�

2 +O

�

deg(v)

�1

��

D�2

M

j

(v)

(D�2)=(D�1)

:

Sine M

j

(v) �

1

D

�

deg(v) + (D � 1)2

D�1

�

, for onstant D we have

surfae

j

(v) �

1

D

deg(v) +O

�

deg(v)

(D�2)=(D�1)

�

:

Now surfae

i

(v) � deg(v)=2D, so

aspet ratio (v) �

1

D

deg(v) +O

�

deg(v)

(D�2)=(D�1)

�

1

2D

deg(v)

�

2 deg(v) +O

�

deg(v)

(D�2)=(D�1)

�

deg(v)

� 2 + o (deg(v)) :

Hene the aspet ratio of v is 2 + o (deg(v)). The volume bound follows immediately

from Theorem 7.2.

Applying Algorithm D-Dimensional General Position Box-Drawing, whih

takes O(mn�) time, is the most time-onsuming step of the algorithm. So Algorithm

Fixed General Position D-Dimensional Box-Drawing takes O(mn�) time.

7.2.3 Balaned Vertex Layout Drawings

We initially show that the omplete graph provides a lower bound for the problem

D-DIMENSIONAL GENERAL POSITION VERTEX LAYOUT.
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Lemma 7.9. In any D-dimensional general position vertex layout of K

n

there is a

vertex v with

(v) �

deg(v)

2

:

Proof. By Lemma 4.1, the total ost of a D-dimensional layout of K

n

is

X

v

1

D

X

i



i

(v) =

1

D

X

i

X

v



i

(v) =

1

D

X

i

�

n

2

=2

�

=

�

n

2

2

�

:

So even if eah vertex has the same ost, there exists a vertex v with

(v) �

�

n

2

=2

�

n

=

8

>

<

>

:

n=2; if n is even;

(n

2

� 1)=2n; if n is odd.

>

n� 1

2

=

deg(v)

2

:

The following algorithm provides a tight upper bound for the problem

D-DIMENSIONAL GENERAL POSITION VERTEX LAYOUT. It is based on the

algorithm for determining balaned 2-D general position vertex layouts presented in

Chapter 6.

Algorithm 7.5. Balaned D-Dimensional General Position Vertex Layout

Input: graph G and positive integer D.

Output: D-dimensional general position vertex layout of G.

1. Determine a 2-D general position vertex layout, represented by X- and Y - ver-

tex orderings, with Algorithm 6.4 Balaned 2-D General Position Vertex

Layout.

2. Set the i-ordering of the vertex layout to be the X-ordering for odd i, 1 � i � D.

3. Set the i-ordering of the vertex layout to be the Y -ordering for even i, 1 � i � D.
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Theorem 7.4. The algorithm BalanedD-Dimensional General Position Ver-

tex Layout determines a D-dimensional general position vertex layout of G in

O(D(m+ n)) time suh that for eah vertex v,

(v) � 1 +

dD=2e

D

deg(v) :

Proof. For eah vertex v and eah ordering i, 1 � i � D, the ost 

i

(v) � s(v) + 1 if i

is odd, and 

i

(v) � p(v) + 1 if i is even. So

(v) �

1

D

��

D

2

�

(s(v) + 1) +

�

D

2

�

(p(v) + 1)

�

=

1

D

��

D

2

�

deg(v) +

��

D

2

�

�

�

D

2

��

s(v) +D

�

�

1

D

��

D

2

�

deg(v) +D

�

= 1 +

dD=2e

D

deg(v) :

By Theorem 6.2, a balaned 2-D vertex layout an be determined in O(m+ n) time,

so algorithmBalaned D-Dimensional General Position Vertex Layout takes

O(D(m+ n)) time.

For a D-dimensional general position vertex layout of K

n

the upper bound provided

by Theorem 7.4 is

(v) � 1 +

dD=2e

D

deg(v) =

8

>

<

>

:

(n+ 1)=2; if D is even;

1 + (n� 1)(D + 1)=2D; if D is odd.

For even D, the di�erene between this upper bound and the lower bound of

Lemma 7.9 is at most 1. For odd D, the di�erene between the upper and lower

bounds is at least n=2D. It is an open problem to establish tight bounds on max

v

(v)

in the ase of odd D. We now derive results for general position orthogonal graph

drawing based on a balaned vertex layout.

Algorithm 7.6. Balaned General Position D-Dimensional Box-Drawing

Input: graph G.

Output: D-dimensional orthogonal box-drawing of G.
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1. Determine a general position vertex layout with the Balaned D-Dimensional

General Position Vertex Layout algorithm.

2. Determine an ar-routing with Algorithm 7.3 D-Dimensional General Posi-

tion Ar-Routing.

3. Apply Algorithm 7.1 D-Dimensional General Position Box-Drawing.

Theorem 7.5. The algorithm Balaned General Position D-Dimensional Box-

Drawing determines a D-dimensional orthogonal box-drawing of G in O(mn�) time

suh that:

� Eah edge route has D � 1 bends.

� Eah vertex is 3=2-degree-restrited if D is even,

and (3=2 + 1=2D)-degree-restrited if D is odd.

� The aspet ratio of eah vertex v is 2 + o (deg(v)).

� The bounding box volume is O

�

�

n

D�2

m

�

D=(D�1)

�

.

Proof. By Lemma 7.8, and sine in a D-dimensional balaned vertex layout (Theo-

rem 7.4), for every vertex v, (v) � 1 +

dD=2e

D

deg(v), it follows that

2

X

i

M

i

(v) �

�

1 +

dD=2e

D

�

deg(v) +O(1) :

By (7.17),

surfae (v) � 2

X

i

M

i

+

�

2 +

O(1)

deg(v)

�

2(D�2)

 

X

i

M

i

!

(D�2)=(D�1)

:

So surfae (v) is at most

�

1 +

dD=2e

D

�

deg(v) +

�

2 +

O(1)

deg(v)

�

2(D�2)

��

1 +

dD=2e

D

�

deg(v)

�

(D�2)=(D�1)

�

�

1 +

dD=2e

D

�

deg(v) + O

�

deg(v)

(D�2)=(D�1)

�

=

�

1 +

dD=2e

D

�

deg(v) + o (deg(v)) :

So v is 3=2-degree-restrited if D is even, and 3=2+1=2D-degree-restrited if D is odd.

The bounding box volume, aspet ratio and time bounds follow from Theorem 7.3.
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7.2.4 Diagonal Vertex Layout Drawings

We now present two algorithms for produing orthogonal box-drawings with a diagonal

general position vertex layout.

Algorithm 7.7. Diagonal General Position D-Dimensional Cube-Drawing

Input: graph G.

Output: D-dimensional orthogonal hyperube-drawing of G.

1. Determine aD-dimensional diagonal vertex layout of G with orresponding vertex

ordering determined by Algorithm 4.1 Median Plaement Ordering (with

insertion ordering determined by the Algorithm 4.2 Insertion Ordering).

2. Determine an ar-routing with Algorithm 7.3 D-Dimensional General Posi-

tion Ar-Routing.

3. Apply Algorithm 7.1 D-Dimensional General Position Box-Drawing.

Theorem 7.6. The algorithm Diagonal General Position D-Dimensional Cube-

Drawing determines a D-dimensional hyperube-drawing in O(D(m+ n)) time suh

that:

� Eah edge route has D � 1 bends.

� Eah vertex is 2-degree-restrited.

� The bounding box volume is at most

 

n+

�

n

D�2

2D

�

3m+

n

2

�

�

1=(D�1)

!

D

Proof. By Theorem 7.3 for arbitrary D-dimensional general position vertex layouts,

eah vertex is 2-degree-restrited.

For eah vertex v and dimension i, 1 � i � D, when applying the algorithm D-

Dimensional General Position Box-Drawing,

�

i

(v) =

&

�

max fs(v); p(v)g

D

�

1=(D�1)

'

:
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Hene v is a ube, and for eah dimension i, the side length of the bounding box is

X

v

�

i

(v) =

X

v

&

�

max fs(v); p(v)g

D

�

1=(D�1)

'

< n+

X

v

�

max fs(v); p(v)g

D

�

1=(D�1)

� n+

 

n

D�2

X

v

max fs(v); p(v)g

D

!

1=(D�1)

(by Cauhy-Shwarz)

� n+

�

n

D�2

D

�

3m

2

+

n

4

��

1=(D�1)

(by Theorem 4.2)

The result for the bounding box volume follows.

For a diagonal layout, it is easily seen that there are no edge rossings (see Se-

tion 7.1.3), so there is no need to apply Algorithm Box-Drawing Remove Edge

Crossings. Hene the algorithm Diagonal General Position D-Dimensional

Cube-Drawing takes O(D(m+ n)) time.

We now present an algorithm for produingD-dimensional orthogonal line-drawings

using a diagonal layout.

Algorithm 7.8. Diagonal General Position D-Dimensional Line-Drawing

Input: graph G.

Output: D-dimensional orthogonal line-drawing of G.

1. Determine a diagonal D-dimensional general position vertex layout of G with the

orresponding vertex ordering determined by Algorithm 4.1Median Plaement

Ordering (with insertion ordering determined by Algorithm 4.2 Insertion Or-

dering).

2. Determine a (D � 1)-dimensional ar-routing with Algorithm 7.3 General Po-

sition Ar-Routing.

3. Representing eah vertex by a D-axis-parallel line, apply Algorithm 7.1

D-Dimensional General Position Box-Drawing.
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Theorem 7.7. The algorithm Diagonal General Position D-Dimensional Line-

Drawing determines a D-dimensional orthogonal line-drawing of G in O(D(m+ n))

time suh that:

� Eah edge route has D � 1 bends.

� Eah vertex has aspet ratio at most deg(v)=(D � 1) +O(1).

� Eah vertex is a 2-degree-restrited D-axis parallel line.

� The bounding box volume is at most

n

D�1

�

(2D � 3)n+ 3m

2(D � 1)

�

Proof. This proof is similar to that of Theorem 7.6. Algorithm D-Dimensional Gen-

eral Position Ar-Routing determines a (D�1)-dimensional ar-routing suh that,

for eah i, 1 � i � D � 1,

M

i

(v) �

�

max fs(v); p(v)g

D � 1

�

:

We represent eah vertex v by a line of length

�

D

(v) =

�

max fs(v); p(v)g

D � 1

�

�

max fs(v); p(v)g +D � 2

D � 1

:

The aspet ratio bound follows, and

surfae (v) = 2 ((D � 1)�

D

(v) + 1) � 2 (max fs(v); p(v)g +D � 1) :

Sine max fs(v); p(v)g � deg(v), the drawing is 2-degree-restrited and has height

X

v

�

D

(v) �

X

v

max fs(v); p(v)g +D � 2

D � 1

�

�

D � 2

D � 1

�

n+

6m+ n

4(D � 1)

(by Theorem 4.2)

�

4(D � 2)n+ 6m+ n

4(D � 1)

�

(4D � 7)n+ 6m

4(D � 1)

:
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The bounding box volume bound follows.

As was the ase for ube-drawings with a diagonal layout, there is no need to

apply Algorithm 7.2 Box-Drawing Remove Edge Crossings. Hene the algorithm

Diagonal General Position D-Dimensional Cube-Drawing takes O(D(m+ n))

time.

7.3 3-D Routing-Based Algorithm

In this setion we desribe a routing-based approah to 3-D orthogonal box-drawing

in the general position model. The following algorithm determines a general position

vertex layout with respet to a predetermined ar-routing. Reall that for a given ar-

routing of a graph G, for eah dimension i 2 fX;Y;Zg, the subgraph of

 !

G indued by

the ars oloured i is denoted

 !

G [i℄.

Algorithm 7.9. 3-D General Position Routing-Based Layout

Input: � graph G

� 3-D general position ar-routing of A(G)

Output: 3-D general position vertex layout of V (G).

for i 2 fX;Y;Zg do

Determine the i-ordering

by applying Algorithm 4.1 Median Plaement Ordering to

 !

G [i℄.

end-for

If

 !

G [i℄ is ayli for eah dimension i 2 fX;Y;Zg, we say the ar-routing is ayli,

and by Theorem 4.1, Algorithm 4.1 Median Plaement Ordering determines min-

imum ost orderings. We now desribe algorithms for �nding 2- and 3-olour ayli

ar-routings.



CHAPTER 7. GENERAL POSITION BOX-DRAWING 172

7.3.1 Ayli Ar-Routing

To determine a 2-olour ayli ar-routing of G, start with a vertex ordering < of

G, and for eah edge vw 2 E(G) (v < w), olour the ar

�!

vw with olour X and

�!

wv

with olour Y . Clearly

 !

G [X℄ and

 !

G [Y ℄ are both ayli. This approah is used

by Biedl and Kaufmann [30℄ for 2-D orthogonal graph drawing. Biedl [27℄ uses this

2-olour ayli ar-routing method to determine the X- and Y -orderings of a 3-D

general position vertex layout; eah vertex is then represented by a line parallel to the

Z-axis. The 3-D drawings produed have small volume (O

�

n

2

m

�

) but are inherently

two-dimensional. The following algorithm determines a 3-olour ayli ar-routing

and is illustrated in Figure 7.6.

Algorithm 7.10. 3-Colour Ayli Ar-Routing

Input: A graph G.

Output: A 3-olour ayli ar-routing of G.

Determine a 1-balaned vertex ordering < of G using

Algorithm 4.3 1-Balaned Vertex Ordering.

for eah vertex v 2 V (G) do

for k = 1; 2; : : : ; b(v)=2 do

assign the ar

�!

vv

k

the olour Z

end-for

end-for

for eah unoloured ar

�!

vw do

if v < w then assign to

�!

vw the olour X else assign to

�!

vw the olour Y

end-for

Lemma 7.10. Algorithm 3-Colour Ayli Ar-Routing determines a 3-olour

routing of G.

Proof. Obviously if

�!

vw is oloured X (respetively, Y ) then the reversal ar

�!

wv annot

be oloured X (Y ). If

�!

vw is oloured Z then

�!

wv annot also be oloured Z, as otherwise
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Z

X

Y

v

v

1

v

k

v

k+1

v

s(v)

v

�1

v

�p(v)

b b b b b b b

Figure 7.6: Routing ars at a positive vertex v; k = b(v)=2.

w would be opposite to v, and v ould move past w under rule M1. By Lemma 4.5,

reversal ars are oloured di�erently and the olouring is an ar-routing. Clearly

 !

G [X℄

and

 !

G [Y ℄ are ayli. A positive vertex v annot have an inoming ar

�!

wv 2

 !

G [Z℄

with v < w as otherwise w ould move past v under rule M1 (see Corollary 4.2).

Similarly for negative verties. Hene

 !

G [Z℄ is also ayli.

Algorithm 7.11. Routing-Based 3-D General Position Box-Drawing

Input: graph G.

Output: 3-D orthogonal box-drawing of G.

1. Determine a 3-D ar-routing of A(G) with Algorithm 7.10 3-Colour Ayli

Routing.

2. Determine a layout with Algorithm 7.9 3-D General Position Routing-

Based Layout.

3. Apply Algorithm 7.1 3-Dimensional General Position Box-Drawing.

Theorem 7.8. The algorithm Routing-Based 3-D General Position Box-

Drawing determines a 3-D orthogonal box-drawing in O(mn�) time suh that

� Eah edge route has 2 bends.

� Eah vertex v is 2-degree-restrited and has aspet ratio at most deg(v)=4.

� The bounding box volume is

�(G)

4

�

n

�

2

3

m+O(1) n

��

3=2



CHAPTER 7. GENERAL POSITION BOX-DRAWING 174

Proof. For a positive vertex v,

deg

 !

G [Z℄

(v) =

�

(v)

2

�

; deg

 !

G [Y ℄

(v) = minfs(v); p(v)g ; and deg

 !

G [X℄

(v) =

�

deg(v)

2

�

:

For eah i 2 fX;Y;Zg, sine

 !

G [X℄ is ayli, by Theorem 4.1, in eah of the

orderings of

 !

G [X℄,

 !

G [Y ℄ and

 !

G [Z℄ the ost 

i

(v) � 1, for every vertex v.

M

X

(v) �

�

1

2

�

deg(v)

2

��

=

deg(v)

4

+O(1) ;

M

Y

(v) �

�

min fs(v); p(v)g

2

�

=

min fs(v); p(v)g

2

+O(1) ;

M

Z

(v) �

�

1

2

�

(v)

2

��

=

(v)

4

+O(1) :

So, for eah positive vertex v and similarly for negative verties,

M

X

(v) +M

Y

(v) +M

Z

(v)

�

deg(v)

4

+

min fs(v); p(v)g

2

+

(v)

4

+O(1)

�

deg(v) + 2min fs(v); p(v)g + deg(v)� 2min fs(v); p(v)g

4

+O(1) (by (4.1))

=

deg(v)

2

+O(1) :

By Lemma 7.3,

surfae (v) � 2 deg(v) +O(1) ;

and v is 2-degree-restrited. A vertex v has maximum aspet ratio if, in the loally

balaned vertex ordering, (v) = 0, s(v) = 0 or p(v) = 0, in whih ase v is a line of

length deg(v)=4. Applying Theorem 7.2 we have

volume ( bounding box ) �

�(G)

4

�

n

�

2

3

m+

O(1)

6

n

��

3=2

Applying Algorithm D-Dimensional General Position Box-Drawing, whih

takes O(mn�) time, is the most time-onsuming step of the algorithm. So Algorithm

Routing-Based 3-D General Position Box-Drawing takes O(mn�) time.

The drawings produed by the above algorithm have smaller aspet ratio, on av-

erage, than those produed by the algorithm based on a 2-olour ayli routing [27℄.

Furthermore, edges an be routed on all sides of a vertex. Hene the drawings are

orientation-independent.
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Chapter 8

Equitable Edge-Colouring

In this hapter we present and analyse a greedy algorithm for determining

a (non-proper) edge-olouring of a multigraph suh that for eah vertex the

olours are evenly distributed about the edges inident to that vertex. Suh

a olouring is alled an equitable edge-olouring. This algorithm is used

in subsequent graph drawing algorithms presented in Chapters 9 and 10 to

assign ports to edge routes.

8.1 Simple Graphs

We initially reall a result due to Hilton and de Werra [117℄ onerning equitable edge-

olourings of graphs. An edge-olouring of a graph G with k olours is said to be

equitable if for eah vertex v 2 V (G) and eah pair of olours i and j, the number of

edges inident to v oloured i and j di�er by at most one.

Theorem 8.1 ([117℄). If k � 2 and G is a graph suh that no vertex degree is a

multiple of k, then G has an equitable edge-olouring with k olours.

We have the following result.

Corollary 8.1. If k � 2 and G is a graph, then there is an edge-olouring of G with k

olours suh that for eah vertex v 2 V (G) and olour i, the number of edges inident

with v oloured i is at most d(deg(v) + 1)=ke.

176
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Proof. For eah vertex v 2 V (G) with degree a multiple of k, add a new vertex v

0

and

a new edge vv

0

to G to reate a graph G

0

. G

0

has no vertex with degree a multiple

of k, so G

0

has an equitable edge-olouring with k olours. At eah vertex v 2 V (G

0

)

and olour i the number of edges inident to v oloured i is at most ddeg

G

0

(v)=ke �

d(deg

G

(v) + 1)=ke.

8.2 Multigraphs

The result of Hilton and de Werra is dependent on the graph being simple. We now

present a greedy heuristi for edge-olouring multigraphs with k olours. Given a partial

edge-olouring ol : E(G)! f1; 2; : : : ; kg of a multigraph G we de�ne

N(v) = j fvw 2 E(G) : vw is olouredg j

M(v) = max

i

j fvw 2 E(G) : ol(vw) = ig j

C(v) = fi 2 f1; 2; : : : ; kg :M(v) = j fvw 2 E(G) : ol(vw) = ig jg :

M(v) is the maximum number of edges inident with v assigned the same olour,

and C(v) is the set of olour(s) most abundant at v.

Algorithm 8.1. Quasi-Equitable Edge-Colour

Input: multigraph G, positive integer k.

Output: edge-olouring of G with at most k olours.

for eah edge vw 2 E(G) do

if C(v) [ C(w) 6= f1; 2; : : : ; kg then Choose i 2 f1; 2; : : : ; kg n (C(v) [ C(w)).

else if C(v) = C(w) then Choose i 2 f1; 2; : : : ; kg.

else if jC(v)j � jC(w)j then Choose i 2 C(v) n C(w).

else (jC(w)j > jC(v)j) Choose i 2 C(w) n C(v).

Set the olour of vw to be i.

end-for
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Theorem 8.2. The algorithm Quasi-Equitable Edge-Colour will determine, in

O

�

m

2

�

time, a edge k-olouring of a multigraph G, suh that for every vertex v 2 V (G),

M(v) �

2 deg(v)

k

+ 1 :

Proof. Firstly, observe that

N(v) � jC(v)j �M(v) : (8.1)

At eah step of the algorithm the only vertex u for whihM(u) an possibly inrease

is v and w. So, for eah vertex v we apply indution onN(v) with the following indutive

hypothesis.

if N(v) � t then M(v) �

2N(v)

k

+ 1 : (8.2)

The basis for the indution is trivial. Now, suppose that for N(v) = t, M(v) �

2N(v)=k + 1 and the next edge inident to v to be oloured is vw.

In the �rst ase of the algorithm vw is oloured with a olour not in C(v), so M(v)

does not inrease. By (8.2) for N(v) = t, (8.2) holds for N(v) = t+ 1.

In the seond ase, C(v) = C(w) = f1; 2; : : : ; kg. By (8.1), N(v) � jC(v)j �M(v) =

k �M(v). So M(v) � N(v)=k � 2(N(v) + 1)=k + 1, and (8.2) holds for N(v) = t+ 1.

In the third ase, C(v)[C(w) = f1; 2; : : : ; kg and jC(v)j � jC(w)j. So jC(v)j � k=2.

By (8.1) N(v) � kM(v)=2, so M(v) � 2N(v)=k, and (8.2) holds for N(v) = t+ 1.

In the fourth ase, the edge vw is oloured with a olour not in C(v), so M(v) does

not inrease. By (8.2) for N(v) = t, (8.2) holds for N(v) = t+ 1.

Upon termination of the algorithm N(v) = deg(v), so for every vertex v 2 V (G),

M(v) � 2 deg(v)=k + 1.

We now analyse the time omplexity of the algorithm. It is easily seen that

the iteration of the algorithm orresponding to the olouring of the edge vw takes

O(deg(v) + deg(w) + k) time. So the algorithm takes

X

vw2E(G)

O(deg(v) + deg(w) + k) = O

0

�

mk +

X

v2V (G)

deg(v)

2

1

A

time. We now prove that for non-negative numbers d

1

; d

2

; : : : ; d

n

,

n

X

i=1

d

2

i

�

 

n

X

i=1

d

i

!

2

: (8.3)
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The result will follow. We proeed by indution on n. For n = 1, equality holds in

(8.3). Assume that (8.3) holds for all n

0

< n. Then

n

X

i=1

d

2

i

=

n�1

X

i=1

d

2

i

+ d

2

n

�

 

n�1

X

i=1

d

i

!

2

+ d

2

n

(by indution)

�

 

n�1

X

i=1

d

i

!

2

+ d

2

n

+ 2d

n

 

n�1

X

i=1

d

i

!

=

  

n�1

X

i=1

d

i

!

+ d

n

!

2

=

 

n

X

i=1

d

i

!

2

So the time taken by the algorithm is

O

0

�

mk +

 

X

v

deg(v)

!

2

1

A

= O

�

mk + 4m

2

�

:

If k > m then trivially there is an edge m-olouring of G with the required properties,

so we an assume that k � m. Hene the algorithm takes O

�

m

2

�

time.

Finally, we present a well-known algorithm for the ase of k = 2, whih provides

an improvement on the previous result. This tehnique has been employed for graph

drawing in [30, 31℄ for example.

Algorithm 8.2. 2-Edge-Colour

Input: multigraph G.

Output: edge 2-olouring of G.

1. Pair the odd degree verties of G, and add an edge to G between the paired

verties. All verties now have even degree.

2. Follow an Eulerian tour of G, and olour the edges alternately with di�erent

olours.
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Theorem 8.3. The algorithm 2-Edge-Colour will, in O(m) time, determine a edge

2-olouring of a multigraph G, suh that for every vertex v 2 V (G),

M(v) �

�

deg(v)

2

�

+ 1 :

Proof. In any graph there is an even number of verties with odd degree, so the �rst

step of the algorithm is valid. An undireted graph has an Eulerian tour if and only

if every vertex has even degree. See Even [90℄ for an algorithm for �nding an Eulerian

tour in O(m) time.

At eah vertex v, there is at most one `extra' edge inident with v added in Step 1.

If the Eulerian tour has odd length then the �rst and last edges in the tour will reeive

the same olour. Therefore, at every vertex v, there will be at least ddeg(v)=2e � 1

pairs of edges inident with v reeiving di�erent olours. The remaining (� 2) edges

inident to v may reeive the same olour, so the maximum number of edges inident

with v and reeiving the same olour is ddeg(v)=2e + 1.



Chapter 9

The Coplanar Vertex Layout

Model for Three-Dimensional

Orthogonal Graph Drawing

In this hapter we present algorithms for produing 3-D orthogonal draw-

ings in the oplanar vertex layout model; i.e., there exists a single grid-

plane interseting every vertex. We present three algorithms, for produing

(1) 1-bend line-drawings, (2) drawings with optimal volume, and (3) ube-

drawings with optimal volume. A disadvantage of this model is that the

drawings produed are inherently orientation-dependent.

In this hapter we present algorithms for determining oplanar 3-D orthogonal

drawings; i.e., there exists a grid-plane interseting every vertex. Setion 9.1 desribes

an algorithm whih represents the verties by Z-lines positioned in a 2-D diagonal, and

produes 1-bend line-drawings based on a book embedding of the graph.

The algorithms in the remainder of the hapter are a produt of joint researh with

Therese Biedl and Torsten Thiele [34℄. In Setion 9.2 we present an algorithm whih

positions the verties in O(

p

n)�O(

p

n) grid, and produes line-drawings with optimal

volume for regular graphs, and four bends per edge route. A variation of this algorithm

produes 3-bend drawings with an inrease in the volume. Our algorithm presented in

Setion 9.3 positions the verties in a O

�

p

m+ n

�

�O

�

p

m+ n

�

grid, and determines

181
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degree-restrited ube-drawings with O

�

(m+ n)

3=2

�

volume, whih is optimal. This

algorithm, whih an be onsidered a generalisation of the Compat algorithms of

Eades et al. [86, 87℄ for 3-D point-drawing, is an improvement on the line-drawing

algorithm of Wood [223℄.

9.1 1-Bend Box-Drawing Algorithm

Biedl et al. [32, 33℄ onstrut 3-D orthogonal drawings of K

n

, and hene for any simple

graph, with O

�

n

3

�

volume and one bend per edge route. This onstrution, alled the

Lifting-Edges algorithm by Biedl [27℄, represents the verties as Z-lines of length

n positioned in a 2-D diagonal layout. Eah edge is routed with one bend in some

Z-plane. As mentioned in [32, 33℄, the assignment of Z-planes to edge routes is losely

related to the assignment of pages to edges in book embeddings. The following algo-

rithm, illustrated in Figure 9.1, exploits a book embedding to onstrut 3-D orthogonal

drawings with one bend per edge route.

Algorithm 9.1. Coplanar 1-Bend Drawing

Input: n-vertex m-edge multigraph G with genus g.

Output: 3-D orthogonal drawing of G.

1. Find a book-embedding of G using the algorithm of Malitz [150℄ (see Setion 1.3).

Suppose (v

1

; v

2

; : : : ; v

n

) is the spine ordering and page : E(G) ! f1; 2; : : : ; Pg is

the page numbering with P = O

�

p

g

�

.

2. Orient eah edge v

i

v

j

2 E(G) from left to right in the ordering (v

1

; v

2

; : : : ; v

n

);

i.e., if i < j then the edge v

i

v

j

is direted from v

i

to v

j

.

3. Denote by G

R

the subgraph of G onsisting of the edges in any page p 2

f1; 2; : : : ; dP=2eg, and by G

L

the subgraph of G onsisting of the edges in the

remaining pages. (Edges in G

R

will be routed through grid-points (x; y; z) with

x � y, and edges in G

L

will be routed through grid-points (x; y; z) with y � x.)

4. Determine edge-olourings of G

R

and of G

L

, eah with d2m=ne olours, us-

ing Algorithm 8.1 Quasi-Equitable Edge-Colour. Suppose ol : E(G) !
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>

>

>

>
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ol = d2m=ne

ol = 1

ol = 2

ol = d2m=ne

Figure 9.1: Coplanar 1-bend drawing with a diagonal vertex layout.

f1; 2; : : : ; d2m=neg is the resulting edge-olouring of G.

5. For eah vertex v 2 V (G), suppose M

+R

(v) (respetively, M

+L

(v)) is the max-

imum number of outgoing edges

�!

vw 2 E(G

R

) (

�!

vw 2 E(G

L

)) on the same page

and reeiving the same olour. Similarly, M

�R

(v) (respetively, M

�L

(v)) is the

maximum number of inoming edges

�!

wv 2 E(G

R

) (

�!

wv 2 E(G

L

)) on the same

page and reeiving the same olour.

6. For eah vertex v

i

2 V (G), set

M

X

(v

i

) = max

�

M

+L

(v

i

);M

�R

(v

i

)

	

, and

M

Y

(v

i

) = max

�

M

+R

(v

i

);M

�L

(v

i

)

	

:
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Represent v

i

by the

M

X

(v

i

)�M

Y

(v

i

)�

�

P

2

��

2m

n

�

box with maximum orner at

0

�

X

j�i

M

X

(v

j

);

X

j�i

M

Y

(v

j

);

�

P

2

��

2m

n

�

1

A

:

(Note that for verties v with degree at most the average degree

2m

n

, M

X

(v) and

M

Y

(v) will probably be 1, and hene v will be represented by a line.)

7. For eah vertex v 2 V (G), for eah page p 2 f1; 2; : : : ; dP=2eg, and for eah olour

 2 f1; 2; : : : ; d2m=neg, suppose f

�!

vw

1

;

�!

vw

2

; : : : ;

�!

vw

k

g are the outgoing edges at v

in G

R

whih are oloured  and appear in page p, where w

1

� w

2

� � � � � w

k

in

the spine ordering. As illustrated in Figure 9.1, assign the X

+

-ports at v with

Z-oordinates of (p � 1) d2m=ne +  to these edges, suh that, if i < j then the

Y -oordinate of the port assigned to

�!

vw

i

is less than the Y -oordinate of the port

assigned to

�!

vw

j

. Now suppose f

��!

w

1

v;

��!

w

2

v; : : : ;

��!

w

k

vg are the inoming edges at v in

G

R

whih are oloured  and appear in page p, where w

k

� w

k�1

� � � � � w

1

in the

spine ordering (taking are to onsistently order parallel edges fvwg at v and w;

see Figure 9.1). Assign the Y

�

-ports at v with Z-oordinates of (p�1) d2m=ne+

to these edges, suh that, if i < j then the X-oordinate of the port assigned to

�!

w

i

v is less than the X-oordinate of the port assigned to

�!

w

j

v.

8. For eah edge

�!

vw 2 E(G

R

), if

�!

vw has been assigned ports at v and w with

oordinates of (x

v

; y

v

; z

0

) and (x

w

; y

w

; z

0

) respetively, then route

�!

vw with one

bend as follows:

�

x

v

; y

v

; z

0

�

!

�

x

w

; y

v

; z

0

�

!

�

x

w

; y

w

; z

0

�

9. In an analogous manner to the ase for edges in G

R

, route edges

�!

vw 2 E(G

L

)

using Y

+

-ports at v and X

�

-ports at w, as illustrated in Figure 9.1.
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Theorem 9.1. The algorithm Coplanar 1-Bend Drawing determines an orthog-

onal box-drawing of G with one bend per edge and O

�

nm

p

g

�

volume, where g is the

genus of G.

Proof. By onstrution eah edge has one bend, and edge routes are assigned unique

ports, so two X-segments do not interset, and two Y -segments do not interset. An

X-segment and a Y -segment an only interset if they have the same Z-oordinate.

Two edges have the same Z-oordinate if and only if they are on the same page of the

book embedding and they reeive the same olour in Step 4. Hene the X-segment

and the Y -segment of edges on di�erent pages of the book embedding or reeiving a

di�erent olours, will not interset. By the method used in Step 7 for assigning ports

to edges on the same page and reeiving the same olour, suh edge routes will not

interset. Hene no two edges routes interset.

In the edge-olouring of G

R

, the maximum number of edges inident to a vertex

v reeiving the same olour, by Theorem 8.2, is at most 2 deg

G

R

(v)= d2m=ne + 1 �

ndeg

G

(v)=m + 1. So eah of M

+R

(v), M

�R

(v), M

+L

(v) and M

�L

(v) is at most

ndeg

G

(v)=m+1, and heneM

X

(v) andM

Y

(v) are at most ndeg

G

(v)=m+1. The width

and depth of the bounding box is therefore at most

P

v

(ndeg

G

(v)=m + 1) = 3n. The

height of the bounding box is dP=2e d2m=ne = O

�

m

p

g=n

�

. So the bounding box has

volume O

�

nm

p

g

�

.

Note that smaller drawings an be produed in pratie by the following modi�-

ation to algorithm Coplanar 1-Bend Drawing. For eah page p, determine an

edge-olouring (still with d2m=ne olours) of the subgraph of G onsisting of the edges

in page p suh that, for eah vertex v, there at at most deg(v)n=m edges inident to v

reeiving the same olour. Then we need only alloate as many layers for the routing

of edges in page p, as there are used olours.

Sine the genus of a multigraph is the same as the genus of the underlying simple

graph, and sine the genus of a graph is at most m, our volume bound is

O

�

min

�

n

2

m;nm

3=2

	�

. Note that, for the omplete graph K

n

, this volume bound

is O

�

n

4

�

, whih is more than the volume of the onstrution of K

n

due to Biedl et al.

[32, 33℄. For sparse graphs with m = O

�

n

4=3

�

the above algorithm produes drawings
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with less volume than the K

n

onstrution. The following open problem is of interest.

Open Problem 9.1. Does every graph have an orthogonal box-drawing with one bend

per edge and O

�

n

2

p

m

�

volume?

9.2 Optimal Volume Line-Drawing Algorithm

The following algorithm for produing oplanar orthogonal line-drawings represents

the verties by Z-lines in a O(

p

n)�O(

p

n) grid. Edges are routed with four bends in

layers, eah onsisting of two Z-planes, as illustrated in Figure 9.2.

X

Y

Z

Figure 9.2: 4-bend edge routes.

Algorithm 9.2. Optimal Volume Line-Drawing

Input: n-vertex m-edge multigraph G with maximum degree �.

Output: 3-D orthogonal line-drawing of G.

1. Assign to eah vertex v 2 V (G) a unique pair

(x

v

; y

v

) 2

�

1; 2; : : : ;

�

p

n

�	

�

�

1; 2; : : : ;

�

p

n

�	

:
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2. Pair the odd degree verties of G and add an edge between the paired verties.

Orient the edges of G by following an Eulerian tour of G. Remove the inserted

edges.

3. Construt a graph H with V (H) = E(G), and add an edge to H between the

verties orresponding to oriented edges

�!

vw and

�!

xy if v is in the same olumn as

x, or w is in the same row as y.

4. Vertex-olour the graph H using the algorithm Greedy Vertex-Colour with

olours f0; 1; : : : ;�(H)g (see Setion 2.2). For eah edge vw 2 E(G), if the

vertex of H orresponding to vw is oloured i 2 f0; 1; : : : ;�(H)g then set the

height h(vw) 2i. Suppose M = max

vw2E(G)

h(vw) + 1.

5. Represent eah vertex v by the line

�

2x

v

; 2y

v

; 0

�

�!

�

2x

v

; 2y

v

;M

�

:

6. For eah oriented edge

�!

vw 2 E(G), onstrut the following edge route for vw, as

illustrated in Figure 9.2.

(2x

v

; 2y

v

; h(

�!

vw))! (2x

v

+ 1; 2y

v

; h(

�!

vw))! (2x

v

+ 1; 2y

v

+ 1; h(

�!

vw))!

(2x

v

+ 1; 2y

v

+ 1; h(

�!

vw) + 1)! (2x

w

; 2y

v

+ 1; h(

�!

vw) + 1)! (2x

w

; 2y

w

; h(

�!

vw) + 1)

Theorem 9.2. The algorithm Optimal Volume Line-Drawing determines a 3-D

orthogonal line-drawing of G in O(m�

p

n) time with O

�

�n

3=2

�

volume and four bends

per edge route.

Proof. In eah edge route the �rst, third and �fth segments have unit length. An edge

rossing involving a unit-length segment must also involve one of the adjaent segments

in the edge route, so to show that the drawing is rossing-free, we need only onsider

potential intersetions between the seond and the fourth segments of the edge routes.

These segments are parallel to the Y - and X-axes, respetively. Suh Y -segments have

even Z-oordinate, and suh X-segments have odd Z-oordinate, so an X-segment does

not interset a Y -segment. For two X-segments to interset, they must have the same
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height and be routed in the same row. Sine oriented edges destined for verties in

the same row reeive di�erent heights, no two X-segments interset. Similarly, for two

Y -segments to interset, they must have the same height and be routed in the same

olumn. Sine oriented edges starting at verties in the same olumn reeive di�erent

heights, no two Y -segments interset.

The vertex in H orresponding to an edge

�!

vw 2 E(G) has degree

X

x in row(v)

deg(x) +

X

y in row(w)

deg(y) :

So the maximum degree of H is at most 2� d

p

ne. Hene the maximum height of an

edge route is 4� d

p

ne+ 1 = O(�

p

n). Sine the width and depth of the drawing are

both 2 d

p

ne, the bounding box has O

�

�n

3=2

�

volume.

The greedy vertex-olouring of H takes O(jE(H)j) time. Sine jV (H)j = m and

�(H) � 2� d

p

ne, the algorithm takes O(m�

p

n) time.

For regular graphs, the above algorithm produes drawings with O(m

p

n) volume,

whih by Theorem 3.2 is optimal for any 3-D orthogonal graph drawing. By drawing

verties of large degree separately, and using a partiular layout of the remaining ver-

ties, a modi�ation of the above algorithm ahieves this optimal bound for all graphs

(see [34℄).

If we eliminate the middle segment from eah edge route used in Algorithm 9.2

Optimal Volume Line-Drawing, and assign eah edge a unique height then we

obtain the following result.

Theorem 9.3. A 3-D orthogonal line-drawing of a multigraph G an be determined in

O(m) time with O(nm) volume and three bends per edge route.

This algorithm is partiularly appropriate for multilayer VLSI as there are no ver-

tial edge segments, whih are alled ross-uts; see [2℄.

9.3 Optimal Volume Cube-Drawing Algorithm

In the following algorithm for produing oplanar orthogonal drawings, verties are

initially represented by squares in the (Z = 0)-plane, and their positions are determined
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by an O

�

p

m+ n

�

�O

�

p

m+ n

�

square-paking. Verties are then extended in the Z

dimension to form ubes, and edges are routed either above or below the verties.

By Theorem 3.2, the bounding box volume of O

�

(m+ n)

3=2

�

is optimal for degree-

restrited orthogonal box-drawings with bounded aspet ratio (assuming m = 
(n)).

Algorithm 9.3. Optimal Volume Cube-Drawing

Input: n-vertex m-edge multigraph G.

Output: 3-D orthogonal ube-drawing of G.

1. Determine an edge 2-olouring of G using Algorithm 8.2 2-Edge-Colour. Sup-

pose the indued subgraphs are G

+

and G

�

, and for eah vertex v 2 V (G) set

M(v) = max fdeg

G

+

(v);deg

G

�

(v)g :

Orient the edges of G by following the Eulerian tour used in Algorithm 8.2.

2. For eah vertex v 2 V (G), initially represent v by a square S

v

of size

�

2

l

p

M(v)

m

+ 2

�

�

�

2

l

p

M(v)

m

+ 2

�

:

3. Position the squares fS

v

: v 2 V (G)g in the (Z = 0)-plane with the square-

paking algorithm of Kleitman and Krieger [127℄.

= Verties after

Step 4.

= Unused

spae in square-

paking.

Figure 9.3: Square paking.
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4. For eah vertex v 2 V (G), let (x

0

; y

0

; 0) be the grid-point in S

v

with minimum

even X-oordinate and minimum even Y -oordinate. Replae S

v

by the

�

2

l

p

M(v)

m

� 1

�

�

�

2

l

p

M(v)

m

� 1

�

�

�

2

l

p

M(v)

m

� 1

�

ube with minimum orner at

�

x

0

; y

0

; 2� 2

l

p

M(v)

m�

(see Figure 9.3).

5. Assign eah edge vw 2 E(G

+

) unique Z

+

-ports at v and w both with even X-

oordinate and even Y -oordinate.

6. Construt a graph H with V (H) = E(G

+

), and add the edge fvw; xyg to E(H)

if the port assigned to vw at v is in the same olumn as the port assigned to xy

at x, or the port assigned to vw at w is in the same row as the port assigned to

xy at y.

7. Vertex-olour the graph H using the algorithm Greedy Vertex-Colour with

olours f1; 2; : : : ;�(H) + 1g (see Setion 2.2). For eah vertex v 2 V (H) oloured

i orresponding to an edge vw, set the height h(vw) i.

8. For eah oriented edge vw 2 E(G

+

), onstrut an edge route for vw as follows.

Suppose the ports on v and w assigned to vw have oordinates (v

X

; v

Y

; 0) and

(w

X

; w

Y

; 0), respetively. Route the edge vw with one of the following four or six

bend routes, as illustrated in Figure 9.4.

� v

X

= w

X

:

(v

X

; v

Y

; 0)! (v

X

; v

Y

; 2h(vw)) ! (v

X

+ 1; v

Y

; 2h(vw)) !

(v

X

+ 1; w

Y

; 2h(vw)) ! (v

X

; w

Y

; 2h(vw)) ! (v

X

; w

Y

; 0)

� v

Y

= w

Y

:

(v

X

; v

Y

; 0)! (v

X

; v

Y

; 2h(vw) + 1)! (v

X

; v

Y

+ 1; 2h(vw) + 1)!

(w

X

; v

Y

+ 1; 2h(vw) + 1)! (w

X

; v

Y

; 2h(vw) + 1)! (w

X

; v

Y

; 0)

� v

X

6= w

X

and v

Y

6= w

Y

:

(v

X

; v

Y

; 0)! (v

X

; v

Y

; 2h(vw)) ! (v

X

+ 1; v

Y

; 2h(vw)) !

(v

X

+ 1; w

Y

+ 1; 2h(vw)) ! (v

X

+ 1; w

Y

+ 1; 2h(vw) + 1)!

(w

X

; w

Y

+ 1; 2h(vw) + 1)! (w

X

; w

Y

; 2h(vw) + 1)! (w

X

; w

Y

; 0)
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X

Y

Z

v

w

2h(vw)

x

y

2h(xy) + 1

u

2h(vu)

Figure 9.4: Routing edges above the plane Z = 0.

9. Repeat Steps 5-8 for the edges in E(G

�

), assigning Z

�

-ports and onstruting

edge routes below the verties.

Theorem 9.4. The algorithm Optimal Volume Cube-Drawing determines an or-

thogonal ube-drawing of G in O

�

m

p

m+ n

�

time, with O

�

(m+ n)

3=2

�

bounding box

volume and at most six bends per edge. Eah vertex is 12-degree-restrited.

Proof. After step 3, verties are disjoint with Z

+

-faes in the (Z = 0)-plane, and with

orners at grid-points with even oordinates. So, for eah vertex v, the the number of

Z

+

-ports on S

v

with even X- and even Y -oordinate is

l

p

M(v)

m

2

� M(v), so there

are enough ports on v for the routing of edges in G

+

on the Z

+

-fae, and for edges in

G

�

on the Z

�

-fae.

In eah edge route, there are no onseutive unit length segments. Therefore to show

that the drawing is rossing-free, we need only show that non-unit length edge segments

do not interset. Vertial segments annot interset beause unique ports are assigned

to the edges. X-parallel segments have odd Z-oordinate and Y -parallel segments have

even Z-oordinate, so an X-parallel segment annot interset a Y -parallel segment.

A vertial segment has even X and Y oordinate, a X-parallel segment has odd Y -
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oordinate, and a Y -parallel segment has odd X-oordinate, so a vertial segment

annot interset aX- or Y -parallel segment. Two Y -parallel segments an only interset

if they overlap. Sine edges originating in the same olumn have di�erent heights,

two Y -parallel segments annot interset. Similarly, two X-parallel segments an only

interset if originating in the same row and in this ase they have di�erent heights, so

they annot interset. So no two edges an interset.

For eah vertex v, the surfae (v) is

6

�

2

l

p

M(v)

m

� 1

�

2

� 6

�

p

2 deg(v) +O(1)

�

2

= 12deg(v) +O

�

p

deg(v)

�

:

Thus v is 12-degree-restrited.

The total area of the squares fS

v

: v 2 V (G)g (before Step 3) is

P

v

�

2

l

p

M(v)

m

+ 1

�

2

.

By Theorem 8.3, M(v) � ddeg(v)=2e + 1, thus the total area is at most

X

v

�

2

l

p

ddeg(v)=2e + 1

m

+ 1

�

2

�

X

v

�

p

2 deg(v) +O(1)

�

2

�

X

v

�

2 deg(v) +O

�

p

deg(v)

�

+O(1)

�

� 4m+O

 

n+

X

v

p

deg(v)

!

� 4m+O

0

�

n+

s

n

X

v

deg(v)

1

A

(by Cauhy-Shwarz)

� 4m+O

�

n+

p

nm

�

:

The algorithm of Kleitman and Krieger [127℄ paks squares with a total area of 1

in a

2

p

3

�

p

2 retangle. So the squares fS

v

: v 2 V (G)g an be paked in a retangle

with size

�

2

p

3

q

4m+O

�

n+

p

nm

�

�

�

�

p

2

q

4m+O

�

n+

p

nm

�

�

�

�

4

r

m

3

+O

�

q

n+

p

nm

��

�

�

2

p

2m+O

�

q

n+

p

nm

��

:

The maximum degree of H is thus

�(H) �

�

4

p

3

+ 2

p

2

�

p

m+O

�

q

n+

p

nm

�

:
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A greedy vertex-olouring of H requires at most �(H) + 1 olours; hene the height of

the drawing above the (Z = 0)-plane, and the height below the verties, whih is twie

the number of olours, is

�

8

p

3

+ 4

p

2

�

p

m+O

�

q

n+

p

nm

�

:

The height of the verties is max

v

2

l

p

M(v)

m

� 1 � max

v

p

2 deg(v) + O(1) =

p

2�(G) +O(1) �

p

2m+O(1) : Thus the total height of the drawing is at most

�

16

p

3

+ 9

p

2

�

p

m+O

�

q

n+

p

nm

�

:

We have shown that eah of the height, width and depth of the drawing is

O

�

p

m+

q

n+

p

nm

�

: (9.1)

If n = O(m) then (9.1) is O(

p

m), and if m = O(n) then (9.1) is O(

p

n). Hene the

height, width and depth of the drawing are eah O(

p

m+

p

n), whih is O

�

p

m+ n

�

by the Cauhy-Shwarz inequality. The volume of the bounding box is therefore

O

�

(m+ n)

3=2

�

. Note that in most appliations n� m, hene the volume is

�

4

p

3

� 2

p

2 �

�

16

p

3

+ 9

p

2

�

m

3=2

< 144m

3=2

:

The time-onsuming stage of the algorithm is the vertex-olouring of H. This an

be omputed in

O(jE(H)j) = O(jV (H)j�(H)) = O

�

m

�

p

m+

q

n+

p

nm

��

;

whih is O

�

m

p

m+ n

�

by the same argument used above. By onstrution there are

at most six bends per edge.

If we remove the middle segment from eah edge and assign eah edge a unique

height then the overall height is O(m) and we obtain the following result.

Theorem 9.5. Every graph has an orthogonal ube-drawing, whih an be omputed

in O(m) time, with O(m(m+ n)) bounding box volume and �ve bends per edge. Eah

vertex is 12-degree-restrited.
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Note that if we redue the length in the Z-diretion of the box representing a

vertex then the surfae of the box an be redued at the expense of an inrease in the

aspet ratio. In partiular, for aspet ratio r, it is easily seen that a vertex will be

4(1 + 2=r)-degree-restrited.



Chapter 10

The Non-Collinear Vertex Layout

Model for Three-Dimensional

Orthogonal Graph Drawing

In this hapter we present an algorithm for produing 3-D orthogonal box-

drawings in the non-ollinear model. The box-drawings produed have op-

timal volume for regular graphs. We use this algorithm as the basis for

another algorithm to generate 3-D orthogonal point-drawings with optimal

volume. The advantage of this model over the oplanar vertex layout model

is that the drawings are orientation-independent, whih for point-drawings

omes at the ost of one more bend per edge route.

10.1 Box-Drawing Algorithm

The algorithm to follow determines a 3-D non-ollinear vertex layout by lifting the

verties from a plane grid into 3-D spae in an orientation-independent manner. We all

the box surrounding the verties the inner box. For eah diretion d 2 fX

�

; Y

�

; Z

�

g,

the box extending out from the d-fae of the inner box is alled the d-outer box , as

shown in Figure 5.18 (page 114). Eah edge is routed in an outer box determined by

an equitable edge-olouring. Within eah outer box, the routing of edges resembles the

195
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method employed in Algorithm 9.3 Optimal Volume Cube-Drawing.

Algorithm 10.1. Non-Collinear Box-Drawing

Input: multigraph G with maximum degree �.

Output: 3-D orthogonal ube-drawing of G.

1. Assign eah vertex v 2 V (G) a unique pair (x(v); y(v)) with

0 � x(v); y(v) �

�

p

n

�

� 1 :

2. For eah vertex v 2 V (G), set z(v) x(v)+ y(v) (mod d

p

ne) (see Figure 10.1).

X

Y

0 1 2 3

1

2

3

z

=

0

z

=

1

z

=

2

z

=

3

z

=

0

z

=

1

z

=

2

Figure 10.1: Determining z(v).

3. De�ne the `vertex spaing' � = 2

�l

p

d�(G)=3e

m

+ 1

�

.

4. Represent eah vertex v 2 V (G) by the

�

2

l

p

ddeg(v)=3e

m

+ 1

�

�

�

2

l

p

ddeg(v)=3e

m

+ 1

�

�

�

2

l

p

ddeg(v)=3e

m

+ 1

�

ube with minimum orner at (�x(v);�y(v);�z(v)), as shown in Figure 10.2.

5. Apply Algorithm 8.1 Quasi-Equitable Edge-Colour to G with k = 6. Sup-

pose the edge-olouring determines an assignment of diretions fX

�

; Y

�

; Z

�

g to

E(G).
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Inner box

XY

Z

XY

Z

Figure 10.2: Non-Collinear Vertex Layout.

6. For eah edge vw 2 E(G) in diretion d 2 fX

�

; Y

�

; Z

�

g, arbitrarily assign

unique ports at v andw in diretion d with even j-oordinate and odd k-oordinate,

where i, j and k are de�ned in Table 10.1 as funtions of d. Call these the usable

ports, as shown in Figure 10.3.

Table 10.1: De�nition of i, j, k

d i j k

X

�

X Y Z

Y

�

Y Z X

Z

�

Z X Y

7. Arbitrarily orient the edges of G.

8. For eah diretion d 2 fX

+

; Y

+

; Z

+

g apply the following steps.

(a) Construt a graphH with V (H) orresponding to the edges of G in diretion

d. Add the edge f

�!

vw;

�!

xyg to E(H) if the port assigned to

�!

vw at v has the
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X

Y

Z

Figure 10.3: Usable ports on near-by verties.

same j-oordinate as the port assigned to

�!

xy at x, or the port assigned to

�!

vw at w has the same k-oordinate as the port assigned to

�!

xy at y.

(b) Vertex-olour the graph H using the algorithm Greedy Vertex-Colour

with olours f1; 2; : : : ;�(H) + 1g (see Setion 2.2). For eah vertex v 2

V (H) oloured � orresponding to an edge

�!

vw, set the height h(

�!

vw) �.

() For eah oriented edge

�!

vw 2 E(G) in diretion d, onstrut the edge route

with (i; j; k) oordinates as follows. Suppose

�!

vw is assigned the port at

(v

i

; v

j

; v

k

) on v and the port at (w

i

; w

j

; w

k

) on w. If v

k

= w

k

then use the

following 4-bend edge route, whih extends a distane of 2h(

�!

vw) into the

d-outer box, as illustrated in Figure 10.4 (and similarly if v

j

= w

j

).

(v

i

; v

j

; v

k

)! (� (d

p

ne � 1) + 2h(

�!

vw); v

j

; v

k

)!



CHAPTER 10. NON-COLLINEAR 3-D DRAWING 199

(� (d

p

ne � 1) + 2h(

�!

vw); v

j

; v

k

+ 1)!

(� (d

p

ne � 1) + 2h(

�!

vw); w

j

; v

k

+ 1)!

(� (d

p

ne � 1) + 2h(

�!

vw); w

j

; v

k

)! (w

i

; w

j

; v

k

)

v

w

i

j

k

v

w

X

Y

Z

Figure 10.4: Edge route for vw if v

k

= w

k

.

Otherwise use the following 6-bend edge route illustrated in Figure 10.5.

(v

i

; v

j

; v

k

)! (� (d

p

ne � 1) + 2h(

�!

vw); v

j

; v

k

)!

(� (d

p

ne � 1) + 2h(

�!

vw); v

j

; v

k

+ 1)!

(� (d

p

ne � 1) + 2h(

�!

vw); w

j

+ 1; v

k

+ 1)!

(� (d

p

ne � 1) + 2h(

�!

vw) + 1; w

j

+ 1; v

k

+ 1)!

(� (d

p

ne � 1) + 2h(

�!

vw) + 1; w

j

+ 1; w

k

)!

(� (d

p

ne � 1) + 2h(

�!

vw) + 1; w

j

; w

k

)! (w

i

; w

j

; w

k

).

9. Repeat Step 8 for diretions X

�

, Y

�

and Z

�

, routing edges in the X

�

, Y

�

and

Z

�

outer boxes, respetively.

Theorem 10.1. For every multigraph G, the algorithm Non-Collinear Box-

Drawing determines a 3-D orthogonal ube-drawing in O

�

m

2

�

time, with O

�

(n�)

3=2

�

bounding box volume and six bends per edge route. Eah vertex is 8-degree-restrited.

Proof. The number of usable ports on a fae of a vertex v is

l

p

ddeg(v)=3e

m�l

p

ddeg(v)=3e

m

+ 1

�

� ddeg(v)=3e + 1 :

By Theorem 8.2, there are at most ddeg(v)=3e + 1 edges inident to v in a given

diretion so there are enough usable ports at v. It is easily seen that no two verties

are interseted by a single grid-line.
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v

w

i

j

k

v

w

X

Y

Z

Figure 10.5: Edge routes vw in the non-ollinear model.

In all edge routes, there are no onseutive unit length segments, and an edge ross-

ing involving a unit-length segment must also involve the adjaent non-unit-length

segment, so to show that the drawing is rossing-free, we need only onsider interse-

tions between non-unit-length segments. We distinguish between segments ontained

within the outer boxes, and the segments inident with verties.

Clearly, segments ontained in di�erent outer boxes annot interset, and in an i-

outer box, the j-parallel segments have even i-oordinate and the k-parallel segments

have odd i-oordinate. Hene no two segments ontained in an outer box an interset.

Consider a segment ontained in an i-outer box and a segment inident to a vertex.

If the segment inident to a vertex is not in diretion i then no intersetion an our.

If this segment is in diretion i then it has even j-oordinate and odd k-oordinate,

whereas a j-parallel segment in the i-outer box has even k-oordinate, and a k-parallel

segment in the i-outer box has odd j-oordinate. So a segment inident to a vertex

and a segment ontained in an outer box annot interset.

Now onsider two segments inident to di�erent verties. (Segments inident to the

same vertex are assigned unique ports so no intersetion an our.) If one suh segment
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is in a positive diretion and the other is in a negative diretion then no intersetion

an our. If the two segments are in the same diretion then they are parallel so no

intersetion an our. If the two segments are in diretions i and j then one will have

even k-oordinate and the other will have odd k-oordinate, so they annot interset.

Therefore no two edge routes interset.

The inner box has orners at

(0; 0; 0) and

�

�

��

p

n

�

� 1

�

;�

��

p

n

�

� 1

�

;�

��

p

n

�

� 1

��

;

so the width, depth and height of the inner box is � (

p

n). The graph H has �(H) =

2� d

p

ne, so the height of an edge is at most 4� d

p

ne. Hene the bounding box has

width, depth and height 8� d

p

ne. Sine � = O

�

p

�

�

, the bounding box volume is

O

�

(n�)

3=2

�

.

For eah vertex v 2 V (G), the surfae (v) is

6

�

2

l

p

ddeg(v)=3e

m

+ 1

�

2

= 8deg(v) + o (deg(v)) :

So the drawing is 8-degree-restrited.

By Theorem 8.2, Step 5 of the algorithm takes O

�

m

2

�

time. The six vertex-

olourings of H eah take O(jE(H)j) = O(jV (H)j�(H)) = O

�

m

p

n�

�

time. Now,

� � m, so assuming m � n, we have � � m

2

=n. So

p

n� � m and m

p

n� � m

2

.

Hene Step 5 is most time-onsuming step of the algorithm, and the total time taken

is O

�

m

2

�

.

For simple graphs we an use an equitable edge-olouring of G (see Corollary 8.1)

instead of Algorithm Quasi-Equitable Edge-Colour in Step 5 of the above algo-

rithm. The `vertex spaing' is de�ned as � = 2

�l

p

d�(G)=6e

m

+ 1

�

and eah vertex

is a

�

2

l

p

ddeg(v)=6e

m

+ 1

�

�

�

2

l

p

ddeg(v)=6e

m

+ 1

�

�

�

2

l

p

ddeg(v)=6e

m

+ 1

�

ube. We obtain the following result.

Corollary 10.1. For every graph with maximum degree � there exists a 3-D orthogonal

ube-drawing with O

�

(n�)

3=2

�

bounding box volume and at most six bends per edge

route. Eah vertex is 4-degree-restrited.
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For regular (multi)graphs the bounding box volume bound in Theorem 10.1 is

O

�

m

3=2

�

, whih, by Theorem 3.2 is optimal for degree-restrited orthogonal box-drawings

with bounded aspet ratio.

Open Problem 10.1. Can the algorithm Non-Collinear Box-Drawing be modi-

�ed to produe box-drawings with bounding box volume O

�

(m+ n)

3=2

�

? This amounts

to �nding a non-ollinear vertex layout with an O

�

p

m+ n

�

�O

�

p

m+ n

�

�O

�

p

m+ n

�

inner box.

10.2 Point-Drawing Algorithm

We now present our algorithm for produing 3-D orthogonal point-drawings in the non-

ollinear model. This algorithm follows a similar approah as the previous box-drawing

algorithm exept that only the X

+

, Y

+

and Z

+

outer boxes are used, and a yle over

deomposition determines the port assignment instead of an equitable edge-olouring.

Algorithm 10.2. Non-Collinear Point-Drawing

Input: multigraph G with �(G) � 6.

Output: 3-D orthogonal point-drawing of G.

1. Assign eah vertex v 2 V (G) a unique pair (x(v); y(v)) with

0 � x(v); y(v) �

�

p

n

�

� 1 :

2. For eah vertex v 2 V (G), set z(v)  x(v) + y(v) (mod d

p

ne), and plae v at

(4x(v); 4y(v); 4z(v)).

3. Determine a yle over deomposition of G (see Theorem 2.1) and assign dire-

tions X

+

, Y

+

and Z

+

to the edges appearing in the �rst, seond and third yle

overs, respetively.

4. Considering v to be represented by the 3 � 3 � 3 box entred at v, determine

edge routes as desribed in Steps 6-8 of Algorithm 10.1 Non-Collinear Box-

Drawing.
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5. For eah vertex v 2 V (G) onnet the edges inident with v from the surfae of

the 3� 3� 3 box to the point representing v, as shown in Figure 10.6.

X

Y

Z

Figure 10.6: A vertex inside a 3� 3 box.

Theorem 10.2. The algorithm Non-Collinear Point-Drawing determines in

O

�

n

3=2

�

time a 3-D orthogonal point-drawing of the given graph G, with O

�

n

3=2

�

bound-

ing box volume and at most 8 bends per edge route.

Proof. This result follows immediately from Theorem 10.1 and the observations that

edges will be routed by algorithm Non-Collinear Box-Drawing as indiated in

Figure 10.6, and one extra bend is added to eah end of an edge route.



Chapter 11

Multi-Dimensional Orthogonal

Point-Drawing

In this hapter we study multi-dimensional orthogonal point-drawings of

graphs, as suggested by Liu [145, Note 8.5.2℄. In partiular, we present an

algorithm for generating minimum-dimensional orthogonal point-drawings

of arbitrary degree graphs in the non-ollinear oplanar vertex layout model

with at most six bends per edge. We also onstrut minimum-dimensional

orthogonal point-drawings of K

n

with at most two bends per edge, a result

�rst presented in [219℄.

We say a D-dimensional orthogonal point-drawing of a graph G is minimum-

dimensional if there does not exist a (D � 1)-dimensional orthogonal point-drawing

of G. Consider an orthogonal point-drawing of an arbitrary degree graph G. At a

vertex in the D-dimensional orthogonal grid there are 2D ports, so an orthogonal

point-drawing of G requires at least d�(G)=2e dimensions. We shall show that only a

few graphs G do not have an orthogonal point-drawing in d�(G)=2e dimensions. We

de�ne the bend number of G to be the minimum integer b suh that there exists a

minimum-dimensional point-drawing of G with at most b bends per edge route.

TriviallyK

1

and K

2

have minimum-dimensional orthogonal point-drawings without

any bends (in the 0- and 1-dimensional grids, respetively). K

3

is our �rst example

of a graph G whih does not have an orthogonal point-drawing in d�(G)=2e (= 1)

204
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dimensions. The 1-bend 2-D orthogonal point-drawing of K

3

establishes that the bend

number of K

3

is one. In fat, all yles C

n

(n � 3) do not have an orthogonal point-

drawing in d�(C

n

)=2e (= 1) dimensions. C

n

does have a 1-bend 2-D orthogonal point-

drawing so the bend number of C

n

is one.

If we de�ne `minimum-dimensional' so that edge-rossings are allowed in 2-D or-

thogonal point-drawings, by the algorithms of Biedl and Kant [28℄ and Papakostas and

Tollis [165℄, all maximum degree four graphs have bend number at most two. If 2-D

drawings must be rossing-free, then by the algorithm of Biedl and Kant [28℄, the bend

number of a planar graph with maximum degree at most four is at most two (exept

the otahedron graph whih requires a 3-bend edge route [91℄).

By Theorem 5.4, graphs with maximum degree at most �ve have a 2-bend 3-D

orthogonal point-drawing, so the bend number of suh graphs is at most two. Maximum

degree six multigraphs have a 3-bend 3-D orthogonal point-drawing (see Setion 5.5),

so maximum degree six multigraphs have bend number at most three.

In Setion 11.1 we shall show that the bend number of K

n

is two. To do so, we

initially prove a tight bound for the number of dimensions required for a 1-bend orthog-

onal point-drawing of K

n

. We then onstrut minimum-dimensional point-drawings of

K

n

with at most two bends per edge route, a result whih establishes the bend number

of K

n

to be two exept for some isolated ases. The algorithm presented in Setion 11.2

establishes an upper bound of six for the bend number of an arbitrary multigraph.

11.1 Drawings of K

n

We now prove a lower bound for the number of dimensions required for a 1-bend

orthogonal point-drawing of K

n

.

Theorem 11.1. For n � 3, a 1-bend orthogonal point-drawing of K

n

requires at least

n� 1 dimensions.

Proof. To onstrut a 1-bend (n�1)-dimensional point-drawing of K

n

, for eah dimen-

sion i, 1 � i � n � 1, plae a vertex v

i

at 1 on the i-axis, and plae the remaining

vertex at the origin. Connet eah v

i

to the origin by a 0-bend edge route, and onnet
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verties v

i

and v

j

by a 1-bend edge route through (0; : : : ; 0; 1; 0; : : : ; 0; 1; 0; : : : ; 0) where

the 1's appear in the i- and j-oordinates.

Suppose there is a (n � 2)-dimensional orthogonal point-drawing of K

n

with at

most one bend per edge route. Let v be some vertex of K

n

. De�ne T

0

to be the set of

dimensions i, 1 � i � n � 2, suh that no edge route uses port(v;+i) or port(v;�i).

Let T

1

be the set of dimensions with exatly one port at v in use, and let T

2

be the

set of dimensions with both ports at v in use. Clearly jT

0

j + jT

1

j + jT

2

j = n � 2 and

0jT

0

j+ 1jT

1

j+ 2jT

2

j = n� 1, implying jT

0

j = jT

2

j � 1 and jT

2

j � 1.

Let i 2 T

2

and let va and vb be the edges assigned port(v;�i) and port(v;+i),

respetively. Now, va and vb annot both be 0-bend edge routes, as otherwise ab would

have to be a 2-bend edge route. Suppose one of va or vb is a 0-bend edge route and

the other is a 1-bend edge route, as shown in Figure 11.1. Let j be the diretion of the

seond segment of the 1-bend edge. Clearly, no edge vx ould be routed with port(v; j)

as otherwise there would be no possible 0- or 1-bend edge route for xa nor xb. If vx is

routed with port(v;�j) then xa or xb would need two bends, so j 2 T

0

.

a v

v

b

6

j

-

i

a

v

b

�

�

.

.

.

.

.

.

6

j

-
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(a)

a

v

b

(b)

a

v

b

()

a

v

b

(d)

a

v

b
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�
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�

�

�

�

�
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.
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.

.

.

.

.

.

.

.

.

.

.

�

��

k

-

i

Figure 11.1: A 0-bend and a 1-bend edge

If the edge routes va and vb both have one bend then, as in Figure 11.2, for ab to

have a 0- or 1-bend edge route, the seond segments of va and vb must point in the

same diretion j, as in ases () and (d). By the same argument as before, this implies

that j 2 T

0

.

Suppose jT

2

j > 1 and dimension k 2 T

2

n fig. Let v and vd be the edges routed

using port(v;+k) and port(v;�k), respetively. For a, ad, b and bd to have 1-bend

edge routes, the edges va, vb, v and vd all must have one bend and their seond

segments must point in the same diretion and have the same length, as in Figure 11.3.

Therefore ab and d must interset, so jT

2

j = 1.

jT

2

j = 1 implies jT

0

j = 0, but j 2 T

0

, whih is a ontradition. Therefore K

n

does
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Figure 11.2: Two 1-bend edges
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Figure 11.3: i; k 2 T

2

not have a (n � 2)-dimensional orthogonal point-drawing with at most one bend per

edge route.

A minimum-dimensional orthogonal point-drawing of K

n

has at least d�(K

n

)=2e =

bn=2 dimensions. For n � 4, we have n � 1 > bn=2, so a minimum-dimensional

orthogonal point-drawing of K

n

(n � 4) requires at least two bends in some edge route.

There is a 2-D 2-bend orthogonal point-drawing of K

4

, so the bend number of K

4

is

two. K

5

also has a 2-D 2-bend orthogonal point-drawing (of ourse, with rossings),

so it too has bend number two. If we do not allow rossings in 2-D drawings then K

5

requires three dimensions. By Theorem 11.1 a 3-D orthogonal point-drawing of K

5

still requires an edge route with at least two bends. A 2-bend 3-D orthogonal point-

drawing of K

5

is provided in Figure 2.3(b) (on page 28). We now onstrut 2-bend

minimum-dimensional orthogonal point-drawings of K

n

for n � 6.

Theorem 11.2. For every n � 6, the bend number of K

n

is 2.

Proof. We initially onsider the ase of odd n. In Figure 3.6 there is a 2-bend 3-D

orthogonal point-drawing of K

7

, so the result is true for n = 7. We now onstrut a

((n� 1)=2)-dimensional 2-bend point-drawing of K

n

for odd n � 9. Let the vertex set
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of K

n

be

V (K

n

) = fv

1

; v

2

; : : : ; v

7

g [ fa

i

; b

i

: 4 � i � (n� 1)=2g :

The K

7

subgraph indued by the verties fv

1

; v

2

; : : : ; v

7

g is drawn with two bends

per edge route as in Figure 3.6 (on page 53). In partiular we plae the fv

1

; v

2

; : : : ; v

7

g

as follows.

v

1

: (2; 0; 0; 0; : : : ; 0) v

2

: (�2; 0; 0; 0; : : : ; 0)

v

3

: (0; 2; 0; 0; : : : ; 0) v

4

: (0;�2; 0; 0; : : : ; 0)

v

5

: (0; 0; 2; 0; : : : ; 0) v

6

: (0; 0;�2; 0; : : : ; 0)

v

7

: (1; 1; 1; 0; : : : ; 0) :

For eah i, 4 � i � (n� 1)=2, plae a

i

and b

i

at

a

i

: (1; 0; 0; : : : ; 2; 0; 0; : : : ; 0) b

i

: (1; 0; 0; : : : ;�2; 0; 0; : : : ; 0)

(with the 2 and �2 at oordinate i). The edge a

i

v

j

and b

i

v

j

, 4 � i � (n � 1)=2,

1 � j � 7, are routed aording to Figure 11.4.

X

i

Y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

v

1

v

2

v

3

v

4

a

i

b

i

X

i

Z

�

�

�

�

�

�

�

�

v

5

v

6

a

i

b

i

Z

i

Y

-

6

�

�

�	

�

�

�

�

v

7

a

i

b

i

(a) In the Z = 0 hyperplane (b) In the Y = 0 hyperplane () In the X = 1 hyperplane

-�

6

?

b

i+1

b

i

a

i

a

i+1

(a)

-�

6

?

b

j

a

i

a

j

b

i

(b)

Figure 11.4: Edge routes a

i

v

j

and b

i

v

j

.

The edges a

i

b

i

, a

i

a

i+1

, b

i

a

i+1

, a

i

b

i+1

and b

i

b

i+1

, 4 � i � (n � 3)=2, are routed

aording to Figure 11.5(a). The edges a

i

a

j

, b

i

a

j

, a

i

b

j

, and b

i

b

j

, 4 � i � (n � 3)=2,

i+ 2 � j � (n� 1)=2 are routed aording to Figure 11.5(b).

A straight line edge route from a

(n�1)=2

to b

(n�1)=2

passing through the vaant

grid-point (1; 0; 0; : : : ; 0) ompletes the drawing.
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X

i

Y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

v

1

v

2

v

3

v

4

a

i

b

i

X

i

Z

�

�

�

�

�

�

�

�

v

5

v

6

a

i

b

i

Z

i

Y

-

6

�

�

�	

�

�

�

�

v

7

a

i

b

i

(a) In the Z = 0 hyperplane (b) In the Y = 0 hyperplane () In the X = 1 hyperplane

-�

6

?

b

i+1

b

i

a

i

a

i+1

(a)

-�

6

?

b

j

a

i

a

j

b

i

(b)

Figure 11.5: Edge routes in the X = 1 hyperplane.

It is easily seen that a unique port assignments are determined by this edge routing

sheme. The grid-points ontained in edge routes desribed in Figure 11.4 only ontain

grid-points with a non-zero i oordinate (exept for the verties themselves). So suh

edge routes annot ross an edge route in the K

7

subgraph indued by fv

1

; v

2

; : : : ; v

7

g.

Similarly, an edge route a

i

v

k

or b

i

v

k

annot ross an edge route a

j

v

k

or b

j

v

k

(1 � k � 7).

Exept for the grid-points (1; 0; : : : ; 0; 4; 0; : : : ; 0) (in edge a

i

b

i

), (1; 0; : : : ; 0; 1;

0; : : : ; 0) (in edge a

i

a

i+1

) and (1; 0; : : : ; 0;�1; 0; : : : ; 0) (in edge b

i

a

i+1

), the edge routes

desribed in Figure 11.5 only ontain grid-points with non-zero i and j oordinates.

They will therefore not ross other edges. By heking grid-points in the X = 1

hyperplane it is easily seen that these partiular grid-points are not in any other edge

routes. So no two edge routes ross.

Hene there is a 2-bend minimum-dimensional orthogonal point-drawing of K

n

for

odd n � 7. In fat there are O(n

2

) 1-bend edge routes and only O(n) 2-bend edge

routes. For even n � 6, removing a single vertex from the drawing of K

n+1

provides a

minimum-dimensional 2-bend orthogonal point-drawing of K

n

. By Theorem 11.1, n�1

dimensions are required for a 1-bend point-drawing of K

n

, so the bend number of K

n

is 2, for n � 6.
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11.2 Algorithm

As mentioned by Eades et al. [87℄, their 3-Bends algorithm easily generalises to give an

algorithm for produing a minimum-dimensional orthogonal point-drawing of a graph

G with at most d�(G)=2e bends per edge route. This algorithm plaes the verties

along the main diagonal of a d�(G)=2e-dimensional hyperube. Here we plae the

verties along a 2-D diagonal within d�(G)=2e-dimensional spae, and use at most six

bends per edge route

1

.

Algorithm 11.1. Minimum-Dimensional Point-Drawing

Input: A multigraph G with maximum degree �(G) � 5.

Output: A minimum-dimensional orthogonal point drawing of G.

1. Determine G

0

and its yle overs C

1

; C

2

; : : : ; C

d

where d = d�(G)=2e (see The-

orem 2.1).

2. Arbitrarily assign the numbers f1; 2; : : : ; ng to the verties of G.

(We shall refer to a vertex by its number.)

3. Position vertex a at (2a; 3a; 0; : : : ; 0) 2 Z

d

.

4. Construt edge routes for eah ar in G

0

, as desribed below.

5. For eah edge of G, draw the edge route of the orresponding ar in G

0

.

The following method used to lassify ars aording to a vertex ordering is due to

Eades et al. [86, 87℄. Consider an ar ab 2 E(G

0

) in yle over C

1

, and suppose b is

the next ar in the yle ontaining ab. We route the ar ab depending on the relative

values of a, b and . In the following �gures, the arrow head indiates the port at b to

be assigned to the ar b.

1

In [219℄ it was erroneously stated that using a 3-D diagonal vertex layout, �ve bends per edge route

was possible.
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Case 1.1: If a < b <  then we say ab is normal inreasing. As in Figure 11.6(a),

route ab with the 4-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2b� 1; 3a; 0; 0; : : : ; 0)! (2b� 1; 3a; 1; 0; : : : ; 0)

! (2b� 1; 3b; 1; 0; : : : ; 0)! (2b� 1; 3b; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

Case 1.2: If a > b >  then we say ab is normal dereasing. As in Figure 11.6(b),

route ab with the 4-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2b+ 1; 3a; 0; 0; : : : ; 0)! (2b+ 1; 3a; 1; 0; : : : ; 0)

! (2b+ 1; 3b; 1; 0; : : : ; 0)! (2b+ 1; 3b; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

X

Y

Z

a

b

(a) Inreasing

b

a

(b) Dereasing

X

Y

Z

a

b

(b) Inreasing to a loal maximum

b

a

(b) Dereasing to a loal minimum

X

Y

Z

a

b

(a) Inreasing

b

a

(b) Dereasing

X

Y

Z

a

b

(a) Inreasing to a loal maximum

b

a

(b) Dereasing to a loal minimum

Figure 11.6: Normal ars ab in C

1

.

Case 1.3: If a < b >  then we say ab is inreasing to a loal maximum. As in

Figure 11.7(a), route ab with the 4-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2b+ 1; 3a; 0; 0; : : : ; 0)! (2b+ 1; 3a; 1; 0; : : : ; 0)

! (2b+ 1; 3b; 1; 0; : : : ; 0)! (2b+ 1; 3b; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

Case 1.4: If a > b <  then we say ab is dereasing to a loal minimum. As in

Figure 11.7(b), route ab with the 4-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2b� 1; 3a; 0; 0; : : : ; 0)! (2b� 1; 3a; 1; 0; : : : ; 0)

! (2b� 1; 3b; 1; 0; : : : ; 0)! (2b� 1; 3b; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

Observe that all ars ab in C

1

are routed using the X-ports at a and b. Now onsider

an ar ab 2 E(G

0

) in yle over C

2

and, as before, suppose b is the next ar in the

yle ontaining ab.

Case 2.1: If ab is normal inreasing then, as in Figure 11.8(a), route ab with the

5-bend edge:
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X

Y

Z

a

b

(a) Inreasing

b

a

(b) Dereasing

X

Y

Z

a

b

(b) Inreasing to a loal maximum

b

a

(b) Dereasing to a loal minimum

X

Y

Z

a

b

(a) Inreasing

b

a

(b) Dereasing

X

Y

Z

a

b

(a) Inreasing to a loal maximum

b

a

(b) Dereasing to a loal minimum

Figure 11.7: Loal min/max ars ab in C

1

.

(2a; 3a; 0; 0; : : : ; 0)! (2a; 3a + 1; 0; 0; : : : ; 0)! (2a; 3a + 1; 1; 0; : : : ; 0)!

(2a; 3b � 1; 1; 0; : : : ; 0)! (2a; 3b � 1; 0; 0; : : : ; 0)!

(2b; 3b � 1; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

Case 2.2: If ab is normal dereasing then, as in Figure 11.8(b), route ab with the

5-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2a; 3a � 1; 0; 0; : : : ; 0)! (2a; 3a � 1; 1; 0; : : : ; 0)!

(2a; 3b + 1; 1; 0; : : : ; 0)! (2a; 3b + 1; 0; 0; : : : ; 0)!

(2b; 3b + 1; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

X

Y

Z

a

b

(a) Inreasing

b

a

(b) Dereasing

X

Y

Z

a

b

(b) Inreasing to a loal maximum

b

a

(b) Dereasing to a loal minimum

X

Y

Z

a

b

(a) Inreasing

b

a

(b) Dereasing

X

Y

Z

a

b

(a) Inreasing to a loal maximum

b

a

(b) Dereasing to a loal minimum

Figure 11.8: Normal ars ab in C

2

.

Case 2.3: If ab is inreasing to a loal maximum then, as in Figure 11.9(a), route ab

with the 5-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2a; 3a + 1; 0; 0; : : : ; 0)! (2a; 3a + 1; 1; 0; : : : ; 0)!

(2a; 3b + 1; 1; 0; : : : ; 0)! (2a; 3b + 1; 0; 0; : : : ; 0)!

(2b; 3b + 1; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

Case 2.4: If ab is dereasing to a loal minimum then, as in Figure 11.9(b), route ab

with the 5-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2a; 3a � 1; 0; 0; : : : ; 0)! (2a; 3a � 1; 1; 0; : : : ; 0)!
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(2a; 3b � 1; 1; 0; : : : ; 0)! (2a; 3b � 1; 0; 0; : : : ; 0)!

(2b; 3b � 1; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

X

Y

Z

a

b

(a) Inreasing

b

a

(b) Dereasing

X

Y

Z

a

b

(b) Inreasing to a loal maximum

b

a

(b) Dereasing to a loal minimum

X

Y

Z

a

b

(a) Inreasing

b

a

(b) Dereasing

X

Y

Z

a

b

(a) Inreasing to a loal maximum

b

a

(b) Dereasing to a loal minimum

Figure 11.9: Loal min/max ars ab in C

2

.

Observe that ars in C

2

are assigned the Y -ports at both ends. We now desribe

how to route ars in yle over C

j

, 3 � j � d�(G)=2e. Suppose (a

1

; a

2

; : : : ; a

k

) is a

yle in C

j

. As illustrated in Figure 11.10, the inoming ar at a vertex a

i

uses the

�j=+ j port and the outgoing ar uses the +j=� j port, for odd/even i.

a

4

j

+

j

�

a

3

j

�

j

+

a

2

j

�

j

+

a

1

j

�

j

+

a

k

j

+

=j

�

j

�

=j

+

�

�

�

�

�

�

��

H

H

H

H

H

Hj

�

�

�

�

�

�*

A

AK

A

A

r

r

r

Figure 11.10: Port assignment for a yle in C

j

, j � 3.

� For eah odd i, 1 � i � k� 1, as in Figure 11.11(a), route the ar a

i

a

i+1

with the

4-bend edge:

(2a

i

; 3a

i

; 0; : : : ; 0)! (2a

i

; 3a

i

; 0; : : : ; 2; 0; : : : ; 0)!

(2a

i

; 3a

i+1

; 0; : : : ; 0; 2; 0; : : : ; 0)! (2a

i

; 3a

i+1

; 0; : : : ; 0; 3; 0; : : : ; 0)!

(2a

i+1

; 3a

i+1

; 0; : : : ; 0; 3; 0 : : : ; 0)! (2a

i+1

; 3a

i+1

; 0 : : : ; 0)

� For eah even i, 2 � i � k, as in Figure 11.11(b), route the ar a

i

a

i+1

(or a

i

a

1

if

i = k) with the 4-bend edge:
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(2a

i

; 3a

i

; 0; : : : ; 0)! (2a

i

; 3a

i

; 0; : : : ; 0;�2; 0; : : : ; 0)!

(2a

i

; 3a

i+1

; 0; : : : ; 0;�2; 0; : : : ; 0)! (2a

i

; 3a

i+1

; 0; : : : ; 0;�3; 0; : : : ; 0)!

(2a

i+1

; 3a

i+1

; 0; : : : ; 0;�3; 0; : : : ; 0)! (2a

i+1

; 3a

i+1

; 0; : : : ; 0)

X

Y

j

a

i

a

i+1

(a) i odd.

a

i

a

i+1

(b) i even.

X

Y

j

j + 1

a

k

a

1

Figure 11.11: Ar a

i

a

i+1

in yle over C

j

, j � 3.

� If k is odd then, as in Figure 11.12, route the ar a

k

a

1

with the following 6-bend

edge. If j = D(= d�(G)=2e) then dimension j + 1 is 3.

(2a

k

; 3a

k

; 0; : : : ; 0)! (2a

k

; 3a

k

; 0; : : : ; 0; 2; 0; 0; : : : ; 0)!

(2a

k

; 3a

k

; 0; : : : ; 0; 2; 2; 0; : : : ; 0)! (2a

k

; 3a

1

; 0; : : : ; 0; 2; 2; 0; : : : ; 0)!

(2a

k

; 3a

1

; 0; : : : ; 0;�3; 2; 0; : : : ; 0)! (2a

k

; 3a

1

; 0; : : : ; 0;�3; 0; 0; : : : ; 0)!

(2a

1

; 3a

1

; 0; : : : ; 0;�3; 0; 0; : : : ; 0)! (3a

1

; 3a

1

; 0; : : : ; 0; : : : ; 0)

X

Y

j

a

i

a

i+1

(a) i odd.

a

i

a

i+1

(b) i even.

X

Y

j

j + 1

a

k

a

1

Figure 11.12: Ar a

k

a

1

(k odd) in yle over C

j

, j � 3.

Theorem 11.3. The algorithm Minimum-Dimensional Point-Drawing determines

a minimum-dimensional 6-bend orthogonal point-drawing of G, whih an be omputed

in O(�

2

n) time.

Proof. The yle over deomposition gives for eah vertex exatly one inoming ar

and one outgoing ar in eah of the d yle overs. Observe that ars in yle over C

j

use the j-ports at eah vertex. Hene a valid port assignment has been determined,
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and the �rst segments of edges inident to a partiular vertex do not interset (exept

at the vertex itself).

Consider edge routes in yle overs C

1

and C

2

. The X-parallel segments lie in the

(Z = 0)-plane and Y -parallel segments lie in the Z = 1 plane, so a X-parallel segment

annot interset a Y -parallel segment. Note that the X-parallel segments of an ar ab

in C

1

lie in the Y Z-plane ontaining a, and the X-parallel segments of an ar ab in C

2

lie in the Y Z-plane o�set from b by a distane of 1. Similarly for Y -parallel segments,

so by the spaing between the verties, no two edge routes in C

1

or C

2

an interset.

Now onsider edge routes in a yle over C

j

, j � 3. Apart from the point

(2a

k

; 3a

1

; 0; : : : ; 0; 2; 0; : : : ; 0) for some ar a

k

a

1

in C

j

(k odd) with the 2 in oordi-

nate j + 1, grid-points in edge routes in C

j

have non-zero j-oordinate and a zero

k-oordinate for eah k � 3 (k 6= j). Hene edge routes in C

j

and C

k

(j 6= k, j; k � 3)

do not interset. X-parallel segments of an edge route in C

j

have a j-oordinate of �3,

and Y -parallel segments of edge routes in C

j

have j-oordinate of �2, so no two edges

in a yle over C

j

an interset. The grid-point (2a

k

; 3a

1

; 0; : : : ; 2; 0; : : : ; 0) with the 2

in oordinate j+1 an only be in the ar a

k

a

1

(k odd) in yle over C

j

, so it too does

not interset any other edge routes.

Hene the drawing is rossing-free, and eah edge route has at most six bends. By

Theorem 2.1, the yle over deomposition and hene the whole drawing an omputed

in O(�

2

n) time.
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Chapter 12

Conlusion

In this onlusion we summarise the main ahievements of this thesis, the

open problems in 3-D orthogonal graph drawing whih have been identi�ed,

and disuss avenues for future work in 3-D graph drawing.

This thesis has investigated problems related to the automati generation of 3-D

orthogonal graph drawings. Orthogonal graph drawing has appliations in VLSI iruit

design and software engineering, for example. The methods developed have also been

applied to 2-D orthogonal graph drawing and generalised to multi-dimensional spae.

12.1 Models and Algorithms

The following models for 3-D orthogonal graph drawing have either been introdued

or extended in this thesis. The algorithms in this thesis, whih typially have polyno-

mial time omplexity, explore tradeo�s between the established aestheti riteria for

measuring the quality of the produed drawings.

General Position Vertex Layout Model:

A 3-D orthogonal graph drawing is in the general position model if no two verties

are interseted by a single grid-plane; e.g., by positioning the verties along the main

diagonal of ube. We have presented algorithms for produing orientation-independent

drawings in the general position model with few bends. A disadvantage of this model

is that the volume of drawings is neessarily large.

217
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We have desribed an algorithm whih, given a �xed general position vertex layout

of an arbitrary degree graph, onstruts a general position drawings with bounded

degree-restrition and bounded aspet ratio (Algorithm 7.4). This algorithm is also

appliable in a 2-D or multi-dimensional setting. Using a balaned vertex layout, our

algorithm produes drawings with the smallest known bounds for the degree-restrition

of verties (Algorithm 7.6).

Our algorithm for produing 3-D orthogonal point-drawings of maximum degree

six graphs establishes the best known upper bound for the total number of bends in

3-D orthogonal point-drawings (Algorithm 5.8). Another algorithm establishes the best

known upper bound for the volume of 3-D orthogonal point-drawings with three bends

per edge route (Algorithm 5.11).

Coplanar Vertex Layout Model:

A 3-D orthogonal graph drawing is in the oplanar vertex layout model if there exists

a grid-plane whih intersets all verties. We have onsidered two variations of this

model, namely the non-ollinear oplanar model and the oplanar grid model. Our

algorithms produe orthogonal drawings in these models with few bends and small

volume, respetively. A disadvantage of the oplanar vertex layout model is that the

drawings produed are neessarily orientation-dependent.

Our algorithm for orthogonal drawing in the non-ollinear oplanar model exploits

a book embedding to obtain 1-bend drawings, whih for sparse graphs have less volume

than existing methods for 1-bend drawing (Algorithm 9.1).

We have presented two algorithms for produing 3-D orthogonal box-drawings in

the oplanar grid model. The �rst algorithm produes drawings with optimal volume

for regular graphs (Algorithm 9.2). The seond algorithm produes degree-restrited

3-D orthogonal ube-drawings with optimal volume (Algorithm 9.3).

Non-Collinear Vertex Layout Model:

A 3-D orthogonal graph drawing is in the non-ollinear vertex layout model if no two

verties are interseted by a single grid-line. In this model, we present an algorithm

for produing 3-D orthogonal box-drawings with optimal volume for regular graphs
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(Algorithm 10.1). This algorithm is then used as the basis for produing 3-D orthogo-

nal point-drawings with optimal volume (Algorithm 10.2). These are the only known

algorithms for produing orientation-independent 3-D orthogonal graph drawings with

optimal volume.

12.2 Methods

As part of our investigation into orthogonal graph drawings, we have developed and

extended existing methods whih may be of independent interest. These inlude:

� algorithms for the balaned vertex ordering problem, whih we use as the basis

for determining general position vertex layouts;

� an algorithm for equitable edge-olouring of multigraphs, whih we use to deter-

mine port assignments;

� an approah to port assignment based on ar-olouring;

� the use of vertex-olouring to determine the heights of edge routes; and

� an exat algorithm for the maximum lique problem, whih we use for searhing

for 2-bend point-drawings.

12.3 Open Problems

In the ourse of this thesis we have raised many open problems, inluding the following.

� Does every graph have a degree-restrited 3-D orthogonal box-drawing with at

most one bend per edge route? Does every graph have a 3-D orthogonal box-

drawing with O

�

n

2

p

m

�

volume and at most one bend per edge route? (See

Setions 3.5.2 and 9.1.)

� Does every graph have a 3-D orthogonal box-drawing with O(m

p

n) volume and

at most three bends per edge route? (See Setions 3.5.2 and 9.2.)
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� Does every graph have a degree-restrited 3-D orthogonal ube-drawing with

O

�

(m+ n)

3=2

�

volume and at most �ve bends per edge route? (See Setions 3.5.2

and 9.3.)

� Does every graph with maximum degree six have a 3-D orthogonal point-drawing

with at most two bends per edge route? [86, 87℄ (See Setions 3.5.1 and 5.6.1.)

� Does every graph with maximum degree six have a 3-D orthogonal point-drawing

with O

�

n

3=2

�

volume and at most six bends per edge route? (See Setion 3.5.1.)

� Can the Topology-Shape-Metris approah be applied to 3-D orthogonal graph

drawing? For example, given a (linkless) 3-D embedding of a graph with max-

imum degree six, an an embedding-preserving 3-D orthogonal point-drawing

with the minimum number of bends be determined in polynomial time? (See

Setion 3.2.2.) Note that a 3-D graph embedding an be represented by a 2-D

projetion for whih `over/under' rossings are spei�ed.

� Develop bounds for the aestheti riteria, besides bounding box volume and the

number of bends, of 3-D orthogonal graph drawings. For example, the total edge

length and the maximum edge length ould be studied.

12.4 Future Work

The development of three-dimensional graph drawing is in its infany. While algorithms

for 3-D orthogonal graph drawing have been developed whih optimise ertain aestheti

riteria, most notably the bounding box volume, it is reasonable to ask whether the

drawings produed are feasible for visualisation purposes. We now outline avenues of

researh aimed at produing more readable 3-D graph drawings.

Firstly, the question of what are the properties of 3-D graph drawings whih are

most appropriate for visualisation purposes has not been addressed in any sienti�

manner. It is unrealisti to assume that the aestheti riteria for 2-D graph drawings

automatially apply in a three-dimensional setting. In partiular, the experiments of

Purhase et al. [176℄ and Purhase [175℄ on�rm that the minimisation of rossings is

an important aestheti riterion for 2-D graph drawings, however in three dimensions
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all graphs an be drawn without rossings. Also, it would be interesting to determine

if 3-D graph drawings are better for visualisation purposes than their two-dimensional

ounterparts (see Ware and Frank [213℄ for a preliminary study).

A ritial issue in 3-D graph visualisation is the question of how to display a graph

drawing on a omputer sreen. Many issues from omputer graphis, suh as rendering

and shading, immediately arise. A system for displaying, and interating with, 3-D

graph drawings needs to be developed. Suh a system ould inorporate methods for

�nding viewpoints of 3-D drawings with few olusions (see Kamada and Kawai [123℄,

Bose et al. [39℄, Eades et al. [81℄ and Houle and Webber [120℄).

As well as solving the open problems disussed in Setion 12.3, we now propose

a number of researh diretions to be be pursued with the goal of produing better

3-D orthogonal drawings. Firstly, heuristi improvements an be made to many of the

algorithms proposed in the literature and those presented in this thesis. For example, in

Setion 5.5.2 we disuss the use of a vertex-olouring method to determine the heights

of edge routes in AlgorithmGeneral Position Three-Bend Point-Drawing, thus

reduing the volume of the drawings produed. Seondly, a set of re�nements ould

be developed, whih given an arbitrary 3-D orthogonal graph drawing, modify the

drawing to improve partiular aestheti qualities. Suh re�nements ould form the

basis of a post-proessing step in any 3-D orthogonal graph drawing algorithm, as

has been done for 2-D orthogonal graph drawing by F�o�meier et al. [101℄ and Six

et al. [197℄. An experimental evaluation of the performane of 3-D orthogonal graph

drawing algorithms, measuring the relative improvements gained through heuristis and

re�nements, ould be arried out. A �rst step in this diretion, was the experiment

of Di Battista et al. [74℄ measuring the performane of a number of 3-D orthogonal

point-drawing algorithms.

To produe 3-D graph drawings whih are potentially more readable than 3-D or-

thogonal drawings a more exible model ould be employed. It is expeted that for 3-D

polyline graph drawings (see Setion 1.4.3), onsiderably fewer bends will be needed

to produe drawings with small volume. The tradeo� between angular resolution and

the number of bends in suh drawings is an interesting area for researh. Of theo-

retial interest is the development of algorithms for drawing graphs in non-orthogonal
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three-dimensional grids.
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Appendix A

Lower Bounds for

Three-Dimensional Orthogonal

Point-Drawing

In this Appendix we establish lower bounds for the number of bends in 3-D orthogonal

point-drawings of simple graphs and multigraphs. Firstly, we show that a 3-D orthog-

onal point-drawing of K

5

has at least seven bends. This is the only known non-trivial

lower bound for the total number of bends in a 3-D orthogonal point-drawing of a sim-

ple graph. Theorem 11.1 shows that a 3-D orthogonal point-drawing of K

5

has an edge

route with at least two bends. We then provide a formal proof of the well-known result

that the multigraph with two verties and six edges has an edge route with at least

three bends in any 3-D orthogonal point-drawing. Finally, we show this multigraph has

at least 12 bends in any 3-D orthogonal point-drawing, and we provide suh a drawing.

Throughout this appendix we impliitly use obvious symmetries to redue the number

of ases to onsider.

A.1 Simple Graphs

Our result for K

5

depends on the following results onerning 3-D orthogonal point-

drawings of small yles. Figure A.1 shows 3-D orthogonal point-drawings of the 4-yle

C

4

and of the 5-yle C

5

, eah with no bends.

224
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(a) (b)

(a) (b)

(a) (b)

(a) (b) (c)

Figure A.1: 0-bend 3-D orthogonal point-drawings of (a) C

4

and (b) C

5

.

Lemma A.1. The only 0-bend 3-D orthogonal point-drawings of C

4

and of C

5

are

those shown in Figure A.1.

Proof. We shall prove this result for C

5

. The proof for C

4

is similar. Suppose k is the

number of edges in the longest straight-line path in a 0-bend 3-D orthogonal point-

drawing of C

5

. Obviously k � 4. If k = 4 then, as in Figure A.2(a), there must be a

2-bend edge route. If k = 3 then, as in Figure A.2(b), there are two possible plae for

the �nal vertex, and in either ase there must be a 1-bend edge route.

(a) (b)

(a) (b)

(a) (b)

(a) (b) (c)

Figure A.2: The ases (a) k = 4 and (b) k = 3.

If k = 2 then, as in Figure A.3, the edges onneting to the ends of the 2-path, may

be (a) perpendiular, (b) in opposite diretions, or () in the same diretion. In ase

(a) there must be a 2-bend edge route. In ase (b) there must be a 3-bend edge route,

and ase () produes the 0-bend drawing of C

5

shown in Figure A.1(b).

(a) (b)

(a) (b)

(a) (b)

(a) (b) (c)

Figure A.3: The ase k = 2.
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If k = 1 then, as in Figure A.4, the edges onneting to the ends of the 1-path

(whih is drawn parallel to the X-axis), may be (a) perpendiular, (b) in the same

diretion, or () in opposite diretions. In eah ase there are no 1-bend edge routes

onneting the end-points of the resulting 4-path whih do not introdue a straight-line

path with two edges. So it is impossible to add the remaining vertex to make a 0-bend

5-yle with k = 1.

(a) (b)

(a) (b)

(a) (b)

(a) (b) (c)

Figure A.4: The ase k = 1.

Hene the only drawing of the 5-yle with no bends is that shown in Figure A.1(b)

with k = 2.

In Figure 2.3(b) (page 28) there is a 3-D orthogonal point-drawing of K

5

with seven

bends. We now show that this is optimal.

Theorem A.1. Every 3-D orthogonal point-drawing of K

5

has at least seven bends.

Proof. Suppose, to the ontrary, that there is a 3-D orthogonal point-drawing of K

5

with a total of six bends.

Our proof proeeds by onsidering the struture of the subgraph of K

5

onsisting

of the 0-bend edges. It is easily veri�ed that in any subgraph of K

5

with at least

seven edges there is a K

3

subgraph. Sine K

3

does not have a 0-bend 3-D orthogonal

point-drawing, the number of 0-bend edge routes in the drawing of K

5

is at most six.

Clearly, in any K

3

-free 6-edge subgraph of K

5

there is a 4-yle. Given a 4-yle,

the only way to add a �fth vertex and two more edges without reating a triangle is

to onnet the �fth vertex to the non-adjaent verties of the 4-yle. Hene, the only

6-edge K

3

-free subgraph of K

5

is that shown in Figure A.5(a), whih we all H.

Note that H ontains C

4

. By Lemma A.1 the only 0-bend 3-D orthogonal point-
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(a) (b)

(a) (b)

Figure A.5: (a) K

3

-free 6-edge subgraph H of K

5

; (b) H does not have a 0-bend 3-D

point-drawing

drawing of C

4

is a retangle. It is not possible to onnet the non-adjaent verties of

a retangle by two 0-bend edges (see Figure A.5(b)). Hene H does not have a 0-bend

3-D orthogonal point-drawing. So the number of 0-bend edge routes in the drawing of

K

5

is at most �ve. By Theorem 11.1, any 3-D point-drawing of K

5

has an edge route

with at least two bends. It follows that in a point-drawing of K

5

with six bends there

is preisely one 2-bend edge, four 1-bend edges and �ve 0-bend edges.

A K

3

-free subgraph of K

5

with �ve edges is C

5

or ontains C

4

. By Lemma A.1,

the only 0-bend drawings of C

5

and C

4

are the retangles shown in Figure A.1. As

illustrated in Figure A.6, the diagonally opposite verties of the retangles must be

onneted by a 3-bend edge route, whih is a ontradition. The result follows.

(a) (b)

(a) (b)

Figure A.6: 3-bend edge `aross' the 4- and 5-yle.
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A.2 Multigraphs

In Figure A.7 we show 3-D orthogonal point-drawings of the multigraph with two

verties and six edges.

(a) (b) (c)

(b)(a)

Figure A.7: Drawings of the 2-vertex 6-edge multigraph with (a) a maximum of three

bends per edge route, and (b) a total of twelve bends.

We now prove that the maximum number of bends per edge route in the drawing

in Figure A.7(a) is optimal.

Lemma A.2. The multigraph with two verties and six edges has a 3-bend edge route

in every 3-D orthogonal point-drawing.

Proof. Sine the graph is 6-regular every port at the verties v and w must be used.

The two verties an be (a) ollinear, (b) oplanar but not ollinear, or () not oplanar,

as illustrated in Figure A.8.

(a) (b) (c)

(b)(a)

Figure A.8: The 2-vertex 6-edge multigraph needs a 3-bend edge route.

In eah ase a port at vertex v pointing away from w requires at least three bends

to reah w.

We now prove that the total number of bends in the drawing in Figure A.7(b) is

optimal.
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Lemma A.3. The multigraph with two verties and six edges has at least 12 bends in

any 3-D orthogonal point-drawing.

Proof. If the verties are not oplanar then at one of the verties, three of the ports

need at least two bends to reah the other vertex, and the other three ports need at

least three bends to reah the other vertex. So a non-oplanar drawing has at least 15

bends.

If the verties are oplanar but not ollinear then at one of the verties, two of the

ports need at least one bend to reah the other vertex, two of the ports need at least

two bends to reah the other vertex, and the remaining two ports need at least three

bends to reah the other vertex. So a non-ollinear oplanar drawing has at least 12

bends.

If the verties are ollinear then at one of the verties, four of the ports need at

least two bends to reah the other vertex, and one of the ports needs at least three

bends to reah the other vertex. So a non-ollinear oplanar drawing has at least 11

bends. Suppose, without loss of generality, that the verties are in an X-line, and there

is suh a drawing with 11 bends. Then there must be four 2-bend edge routes, and

one 3-bend edge route. These four 2-bend edge routes must use the Y

�

and Z

�

ports

at eah vertex. Therefore, the edge routed using the X

�

and X

+

port must have four

bends, whih is a ontradition. The result follows.



Appendix B

3-D Orthogonal `Cage' Drawings

As disussed in Chapter 3, the 2-bends problem (Problem 3.3) is one of the most

interesting open problems in the �eld of 3-D orthogonal graph drawing. This problem

asks whether every maximum degree six graph has a 3-D orthogonal point-drawing with

at most two bends per edge route. We now present 3-D orthogonal point-drawings of

the 6-regular multi-partite graphs K

7

, K

2;2;2;2

, K

3;3;3

and K

6;6

with two bends per edge

route, thus providing evidene for the onjeture that every maximum degree six graph

has a 2-bend 3-D orthogonal point-drawing.

Wood [219℄ presented the �rst 2-bend 3-D orthogonal point-drawing of K

7

. This

drawing is less symmetri than the drawing presented here. In a 2-bend 3-D orthogonal

point-drawing the edge routes assigned an `extreme' port must be planar. The 2-bend

point-drawings whih follow onsist of two parts. The outer `age' inludes planar

and non-planar 2-bend edge routes (see Figure 5.25). The `interior' onsists solely of

non-planar 2-bend edge routes.

2-Bend Drawing of K

7

:

Figures B.1 and B.2 respetively show a K

6

age drawing and a K

1;6

interior drawing

whih ombine to give the 8� 8� 8 2-bend point-drawing of K

7

from Figure 3.6. The

verties are positioned at (2; 0; 0), (�2; 0; 0), (0; 2; 0), (0;�2; 0), (0; 0; 2), (0; 0;�2) and

(1; 1; 1).

230



APPENDIX B. `CAGE' DRAWINGS 231

6

Z

-

Y

�

�	

X

6

Z

-

Y

�

�	

X

Figure B.1: K

6

age.

2-Bend Drawings of K

2;2;2;2

and K

3;3;3

:

Our 2-bend 3-D point-drawings of K

2;2;2;2

and K

3;3;3

both use the otahedron graph

age shown in Figure B.3.

Combining the otahedron age with the K

2;6

interior drawing shown in Figure B.4

gives a 9� 9� 9 2-bend 3-D orthogonal point-drawing of K

2;2;2;2

.

Combining the otahedron age with the interior drawing shown in Figure B.5 gives

a 10� 10� 10 2-bend 3-D orthogonal point-drawing of K

3;3;3

.
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6

Z

-

Y

�

�	

X

6

Z

-

Y

�

�	

X

Figure B.2: K

1;6

drawing forming the interior of K

7

.
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Figure B.3: Otahedron age
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Figure B.4: K

2;6

drawing forming the interior of K

2;2;2;2

.
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Figure B.5: Interior of K

3;3;3

.
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2-Bend Drawing of K

6;6

:

Our 2-bend 3-D orthogonal point-drawing of K

6;6

onsists of the `bipartite age' shown

in Figure B.6, and the interior drawing of Figure B.7 drawn three times with:

(1) I = X, J = Y , K = Z, (2) I = Y , J = Z, K = X, (3) I = Z, J = X, K = Y .

We position the verties of K

6;6

as indiated in Table B.1, obtaining a 12� 12� 12

2-bend 3-D orthogonal point-drawing of K

6;6

. This drawing was found using the searh

tehnique presented in Setion 5.2.2, whih is based on the algorithm in Appendix C

for the maximum lique problem.
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Figure B.6: Bipartite age.
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Figure B.7: Interior of K

6;6

.

Table B.1: Coordinates of V (K

6;6

).

X

+

W

(4,-2,0) Y

+

W

(0,4,-2) Z

+

W

(-2,0,4)

X

+

B

(3,2,0) Y

+

B

(0,3,2) Z

+

B

(2,0,3)

X

�

W

(-4,1,-1) Y

�

W

(-1,-4,1) Z

�

W

(1,-1,-4)

X

�

B

(-5,-3,-1) Y

�

B

(-1,-5,-3) Z

�

B

(-3,-1,-5)



Appendix C

Maximum Clique Algorithm

In this appendix we desribe an algorithm for �nding a maximum lique in a

graph and ompare its performane with leading algorithms for this problem

in an experimental study. In Setion 5.2.2 we desribe how this algorithm

an be used for searhing for 2-bend 3-D orthogonal point-drawings. For

example, it was used to �nd the 2-bend drawing of K

6;6

presented in Ap-

pendix B. This algorithm and the experimental results were published in

[218℄.

C.1 Introdution

As de�ned in Setion 2.2, a lique of an undireted graph G is a set of pairwise adjaent

verties. A set of pairwise non-adjaent verties is alled an independent set. In this

appendix we address the Maximum Clique Problem; i.e., for a given undireted graph

G �nd a maximum ardinality lique of G (whose ardinality we denote by !(G)).

Clearly the maximum lique problem is equivalent to that of �nding a maximum

independent set in the omplementary graph. Appliations for this problem exist in

signal proessing, omputer vision and experimental design for example (see Balas and

Yu [13℄). Unfortunately, not only is the exat problem NP-hard (see Garey and Johnson

[105℄), but Arora et al. [7℄ show that approximating the maximum lique problem within

a fator of jV j

�

for some � > 0 is NP-hard .

Early algorithms inluded the branh and bound algorithm of Bron and Kerbosh

236
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[46℄ to generate all the liques of a graph and the reursive algorithm of Tarjan and

Trojanowski [206℄ to determine a maximum independent set of an n-vertex graph in

O(2

n=3

) time. Reent approahes to the maximum lique problem have inluded the

branh and bound algorithms of Carraghan and Pardalos [52℄, Pardalos and Rodgers

[170℄, Balas and Yu [13℄, Balas and Xue [11, 12℄, Babel and Tinhofer [9℄, and Babel

[8℄. In their survey paper, Pardalos and Xue [171℄ identify the following key issues in a

branh and bound algorithm for the maximum lique problem.

1. How to �nd a good lower bound, i.e., a lique of large size?

2. How to �nd a good upper bound on the size of a maximum lique?

3. How to branh, i.e., break a problem into smaller subproblems?

In Setion C.2 we address the �rst two of these questions. In Setion C.3 we present

our branh and bound algorithm, and in Setion C.4 we disuss omputational results of

our algorithm in omparison with leading algorithms for the maximum lique problem.

C.2 Heuristis

The algorithm of Balas and Yu [13℄ onentrates on the determination of lower bounds

using an algorithm to �nd a maximum lique of a maximal triangulated indued sub-

graph at seleted searh tree nodes. This method is extended to the maximum weight

lique problem by Balas and Xue [11℄. The algorithm to follow and the algorithm of

Balas and Xue [12℄ determine a lower bound at the root node of the searh tree, using

the algorithm of Balas [10℄ to �nd a maximum lique of an edge-maximal triangulated

subgraph. To provide lower bounds at non-root searh tree nodes we use the following

well-known heuristi whih we all Greedy Clique. Given a graph G, maintain a set

S (initially S  V (G)) of andidate verties to be added to the urrent lique. Add a

vertex v 2 S to the urrent lique, set S  (S nfvg)\V

G

(v), and ontinue until S = ;.

We now turn our attention to the determination of upper bounds. The algorithms

of Carraghan and Pardalos [52℄ and Pardalos and Rodgers [170℄ use the size of a given

subgraph as an upper bound for the size of a lique in that subgraph. Vertex-olourings

provide muh tighter upper bounds. A vertex k-olouring of a graph G partitions V (G)
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into k independent sets (C

1

; C

2

; : : : ; C

k

) alled olour lasses. Eah vertex of a lique

must be oloured di�erently, so k is an upper bound for !(G). As disussed in Se-

tion 2.2, the algorithm Greedy Vertex-Colour is a simple heuristi for determining

a vertex-olouring of a graph.

In [8, 9, 12℄ upper bounds for the maximum lique problem are determined using

the Dsatur vertex-olouring heuristi of Brelaz [43℄. Brelaz de�nes the saturation

degree of an unoloured vertex v to be the number of olours assigned to the verties

adjaent to v. While unoloured verties remain, the Dsatur heuristi hooses an

unoloured vertex v with maximum saturation degree (breaking ties by higher degree),

and olouring v with the minimum olour not already assigned to an adjaent vertex.

This method olours the onneted omponents of G in turn, and within eah on-

neted omponent the initial verties hosen form a lique. So Dsatur provides both

a lower and upper bound for !(G). Comparisons of Greedy Vertex Colour and

Dsatur in [12, 217℄ show that for all but a few of the tested graphs Dsatur requires

(up to 27.5%) fewer olours than Greedy Vertex Colour, although Dsatur is

onsiderably slower. For very sparse and very dense graphs, Dsatur is an order of

magnitude more expensive than olour [12℄.

A frational olouring of a graph G is a set C of (possibly interseting) weighted

olour lasses (i.e., independent sets), suh that for eah vertex v 2 V (G) the sum of

the weights of the olour lasses ontaining v is at least one. Sine a olour lass an

ontain at most one vertex of a lique, in a frational olouring the sum of the weights

of those olour lasses interseting a lique Q is at least jQj. Therefore the total weight

of a frational olouring of a graph G is an upper bound for !(G). The upper bound

from a minimum weight frational olouring is in general tighter than that provided by

a minimum vertex-olouring [12℄; unfortunately determining suh a frational olouring

is NP-hard [112℄ .

Balas and Xue [12℄ use the following heuristi FCP for the frational olouring

problem to provide upper bounds for the maximum lique problem. After i iterations

of FCP, eah vertex is oloured exatly i times, and eah olour lass is assigned weight

1=i, so t

i

= jCj=i is an upper bound for !(G). Initially C  ;, i  1 and t

0

 1.

Iteration i of FCP exeutes the following algorithm.
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For eah vertex v, inlude v in the �rst olour lass C

j

2 C, if one exists, suh that

C

j

[fvg remains an independent set. Suppose U is the set of verties not inluded in a

olour lass. Find a vertex-olouring (C

1

; C

2

; : : : ; C

k

) of G[U ℄ (using Greedy Vertex

Colour or Dsatur), and set C  C [ fC

1

; C

2

; : : : ; C

k

g and t

i

 jCj=i. If t

i

< t

i�1

then set i i+ 1 and repeat, otherwise return the upper bound bt

i�1

.

To prove a time omplexity result for FCP, the authors amend the stopping rule so

that the number of olour lasses jCj does not exeed the number of verties jV j. Our

implementation also inludes this feature. Note that for many graphs a tighter upper

bound an be alulated by reiterating the algorithm after either stopping ondition is

satis�ed.

By FCP

G

and FCP

D

we refer to algorithm FCP with Greedy Vertex Colour

and Dsatur determining vertex-olourings, respetively. The omparison of these

heuristis in [12, 217℄ show that the improvements in upper bound by FCP

G

over

Greedy Vertex Colour range from 0{21 olours, and for FCP

D

over Dsatur the

improvements range from 0{7 olours.

C.3 Maximum Clique Algorithm

We now present our branh and bound algorithm MC for the maximum lique problem,

whih uses the FCP heuristi to determine upper bounds, and, like the algorithms in [52,

170℄, ativates exatly one new searh tree node at eah branhing stage. Other branh

and bound algorithms for the maximum lique problem ativate many searh tree nodes

at eah branhing step. This is ineÆient as new bounds need to be determined for eah

subgraph onsidered. A lower bound (i.e., a large maximum lique) is only determined

at the root node of the searh tree. To do so we use the linear-time algorithm of Balas

and Yu [13℄ (also see Xue [225℄) for �nding a maximum lique in an edge-maximal

triangulated subgraph of the input graph.

Given a graph G, algorithm MC maintains the following onditions:

� If h is the urrent depth of the searh tree then the set of verties

fv

1

; v

2

; : : : ; v

h�1

g � V (G) is a lique of G.

� M is the urrent largest lique found by the algorithm; h� 1 � jM j � !(G).
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� For 1 � i � h, the vertex set S

i

�

i�1

T

j=1

V

G

(v

j

) onsists of andidates for enlarging

fv

1

; v

2

; : : : ; v

i�1

g.

� For eah i, 1 � i � h, (C

i

1

; C

i

2

; : : : ; C

i

k

i

) is a vertex-olouring of G[S

i

℄. Both k

i

and k

0

i

(determined by FCP) are upper bounds for !(G[S

i

℄), with k

0

i

� k

i

.

� An ative node of the searh tree orresponds to the subproblem of �nding a

maximum lique larger than M of the subgraph:

G

i

= G[fv

1

; v

2

; : : : ; v

i�1

g [ S

i

℄, for 1 � i � h.

Clearly !(G

i

) � i� 1 + k

0

i

� i� 1 + k

i

.

Algorithm C.1. MaxClique

Input: graph G

Output: maximum lique of G

Step 0: Initialisation

Find a maximum lique M of an edge-maximal triangulated subgraph of G [13, 225℄.

Set h 1, S

h

 V (G) and go to Step 2.

Step 1: Calulate Lower Bound

Q Greedy Clique(G[S

h

℄).

if h� 1 + jQj > jM j then set M  fv

1

; v

2

; : : : ; v

h�1

g [Q.

Go to Step 2.

Step 2: Calulate Upper Bound

Find a vertex-olouring (C

h

1

; C

h

2

; : : : ; C

h

k

h

) of G[S

h

℄.

if h� 1 + k

h

� jM j then go to Step 4.

Apply FCP to G[S

h

℄ to obtain a further upper bound k

0

h

� !(G[S

h

℄).

if h� 1 + k

0

h

� jM j then go to Step 4.

Go to Step 3.

Step 3: Branhing

Choose a vertex v

h

2 C

h

k

h

with maximum deg

G

(v

h

).
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Set S

h+1

 S

h

\ V

G

(v

h

), S

h

 S

h

n fv

h

g, C

h

k

h

 C

h

k

h

n fv

h

g.

if C

h

k

h

= ; then set k

h

 k

h

� 1 and if k

h

< k

0

h

then set k

0

h

 k

h

.

Set h h+ 1.

Go to Step 1.

Step 4: Baktraking

if h = 1 then stop: M is a maximum lique of G.

Set h h� 1.

if h� 1 + k

0

h

� jM j then go to Step 4.

Go to Step 3.

In the seond line of Step 3, the problem of �nding a maximum lique of G

h

is

divided into two sub-problems. If v

h

is a vertex of G[S

h

℄ then a lique Q of G

h

will be

ontained in either:

G

h+1

= G[fv

1

; v

2

; : : : ; v

h

g [ (S

h

\ V

G

(v

h

))℄ (if v

h

2 Q)

or G

h

= G[fv

1

; v

2

; : : : ; v

h�1

g [ (S

h

n fv

h

g)℄ (if v

h

62 Q).

We hoose v

h

from the �nal olour lass C

h

k

h

, as the latter olour lasses generated

by Greedy Vertex Colour and by Dsatur tend to be smaller than the initial ones.

Therefore the upper bound k

h

is redued more quikly than if an arbitrary vertex in S

h

was hosen. Note that, sine jM j � h�1 and h�1+k

h

> jM j whenever the algorithm

goes to Step 3, we have k

h

� 1 at this stage, and hene the olour lass C

h

k

h

must exist.

Theorem C.1. Given an undireted graph G, algorithm MC �nds a maximum lique

M of G.

Proof. This result follows immediately from the observation that algorithm MC main-

tains the abovementioned onditions throughout the algorithm.

C.4 Experimental Results

See [217℄ for a omplete desription of the implementation of our algorithms in GAP

[193℄ on a Sun Sparstation 10.



APPENDIX C. MAXIMUM CLIQUE ALGORITHM 242

To evaluate the e�etiveness of the FCP heuristi as an upper bounding devie

for the maximum lique problem, we have also developed an algorithm MC

0

whih

skips the third and fourth lines of Step 2, thus not using FCP to alulate a further

upper bound. MC

G

(respetively, MC

0

G

) usesGreedy Clique to determine a lique in

Step 1, and FCP

G

(Greedy Vertex Colour) to determine upper bounds in Step 2.

MC

D

(respetively, MC

0

D

) uses FCP

D

(Dsatur) for these purposes.

We now ompare the performane of algorithms MC

G

, MC

D

, MC

0

G

and MC

0

D

with

existing algorithms for the maximum lique problem. By BXB we refer to a ombina-

tion of the algorithms of Babel [8℄ and Balas and Xue [12℄, the most eÆient known

algorithms for the maximum lique problem. BXB uses FCP

D

to alulate lower and

upper bounds at eah searh tree node, and uses branhing rule II in [8℄, their best

performing branhing rule. The branhing rules in [8℄ and [12℄ (whih is stated for

weighted graphs) both generally ativate more than one new searh tree node.

Table C.1 shows the average size of the lower bound determined at the root node

(LB), the average size of a maximum lique (jM j), the average CPU time taken by

eah of the algorithms, and the average number of searh tree nodes generated by eah

algorithm, for 10 uniform random graphs with n = jV (G)j verties and % edge density

d = 200jEj=n(n � 1).

In Table C.2 we ompare the algorithms for a seletion of the DIMACS benhmark

graphs whih were developed as part of the 1993 DIMACS Challenge (see Johnson

and Trik [122℄). They inlude non-uniform random graphs with relatively large lique

sizes, and graphs whih have arisen in oding theory, the Steiner Triple Problem, tiling

of hyperubes, vertex over problems and fault diagnosis. Table B.2 shows the size n

and % density d of the graph, the CPU time taken by eah algorithm, and the number

of searh tree nodes generated by eah algorithm. Column BX refers to the number of

searh tree nodes for the algorithm of Balas and Xue [12℄, as stated in their paper. To

aurately ompare algorithms we use the values presented in [12℄ for the lower bound

at the root node for eah of the tested algorithms.

In most ases the algorithms MC

D

, BXB and BX, whih use the upper bound

heuristi FCP

D

, generate the least number of searh tree nodes. MC

D

on average

generates less searh tree nodes than BXB for 12 of the 16 sets of random graphs. For
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Table C.1: Performane of Maximum Clique Finding Algorithms on Uniform Random

Graphs

CPU Time (seonds) Searh Tree Nodes

n d LB jM j

MC

G

MC

D

MC

0

G

MC

0

D

BXB MC

G

MC

D

MC

0

G

MC

0

D

BXB

100 10 3.7 3.9 0.222 0.428 0.160 0.280 0.432 24.3 18.7 24.8 18.7 23.1

100 20 4.7 5.1 0.363 0.755 0.277 0.523 0.752 38.1 33.9 40.6 34.7 39.2

100 30 5.6 6.3 0.959 1.590 0.422 0.883 1.390 53.4 45.6 79.2 52.9 50.3

100 40 6.9 7.6 1.325 3.148 0.613 1.508 3.020 109.8 82.4 165.6 102.8 89.1

100 50 8.1 9.1 2.515 6.894 1.478 3.780 6.458 254.1 198.7 344.5 234.9 201.9

100 60 10.4 11.6 5.497 14.18 1.932 6.860 14.87 468.4 328.7 707.5 405.8 365.4

100 70 12.8 14.8 14.31 36.85 3.445 18.08 38.38 1,048 672.7 1,705 893.4 698.1

100 80 18.0 20.0 35.43 92.84 6.525 46.46 88.62 1,786 1,253 2,961 1,696 1,160

100 90 28.0 30.7 73.84 150.1 12.12 71.30 134.1 2,126 1,109 4,043 1,523 974.3

200 10 4.0 4.3 1.013 2.498 0.962 1.715 2.705 92.3 83.5 98.2 83.7 91.2

200 20 5.1 5.9 2.708 5.810 1.548 4.217 5.965 140.3 120.7 202.2 137.6 126.9

200 30 6.1 7.3 7.030 17.71 3.187 9.095 18.56 519.9 396.2 699.5 476.8 386.0

200 40 7.6 9.0 16.04 47.64 5.510 26.04 49.85 1,539 1,162 2,011 1,279 1,317

200 50 10.0 11.1 57.49 161.5 12.68 81.31 168.1 4,295 2,810 6,846 3,622 2,889

200 60 12.1 14.0 249.9 755.6 45.66 380.4 820.4 17,461 11,704 26,857 14,712 13,109

200 70 15.3 18.1 1,993 5,830 341.9 2,945 5,829 102,122 64,430 173,810 88,354 63,972

CPU Time (seonds) Searh Tree Nodes

jM j

MC

G

MC

D

MC

0

G

MC

0

D

BXB MC

G

MC

D

MC

0

G

MC

0

D

BXB

29 160.0 263.1 26.34 122.5 285.8 4,957 2,014 9,854 2,721 2,216

30 66.09 158.2 10.38 74.80 134.4 1,885 1,183 3,259 1,620 966

31 53.27 94.34 9.740 45.92 79.52 1,392 643.5 2,815 938.5 522

32 50.80 138.0 7.809 66.97 92.19 1,323 1,005 2,465 1,372 623

33 12.03 36.32 2.300 17.90 22.80 256 217 391 307 123

12 of the DIMACS benhmark graphs, the lower bound and upper bound alulated at

the root node by these algorithms are equal, and therefore only one searh tree node

is generated. Of the other 26 DIMACS benhmark graphs, MC

D

uses the least searh

tree nodes of these algorithms 15 times, BXB 10 times, and BX 8 times.
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Table C.2: Performane of Maximum Clique Finding Algo-

rithms on the DIMACS Benhmark Graphs

CPU Time (seonds) Searh Tree Nodes

DIMACS

Graph

n d jM j

MC

G

MC

D

MC

0
G

MC

0
D

BXB MC

G

MC

D

MC

0
G

MC

0
D

BXB BX

brok200 1 200 75 21 4,911 15,186 805.2 7,951 16,320 218,853 149,153 379,810 211,013 163,348 113,244

brok200 2 200 50 12 26.72 149.7 3.833 74.22 158.4 1,790 3,018 2,594 3,593 3,018 2,965

brok200 3 200 61 15 230.1 573.6 38.50 281.0 815.9 15,354 7,818 24,113 10,113 12,717 8,155

brok200 4 200 66 17 568.2 1,926 92.95 931.5 1,530 31,751 25,105 52,332 33,693 19,316 25,705

-fat200-1 200 8 12 0.283 2.200 0.017 0.150 2.133 8 1 8 4 1 1

-fat200-2 200 16 24 0.317 0.183 0.017 0.183 0.167 7 1 7 1 1 1

-fat200-5 200 43 58 0.683 3.467 0.133 2.217 3.284 27 27 27 27 27 29

-fat500-1 500 4 14 0.534 0.616 0.017 0.617 2.217 13 1 13 1 1 1

-fat500-2 500 7 26 1.417 0.700 0.083 0.700 0.750 23 1 23 1 1 1

-fat500-5 500 19 64 1.450 0.984 0.166 0.950 0.983 23 1 23 1 1 1

-fat500-10 500 37 126 0.017 1.400 0.033 1.400 1.450 1 1 1 1 1 1

hamming6-2 64 90 32 0.017 0.050 0.001 0.067 0.066 1 1 1 1 1 1

hamming6-4 64 35 4 0.133 0.850 0.067 0.300 0.800 81 29 81 58 29 48

hamming8-2 256 97 128 0.017 0.733 0.001 0.750 0.717 1 1 1 1 1 1

ontinued on next page
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Table C.2: ontinued

CPU Time (seonds) Searh Tree Nodes

DIMACS

Graph

n d jM j

MC

G

MC

D

MC

0
G

MC

0
D

BXB MC

G

MC

D

MC

0
G

MC

0
D

BXB BX

hamming8-4 256 64 16 344.2 155.7 79.15 137.6 156.5 28,593 357 36,441 2,045 357 373

hamming10-2 1,024 99 512 0.050 10.57 0.066 10.47 12.28 1 1 1 1 1 1

johnson8-2-4 28 56 4 0.050 0.050 0.017 0.083 0.033 20 1 23 26 1 1

johnson8-4-4 70 77 14 0.533 0.300 0.183 0.534 0.300 115 1 115 19 1 1

johnson16-2-4 120 76 8 770.8 0.417 195.8 2,046 0.384 190,084 1 256,099 355,522 1 1

keller4 171 65 11 113.1 256.5 18.45 137.5 256.7 6,543 3,700 12,829 5,195 3,700 4,164

MANN a9 45 93 16 0.617 1.033 0.100 0.384 1.017 46 19 60 20 19 23

MANN a27 378 99 126 23,286 26,524 704.3 9,753 25,549 39,087 8,704 47,264 9,874 8,714 14,145

p hat300-1 300 24 8 8.800 38.93 1.467 20.12 37.53 1,032 819 1,310 928 819 832

p hat300-2 300 49 25 75.05 225.6 10.05 129.2 225.5 1,888 1,304 2,801 1,579 1,304 1,613

p hat500-1 500 25 9 76.48 384.8 13.72 231.4 389.5 7,454 6,179 9,772 6,724 6,179 6,105

p hat500-2 500 50 36 2,695 9,790 267.1 5,796 6,320 35,657 27,182 59,393 34,787 17,019 31,746

p hat700-1 700 25 11 272.8 1,915 40.32 1,060 1,408 17,629 19,337 25,805 23,150 15,310 14,040

p hat1000-1 1,000 24 10 1,883 13,060 283.2 6,974 13,150 122,182 90,607 179,082 111,897 91,159 93,004

san200 0.7 1 200 70 30 6.617 36.37 0.917 18.85 95.73 53 231 206 348 645 635

ontinued on next page
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Table C.2: ontinued

CPU Time (seonds) Searh Tree Nodes

DIMACS

Graph

n d jM j

MC

G

MC

D

MC

0
G

MC

0
D

BXB MC

G

MC

D

MC

0
G

MC

0
D

BXB BX

san200 0.7 2 200 70 18 3.700 20.80 0.466 10.65 36.53 110 154 195 182 363 852

san200 0.9 1 200 90 70 73.75 45.72 11.48 24.92 255.4 715 121 2,069 201 631 10

san200 0.9 2 200 90 60 5,988 612.6 1,052 348.0 2,036 71,114 1,553 211,889 2,365 5,655 1,825

san400 0.5 1 400 50 13 51.03 81.73 11.22 64.83 247.7 1,223 378 3,465 523 1,689 1,194

san400 0.7 1 400 70 40 1,681 2,455 198.7 1,430 10,263 15,903 5,604 38,989 8,507 30,707 20,913

san400 0.7 2 400 70 30 36,486 39,100 6,228 24,285 66,579 690,806 139,092 1,591,030 231,593 295,314 75,773

san1000 1,000 50 15 2,281 32,630 653.9 40,814 9,277 43,623 44,408 106,823 78,698 12,996 21,897

sanr200 0.7 200 70 18 1,711 4,608 338.2 2,372 4,076 87,012 51,610 150,861 71,799 44,278 40,496

sanr400 0.5 400 50 13 2,352 9,094 350.9 4,955 8,617 155,285 115,210 233,381 136,636 114,208 112,932
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Those algorithms whih use the vertex-olouring heuristi Greedy Vertex

Colour, while generating the most searh tree nodes, are generally the fastest. In

partiular, for the random graphs, MC

0

G

is the fastest of the tested algorithms, using

on average only 18.41% of the CPU time used by BXB. MC

0

G

is again the fastest for all

but four of the DIMACS benhmark graphs (and for two of these the di�erene is only

a few miroseonds). We have also implemented a variant MC2

G

of MC

0

G

whih only

�nds a lower bound at the root node of the searh tree. For the random graphs (DI-

MACS benhmark graphs) this algorithm uses 0.65% (0.20%) more searh tree nodes

than MC

0

G

, yet is on average 4.34% (12.04%) faster than MC

0

G

. This indiates that the

determination of lower bounds at non-root nodes is not time-eÆient.

We have observed that for graphs with �xed size and density the diÆulty of the

maximum lique problem is generally inversely orrelated to the size of a maximum

lique in the graph. This is apparent for the san graphs with equal n and d. Similar

results our with the random graphs. For example, the 10 uniform random graphs

(used in Table C.1) with n = 100 and d = 90% have a maximum lique of size 29(2),

30(3), 31(2), 32(2) or 33(1). For eah maximum lique size, Table C.3 shows the

average CPU time taken, and the average number of searh tree nodes generated by

eah algorithm.

Table C.3: Performane of Maximum Clique Finding Algorithms on Uniform Random

Graphs with n = 100 and d = 90%

CPU Time (seonds) Searh Tree Nodes

n d LB jM j

MC

G

MC

D

MC

0

G

MC

0

D

BXB MC

G

MC

D

MC

0

G

MC

0

D

BXB

100 10 3.7 3.9 0.222 0.428 0.160 0.280 0.432 24.3 18.7 24.8 18.7 23.1

100 20 4.7 5.1 0.363 0.755 0.277 0.523 0.752 38.1 33.9 40.6 34.7 39.2

100 30 5.6 6.3 0.959 1.590 0.422 0.883 1.390 53.4 45.6 79.2 52.9 50.3

100 40 6.9 7.6 1.325 3.148 0.613 1.508 3.020 109.8 82.4 165.6 102.8 89.1

100 50 8.1 9.1 2.515 6.894 1.478 3.780 6.458 254.1 198.7 344.5 234.9 201.9

100 60 10.4 11.6 5.497 14.18 1.932 6.860 14.87 468.4 328.7 707.5 405.8 365.4

100 70 12.8 14.8 14.31 36.85 3.445 18.08 38.38 1,048 672.7 1,705 893.4 698.1

100 80 18.0 20.0 35.43 92.84 6.525 46.46 88.62 1,786 1,253 2,961 1,696 1,160

100 90 28.0 30.7 73.84 150.1 12.12 71.30 134.1 2,126 1,109 4,043 1,523 974.3

200 10 4.0 4.3 1.013 2.498 0.962 1.715 2.705 92.3 83.5 98.2 83.7 91.2

200 20 5.1 5.9 2.708 5.810 1.548 4.217 5.965 140.3 120.7 202.2 137.6 126.9

200 30 6.1 7.3 7.030 17.71 3.187 9.095 18.56 519.9 396.2 699.5 476.8 386.0

200 40 7.6 9.0 16.04 47.64 5.510 26.04 49.85 1,539 1,162 2,011 1,279 1,317

200 50 10.0 11.1 57.49 161.5 12.68 81.31 168.1 4,295 2,810 6,846 3,622 2,889

200 60 12.1 14.0 249.9 755.6 45.66 380.4 820.4 17,461 11,704 26,857 14,712 13,109

200 70 15.3 18.1 1,993 5,830 341.9 2,945 5,829 102,122 64,430 173,810 88,354 63,972

CPU Time (seonds) Searh Tree Nodes

jM j

MC

G

MC

D

MC

0

G

MC

0

D

BXB MC

G

MC

D

MC

0

G

MC

0

D

BXB

29 160.0 263.1 26.34 122.5 285.8 4,957 2,014 9,854 2,721 2,216

30 66.09 158.2 10.38 74.80 134.4 1,885 1,183 3,259 1,620 966

31 53.27 94.34 9.740 45.92 79.52 1,392 643.5 2,815 938.5 522

32 50.80 138.0 7.809 66.97 92.19 1,323 1,005 2,465 1,372 623

33 12.03 36.32 2.300 17.90 22.80 256 217 391 307 123
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