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Abstract

Both treewidth and the Hadwiger number are key graph parameters in structural and al-

gorithmic graph theory, especially in the theory of graph minors. For example, treewidth

demarcates the two major cases of the Robertson and Seymour proof of Wagner’s Con-

jecture. Also, the Hadwiger number is the key measure of the structural complexity of a

graph. In this thesis, we shall investigate these parameters on some interesting classes of

graphs.

The treewidth of a graph defines, in some sense, how “tree-like” the graph is. Treewidth

is a key parameter in the algorithmic field of fixed-parameter tractability. In particular,

on classes of bounded treewidth, certain NP-Hard problems can be solved in polynomial

time. In structural graph theory, treewidth is of key interest due to its part in the stronger

form of Robertson and Seymour’s Graph Minor Structure Theorem. A key fact is that

the treewidth of a graph is tied to the size of its largest grid minor. In fact, treewidth is

tied to a large number of other graph structural parameters, which this thesis thoroughly

investigates. In doing so, some of the tying functions between these results are improved.

This thesis also determines exactly the treewidth of the line graph of a complete graph.

This is a critical example in a recent paper of Marx, and improves on a recent result by

Grohe and Marx. By extending the techniques used, we also determine the treewidth of

the line graph of a complete multipartite graph, up to lower order terms in general, and

exactly whenever the complete multipartite graph is regular. This generalises a result by

Lucena. We also determine a lower bound on the treewidth of any line graph; this result is

similar to a question about the Hadwiger number of line graphs posed by Seymour, which

was recently proven by DeVos et al.. Finally, we prove a result on the treewidth of the

Kneser graph; in doing so we also prove a generalisation of the famous Erdős-Ko-Rado

Theorem.

The Hadwiger number of a graph is the size of its largest complete minor. One of

the most important conjectures in modern mathematics is Hadwiger’s Conjecture, which

conjectures that the Hadwiger number of a graph is at least its chromatic number. A

related question is determining what lower bound on the average degree is required to
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ensure the existence of a Kt-minor (or, more generally, an H-minor for any graph H). The

Kt-minor case has been thoroughly studied, and independently answered by Kostochka

and Thomason. In this thesis we answer a slightly different question and present an

algorithm for finding, in O(n) time, an H-minor forced by high average degree. Finally,

this thesis determines a weakening of Hadwiger’s Conjecture on the class of circular arc

graphs, an interesting generalisation of the class of interval graphs, and in the process of

doing so, proves some useful results about linkages in interval graphs.
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Preface
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their work on the paper which would become Chapter 7.

Further thanks to my officemates and fellow students Michael Payne, Guangjun Xu

and Ricky Rotheram for their advice and support.

I also wish to acknowledge the several reading and seminar groups that ran during my

candidature. Firstly, the Graph Theory Reading Group, and its current leader Arun Mani.

Secondly, the Discrete Structures and Algorithms seminar group. Finally, the Theoretical

Research in Computer Science (TRICS) group, run by Tony Wirth and (previously) Kerri

Morgan.

Thanks to Alex Scott for pointing out references [36, 37, 99] in Chapter 6. Thanks

also to Jacob Fox for helpful conversations with regards to Chapter 2.

A final note of thanks to my parents David and Jan Harvey for their emotional support

during the last four years.

ix



x ACKNOWLEDGEMENTS



Table of Contents

Abstract iii

Declaration v

Preface vii

Acknowledgements ix

Table of Contents xi

List of Figures xv

1 Introduction and Literature Review 1

1.1 Graph Minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Treewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Hadwiger’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 A Unifying Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

I Treewidth 19

2 Parameters Tied to Treewidth 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Brambles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 k-Trees and Chordal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Branchwidth and Tangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Tree Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Linkedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 Well-linked and k-Connected Sets . . . . . . . . . . . . . . . . . . . . . . . . 38

xi



xii TABLE OF CONTENTS

2.10 Grid Minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.11 Grid-like Minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.12 Fractional Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Treewidth of the Line Graph of a Complete Graph 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Line-Brambles and the Treewidth Duality Theorem . . . . . . . . . . . . . . 46

3.3 Proof of Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Treewidth of the Line Graph of a Complete Multipartite Graph 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Line-Brambles of a Complete Multipartite Graph . . . . . . . . . . . . . . . 52

4.3 Path Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Treewidth of General Line Graphs 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 The General Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 The General Upper Bound and Extensions . . . . . . . . . . . . . . . . . . . 79

6 Treewidth of the Kneser Graph and the Erdős-Ko-Rado Theorem 81
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Chapter 1

Introduction and Literature

Review

1.1 Graph Minors

The numbered Theorems 1.1 to 1.13 form the core results presented in this thesis. In this

chapter we present the statements of these theorems and provide the necessary background

and context; the remaining chapters contain thorough proofs of these results.

A graph G is a set of elements V (G), called vertices, together with a set E(G) of

unordered pairs of vertices, called edges. This is the definition of a simple graph; for our

purposes, all graphs are simple unless otherwise noted. All of the basic definitions and

notation in this thesis are as in the standard textbook by Diestel [22], unless otherwise

noted.

A graph H is a minor of a graph G if a graph isomorphic to H can be constructed

from G by repeated applications of vertex deletion, edge deletion and edge contraction.

Vertex deletion and edge deletion are self-evident. Edge contraction is defined as follows:

given an edge vw ∈ E(G), replace vertices v and w with a single new vertex x adjacent to

all vertices initially adjacent to v or w. If H is a minor of G, we say that G contains an

H-minor. The study of graph minors is of key importance in modern graph theory. We

now discuss some of these key results.

An important early result is the Kuratowski-Wagner Theorem [66, 113]. A graph is

planar if it can be drawn in the plane so that no two edges cross.

Theorem (Kuratowski-Wagner Theorem [113]). A graph G is planar if and only if it

contains neither K5 nor K3,3 as a minor.

We say a class of graphs G is minor-closed if H ∈ G whenever G ∈ G and H is a

1



2 CHAPTER 1. INTRODUCTION

minor of G. The class of planar graphs is minor-closed; clearly vertex and edge deletion

do not turn a planar graph non-planar, and edge contraction does not create any crossing

edges since it is possible to move two vertices together by “shortening” the edge until

they merge together. The Kuratowski-Wagner Theorem gives a finite forbidden minor

characterisation of the planar graphs—that is, a finite set of graphs such that every graph

that is non-planar must contain a minor in that set, and every graph that is planar contains

no minor in that set. While it is easy to find an infinite set of graphs with this property

(simply take all graphs not in G), it is not obvious that a finite set must exist.

A similar result holds for every non-trivial minor-closed class.

Theorem (Graph Minor Theorem [88]). Let G be a minor-closed class of graphs, other

than the class of all graphs. Then G has a finite forbidden minor characterisation.

This is one of the key theorems in modern structural graph theory. It was originally

referred to as Wagner’s Conjecture, before being proven by Robertson and Seymour in

their twenty-three paper sequence “Graph Minors” [88]. (Wagner, however, stated that

he had never conjectured such a result [22].) The Graph Minor Theorem gives rise to a

O(n3) time algorithm for determining whether or not a given n-vertex graph G is in a

fixed minor-closed class G [93]. Specifically, this algorithm determines whether G contains

a fixed graph H as a minor in O(n3) time; given a forbidden minor characterisation for G,

it is sufficient to check whether or not each graph is a minor of G. However, this algorithm

requires that the finite forbidden minor characterisation be known for G, which is not the

case for most classes. It also depends on the number of graphs in this characterisation.

This is finite and does not depend on n (which is why the total algorithm is still only

O(n3) time; there is one iteration of the loop for each graph in the characterisation), but

it is often enormous (see [13], for example).

At the heart of Robertson and Seymour’s proof is the Graph Minor Structure Theorem

[91, 94]. There are several different versions of the Graph Minor Structure Theorem (see

Kawarabayashi and Mohar [53] for an overview), but essentially it shows that a minor-

closed class either has bounded treewidth (which we define in Section 1.2), or if the class

has unbounded treewidth, then any graph in it can be constructed with a restricted series

of operations. A simplified version of this theorem follows:

Theorem (Robertson and Seymour [94]). Let H be a non-planar graph and let G be the

family of graphs with no H-minor, and denote by Σ1, . . . ,Σs all the connected surfaces

(up to homeomorphism) in which H cannot be drawn. Then every graph in G can be

constructed by clique-sums from those that can “almost” be drawn in some Σi.

Note the following facts. Firstly, we shall deal with the “missing” case when H is
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planar in Section 1.2. Secondly, by “almost”, we mean that if G can “almost” be drawn

in Σi, then G is embeddable in Σi except for a small number of apex vertices and a small

number of vortices. Apex vertices are allowed to be adjacent to any other vertex without

their incident edges “counting” with respect to the embedding. Vortices are subgraphs

of G with bounded pathwidth (again defined in Section 1.2), which meet Σi without

intersecting each other or other vertices except in a very restricted way. By “a small

number”, we mean depending only on H, and not on G or |G| itself. Thirdly, a graph

G is a clique sum of graphs G1 and G2 if G can be constructed by choosing cliques of

equal size in G1 and G2, identifying them, and then possibly deleting some edges from the

identified clique. Finally, note that this version of the Graph Minor Structure Theorem

was insufficient for Robertson and Seymour to use to obtain their result, as they explain

in [94]. The stronger version of the Graph Minor Structure Theorem uses the concept of

tangles. We discuss tangles in Section 2.6.

A key parameter in the Graph Minor Structure Theorem, and the piece of the puzzle

most interesting to us, is the parameter known as treewidth.

1.2 Treewidth

Let G be a graph. A tree decomposition of G is a pair (T, (Bx ⊆ V (G))x∈V (T )) consisting

of

• a tree T , and

• a collection of bags Bx containing vertices of G, indexed by the nodes of T ,

such that:

• for all v ∈ V (G), the set {x ∈ V (T ) : v ∈ Bx} induces a non-empty subtree of T ,

and

• for all vw ∈ E(G), there is some bag Bx containing both v and w.

The width of a tree decomposition is the size of the largest bag in the tree decomposition,

minus 1. The treewidth of a graph, denoted by tw(G), is the minimum width over all tree

decompositions of G. To illustrate these concepts, we provide an example tree decompo-

sition in Figure 1.1. Often, for the sake of simplicity, we will refer to a tree decomposition

simply as T , leaving the set of bags implied whenever this is unambiguous. For similar

reasons, often we say that bags X and Y are adjacent (or we refer to an edge XY ), in-

stead of the more accurate statement that the nodes of T indexing X and Y are adjacent.

Usually, we refer to the vertices of G as vertices, but refer to the vertices of T as nodes,

as in the above definition. This is also done to avoid confusion.
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Define the pathwidth of a graph G, denoted pw(G), to be the minimum width of a tree

decomposition that has a path as the underlying tree. Such a tree decomposition is called

a path decomposition. Pathwidth was initially defined by Robertson and Seymour [89]. It

follows that pw(G) ≥ tw(G), for all graphs G.

1 4

2 3

5

6 7 8 9

1,3,5,7

1,5,6,7 1,2,3,5 1,3,7,9

1,3,4,9 3,7,8,9

Figure 1.1: A graph G with 9 vertices, and a minimum width tree decomposition of G.

Treewidth was initially defined by Halin [41], who defined it in terms of S-functions on

graphs. An S-function is a graph parameter f(G) that behaves similarly to the Hadwiger

number (which we define in Section 1.3). Specifically, an S-function is a function defined

on all graphs that is non-increasing when taking a minor, has a value of 0 for the graph

with no vertices, increases by 1 when adding a new vertex adjacent to all others in a graph,

and is at most max{f(G1), f(G2)} when G is a clique sum of G1 and G2.

The modern definition of treewidth was provided by Robertson and Seymour [90].

Intuitively, a graph with low treewidth is simple and treelike—note that a tree itself has

treewidth 1. (In fact, ensuring this fact is the reason for the minus 1 in the definition

of width.) On the other hand, a complete graph Kn has treewidth n − 1. This is a

consequence of the more general result that tw(G) ≥ ω(G) − 1, where ω(G) is the order

of the largest clique (that is, complete subgraph) of the graph G. This follows from the

fact that a set of subtrees of a tree satisfies the Helly property : for any set of pairwise

intersecting subtrees of a tree T , there exists some vertex of T at which all the subtrees

intersect. To see this, root the tree at some point, and root each subtree at the point of

minimum distance to the root of T . Then all subtrees must intersect the root of a subtree

which is at furthest distance from the root of T . As a result of this, given any clique of G,

simply consider the subtrees of tree decomposition T induced by {x ∈ V (T ) : v ∈ Bx} for

each vertex v in the clique. These trees pairwise intersect, so there is some bag containing
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all vertices of the clique and tw(G) ≥ ω(G)− 1.

For a given constant c, the class of graphs with treewidth at most c is minor-closed.

This follows from the fact that treewidth does not increase when taking a minor. For

any acceptable graph minor operation performed on a graph G, there is a corresponding

modification that can be performed on a tree decomposition of G; for a vertex deletion,

simply remove that vertex from all bags, and for edge contraction, replace the endpoints

of the edge with the new vertex in all bags in which either of the endpoints appeared.

(Do nothing for edge deletion.) In fact, these graphs with bounded treewidth are a good

example of a “well-behaved” minor-closed class. Treewidth is of major interest in the

field of algorithm design, particularly in the field of fixed-parameter tractability. Many

NP-Hard problems can be solved on graphs with bounded treewidth in polynomial time

[6].

When adding a new dominating vertex to a graph G, essentially the only modification

available to the tree decomposition is to add that vertex to every bag. (For a special

kind of tree decomposition, which we call a normalised tree decomposition, adding the new

vertex to every bag is exactly the only possible operation. There is always a normalised

tree decomposition of G with width tw(G); we discuss this result in Lemma 2.2.) This

increases tw(G) by 1.

Finally, note that if G is a clique sum of G1 and G2 such that C1 and C2 are the

identified cliques in G1, G2 respectively, it is possible to “paste” two tree decompositions

(one for G1, one for G2) together at bags containing C1 and C2 respectively. This proves

that tw(G) + 1 is an S-function. (We must take tw(G) + 1 in order to ensure the correct

value when G is a vertex-less graph.) In fact, the S-functions form a complete lattice,

where the unit element, or top, is tw(G) + 1 [41]. This makes an interesting contrast to

the Hadwiger number, which we shall note later. While Halin identified tw(G) + 1 as the

top of the lattice of S-functions, Halin defined the function in terms of chordal graphs.

We explore the connection between treewidth and chordal graphs in Section 2.4.

As part of their proof of the Graph Minor Structure Theorem, Robertson and Seymour

used treewidth to prove what is known as the Grid Minor Theorem.

Theorem (Grid Minor Theorem [91]). If G contains no H-minor where H is the r × r-
grid, then tw(G) ≤ g(r), where tw(G) is the treewidth of G and g(r) is a function that

only depends on r.

A similar result to the above follows whenever H is any planar graph—this follows

from the above since any planar graph is a minor of a sufficiently large grid. This deals

with the “missing” planar case in the Graph Minor Structure Theorem that was mentioned

previously—when H is planar, the class of graphs with no H-minor has bounded treewidth,
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and the Graph Minor Theorem is (relatively) easy to prove for such graphs. Given that

an r × r-grid has treewidth r (a result we provide a proof of in Section 2.10), it also

follows that the treewidth and the size of the largest grid minor of G are tied†. Two graph

parameters α and β are tied if there exists a function f such that, for every graph G,

α(G) ≤ f(β(G)) and β(G) ≤ f(α(G)). If f is a polynomial, then we say α and β are

polynomially tied . So if G contains an r× r-grid minor but no (r+ 1)× (r+ 1)-grid minor,

then r ≤ tw(G) ≤ g(r + 1). Many other graph parameters are also tied to treewidth. In

Chapter 2, we provide a thorough investigation of a large number of graph parameters

that are polynomially tied to treewidth. The existence of these polynomial ties is well

known, except the existence of a polynomial tie between treewidth and maximum order of

a grid minor; this result was recently announced by Chekuri and Chuzhoy [14]. Chapter 2

includes a few improvements over these known results.

Theorem 1.1. The following graph parameters are polynomially tied:

• treewidth,

• bramble number,

• minimum integer k such that G is a spanning subgraph of a k-tree,

• minimum integer k such that G is a spanning subgraph of a chordal graph with no

(k + 2)-clique,

• separation number,

• branchwidth,

• tangle number,

• lexicographic tree product number,

• Cartesian tree product number,

• linkedness,

• well-linked number,

• maximum order of a grid minor,

• maximum order of a grid-like-minor,

• Hadwiger number of the Cartesian product G�K2 (viewed as a function of G),

• fractional Hadwiger number,

• r-integral Hadwiger number for each r ≥ 2.

The relationships between treewidth and these other graph parameters are of use

when solving problems in both algorithmic and structural graph theory. For example,

the relationship between treewidth and graph separators (via the separation number seen

above) is of key interest when considering the algorithmic aspects of treewidth. A separator

†Occasionally, other authors use the term comparable [30].
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is a small set of vertices whose deletion “separates” the remaining vertices into components

which are at most half the total size (or thereabouts). A separator is of particular use

when dynamic programming is used to solve graph problems; sometimes, it is possible

to delete the separator, recursively solve the problem on the remaining components, and

then combine the solutions on the components to obtain a solution for the original graph.

The tie between treewidth and separation number is also of key importance to our work in

Chapter 6. The parameters linkedness and well-linked number were used in more recent

proofs of the Grid Minor Theorem—we discuss this in more detail in the appropriate

sections. Finally, recall the concept of tangles is of fundamental importance to the most

powerful version of the Graph Minor Structure Theorem.

Theorem 1.1 proves several general results with respect to treewidth. It is also worth

considering more specific treewidth results with regards to specific classes of graphs. We

consider both the line graphs and the Kneser graphs.

Given a graph G, the line graph L(G) is the graph with vertex set E(G) and with an

edge between two vertices of L(G) if the corresponding edges in G share an endpoint. Line

graphs have many interesting properties; for example, the neighbourhood of any vertex in

a line graph can be covered by two cliques. (Any graph with this property is called a quasi-

line graph.) Both the line graphs and the quasi-line graphs satisfy Hadwiger’s Conjecture;

see Reed and Seymour [84] and Chudnovsky and Ovetsky Fradkin [15] respectively. (We

will discuss Hadwiger’s Conjecture in more detail in Section 1.3.) In recent papers by

Marx [77] and Grohe and Marx [39], the treewidth of the line graph of a complete graph

is a critical example. For a graph G, let G · Kq denote the lexicographic product of G

with Kq, that is, the graph created by replacing each vertex of G with a clique of size q

and replacing each edge between two vertices with all of the edges between the two new

cliques. Marx [77] shows that if tw(G) ≥ k, then G ·Kp contains L(Kk) ·Kq as a minor

(for appropriate choices of p and q, depending on k and |V (G)|). Then Grohe and Marx

[39] show that tw(L(Kn)) ≥
√
2−1
4 n2 +O(n).

In Chapter 3, we determine exactly the treewidth of L(Kn). In doing so, we prove

that the optimal tree decomposition is also a path decomposition. Hence we prove the

following theorem.

Theorem 1.2.

tw(L(Kn)) = pw(L(Kn)) =





(n−12 )(n−12 ) + n− 2 , if n is odd

(n−22 )(n2 ) + n− 2 , if n is even.

In Chapter 4, we extend our techniques from Chapter 3 to determine, up to lower

order terms, the treewidth and pathwidth of L(Kn1,...,nk
). (Here Kn1,...,nk

is a complete
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multipartite graph, the graph with vertex set partitioned into parts of size n1, . . . , nk and

edges between any two vertices in different parts.)

Theorem 1.3. If k ≥ 2 and n = |V (Kn1,...,nk
)|, then

1

2


 ∑

1≤i<j≤k
ninj


− n(k − 1)+

3

4
k(k − 1)− 1

≤ tw(Kn1,...,nk
) ≤ pw(Kn1,...,nk

) ≤

1

2


 ∑

1≤i<j≤k
ninj


+

1

2
n(k + 5) +

1

4
k(k − 1)− 4.

In the case where the complete multipartite graph is regular (that is, n1 = · · · = nk),

we determine the treewidth and pathwidth exactly.

Theorem 1.4. If k ≥ 2 and n1 = n2 = · · · = nk = c ≥ 1, then

tw(L(Kn1,...,nk
)) = pw(L(Kn1,...,nk

)) =





c2k2

4 − c2k
4 + ck

2 − c
2 + k

4 − 5
4 , if k odd and c odd

c2k2

4 − c2k
4 + ck

2 − c
2 − 1 , if c even

c2k2

4 − c2k
4 + ck

2 − c
2 + k

4 − 3
2 , if k even and c odd.

Previously, Lucena [72] determined the treewidth of the Cartesian product Kn�Kn,

which is isomorphic to L(Kn,n). Theorem 1.4 generalises this result.

Finally, in Chapter 5, we prove a more general lower bound on the treewidth and

pathwidth of any line graph.

Theorem 1.5. For every graph G with minimum degree δ(G),

tw(L(G)) ≥ 2

9
δ(G)2 − 1.

Theorem 1.6. For every graph G with minimum degree δ(G),

pw(L(G)) ≥ 1

4
δ(G)2 − 1.

This result is tight up to lower order terms.

It is well known that tw(G) ≥ δ(G) for every graph G; see Section 2.2 for a proof. So

Theorems 1.5 and 1.6 are strengthenings of this result for line graphs.

We also consider the Kneser graphs. Let [n] := {1, . . . , n}. For any set S ⊆ [n], a

subset of S of size k is called a k-set, or occasionally a k-set in S. Let
(
S
k

)
denote the set

of all k-sets in S. We say two sets intersect when they have non-empty intersection. The
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Kneser graph Kneser(n, k) is the graph with vertex set
([n]
k

)
, such that two vertices are

adjacent if they are disjoint.

Kneser graphs were first investigated by Kneser [56]. The chromatic number of

Kneser(n, k) was shown to be n − 2k + 2 by Lovász [71], as Kneser originally conjec-

tured. This was an important proof due to the development of the topological methods

involved. Many other proofs of this result have been found, for example consider [118],

which gives a more combinatorial version. The Kneser graph is also of interest with re-

gards to fractional chromatic number [97]. When k = 2 and n = 5, Kneser(n, k) is the

famous Petersen graph, and so in some sense the Kneser graphs form a generalisation of

the Petersen graph.

In Chapter 6, we determine exactly the treewidth of the Kneser graph, when n is

sufficiently large with respect to k, and also when k = 2.

Theorem 1.7. Let G = Kneser(n, k) with n ≥ 4k2 − 4k + 3 and k ≥ 3. Then

tw(G) =

(
n− 1

k

)
− 1.

Theorem 1.8. Let G = Kneser(n, 2). Then

tw(G) =





0 if n ≤ 3

1 if n = 4

4 if n = 5
(
n−1
2

)
− 1 if n ≥ 6.

We also provide a weaker bound on the treewidth when n is smaller, that is, a weaker

result for a weaker assumption.

Theorem 1.9. Let G = Kneser(n, k) with n ≥ 1
2(
√

5k2 − 12k + 8 + 3k + 2) and k ≥ 3.

Then (
n− 1

k

)
−
(
n− 1

k − 1

)
− 1 ≤ tw(G) ≤

(
n− 1

k

)
− 1.

Note that since k ≥ 3, Theorem 1.9 holds when n ≥ 3k − 1.

Define an independent set of a graph G to be a set of pairwise non-adjacent vertices.

Then define the independence number α(G) to be the size of the largest independent set

of G.

In proving Theorems 1.7, 1.8 and 1.9, we also prove some results generalising the

famous Erdős-Ko-Rado Theorem [28, 50], which states:

Theorem (Erdős-Ko-Rado Theorem [28]). Let G = Kneser(n, k) for some n ≥ 2k. Then

α(G) =

(
n− 1

k − 1

)
.
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If n ≥ 2k + 1 and A is an independent set such that |A| =
(
n−1
k−1
)
, then A = {v|i ∈ v} for

a fixed element i ∈ [n].

Note that normally this theorem is phrased in terms of intersecting k-sets in [n] rather

than in terms of independent sets in the Kneser graph. It can also be stated in terms of

the maximum order of a clique in the complement of Kneser(n, k). Recent work has been

done extending this theorem by weakening the requirement that all the k-sets intersect—

allowing a certain amount of intersection between the k-sets, for example [36, 37, 99]. (In

our terms, this means considering an induced subgraph of the Kneser graph with bounded

maximum degree.) We instead determine the following generalisation.

Theorem 1.10. Say c ∈ [23 , 1) and n ≥ max{4k2 − 4k + 3, 1
1−c(k

2 − 1) + 2}. If H is a

complete multipartite subgraph of the complement of Kneser(n, k) such that no colour class

contains more than c|H| vertices, then |H| ≤
(
n−1
k−1
)
.

Theorem 1.10 is stated in terms of the complement of Kneser(n, k), but instead of

determining an upper bound on the clique size, we determine an upper bound on the

order of the largest complete multipartite subgraph (under some restrictions).

1.3 Hadwiger’s Conjecture

A k-colouring (sometimes called a k-vertex-colouring) of a graph G is a function that

assigns one of k colours to each vertex of G such that no two adjacent vertices are assigned

the same colour. A graph with a k-colouring is called k-colourable. The chromatic number

of G, denoted χ(G), is the smallest integer k such that G is k-colourable. Colouring is a

very well established field of research [46]. A well-known theorem in this field is the Four

Colour Theorem.

Theorem (Four Colour Theorem [2]). If G is a planar graph, then χ(G) ≤ 4.

The Hadwiger number of a graph G, denoted had(G), is the size of the largest complete

minor of G. The Hadwiger number, like treewidth, is an S-function as defined by Halin

[41], and forms the zero or bottom of the lattice of S-functions. Given that the class

of graphs with treewidth at most c is minor-closed (as proved in Section 1.2) and that

tw(Kn) = n−1, it follows that had(G) ≤ tw(G)+1 for every graph G. By the Kuratowski-

Wagner Theorem, a planar graph G has had(G) ≤ 4. The obvious extension is to ask if

all graphs with had(G) ≤ 4 have a 4-colouring. This is true, and follows from a result of

Wagner [112] (actually proved before the Four Colour Theorem) which classifies all graphs

with had(G) ≤ 4 in the following way:
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Theorem (Wagner’s Theorem [112]). A graph G contains no K5-minor if and only if

G is constructable from planar graphs and the Wagner graph V8 (the 8 vertex cycle with

opposite vertices also adjacent) by repeated clique sums on cliques of at most 3 vertices.

The above theorem shows that it is sufficient to 4-colour the planar graphs to prove all

graphs with had(G) ≤ 4 have a 4-colouring—the graph V8 can be coloured with 3 colours

and clique sums of 4-colourable graphs are also 4-colourable. The similarities between this

theorem of Wagner and the Graph Minor Structure Theorem should be noted—in fact, the

Graph Minor Structure Theorem can be seen as a generalisation of Wagner’s Theorem to

general minor-closed classes in the same way as the Graph Minor Theorem is an extension

of the Kuratowski-Wagner Theorem.

Hadwiger’s Conjecture [40] is a generalisation of this result.

Conjecture (Hadwiger’s Conjecture [40]). For every graph G, had(G) ≥ χ(G).

Hadwiger’s Conjecture is one of the most important conjectures in modern graph the-

ory; see Toft [107] for a survey. Beyond the Four Colour Theorem, Hadwiger’s Conjecture

has been proven if had(G) ≤ 5 [95]. (Note that for had(G) < 4, Hadwiger’s Conjecture is

comparatively easy to prove.)

Given a graph G define the degeneracy of G, denoted degen(G), to be the smallest

integer k such that every subgraph of G contains a vertex of degree at most k. By use

of the following greedy algorithm, it is possible to see that χ(G) ≤ degen(G) + 1. For a

graph G with degen(G) = k, choose a vertex v of degree at most k. Since every subgraph

of G − v is also a subgraph of G, it follows that degen(G − v) ≤ k, and so by induction,

G − v is (k + 1)-colourable. Since v has at most k neighbours, this can be extended

to a (k + 1)-colouring of G. Given that the minimum degree is bounded above by the

treewidth, and that treewidth of a subgraph of G is at most tw(G), this also shows that

χ(G) ≤ tw(G) + 1.

In order to prove Hadwiger’s Conjecture, it would be sufficient to prove that every

graph with average degree at least t − 1 contains a Kt-minor. While this is true when

t ≤ 3, it is not true in general. It is true, however, that there exists a function f(t) > t−1

such that every graph with average degree d(G) ≥ f(t) contains a Kt-minor. Mader [73]

initially proved this result, and showed that f(t) = 2t−2 was enough to force the existence

of a Kt-minor in G. This bound was later improved by Mader [74] to 16t log2(t), and then

to Θ(t
√

log t) by Thomason [104] and Kostochka [57, 58]. This result is best possible, since

certain random graphs achieve this bound. Thomason [105] determined the asymptotic

constant for this bound.

While determining the average degree required to force a Kt-minor is of key interest

due to its relation to Hadwiger’s Conjecture, it is also worth considering the average degree
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required to force an H-minor, for an arbitrary graph H. Define

g(H) := inf{D : every graph G with average degree d(G) ≥ D contains an H-minor}.

Myers and Thomason [79] essentially determined g(H) for dense graphs H. The result of

Chudnovsky et al. [16] proves g(K2,t) = t+ 1. Kostochka and Prince [59, 60] determined

asymptotically (in s) exact bounds on g(Ks,t). Recently, Reed and Wood [87] determined

upper bounds on g(H) for sparse graphs H.

On the other hand, given that a graph with high average degree does contain a Kt-

minor, it is also worth considering how such a minor can be found efficiently. This was

first posed by Reed and Wood [85], who showed that in O(n + m) time it is possible to

find a Kt-minor in an n-vertex m-edge graph as long as d(G) ≥ 2t−2. The author, in

joint work with Dujmović, Joret, Reed and Wood [26] improved this, showing that only

d(G) ≥ (2 + ε)g(Kt) was required, for all ε > 0, and for sufficiently large t as a function of

ε. In Chapter 7, we give the result of [26], extended to quickly find an H-minor in a dense

graph G for any fixed graph H, rather than just a Kt-minor.

Theorem 1.11. For every fixed t-vertex graph H, there exists a O(n) time algorithm that,

given an n-vertex graph G with d(G) ≥ 2(g(H) + t), finds an H-minor in G.

Reed and Wood [85] used their algorithm as a subroutine for finding separators in H-

minor free graphs (also see Wulff-Nilsen [116] for a related separator result). This result

has subsequently been used in other algorithms for H-minor free graphs, in particular,

shortest path algorithms by Tazari and Müller-Hannemann [102] and Wulff-Nilsen [115],

and a maximum matching algorithm by Yuster and Zwick [117]. The algorithm presented

in Chapter 7 speeds up all these results, in terms of the dependence on H. (Note the

original version presented in [26] also provides this speed up.)

Finally, recall that Robertson and Seymour [93] describe a O(n3) time algorithm that

tests whether a given n-vertex graph contains a fixed graph H as a minor. The time

complexity was improved to O(n2) by Kawarabayashi et al. [55]. Kawarabayashi and Reed

have announced a O(n log n) time algorithm for this problem. The algorithm described

by Theorem 1.11 is weaker than these results in the sense that it only works on graphs of

high average degree, but it is stronger in the sense that it is faster.

The algorithmic extension of the average degree result is of key interest, but obviously

Hadwiger’s Conjecture itself remains unsolved. Given the difficulties in proving the entire

conjecture, one direction of interest is to consider Hadwiger’s Conjecture for interesting

classes of graphs. For example, Hadwiger’s Conjecture is true for line graphs [84] and

quasi-line graphs [15], as mentioned previously. As such, consider the following definition.
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An intersection graph G is a graph where the vertex set is a collection of sets, and any

two vertices are adjacent if their corresponding sets intersect. There are many interesting

classes of intersection graphs. The previously mentioned Kneser graphs are complements

of the intersection graphs on
([n]
k

)
. The interval graphs are the intersection graphs where

the underlying sets are intervals on the real line. We say the maximum load of an interval

graph L(G) is the maximum number of intervals at any point of the line. The clique

size ω(G) of an interval graph is equal to its maximum load L(G), which is also equal to

pw(G) + 1. For every graph G with pw(G) = k, G is a spanning subgraph of an interval

graph G′ with pw(G′) = L(G′)− 1 = ω(G′)− 1 = k. It is also possible to greedily colour

any interval graph with L(G) colours; simply traverse the intervals left to right and colour

an interval v with a colour not being used by any neighbour of v when reaching its left

endpoint. At that point only at most L(G)−1 of its neighbours are coloured; those intervals

also at the left endpoint of v. (Because the class is closed under taking induced subgraphs,

this means every interval graph is a perfect graph; that is, every induced subgraph H of

an interval graph G has χ(H) = ω(H).) So Hadwiger’s Conjecture holds trivially for the

interval graphs. Hence, we consider a class of graphs that is slightly more complex.

A circular arc graph is an intersection graph where the underlying sets are arcs on

a circle. (Note that arcs will always refer to arcs on the circle, not directed edges as is

sometimes the case elsewhere.) The circular arc graphs are a generalisation of the interval

graphs—any interval graph is also a circular arc graph. Define L(G) for a circular arc graph

analogously to the interval graph case. (Note here that there may be multiple possible

representations of a graph G as a circular arc graph, and that these representations may

have different maximum load. For example, it is possible to represent K3 either with

L(K3) = 3 or L(K3) = 2. In that sense, L(G) is not well defined. However, if we fix a

collection of arcs and consider the graph which arises from that collection, then L(G) is

well defined.) Let β(G) denote the cover number of a circular arc graph G, the minimum

number of arcs required to completely cover the circle. (If no set of arcs of G completely

covers the circle, then say β(G) =∞.)

A circular arc graph is not necessarily perfect; for example, any odd cycle is a circular

arc graph. However, the circular arc graphs are χ-bounded. That is, the chromatic number

of a circular arc graph is bounded from above by a function of its maximum clique size;

this is equivalent to saying that χ and ω are tied for circular arc graphs. (Such a result

does not hold for general graphs. The girth of a graph G is the size of its smallest cycle,

and if this is at least 4, then ω(G) ≤ 2. A famous result of Erdős [27] states that there

exist graphs with arbitrarily large girth (that is, ω(G) = 2) and arbitrarily large chromatic

number.)



14 CHAPTER 1. INTRODUCTION

Specifically, for a circular arc graph G, χ(G) ≤ 3
2ω(G), which was shown by Karapetjan

[48]. This extends a result of Tucker [109], who showed that if β(G) > 3, then χ(G) ≤
3
2L(G) = 3

2ω(G). The bound on χ(G) in terms of L(G) was improved by Valencia-Pabon

[110] to χ(G) ≤ d(β(G)−1
β(G)−2)L(G)e.

Circular arc graphs are also interesting due to Hajós’ Conjecture, a strengthening of

Hadwiger’s Conjecture.

Conjecture (Hajós’ Conjecture). For every graph G, if χ(G) = k then G contains a

subdivision of Kk as a subgraph.

The graph G contains a subdivision of Kk if Kk can be constructed from G by vertex

deletion, edge deletion and the smoothing operation. The smoothing operation allows us

to remove a degree 2 vertex and replace it with an edge between its two neighbours. This

is the exact reverse of the subdivision operation, hence the name. This can also be seen as

a very specific form of edge contraction; an edge can be contracted only if one endpoint of

the edge has degree 2. (Sometimes, if G contains a subdivision of a graph H as a subgraph,

we say G contains H as a topological minor.) Since the acceptable operations are weaker,

Hajós’ Conjecture is stronger than Hadwiger’s Conjecture. Also, since the acceptable

operations are weaker, Hajós Conjecture is false. This was shown by Catlin [12], giving

the following counterexample. Consider the lexicographic product of C2n+1 · Kk: when

n ≥ 2 then the largest complete graph contained as a subdivision has 2k + 1 vertices but

the graph requires 2k+d kne colours. This shows that Hajós’ Conjecture fails for χ(G) ≥ 8.

By taking an appropriate induced subgraph of this counterexample, it can be shown that

Hajós’ Conjecture also fails for χ(G) = 7. The conjecture holds trivially for χ(G) ≤ 3 and

Dirac [24] showed it holds for χ(G) = 4. The conjecture remains open for χ(G) ∈ {5, 6}.
More information on Hajós conjecture can be found in Thomassen [106].

Interestingly, this counterexample given by Catlin is a circular arc graph.

Figure 1.2: Catlin’s counterexample to Hajós’ Conjecture, when n = 2 and k = 3, viewed

as a circular arc graph.
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As a result, the circular arc graphs are an interesting class to consider with respect

to Hadwiger’s Conjecture; if Hadwiger’s Conjecture is false, any counterexample is also

a counterexample to Hajós’ Conjecture, as Hajós’ Conjecture is strictly stronger. Say a

circular arc graph is proper if no arc on the circle covers another. Hadwiger’s Conjecture

has been proven for proper circular arc graphs [4]. Also note that a proper circular arc

graph is a quasi-line graph (mentioned in Section 1.2); for any vertex v, all neighbours are

either at the left end or the right end of the arc of v, and as such form two cliques.

If β(G) > 3, then L(G) = ω(G), since any clique must be a set of vertices at a single

point on the circle. This subclass of the circular arc graphs is of interest itself, and these

graphs are sometimes called normal Helly circular arc graphs. Much work has been done

attempting to find a complete list of minimal forbidden induced subgraphs for the class

of normal Helly circular arc graphs; this work was completed recently by Grippo and Safe

[38]. See also Lin et al. [69] for an in-depth study of normal Helly circular arc graphs.

The associated matrices of normal Helly circular arc graphs have many useful properties,

see Curtis et al. [18], Gavril [34] and Tucker [108], for example. However, these properties

are not used in the work of this thesis.

In Chapter 8, we prove the following.

Theorem 1.12. For a normal Helly circular arc graph G, had(G) ≥ χ(G)− 1.

This is a weakening of Hadwiger’s Conjecture for circular arc graphs. In order to

prove Theorem 1.12, we attempt to construct a complete minor in a vertex-minimum

counterexample G by starting with a maximum size clique (of which all the vertices are

at a point) and attempting to build a set of paths around the rest of the circle to obtain

the had(G)− ω(G) extra vertices the minor requires. If we are able to do this, then G is

not a counterexample. If we are unable to do this, we use the information obtained when

building the paths to instead recolour G with less than χ(G) colours, which contradicts

the definition of χ(G). Thus either way Theorem 1.12 is proven.

In proving Theorem 1.12, we also developed some useful results about interval graphs.

Say 2k distinct vertices s1, . . . , sk, t1, . . . , tk can be linked if there exists a set of k pairwise

vertex disjoint paths P1, . . . , Pk such that Pi starts at si and ends at ti. The paths

P1, . . . , Pk are called a linkage. For a graph G, if |V (G)| ≥ 2k and if any 2j distinct

vertices (where j ≤ k) can be linked, then we say the graph G is k-linked . We call the

vertices s1, . . . , sk sources and t1, . . . , tk targets.

(Note that unfortunately the terminology here is very similar to the terminology of

Section 2.8. Do note that here we refer to a graph being k-linked, whereas in Section 2.8

it is a set of vertices which is k-linked. We shall endeavour to ensure that these terms are

not confused.)
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Finding linkages (sometimes referred to as the disjoint paths problem) is a well studied

problem in graph theory—consider the survey by Schrijver [98]. Robertson and Seymour

[93] considered this problem in one of their “Graph Minors” papers. As they note, finding

a linkage is closely related to determining if a graph G contains a subdivision of a graph

H; find disjoint paths for each edge of H and then use the smoothing operation. (Note

that some interpretations of a linkage allow sources and targets to be non-distinct and

only require the paths to be internally vertex disjoint. We prefer the version of Diestel

[22] due to the restrictions we require in Theorem 1.13.)

Clearly, if a graph is k-linked then it is also k-connected. A graph is k-connected

if there is a set of k internally vertex disjoint paths between any two sets {s1, . . . , sk}
and {t1, . . . , tk}, however there is no guarantee that the paths will “start” and “end” at

the correct vertices. As a concrete example, a cycle is 2-connected but not 2-linked; if we

choose the vertices s1, s2, t1, t2 such the vertices appear in that order if we take a clockwise

traversal of the cycle, then s1, s2, t1, t2 cannot be linked.

However, there is a function f(k) such that if a graph is f(k)-connected then it is also

k-linked. (That is, these graph parameters are tied.) An initial proof was given by both

Jung [47] and Larman and Mani [67], however f(k) was exponential. The function f(k)

was improved by Robertson and Seymour [93] and then by Bollobás and Thomason [10],

who proved f(k) was linear. Recent results by Kawarabayashi et al. [54] and Thomas and

Wollan [103] proved that every 10k-connected graph is k-linked. Kawarabayashi [51] used

the result of Thomas and Wollan [103] to determine a lower bound on the connectivity of

a counterexample to Hadwiger’s Conjecture.

The function f(k) can be improved when considering chordal graphs.

Lemma (Böhme et al. [9]). If G is a (2k−1)-connected chordal graph, then G is k-linked.

This result is tight, and it is also tight for interval graphs, which are a subclass of the

chordal graphs. (See Chapter 9 for a proof of this result.)

In Chapter 9, our major result is an improvement of the Böhme et al. result for interval

graphs, under slightly restricted circumstances.

Theorem 1.13. Let G be a d3k2 e-connected interval graph, and let s1, . . . , sk, t1, . . . , tk be

2k pairwise distinct vertices, such that no source si and no target tj are adjacent, and

such that si is left of ti for all i. Then s1, . . . , sk, t1, . . . , tk can be linked.

Theorem 1.13 is tight, which we also prove. We also provide some interesting results

about linkages in powers of paths, and about Hadwiger’s number for powers of cycles.
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1.4 A Unifying Example

Finally, we provide a unifying example which ties together many of the major concepts of

the thesis, including treewidth, pathwidth, the Hadwiger number, circular arc graphs and

interval graphs. The kth-power of a cycle Ckn is the graph formed by taking the n-vertex

cycle and adding edges between any two vertices at distance at most k. This graph is a

circular arc graph, as follows. Label n points on the cycle 0, . . . , n− 1 in clockwise order,

and then place the arcs {[i, i + k(mod n)] : 0 ≤ i ≤ n − 1}. (Note that this means Ckn is

also a proper circular arc graph.) With this representation, L(Ckn) = k + 1. In fact, the

kth-power of a cycle is arguably the simplest n-vertex circular arc graph with maximum

load k + 1.

0

1

2

3

45

6

7

8

Figure 1.3: C2
9 represented as a circular arc graph.

Li and Liu [68] previously proved that Hadwiger’s Conjecture holds for the power of a

cycle. We now prove an upper bound on had(Ckn), which we denote by G.

First, choose a point on the circle of load k (for example, a point between any two of

the labelled points 0, . . . , n−1) and delete all vertices at that point. Denote this graph H.

(The graph H is actually something called the power of a path, which we discuss in detail

in Chapter 9.) The graph H is an interval graph—simply “unroll” it, and treat the point

of deletion as both +∞ and −∞. (This idea will be used substantially in Chapter 8.)

Recall L(H) = pw(H) + 1 for an interval graph, and L(H) ≤ k + 1 since vertex deletions

do not increase the maximum load. Thus tw(H) ≤ pw(H) ≤ k. We construct a path

decomposition for G from a width k path decomposition of H by placing the k vertices of

G −H into every bag. Thus tw(G) ≤ pw(G) ≤ 2k. Since had(G) ≤ tw(G) + 1, it follows
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had(Ckn) ≤ 2k + 1.

Now, we consider a lower bound on had(Ckn) in certain circumstances. Assume that

n ≡ 1 mod k and that n ≥ 2k + 1. Label the vertices 0, . . . , n − 1 so that vertex i

corresponds to the arc [i, i+k(mod n)]. If we contract the edges {1, k+1}, . . . , {k, 2k+1},
the resultant graph created by these contractions is Ckn−k. Since n − k ≡ 1 mod k, by

repeating this process it follows Ck2k+1 is a minor of Ckn when n ≡ 1 mod k and n ≥ 2k+1.

However, Ck2k+1 is the complete graph on 2k + 1 vertices. Thus if n ≡ 1 mod k and

n ≥ 2k + 1, then had(Ckn) ≥ 2k + 1. In Chapter 9 we provide a slightly weaker lower

bound independent of the modulus of n. These bounds together show that in some cases,

had(Ckn) = 2k + 1.

The proof of the upper bound shows how, on occasion, we are able to use treewidth

to determine an upper bound on the Hadwiger number. (However, this does not always

work well—as previously mentioned, an r × r-grid has treewidth r but Hadwiger number

at most 4 due to planarity.)
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Chapter 2

Parameters Tied to Treewidth

2.1 Introduction

A graph parameter is a real-valued function α defined on all graphs such that α(G1) =

α(G2) whenever G1 and G2 are isomorphic. Two graph parameters α and β are tied if

there exists a function f such that for every graph G,

α(G) ≤ f(β(G)) and β(G) ≤ f(α(G)).

Moreover, say that α and β are polynomially tied if f is a polynomial.

In this chapter, we draw on results in the literature and prove the following theorem.

Theorem 1.1. The following graph parameters are polynomially tied:

• treewidth,

• bramble number,

• minimum integer k such that G is a spanning subgraph of a k-tree,

• minimum integer k such that G is a spanning subgraph of a chordal graph with no

(k + 2)-clique,

• separation number,

• branchwidth,

• tangle number,

• lexicographic tree product number,

• Cartesian tree product number,

• linkedness,

• well-linked number,

• maximum order of a grid minor,

• maximum order of a grid-like-minor,

21
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• Hadwiger number of the Cartesian product G�K2 (viewed as a function of G),

• fractional Hadwiger number,

• r-integral Hadwiger number for each r ≥ 2.

Fox [30] states (without proof) a theorem similar to Theorem 1.1 with the parameters

treewidth, bramble number, separation number, maximum order of a grid minor, fractional

Hadwiger number, and r-integral Hadwiger number for each r ≥ 2. This result of Fox was

motivation for the research in this chapter.

We investigate the parameters in Theorem 1.1, showing where these parameters have

been useful, and provide proofs that each parameter is tied to treewidth (except in a few

cases). In a number of cases we improve known bounds, provide simpler proofs, and show

that the inequalities presented are tight. For the sake of completeness, we include a few

well-known proofs. The following graph is a key example.

Say n, k are positive integers. Let ψn,k be the graph with vertex set A ∪ B, where A

is a clique on n vertices, B is an independent set on kn vertices, and A ∩ B = ∅, such

that each vertex of A is adjacent to exactly k(n − 1) vertices of B and each vertex of B

is adjacent to exactly n − 1 vertices of A. (Note it always possible to add edges in this

fashion; pair up each vertex in A with k vertices in B such that all pairs are disjoint, and

then add all edges from A to B except those between paired vertices.)

Figure 2.1: The graph ψ4,2.

The following result will be useful when proving the tightness of several bounds.

Lemma 2.1. If n, k ≥ 1, then tw(ψn,k) = n− 1.

Proof. Construct the following tree decomposition. Let T be a star with kn leaves, and

let each vertex of B correspond to a unique leaf node. In the bag indexed by the centre

node, place all the vertices of A. In the bag indexed by a leaf corresponding to v ∈ B,

place {v}∪N(v). Since B is an independent set, this is a valid tree decomposition. (Note

it is the tree decomposition described by Lemma 6.5.) Since |N(v)| = n− 1 and |A| = n,
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the width of this tree decomposition is n − 1. Given that the treewidth is at least the

minimum degree, which is also n−1 (consider a vertex in B), our statement is proven.

2.2 Basics

The definition of treewidth was given in Chapter 1. Say a tree decomposition is normalised

if each bag has the same size and |X − Y | = |Y −X| = 1 whenever XY is an edge. The

following result is well-known.

Lemma 2.2. If a graph G has a tree decomposition of width k, then G has a normalised

tree decomposition of width k.

Proof. Let T be a tree decomposition of G with width k. Thus T contains a bag of size

k + 1. If some bag of T does not contain k + 1 vertices, then since T is connected, there

exist adjacent bags X and Y such that |X| = k + 1 and |Y | < k + 1. Then X − Y is

non-empty; take some vertex of X − Y and add it to Y . This increases |Y |, so repeat this

process until all bags have size k + 1.

Now, consider an edge XY . Since |X| = |Y |, it follows |X − Y | = |Y − X|. If

|X − Y | > 1, then let v ∈ X − Y and u ∈ Y −X. Subdivide the edge XY of T and call

the new bag Z. Let Z = (X − {v}) ∪ {u}. Now |X − Z| = 1 and |Y − Z| = |Y −X| − 1,

so repeat this process until |X −Y | = |Y −X| ≤ 1 for each pair of adjacent bags. Finally,

if XY is an edge and |X − Y | = 0, then contract the edge XY , and let the bag at the

contracted node be X. Repeat this process so that if X and Y are a pair of adjacent bags,

then |X−Y | = |Y −X| = 1. All of these operations preserve tree decomposition properties

and width. Hence this modified T is our desired normalised tree decomposition.

As a result of Lemma 2.2, it follows that tw(G) ≥ δ(G), where δ(G) is the minimum

degree of G. Consider a leaf bag, which must contain a vertex v ∈ V (G) that is no other

bag. Hence this leaf bag must contain the entire neighbourhood of v, and as such the bag

contains at least δ(G) + 1 vertices.

Given a graph H, an H-model of G is a set of pairwise vertex-disjoint connected

subgraphs of G, each called a branch set , indexed by the vertices of H, such that if

vw ∈ E(H), then there exists an edge between the branch sets indexed by v and w. If G

contains an H-model, then repeatedly contract the edges inside each branch set and delete

extra vertices and edges to obtain a copy of H. Thus if G contains an H-model, then H

is a minor of G. Similarly, if H is a minor of G, “uncontract” each vertex in the minor

to obtain an H-model of G. Models are helpful when dealing with questions relating to

minors, since they describe how the H-minor “sits” in G.
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2.3 Brambles

Two subgraphs A and B of a graph G touch if V (A) ∩ V (B) 6= ∅, or some edge of G has

one endpoint in A and the other endpoint in B. A bramble in G is a set of connected

subgraphs of G that pairwise touch. A set S of vertices in G is a hitting set of a bramble

B if S intersects every element of B. The order of B is the minimum size of a hitting

set. (We often refer to such a hitting set as a minimum hitting set.) The bramble number

of G is the maximum order of a bramble in G. Brambles were first defined by Seymour

and Thomas [101], where they were called screens of thickness k. Seymour and Thomas

proved the following result.

Theorem 2.3 (Treewidth Duality Theorem (Seymour and Thomas [101])). For every

graph G,

tw(G) = bn(G)− 1.

Proof. Here, we present a short proof showing one direction of this result. The other (more

difficult) direction can be found in [101]; see Bellenbaum and Diestel [5] for a shorter proof.

Let β be a bramble in G of maximum order, and let T be the underlying tree in a tree

decomposition of G. For a subgraph A ∈ β, let TA be the subgraph of T induced by the

nodes of T whose bags contain vertices of A. Since A is connected, TA is also connected.

Similarly, if A,B ∈ β, then since these subgraphs touch, there is a node of T in both TA

and TB. So the set of subtrees {TA : A ∈ β} pairwise intersect. By the Helly Property of

trees, there is some node x that is in all such TA. The bag indexed by x contains a vertex

from each A ∈ β, so it is a hitting set of β. Hence that bag has order at least bn(G), and

so tw(G) ≥ bn(G)− 1.

Note that Theorem 2.3 means that the bramble number is equal to the size of the

largest bag in a minimum width tree decomposition.

Brambles are useful for proving a lower bound on the treewidth of a graph. Consider

the following: given a valid tree decomposition T for a graph G, then tw(G) is at most the

width of T . Brambles provide the equivalent functionality for the lower bound—given a

valid bramble of a graph G, it follows that the bramble number is at least the order of that

bramble, giving us a lower bound on the treewidth. (For examples of this, see Bodlaender

et al. [8], Lucena [72] and Lemma 2.23.)

By considering the definition of an H-model in Section 2.2, it should be clear that a Kt-

model forms a bramble with a minimum hitting set of order t. As a result, had(G) ≤ bn(G)

for every graph G. (This is essentially an alternate proof that had(G) ≤ tw(G) + 1.)
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2.4 k-Trees and Chordal Graphs

In certain applications, such as graph drawing [20, 25] or graph colouring [1, 65], it often

suffices to consider only the edge-maximal graphs of a given family to obtain a result. The

language of k-trees and chordal graphs provides an elegant description of the edge-maximal

graphs with treewidth at most k.

A vertex v in a graph G is k-simplicial if it has degree k and its neighbours induce a

clique. A graph G is a k-tree if either:

• G = Kk+1, or

• G contains a k-simplicial vertex v and G− v is also a k-tree.

Note that there is some discrepancy over this definition; certain authors use Kk in the

base case. This means that Kk is a k-tree, but creates no other changes. It is well known

that k-trees have a strong tie to treewidth; see Lemma 2.4.

A graph is chordal if it contains no induced cycle of length at least four. That is,

every cycle that is not a triangle contains a chord. Gavril [35] showed that the chordal

graphs are exactly the intersection graphs of subtrees of a tree T . So construct a tree

decomposition with underlying tree T as follows. Think of each v ∈ V (G) as a subtree of

T ; place v in the bags indexed by the nodes of that subtree. It can easily be seen that

this is a tree decomposition of G in which every bag is a clique (that is, every possible

edge exists), since should two vertices share a bag, then their subtrees intersect and the

vertices are adjacent. It also follows that the graph arising from a tree decomposition with

all possible edges (that is, two vertices are adjacent if and only if they share a bag) is a

chordal graph. Chordal graphs are therefore interesting by being the edge-maximal graphs

for a fixed tree-width. The initial definition of tw(G) by Halin [41] is that tw(G) + 1 is

equal to the minimum chromatic number of any chordal graph which contains G. This is

identical to the second equality below, given that chordal graphs are perfect.

Lemma 2.4. For every graph G,

tw(G) = min{k : G is a spanning subgraph of a k-tree }.
= min{k : G is a spanning subgraph of a chordal graph with no (k + 2)-clique }.

Proof. For simplicity, let a(G) = min{k : G is a spanning subgraph of a k-tree} and

b(G) = min{k : G is a spanning subgraph of a chordal graph with no (k + 2)-clique}.
First, we show that b(G) ≤ a(G). Fulkerson and Gross [32] showed that a graph H

is chordal if and only if it has a perfect elimination ordering ; that is, an ordering of the

vertex set such that for each v ∈ V (H), v and all vertices adjacent to v which are after
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v in the ordering form a clique. If H is an a(G)-tree such that G is a spanning subgraph

of H, then there is a simple perfect elimination ordering for H. (Repeatedly delete the

a(G)-simplicial vertices to obtain Ka(G)+1, and consider the order of deletion.) So H is

chordal. It is clear that each v has only a(G) neighbours after it in this ordering, so H

contains no (a(G) + 2)-clique. (For any clique, consider the first vertex of the clique in the

ordering, and note at most a(G) other vertices are in the clique.) Thus b(G) ≤ a(G).

Second, we show that a(G) ≤ tw(G). Assume for the sake of a contradiction that

G is a vertex-minimal counterexample, and say G has treewidth k. It is easy to see

a(G) ≤ tw(G) when G is complete, so assume otherwise. Let T be a tree decomposition

of G with minimum width. By Lemma 2.2, assume T is normalised. Note, since G is not

complete, T contains more than one bag. Let G′ be the graph created by taking G and

adding all edges vw, where v and w share some bag of T . So G is a spanning subgraph

of G′ and T is a tree decomposition of G′ as well as G. By the normalisation, there is

a vertex v ∈ V (G′) such that v appears in a leaf bag B of T and nowhere else. Hence

v has exactly k neighbours in G′, which form a clique since they are all in B. Since it

is smaller than the minimal counterexample, a(G′ − v) ≤ tw(G′ − v) ≤ k. Since G′ − v
contains a (k+1)-clique (consider a bag of T other than B), it follows a(G′−v) ≥ k. Thus

a(G′ − v) = k, and G′ − v is a spanning subtree of a k-tree H. Since v is k-simplicial in

G′, it follows G′ (and thus G) is a spanning subgraph of a k-tree, which contradicts our

assumption.

Finally, we show that tw(G) ≤ b(G). The graph G is a spanning subgraph of chordal

graph H with no (b(G) + 2)-clique. There is a tree decomposition of H where every bag

is a clique; this means it has width at most b(G). This tree decomposition is also a tree

decomposition for G, so tw(G) ≤ b(G).

Hence, it follows that b(G) ≤ a(G) ≤ tw(G) ≤ b(G), which is sufficient to prove our

desired result.

2.5 Separators

For a graph G, a set S ⊆ V (G), and some c ∈ [12 , 1), a (k, S, c)-separator is a set X ⊆ V (G)

with |X| ≤ k, such that no component of G − X contains more than c|S − X| vertices

of S. Note that a (k, S, c)-separator is also a (k, S, c′)-separator for all c′ ≥ c. Define

the separation number sepc(G) to be the minimum integer k such that there is a (k, S, c)-

separator for all S ⊆ V (G). We also consider the following variant: a (k, S, c)∗-separator

is a set X ⊆ V (G) with |X| ≤ k such that no component of G − X contains more than

c|S| vertices of S −X. Define sep∗c(G) analogously to sepc(G), but with respect to these



2.5. SEPARATORS 27

variant separators. It follows from the definition that sep∗c(G) ≤ sepc(G).

Separators can be seen as a generalisation of the ideas presented in the famous planar

separator theorem [70], which essentially states that a planar graph G with n vertices con-

tains a (O(
√
n), V (G), 23)∗-separator. Unfortunately, the precise definition of a separator

and the separation number is inconsistent across the literature. The above definition is an

attempt to unify all existing definitions. Robertson and Seymour [90] gave the first lower

bound on tw(G) in terms of separators, though they do not use the term, nor do they give

an explicit definition of separation number. This definition is equivalent to our standard

definition but with c fixed at 1
2 . Grohe and Marx [39], give the above variant definition,

with c fixed at 1
2 , and instead call it a balanced separator. Reed [82] defines separators

using our standard definition, with c = 2
3 . Bodlaender [7] defines “type-1” and “type-2”

separators (see below for an explanation), which have variable proportion (i.e. allow for

different values of c), but are not defined on sets other than V (G). Sometimes [7, 30, 39]

instead of considering components in G − X, separators are defined as partitioning the

vertex set of G −X into exactly two parts A and B, such that no edge has an endpoint

in both parts and |A∩S|, |B ∩S| ≤ c|S|. (In fact, Bodlaender [7] uses both this definition

and the standard “components of G−X” definition as the difference between type-1 and

type-2 separators.) As long as c ≥ 2
3 , this is equivalent to considering the components,

since Lemma 2.5 and Corollary 2.6 allow partitioning of the components into parts A and

B. However, for lower values of c this no longer holds, for example, if c = 1
2 , it is possible

that each component contains exactly 1
3 of the vertices of S, so there is no acceptable

partition into A and B. As a result, c = 2
3 and c = 1

2 are the most “natural” choices for c.

Fortunately, sepc(G), sep∗c(G), sepc′(G) and sep∗c′(G) are all tied for all c, c′ ∈ [12 , 1).†

Robertson and Seymour [90] proved that

sep 1
2
(G) ≤ tw(G) + 1.

(Of course, they did not use our notation.) Robertson and Seymour [90, 93] also proved

that

tw(G) + 1 ≤ 4 sep 2
3
(G)− 2. (2.1)

(Reed [81, 82] gives a more accessible proof of this upper bound.) Flum and Grohe [29]

proved that

tw(G) ≤ 3 sep∗1
2

(G)− 2. (2.2)

†Fox [30] defines a separator to be a set X ⊆ V (G) that partitions V (G) into X ∪A∪B with no A−B

edge and |A|, |B| ≤ 2
3
|V (G)|. Fox then defines the separation number to be the minimum integer k such

that each subgraph of G contains a separator of size k. However, we will not consider this definition here.
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We now provide a series of lemmas to prove slightly stronger results. Specifically,

Lemma 2.8 replaces the multiplicative constant “4” by “3” in (2.1), and the multiplicative

constant “3” by “2” in (2.2).

First, we prove a useful well-known lemma for dealing with components of a graph.

Lemma 2.5. For every graph G and for all sets X,S ⊆ V (G) such that no component

of G −X contains more than half of the vertices of S −X, it is possible to partition the

components of G −X into at most three parts such that no part contains more than half

the vertices of S −X.

Proof. If G−X contains at most three components, the claim follows immediately. Hence

assume G −X contains at least four components. Initially, let each part simply contain

a single component. Merge parts as long as the merge does not cause the new part to

contain more than half the vertices of S−X. Now if two parts contain more than 1
4 of the

vertices of S −X each, then all other parts (of which there must be at least two) contain,

in total, less than 1
2 of the vertices of S−X. Then merge all other parts together, leaving

the partition with exactly three parts. Alternatively only one part (at most) contains more

than 1
4 of the vertices of S −X. So at least three parts contain at most 1

4 of the vertices

of S−X, and so merge two of them. This lowers the number of parts in the partition. As

long as there are four or more parts, one of these operations can be performed, so repeat

until at most three parts remain.

Corollary 2.6. For every graph G and for all sets X,S ⊆ V (G) such that no component

of G−X contains more than two-thirds of the vertices of S−X, it is possible to partition

the components of G − X into at most two parts such that no part contains more than

two-thirds the vertices of S −X.

This corollary follows by a very similar argument to Lemma 2.5.

The following argument is similar to that provided in [90].

Lemma 2.7 (Robertson and Seymour [90]). For every graph G and for all c ∈ [12 , 1),

sepc(G) ≤ tw(G) + 1.

Proof. Fix S ⊆ V (G) and let k := tw(G) + 1. It is sufficient to construct a (k, S, 12)-

separator for G. The graph G has a normalised tree decomposition T with maximum bag

size k, by Lemma 2.2. Consider a pair of adjacent bags X,Y . Let TX and TY be the

subtrees of T −XY containing bags X and Y respectively. Let UX ⊆ V (G) be the set of

vertices only appearing in bags of TX , and UY the set of vertices only appearing in bags

of TY . Then UX , X ∩ Y,UY is a partition of V (G) such that no edge has an endpoint in
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UX and UY . Each component of G− (X ∩ Y ) is contained entirely within UX or UY . Say

Q ⊆ V (G) is large if |Q ∩ S| > 1
2 |S − (X ∩ Y )|.

If neither UX or UY is large, then no component of G− (X ∩Y ) is large. Hence X ∩Y
is a (|X ∩ Y |, S, 12)-separator. Since |X ∩ Y | ≤ |Y | ≤ k, this is sufficient.

Alternatively, for all edges XY ∈ E(T ), exactly one of UX and UY is large. (If both

sets are large, then |S − (X ∩ Y )| = |UX ∩ S| + |UY ∩ S| > |S − (X ∩ Y )|, which is a

contradiction.) Orient the edge XY ∈ E(T ) towards X if UX is large, or towards Y if UY

is large.

Now there must be a bag B with outdegree 0. If B is a (|B|, S, 12)-separator, then since

|B| = k, the result is achieved. Otherwise, exactly one component C of G − B is large.

The vertices of C only appear in the bags of a single subtree of T −B. Label that subtree

as T ′, and let A denote the bag of T ′ adjacent to B. Recall there is a partition V (G) into

UA, A∩B,UB where |UB ∩S| > 1
2 |S− (A∩B)|, since the edge AB is oriented towards B.

Hence |UA ∩S| < 1
2 |S − (A∩B)|. Also note the vertices of G−B that only appear in the

bags of T ′ are exactly the vertices of UA. Hence C ⊆ UA, and |UA ∩ S| > 1
2 |S −B|.

So 1
2 |S−B| < |UA ∩S| < 1

2 |S− (A∩B)|. By our normalisation, |A∩B| = |B| − 1. So

|S −B| ≥ |S − (A∩B)| − 1. Thus |S − (A∩B)| − 1 < 2|UA ∩S| < |S − (A∩B)|, which is

a contradiction since |S − (A ∩B)| − 1, 2|UA ∩ S| and |S − (A ∩B)| are all integers.

Now we provide a proof of the upper bound.

Lemma 2.8. For every graph G, for all c ∈ [12 , 1),

bn(G) ≤ 1

1− csep
∗
c(G).

Proof. Say β is an optimal bramble of G with a minimum hitting set H. That is, |H| =
bn(G). For the sake of a contradiction, assume that (1 − c)bn(G) > sep∗c(G). So there is

a (sep∗c(G), H, c)∗-separator X. If X is a hitting set for β then bn(G) ≤ |X| ≤ sep∗c(G) <

(1−c)bn(G), which is a contradiction. So X is not a hitting set for β. Thus some bramble

element of β is entirely within a component ofG−X. Only one such component can contain

bramble elements. Call this component C. Then we can hit every bramble element of β

with the vertices of X or the vertices of H inside C, that is, X ∪ (H ∩ V (C)) is a hitting

set. Since X is a (sep∗c(G), H, c)∗-separator, |H ∩V (C)| ≤ c|H|. Thus |X ∪ (H ∩V (C))| =
|X| + |H ∩ V (C)| ≤ |X| + c|H| ≤ sep∗c(G) + c|H| < (1 − c)|H| + c|H| = |H|. Thus

X ∪ (H ∩V (C)) is a hitting set smaller than the minimum hitting set, a contradiction.

Hence, from the above it follows that for c ∈ [12 , 1),

sep∗c(G) ≤ sepc(G) ≤ tw(G) + 1 = bn(G) ≤ 1

1− csep
∗
c(G) ≤ 1

1− csepc(G).
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Each of the above inequalities is tight. In particular, the second and third inequalities

are tight for Kn. We now show that the first and fourth inequalities are tight.

Lemma 2.9. For a given c ∈ [12 , 1), if n, k are integers such that k > c
1−c+1 and n ≥ k−1

1−c ,

then sep∗c(ψn,k) = sepc(ψn,k) = n.

Proof. Let G := ψn,k. It follows from the definition that sep∗c(G) ≤ sepc(G). Hence it is

sufficient to show that sep∗c(G) ≥ n and that sepc(G) ≤ n. We prove these facts in order.

To prove our first inequality, we shall show that if X is a (|X|, V (G), c)∗-separator,

then |X| ≥ n. Suppose for the sake of a contradiction that |X| ≤ n − 1. If |X| ≤ n − 2,

then G−X contains at least two vertices of A, and so G−X is connected. Alternatively,

if |X| = n − 1, then either at least two vertices of A remain and G −X is connected, or

X ⊂ A. Thus, there are two cases to consider: firstly, when G − X is connected, and

secondly, when X ⊂ A and |X| = n − 1. In the first case, the only component of G −X
contains at least (k+1)n−(n−1) = kn+1 vertices. Since X is a (|X|, V (G), c)∗-separator,

this component can contain at most c((k + 1)n) vertices. So kn + 1 ≤ c(kn + n). Thus

(1 − c)kn ≤ cn − 1 < cn, and k < c
1−c , which contradicts our assumption on k. In the

second case, G−X contains one component that contains a single vertex of A and all but k

vertices of B. Label this component C and note it contains nk−k+1 vertices. Every other

component is an isolated vertex. Since X is a (|X|, V (G), c)∗-separator, |C| ≤ c(kn+ n).

So (n − 1)k + 1 ≤ c(kn + n), and thus n(k − ck − c) ≤ k − 1. Since k > c
1−c + 1, it

follows that n(1 − c) < k − 1, which contradicts our lower bound on n. Thus X is not a

(|X|, V (G), c)∗-separator when |X| ≤ n− 1, and sep∗c(G) ≥ n.

Secondly, it suffices to show that for any S ⊆ V (G) there exists a set X such that

|X| ≤ n and no component in G−X contains more than 1
2 |S−X| vertices of S−X. Now

if |S| ≤ n, then simply set X = S. If |S ∩B| ≥ 2, then set X = A. Then each component

C of G −X is an isolated vertex, and |C ∩ S| ≤ 1 = 1
2 · 2 ≤ 1

2 |S −X|. Finally, the only

other possibility is that |S| = n + 1 and |S ∩ B| = 1. In that case, label the vertex of

S ∩ B as v and let X = N(v). So |X| = n − 1, X ⊂ A, and since all of A must be in S,

only two vertices of S are in G−X, that is, v and the one vertex of A not adjacent to v.

Since these vertices are in different components, no component of G−X is too large with

respect to S, and X is the required (|X|, S, c)-separator. Hence sepc(G) ≤ n.

2.6 Branchwidth and Tangles

A branch decomposition of a graph G is a pair (T, θ) where T is a tree with each node

having degree 3 or 1, and θ is a bijective mapping from the edges of G to the leaves of T .

A vertex x of G is across an edge e of T if there are edges xy and xz of G mapped to leaves
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in different subtrees of T − e. The order of an edge e of T is the number of vertices of G

across e. The width of a branch decomposition is the maximum order of an edge. Finally,

the branchwidth bw(G) of a graph G is the minimum width over all branch decompositions

of G. Note that if |E(G)| ≤ 1, there are no branch decompositions of G, in which case we

define bw(G) = 0. Robertson and Seymour [92] first defined branchwidth, where it was

defined more generally for hypergraphs; here we just consider the case of simple graphs.

Tangles were first defined by Robertson and Seymour [92]. Their definition is in terms

of sets of separations of graphs. (Note, importantly, that a separation is not the same as

a separator as defined in Section 2.5.) We omit their definition and instead present the

following, initially given by Reed [82].

A set τ of connected subgraphs of a graph G is a tangle if for all sets of three subgraphs

A,B,C ∈ τ , there exists either a vertex v of G in V (A ∩ B ∩ C), or an edge e of G such

that each of A,B and C contain at least one endpoint of e. Clearly a tangle is also a

bramble—this is the main advantage of this definition. The order of a tangle is equal to

its order when viewed as a bramble. The tangle number tn(G) is the maximum order of a

tangle in G.

When defined with respect to hypergraphs, treewidth and tangle number are tied to

the maximum of branchwidth and the size of the largest edge. So for simple graphs, there

are a few exceptional cases when bw(G) < 2, which we shall deal with briefly. If G is

connected and bw(G) ≤ 1, then G contains at most one vertex with degree greater than 1

(that is, G is a star), and bn(G) = tn(G) ≤ 2. Henceforth, assume bw(G) ≥ 2.

Robertson and Seymour [92] prove the following relation between tangle number and

branchwidth; we omit the proof. Instead we show that tn(G), bw(G), bn(G) and tw(G) are

all tied by small constant factors.

Theorem 2.10 (Robertson and Seymour [92]). For a graph G, if bw(G) ≥ 2, then

bw(G) = tn(G).

Robertson and Seymour [92] proved that bn(G) ≤ 3
2 tn(G). Reed [82] provided a short

proof that bn(G) ≤ 3 tn(G). Here, we modify Reed’s proof to show that bn(G) ≤ 2 tn(G).

Lemma 2.11. For every graph G,

tn(G) ≤ bn(G) ≤ 2 tn(G).

Proof. Since every tangle is also a bramble, tn(G) ≤ bn(G).

To prove that bn(G) ≤ 2 tn(G), let k := bn(G), and say β is a bramble of G of order

k. Consider a set S ⊆ V (G) with |S| < k. If two components of G− S entirely contain a
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bramble element of β, then those two bramble elements do not touch. Alternatively, if no

component of G − S entirely contains a bramble element, then all bramble elements use

a vertex in S, and S is a hitting set of smaller order than the minimum hitting set. Thus

exactly one component S′ of G − S entirely contains a bramble element of β. Clearly,

V (S′) ∩ S = ∅.
Define τ := {S′ : S ⊆ V (G), |S| < k

2}. To prove that τ is a tangle, let T1, T2, T3 be

three elements of τ . Say Ti = S′i for each i. Since |S1 ∪ S2| < k, some bramble element

B1 of β does not intersect S1 ∪S2. Similarly, some bramble element B2 does not intersect

S2 ∪ S3. Since B1 does not intersect S1, it is entirely within one component of G − S1,
that is, B1 ⊆ T1. Similarly, B1 ⊆ T2 and B2 ⊆ T2 ∩ T3. Since B1, B2 ∈ β, they either

share a vertex v, or there is an edge e with one endpoint in B1 and the other in B2. In

the first case, v ∈ V (T1 ∩ T2 ∩ T3). In the second case, one endpoint of e is in T1 ∩ T2, the

other in T2 ∩ T3. It follows that τ is a tangle. The order of τ is at least k
2 , since a set X

of size less than k
2 has a defined X ′ ∈ τ , and so X does not intersect all subgraphs of τ .

Then tn(G) ≥ k
2 .

We now provide a proof for a direct relationship between branchwidth and treewidth.

Note again these proofs are modified versions of those in [92].

Lemma 2.12 (Robertson and Seymour [92]). For a graph G, if bw(G) ≥ 2 then

bw(G) ≤ tw(G) + 1 ≤ 3

2
bw(G).

Proof. We prove the second inequality first. Assume no vertex is isolated. Let k := bw(G),

and let (T, θ) be a branch decomposition of order k. We construct a tree decomposition

with T as the underlying tree, and where Bx will denote the bag indexed by each node

x of T . A node x in T has degree 3 or 1. If x has degree 1, then let Bx contain the two

endpoints of e = θ−1(x). If x has degree 3, then let Bx be the set of vertices that are across

at least one edge incident to x. We now show that this is a tree decomposition. Every

vertex appears at least once in the tree decomposition. Also, for every edge vw ∈ E(G),

the bag of the leaf node θ(vw) contains both v and w. If we consider vertex v ∈ V (G)

incident with vw and vu, then v is across every edge in T on the path from θ(vw) to

θ(vu). Thus, v is in every bag indexed by a node on that path. Such a path exists for

all neighbours w, u of v. It follows that the subtree of nodes indexing bags containing v

form a subtree of T . Thus (T, (Bx)x∈V (T )) is a tree decomposition of G. A bag indexed

by a leaf node has size 2. If x is not a leaf, then Bx contains the vertices that are across

at least one edge incident to x. Suppose v is across exactly one such edge e. Then there

exists θ(vw) and θ(vu) in different subtrees of T − e. Without loss of generality, θ(vw) is



2.6. BRANCHWIDTH AND TANGLES 33

in the subtree containing x. But then the path from x to θ(vw) uses one of the other two

edges incident to x. Hence if v is in Bx then v is across at least two edges incident to x. If

the sets of vertices across the three edges incident to x are A,B and C respectively, then

|A|+ |B|+ |C| ≥ 2|Bx|. But |A|+ |B|+ |C| ≤ 3k. Therefore, regardless of whether x is a

leaf, |Bx| ≤ max{2, 32k} = 3
2k (since k ≥ 2). Therefore tw(G) + 1 ≤ 3

2k.

Now we prove the first inequality. Let k := tw(G) + 1. Hence there exists a tree

decomposition (T, (Bx)x∈V (T )) with maximum bag size k; choose this tree decomposition

such that T is node-minimal, and such that the subtree induced by {x ∈ V (T ) : v ∈ Bx} is

also node-minimal for each v ∈ V (G). If k < 2, then G contains no edge, and bw(G) = 0.

Now assume k ≥ 2 and E(G) 6= ∅. Since the first inequality is trivial when G is complete,

we assume otherwise, and thus T is not a single node.

Note the following facts: if x is a node of T with degree 2, then there exists some pair

of adjacent vertices v, w such that Bx is the only bag containing v and w. (Otherwise, T

would violate the minimality properties.) Similarly, if x is a leaf node, then there exists

some v ∈ V (G) such that Bx is the only bag containing v. The bag Bx also contains the

neighbours of v, but nothing else.

Now, for every edge vw ∈ E(G), choose some bag Bx containing v and w. Unless x

is a leaf with Bx = {v, w}, add to T a new node y adjacent to x, such that By = {v, w}.
Clearly (T, (Bx)x∈V (T )) is still a tree decomposition of the same width. From our above

facts, every leaf node is either newly constructed or was already of the form Bx = {v, w}.
Also, every node that previously had degree 2 now has higher degree. A node that was

previously a leaf either remains a leaf, or now has degree at least 3. So no node of the

new T has degree 2.

If a node x has degree greater than 3, then delete the edges from x to two of its

neighbours (denoted y, z), and add to T a new node s adjacent to x, y and z. Let Bs :=

Bx ∩ (By ∪ Bz). Clearly this is still a tree decomposition of the same width. Now the

degree of x has been reduced by 1, and the new node has degree 3. Repeat this process

until all nodes have either degree 3 or 1.

Since each leaf bag contains exactly the endpoints of an edge (and no edge has both

endpoints in more than one leaf), there is a bijective mapping θ that takes vw ∈ E(G) to

the leaf node containing v and w. Together with T , this gives a branch decomposition of

G. If xy ∈ E(T ), then all edges of G across xy are in Bx ∩By. So the order of this branch

decomposition is at most k. Thus bw(G) ≤ tw(G) + 1.

(Note that our minimality properties would imply that |Bx ∩ By| < k, however con-

verting the tree to ensure that all nodes have degree 3 or 1 does not necessarily maintain

this.)
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Robertson and Seymour [92] showed the bounds in Lemma 2.12 are tight. The upper

bound on tw(G) in Lemma 2.12 is tight forKn when n is divisible by 3, since tw(Kn) = n−1

and bw(Kn) = tn(Kn) = 2
3n. The lower bound on tw(G) is tight when n ≥ 4 and G is the

graph Kn,n minus a perfect matching. In this case tw(G) + 1 = bw(G) = tn(G) = n.

2.7 Tree Products

For a tree T , let T ·Kk denote the lexicographic product of T with Kk. That is, T ·Kk is

the graph created by taking T and replacing each vertex with a clique of k vertices, and

replacing each edge with all possible edges between the two new cliques. The lexicographic

tree product number of G, denoted ltp(G), is the minimum integer k such that G is a minor

of the graph T ·Kk for some tree T .

Lemma 2.13. For every graph G,

ltp(G)− 1 ≤ tw(G) ≤ 2 ltp(G)− 1.

Proof. We prove the first inequality. Let tw(G) + 1 = k, and let T be the underlying tree

of a tree decomposition of G with maximum bag size k. It is sufficient to show G is a

minor of T ·Kk. For each vertex v of G, let the branch set Rv contain a single vertex of

each k vertex clique of T ·Kk that corresponds to a bag of T containing v. It is possible

to ensure that no vertex in placed in more than one branch set since each clique contains

k vertices and each bag contains at most k vertices. Each of these branch set is connected

due to the properties of a tree decomposition and the structure of T ·Kk. Similarly, for

each edge vw of G there is an edge between Rv and Rw. So G is a minor of T ·Kk.

Now we prove the second inequality. We first prove tw(T ·Kk) ≤ 2k− 1 for every tree

T , as follows. Take the tree T and subdivide each edge; this will be the underlying tree

of the tree decomposition. Then place each vertex of T · Kk in the bag indexed by the

corresponding node, and in the bags indexed by the neighbours of the corresponding node

(that is, the subdivided nodes from the incident edges). It is clear that this is a valid tree

decomposition. A bag indexed by a subdivided edge node contains 2k vertices (all the

vertices in both neighbouring bags, which contain at most k vertices each). Since these

are the largest bags, ltp(T ·Kk) ≤ 2k− 1. If ltp(G) = k, then G is a minor of some T ·Kk.

Thus tw(G) ≤ tw(T ·Kk) ≤ 2 k − 1 = 2 ltp(G)− 1, as required.

If T is a tree, let T (k) denote the Cartesian product of T with Kk. That is, the graph

with vertex set {(x, i) : x ∈ T, i ∈ {1, . . . , k}} and with an edge between (x, i) and (y, j)

when x = y, or when xy ∈ E(T ) and i = j. Then define the Cartesian tree product number
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of G, ctp(G), to be the minimum integer k such that G is a minor of T (k). The parameter

ctp(G) was first defined by van der Holst [111] and Colin de Verdière [17], however they

did not use that name or notation. (Instead, they called it largeur d’arborescence, and

denoted it by la(G).) They also proved the following result. We provide a different proof.

Lemma 2.14 (Colin de Verdière [17], van der Holst [111]). For every graph G,

ctp(G)− 1 ≤ tw(G) ≤ ctp(G).

Proof. Let k := tw(G). By Lemma 2.4, G is the spanning subgraph of a chordal graph

G′ that contains a (k + 1)-clique but no (k + 2)-clique. Let (T, (Bx ⊆ V (G))x∈V (T ))

be a minimum width tree decomposition of G′. This has width k and is also a tree

decomposition of G. To prove the first inequality, it is sufficient to show that G is a

minor of T (k+1). Let c be a (k+ 1)-colouring of G′. (It is well known that chordal graphs

are perfect.) For each v ∈ V (G), define the connected subgraph Rv of T (k+1) such that

Rv := {(x, c(v)) : v ∈ Bx}. If (x, i) ∈ V (Rv) ∩ V (Rw) then both v and w are in Bx

and c(v) = c(w) = i. But if v and w share a bag then vw ∈ E(G′), which contradicts

the vertex colouring c. So the subgraphs Rv are pairwise disjoint, for all v ∈ V (G). If

vw ∈ E(G), then v and w share a bag Bx. Hence there is an edge (x, c(v))(x, c(w))

between the subgraphs Rv and Rw. Hence the Rv subgraphs form a G-model of T (k+1).

Now we prove the second inequality. Let k := ctp(G), and choose tree T such that

G is a minor of T (k). Since tw(G) ≤ tw(T (k)), it is sufficient to show that tw(T (k)) ≤ k.

Let T ′ be the tree T with each edge subdivided k times. Label the vertices created by

subdividing xy ∈ E(T ) as xy(1), . . . , xy(k), such that xy(1) is adjacent to x and xy(k)

is adjacent to y. Construct (T ′, (Bx ⊆ V (G))x∈V (T ′)) as follows. For a vertex x ∈ T , let

Bx = {(x, i)|i ∈ {1, . . . , k}}. For a subdivision vertex xy(j), let Bxy(j) = {(x, i), (y, i′)|1 ≤
i′ ≤ j ≤ i ≤ k}. This is a valid tree decomposition with maximum bag size k + 1. Hence

tw(T (k)) ≤ k as required.

We now show the first inequalities in Lemmas 2.13 and 2.14 are tight.

Lemma 2.15. If n ≥ 3, then ltp(ψn,1) = ctp(ψn,1) = tw(ψn,1) + 1 = n.

Proof. Let G := ψn,1. Since T (k) ⊆ T · Kk, it follows that ltp(G) ≤ ctp(G). Also, by

Lemma 2.13 and Lemma 2.14, ltp(G) ≤ tw(G) + 1 and ctp(G) ≤ tw(G) + 1. Hence it is

sufficient to show that tw(G) + 1 ≤ n, and that ltp(G) ≥ n. The first inequality follows

from Lemma 2.1.

Now we show that ltp(G) ≥ n. Suppose for the sake of a contradiction that ltp(G) ≤
n − 1. So there is some tree T such that G is a minor of T ·Kn−1. We can assume that
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T is a node-minimal such tree. Label the vertices of A by 1, . . . , n and the vertices of B

by 1′, . . . , n′, such that each i, i′ pair is non-adjacent. For a node x ∈ T , let Cx be the

corresponding (n− 1) vertex clique in T ·Kn−1. For each v ∈ V (G), let Xv be the branch

set corresponding to v in T ·Kn−1. Say two branch sets touch if there is an edge between

them.

Pick a leaf node x of T and let y be the parent of x. By node minimality, there at

least one vertex v ∈ V (G) such that Xv ⊆ Cx. We claim there is exactly one, and that it

must be a vertex of B. Suppose for the sake of a contradiction that there exists vertex v

such that Xv ⊆ Cx and v ∈ A. Now Xv can touch at most (n− 1)− 1 + (n− 1) = 2n− 3

other branch sets. But the degree of v is (n − 1) + (n − 1) = 2n − 2. Hence if Xv ⊆ Cx

then v ∈ B. Now if there are two vertices v, w such that Xv, Xw ⊆ Cx, then note that

v, w ∈ B and so A = N(w) ∪N(v). But then the branch sets of all vertices of A intersect

Cx ∪Cy, and so some vertex of A has its branch set entirely inside Cx, since |Cy| = n− 1.

However, this contradicts our previous result, and this completes the proof of the claim.

Without loss of generality, say that X1′ ⊆ Cx. Now the vertex 1′ has neighbourhood

2, . . . , n, and all of those branch sets must intersect Cy, since they are not entirely inside

Cx but must touch X1′ . Since |Cy| = n − 1, these are the only branch sets intersecting

Cy. Now X1 is entirely inside exactly one component of (T ·Kn−1)−Cy; let z the node of

T such that z is adjacent to y and Cz is inside the component containing X1. Since 1 is

adjacent to 2′, . . . , n′, it follows X2′ , . . . , Xn′ are also entirely inside this component. By

node minimality we can assume that one of the branch sets X2, . . . , Xn does not intersect

Cz, without loss of generality it is X2. Since X1, X3′ , . . . , Xn′ must touch X2, it follows

X1, X3′ , . . . , Xn′ intersect Cz. Since |Cz| = n−1, these are the only branch sets intersecting

Cz. However, consider the branch set X2′ . It is entirely in the component of (T ·Kn−1)−Cy
containing Cz, but also must touch X3. However, X3 does not intersect this component

at all (since it does not intersect Cz), and X2′ also does not intersect Cz. Thus X2′ and

X3 cannot touch. This gives the desired contradiction.

Also see Markov and Shi [76] for a similar result. The second inequalities in Lem-

mas 2.13 and 2.14 are tight for Kn (for Lemma 2.13, ensure that n is even).

2.8 Linkedness

Reed [82] introduced the following definition. For a positive integer k, a set S of vertices

in a graph G is k-linked if for every set X ⊆ V (G) such that |X| < k there is a component

of G−X that contains more than half of the vertices in S. The linkedness of G, denoted

by link(G), is the maximum integer k for which G contains a k-linked set. Linkedness is
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used by Reed [82] in his proof of the Grid Minor Theorem.

Lemma 2.16 (Reed [82]). For every graph G,

link(G) ≤ bn(G) ≤ 2 link(G).

Proof. We first prove that link(G) ≤ bn(G). Let k := link(G), and let S be a k-linked

set of G. So for every set X ⊆ V (G) such that |X| < k, there exists some component of

G−X that contains more than half of the vertices of S. Let CX denote this component,

and then let β = {CX |X ⊆ V (G), |X| < k}. Clearly each element of β is connected, and

any two elements touch since they each contain more than half the vertices of S. Thus β

is a bramble. Let H be a hitting set of β. If |H| < k, then there exists some CH ∈ β, but

H ∩ CH = ∅, and H is not a hitting set. Thus |H| ≥ k and so bn(G) ≥ k, as required.

Now we prove that bn(G) ≤ 2 link(G). Assume for the sake of a contradiction that

bn(G) > 2 link(G). Let k := link(G), so G is not (k + 1)-linked. Let H be a minimum

hitting set for a bramble β of G of largest order. Since H is not (k+1)-linked, there exists

a set X of order at most k such that no component of G − X contains more than half

of the vertices in H. Note that at most one component of G −X can entirely contain a

bramble element of β (otherwise two bramble elements do not touch). If no component

of G−X entirely contains a bramble element of β, then X is a hitting set for β of order

|X| ≤ k < 1
2bn(G), which contradicts the order of the minimum hitting set. Finally, if

a component of G − X entirely contains some bramble element of β, then let H ′ ⊂ H

be the set of vertices of H in that component. Now H ′ intersects all of the bramble

elements contained in the component (since those bramble elements do not intersect any

other vertices of H), and X intersects all remaining bramble elements, as in the previous

case. Thus, H ′ ∪X is a hitting set for β. However, |X| ≤ k < 1
2bn(G), and by the choice

of X, |H ′| ≤ 1
2 |H| = 1

2bn(G). So |H ′ ∪X| = |H ′|+ |X| < bn(G), again contradicting the

order of the minimum hitting set.

When n is even, link(Kn) = n
2 , so the second inequality in Lemma 2.16 is tight. We

now show that the first inequality is tight.

Lemma 2.17. If k ≥ 2 and n ≥ 3, then link(ψn,k) = bn(ψn,k) = n.

Proof. Let G := ψn,k. Then bn(G) = n by Lemma 2.1 and link(G) ≤ bn(G) by

Lemma 2.16. Hence it is sufficient to show that link(G) ≥ n. To do this, we shall show

that V (G) is an n-linked set; that is, if X is a set of vertices and |X| < n, then G − X
must contain a component containing more than half of V (G).

If G−X contains at least two vertices of A, then it is connected. Since |X| ≤ n− 1,

if G − X is not connected, then |X| = n − 1 and X ⊂ A. In the first case, |G − X| ≥
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(k+ 1)n−n+ 1 = kn+ 1 and |G| = (k+ 1)n = kn+n. Since k ≥ 1, G−X contains more

than half of V (G), as required. In the second case, there exists a component containing a

single vertex of A and all kn− k of its neighbours in B. Since k ≥ 2 and n ≥ 3, it follows

that kn− k + 1 > 1
2(kn+ n). Hence the large component of G−X is large enough. Thus

V (G) is an n-linked set, as required.

2.9 Well-linked and k-Connected Sets

For a graph G, a set S ⊆ V (G) is well-linked if for every pair A,B ⊆ S such that |A| = |B|,
there exists a set of |A| vertex-disjoint paths from A to B. If we can ensure these vertex-

disjoint paths also have no internal vertices in S, then S is externally-well-linked . The

notion of a well-linked set was first defined by Reed [82], while a similar definition was

used by Robertson et al. [96]. Reed also described externally-well-linked sets in the same

paper (but did not define it explicitly) and stated but did not prove that S is well-linked

iff S is externally-well-linked. We provide a proof below. The well-linked number of G,

denoted wl(G), is the size of the largest well-linked set in G.

Lemma 2.18 (Reed [82]). S is well-linked iff S is externally-well-linked.

Proof. It should be clear that if S is externally-well-linked that S is well-linked, so we

prove the forward direction. Let S ⊆ V (G) be well-linked. It is sufficient to show that

for all A,B ⊆ S with |A| = |B| there are |A| vertex-disjoint paths from A to B that are

internally disjoint from S. Define C := S − (A ∪ B) and A′ := A ∪ C and B′ := B ∪ C.

Now S = A′ ∪ B′. Since S is well-linked and |A′| = |B′|, there are |A′| vertex-disjoint

paths between A′ and B′. Each such path uses exactly one vertex from A′ and one vertex

from B′. Thus, if v ∈ C ⊆ A∩B, then the path containing v must simply be the singleton

path {v}. Thus this path set contains a set of singleton paths for each vertex of C and,

more importantly, a set of paths starting in A′−C = A and ending at B′−C = B. Since

every vertex of S is in either A′ or B′, and each path starts at a vertex in A′ and ends

at one in B′, no internal vertex of these paths is in S. This is the required set of disjoint

paths from A to B that are internally disjoint from S.

Reed [82] proved that bn(G) ≤ wl(G) ≤ 4 bn(G). We now provide Reed’s proof of the

first inequality.

Lemma 2.19 (Reed [82]). For every graph G,

bn(G) ≤ wl(G).
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Proof. Assume for the sake of a contradiction that wl(G) < bn(G). Let β be a bramble

of largest order, and H a minimal hitting set of β. Thus H is not well-linked (since

|H| = bn(G) > wl(G)). Choose A,B ⊆ H such that |A| = |B| but there are not |A|
vertex-disjoint paths from A to B. By Menger’s Theorem, there exists a set of vertices

C with |C| < |A| such that after deleting C, there is no A-B path in G. Now consider

a bramble element of β. If two components of G − C entirely contain bramble elements,

then those bramble elements cannot touch. Thus, it follows that at most one component

of G − C entirely contains some bramble element. Label this component C ′; if no such

component exists label C ′ arbitrarily. Since C ′ does not contain vertices from both A and

B, without loss of generality we assume A ∩ C ′ = ∅. Thus all bramble elements entirely

within C ′ are hit by vertices of H − A, and all others are hit by C. So (H − A) ∪ C is a

hitting set for β, but |(H −A)∪C| = |H| − |A|+ |C| < |H|, contradicting the minimality

of H. Hence bn(G) ≤ wl(G).

We now modify the proof of Reed’s second inequality to give the following stronger

result.

Lemma 2.20. For every graph G,

wl(G) ≤ 3 link(G) ≤ 3 bn(G).

Proof. We show that wl(G) ≤ 3 link(G). For the sake of a contradiction, say 3 link(G) <

wl(G). Define k := 1
3wl(G). Let S be the largest well-linked set. That is, |S| = wl(G). By

Lemma 2.18 S is externally-well-linked. The set S is not dke-linked since link(G) < dke.
Hence there exists a set X ⊆ V (G) with |X| < dke such that G−X contains no component

containing more than 1
2 |S| vertices of S. Since |X| is an integer, |X| < k. Let a := |X∩S|.

Using an argument similar to Lemma 2.5, the components of G−X can be partitioned

into two or three parts, each with at most 1
2 |S| vertices of S. Some part contains at

least a third of the vertices of S − X. Let A be the set of vertices in S contained in

that part, and let B be the set of vertices in S in the other parts of G − X. Now
1
2 |S| ≥ |A| ≥ 1

3 |S − X| = 1
3(|S| − a), and so |B| ≥ |S| − |S ∩ X| − |A| ≥ |S| − a − 1

2 |S|.
Remove vertices arbitrarily from the largest of A and B until these sets have the same

order. Hence |A| = |B| and |A| ≥ min{13(|S| − a), 12 |S| − a}. Since A,B ⊆ S and S is

externally-well-linked, there are |A| vertex-disjoint paths from A to B with no internal

vertices in S. Since A and B are in different components of G−X, these paths must use

vertices of X, but more specifically, vertices of X − S. Thus there are at most |X − S|
such paths. Thus |A| ≤ |X − S| < k − a.

Either 1
3(|S| − a) ≤ |A| < k − a or 1

2 |S| − a ≤ |A| < k − a, so |S| < 3k. However,

|S| = wl(G) = 3k, which is a contradiction.
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The final inequality follows from Lemma 2.16.

Lemma 2.19 is tight since bn(Kn) = wl(Kn) = n. We do not know if Lemma 2.20

is tight, but wl(G) ≤ 2 bn(G) − 2 would be best possible since bn(K2n,n) = n + 1 and

wl(K2n,n) = 2n (the larger part is the largest well-linked set).

Diestel et al. [23] defined the following: S ⊆ V (G) is k-connected in G if |S| ≥ k and

for all subsets A,B ⊆ S with |A| = |B| ≤ k, there are |A| vertex-disjoint paths from A to

B. If we can ensure these vertex-disjoint paths have no internal vertex or edge in G[S],

then S is externally k-connected . This notion was used in [23] to prove a short version of

the grid minor theorem.

Note the obvious connection to well-linked sets: X is well-linked iff X is |X|-connected.

Also note that Diestel [22], in his treatment of the grid minor theorem, provides a slightly

different formulation of externally k-connected sets, which only requires vertex-disjoint

paths between A and B when they are disjoint subsets of S. These definitions are equiv-

alent, which can be proven using a similar argument as in Lemma 2.18. Diestel [22] also

does not use the concept of k-connected sets, just externally k-connected sets.

Diestel et al. [23] prove the following, but due to its similarity between k-connected

sets and well-linked sets, we omit the proof.

Lemma 2.21 (Diestel et al. [23]). If G has tw(G) < k then G contains (k+ 1)-connected

set of size ≥ 3k. If G contains no externally (k + 1)-connected set of size ≥ 3k, then

tw(G) < 4k.

2.10 Grid Minors

As previously mentioned in Chapter 1, a key part of the Graph Minor Structure Theorem

is as follows: given a fixed planar graph H, there exists some integer rH such that every

graph with no H-minor has treewidth at most rH . This cannot be generalised to when H

is non-planar, since there exist planar graphs, the grids, with unbounded treewidth. (By

virtue of being planar, the grids do not contain a non-planar H as a minor.) In fact, since

every planar graph is the minor of some grid, it is sufficient to just consider the grids,

which leads to the Grid Minor Theorem:

Theorem 2.22 (Robertson and Seymour [91]). For each integer k there is a minimum

integer f(k) such that every graph with treewidth at least f(k) contains the k × k grid as

a minor.

All of our previous sections have provided parameters with linear ties to treewidth.

However, the order of the largest grid minor is not linearly tied to treewidth. The initial
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bound on f(k) by Robertson and Seymour [91] was an iterated exponential tower. Later,

Robertson et al. [96] improved this to f(k) ≤ 202k
5
. They also note, by use of a prob-

abilistic argument, that f(k) ≥ Ω(k2 log k). Diestel et al. [23] obtained an upper bound

of 25k
5 log k, which is actually slightly worse than the bound provided by Robertson, Sey-

mour and Thomas, but with a more succinct proof. Kawarabayashi and Kobayashi [52]

proved that f(k) ≤ 2O(k2 log k), and Seymour and Leaf [100] proved that f(k) ≤ 2O(k log k).

A recently announced result of Chekuri and Chuzhoy [14] gave a polynomial bound of

f(k) ≤ O(k228). Together with the following well-known lower bound, this would imply

that treewidth and the order of the largest grid-minor are polynomially tied.

Lemma 2.23. If G contains a k × k grid minor, then tw(G) ≥ k.

Proof. If H is a minor of G then tw(H) ≤ tw(G). Thus it suffices to prove that the

k × k grid H has treewidth at least k, which is implied if bn(H) ≥ k + 1. Consider H

drawn in the plane. For a subgraph S of H, define a top vertex of S in the obvious way.

(Note it is not necessarily unique.) Similarly define bottom vertex, left vertex and right

vertex. Let subgraph H ′ of H be the top-left (k − 1) × (k − 1) grid in H. A cross is a

subgraph containing exactly one row and column from H ′, and no vertices outside H ′. Let

X denote the bottom row of H, and Y the right column without its bottom vertex. Let

β := {X,Y, all crosses}. A pair of crosses intersect in two places. There is an edge from

a bottom vertex of a cross to X and a right vertex of a cross to Y . There is also an edge

from the right vertex of X to the bottom vertex of Y . Hence β is a bramble. If Z is a

hitting set for β, it must contain k− 1 vertices of V (H ′), for otherwise a row and column

are not hit, and so a cross is not hit. The set Z must also contain two other vertices to

hit X and Y . So |Z| ≥ k + 1, as required.

2.11 Grid-like Minors

A grid-like-minor of order t of a graph G is a set of paths P in G with a bipartite

intersection graph that contains a Kt-minor. Note that if the intersection graph of P is

partitioned A and B, then we can think of the set of paths A as being the “rows” of the

“grid”, and the set B being the “columns”. Also note that an actual k × k grid gives rise

to a set P with an intersection graph Kk,k and as such contains a complete minor of order

k+1. Let glm(G) be the maximum order of a grid-like-minor of G. Grid-like-minors were

first defined by Reed and Wood [86] as a weakening of a grid minor; see Section 2.10. As

a result of this weakening, it is easier to tie glm(G) to tw(G). This notion has also been

applied to prove computational intractability results in monadic second order logic; see

Ganian et al. [33], Kreutzer [61] and Kreutzer and Tazari [62, 63].
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The following definitions were introduced by Fox [30].† Given a graph G, consider

a bramble β together with a function w which assigns a weight to each subgraph in β,

such that for any vertex v, the sum of the weights of the bramble elements containing v

is at most 1. Let h(β,w) =
∑

X∈β w(X). The fractional Hadwiger number of G, denoted

hadf (G), is the maximum of h(β,w) over all β,w where the weights assigned by w are

non-negative real numbers. For a positive integer r, the r-integral Hadwiger number of G,

denoted hadr(G), is the maximum of h(β,w) over all β,w where the weights assigned by

w are integer multiples of 1
r . It is clear that hadf (G) ≥ hadr(G) for every G and positive

integer r. As an example, the branch sets of a Khad(G)-minor form a bramble, and we set

the weight of each branch set to be 1. Thus hadf (G) ≥ hadr(G) ≥ had(G) for all positive

integers r.

The graph G�K2 (that is, the Cartesian product of G with K2) consists of two disjoint

copies of G with an edge between corresponding vertices in the two copies. Label the

vertices of K2 as 1 and 2, so a vertex of G�K2 has the form (v, i) where v ∈ V (G) and

i ∈ {1, 2}. The following proof is due to Reed and Wood [86].

Lemma 2.24 (Reed and Wood [86]). For every graph G,

glm(G) ≤ had(G�K2).

Proof. Let t := glm(G). It suffices to show there exists a Kt-model in G�K2. If S is a

subgraph of G, define (S, i) to be the subgraph of G�K2 induced by {(v, i)|v ∈ S}. Let H

be the intersection graph of a set of paths P with bipartition A,B, such that H contains

a Kt-minor. For each P ∈ P, let P ′ := (P, i) where i = 1 if P ∈ A, and i = 2 if P ∈ B.

If PQ ∈ E(H), then without loss of generality P ∈ A and Q ∈ B, and there exists

a vertex v such that v ∈ V (P ) ∩ V (Q). Then the edge (v, 1)(v, 2) ∈ E(G�K2) has one

endpoint in P ′ and the other in Q′. So P ′ ∪Q′ is connected.

Let X1, . . . , Xt be the branch sets of a Kt-model in H. Define X ′i :=
⋃
P∈Xi

P ′. Now

each X ′i is connected. It is sufficient to show, for i 6= j, that V (X ′i ∩ X ′j) = ∅ and there

exists an edge of G�K2 with one endpoint in X ′i and the other in X ′j . If there exists

v ∈ V (X ′i ∩ X ′j) then there exists P ′ such that v ∈ P ′ and P ′ ∈ X ′i ∩ X ′j . But then

P ∈ Xi ∩ Xj , which is a contradiction. So V (X ′i ∩ X ′j) = ∅. Also, since X1, . . . , Xt is

a Kt-model of H, there exists some PQ ∈ E(H) such that P ∈ Xi and Q ∈ Xj . From

above, there exists an edge between P ′ and Q′ in G�K2, which is sufficient.

Lemma 2.25. For every graph G and integer r ≥ 2,

had(G�K2) ≤ 3 hadr(G),

†However, Fox also states the definitions were independently introduced by Seymour.
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and if r is even then

had(G�K2) ≤ 2 hadr(G).

Proof. Let k := had(G�K2), and let X1, . . . , Xk be the branch sets of the complete minor

in G�K2. Let X ′j be the induced subgraph of G on the vertex set {v|(v, i) ∈ Xj}. Now

β = {X ′1, . . . , X ′k} is a bramble in G, since each X ′j is connected, and since each pair of

subgraphs X ′a and X ′b either has an edge between them (corresponding to an edge between

Xa and Xb in one copy of G) or a vertex in common (corresponding to an edge between

Xa and Xb between the copies of G). Let w weight each element of β by b r2c/r. If r is

even, then this is 1
2 . If r is odd, then r ≥ 3 and b r2c/r ≥ 1

3 . Since every vertex v of G is in

at most two bramble elements (one for (v, 1) and one for (v, 2)), the sum of the weights

of the bramble elements containing v is at most 1. Then h(β,w) = kb r2c/r ≥ k 1
3 , and so

hadr(G) ≥ h(β,w) ≥ k 1
3 , as required. However, if r is even then we can improve the lower

bound on h(β,w) to k 1
2 and hadr(G) ≥ k 1

2 , as required.

Lemma 2.26. For every graph G,

hadf (G) ≤ bn(G).

Proof. Let β,w be the bramble and weight function in G which maximise h(β,w). Then

let H be a minimum order hitting set for β. It is sufficient to show that |H| ≥ h(β,w).

Let s =
∑

v∈H
∑

X∈β:v∈X w(X). Since
∑

X∈β:v∈X w(X) ≤ 1, for all vertices v, it follows

s ≤ |H|. However, since H is a hitting set, s counts the weight of each bramble element

at least once, and thus s ≥ h(β,w). This proves our result.

Note Lemma 2.26 is tight; consider G = Kn.

Wood [114] proved that had(G�K2) ≤ 2 tw(G) + 2 and Reed and Wood [86] proved

that glm(G) ≤ 2 tw(G) + 2. More precisely, Lemmas 2.24, 2.25 and 2.26 imply that

glm(G) ≤ had(G�K2) ≤ 2 had2(G) ≤ 2 hadf (G) ≤ 2 bn(G) = 2 tw(G) + 2.

Also, for every integer r ≥ 2,

glm(G) ≤ 3 hadr(G) ≤ 3 hadf (G) ≤ 3 bn(G) = 3 tw(G) + 3.

Conversely, Reed and Wood [86] proved that

tw(G) ≤ c glm(G)4
√

log glm(G)

for some constant c. Thus tw, glm, had( ·�K2), hadf and hadr (for each r ≥ 2) are tied

by polynomial functions.



44 CHAPTER 2. PARAMETERS TIED TO TREEWIDTH

2.12 Fractional Open Problems

Given a graph G define a b-fold colouring for G to be an assignment of b colours to

each vertex of G such that if two vertices are adjacent, they have no colours assigned

in common. We can consider this a generalisation of standard graph colouring, which is

equivalent when b = 1. A graph G is a : b-colourable when there is a b-fold colouring of

G with a colours in total. Then define the b-fold chromatic number χb(G) := min{a|G
is a : b-colourable}. So χ1(G) = χ(G). Then, define the fractional chromatic number

χf (G) = limb→∞
χb(G)
b . See Scheinerman and Ullman [97] for an overview of the topic.

Reed and Seymour [83] proved that χf (G) ≤ 2 had(G). Hence there is a linear relationship

between the fractional chromatic number and Hadwiger’s number. We have

χf (G) ≤ χ(G) and had(G) ≤ hadf (G) ≤ tw(G) + 1.

Recall Hadwiger’s Conjecture asserts that χ(G) ≤ had(G), thus bridging the gap in

the above inequalities. Recall that χ(G) ≤ tw(G) + 1. Thus the following two questions

provide interesting weakenings of Hadwiger’s Conjecture:

Conjecture 2.27. For every graph G, χ(G) ≤ hadf (G).

Conjecture 2.28. For every graph G, χf (G) ≤ hadf (G).

Finally, note that the results of Section 2.11 prove that had3 is bounded by a polynomial

function of had2. It remains an open question whether had3(G) ≤ c had2(G) for some

constant c.



Chapter 3

Treewidth of the Line Graph of a

Complete Graph

3.1 Introduction

The definition of treewidth was given in Chapter 1. Recall that the pathwidth of a graph

G, denoted pw(G), to be the minimum width of a tree decomposition where the underlying

tree is a path. (We call such a tree decomposition a path decomposition.) It follows from

the definition that pw(G) ≥ tw(G) for all graphs G.

Also recall the line graph L(G) of a graph G is the graph with V (L(G)) = E(G), such

that two vertices of L(G) are adjacent when the corresponding edges of G are incident at

a vertex.

In this chapter, we determine tw(L(Kn)) exactly. As it turns out, the minimum width

tree decomposition that we construct is also a path decomposition. Hence we prove the

following result.

Theorem 1.2.

tw(L(Kn)) = pw(L(Kn)) =





(n−12 )(n−12 ) + n− 2 , if n is odd

(n−22 )(n2 ) + n− 2 , if n is even.

Note the following conventions: if S is a subgraph of a graph G and x ∈ V (G)−V (S),

then let S ∪ {x} denote the subgraph of G with vertex set V (S) ∪ {x} and edge set

E(S) ∪ {xy : y ∈ S, xy ∈ E(G)}. Similarly, if u ∈ V (S), let S − {u} denote the subgraph

with vertex set V (S)− {u} and edge set E(S)− {uw : w ∈ S − {u}}.

45



46 CHAPTER 3. LINE GRAPHS OF COMPLETE GRAPHS

3.2 Line-Brambles and the Treewidth Duality Theorem

Recall the definition of a bramble given in Section 2.3. We employ the following standard

approach for determining the treewidth and pathwidth of a particular graph G. First

construct a bramble of large order, thus proving a lower bound on tw(G). Then to prove an

upper bound, construct a path decomposition of small width. Given that tw(G) ≤ pw(G),

this is sufficient to prove Theorem 1.2.

In order to construct a bramble of the line graph L(G), define the following:

Definition A line-bramble B of G is a collection of connected subgraphs of G satisfying

the following properties:

• For all X ∈ B, |V (X)| ≥ 2.

• For all X,Y ∈ B, V (X) ∩ V (Y ) 6= ∅.

Define a hitting set for a line-bramble B to be a set of edges H ⊆ E(G) that intersects

each X ∈ B. Then define the order of B to be the size of the minimum size hitting set H

of B. (Recall we often refer to such a hitting set simply as a minimum hitting set of B.)

Lemma 3.1. Given a line-bramble B of a graph G, there is a bramble B′ of L(G) of the

same order.

Proof. Let X be an element of line-bramble B and let B′ = {E(X) ⊆ L(G)|X ∈ B} (here

we interpret E(X) as an induced subgraph of L(G)). Since X is connected and |V (X)| ≥ 2,

the subgraph X contains an edge. So E(X) induces a non-empty connected subgraph of

L(G). Consider E(X) and E(Y ) in B′. Thus V (X) ∩ V (Y ) 6= ∅. Let v be a vertex in

V (X)∩V (Y ). Then there exists some xv ∈ E(X) and vy ∈ E(Y ), and thus in L(G) there

is an edge between the vertex xv and the vertex vy. Hence E(X) and E(Y ) touch, and so

B′ is a bramble of L(G). All that remains is to ensure B and B′ have the same order. If

H is a minimum hitting set for B, then H is also a set of vertices in L(G) that intersects

a vertex in each E(X) ∈ B′. So H is a hitting set for B′ of the same size. Conversely, if

H ′ is a minimum hitting set of B′, then H ′ is a set of edges in G that contains an edge in

each X ∈ B. So H ′ is a hitting set for B. Thus the orders of B and B′ are equal.

Hence, in order to determine a lower bound on the bramble number bn(L(G)), it is

sufficient to construct a line-bramble of G of large order. We will now define a particular

line-bramble for any graph G with |V (G)| ≥ 3.

Definition Given a graph G and a vertex v ∈ V (G), the canonical line-bramble for v

of G is the set of connected subgraphs X of G such that either |V (X)| > |V (G)|
2 , or
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|V (X)| = |V (G)|
2 and X contains v. Note that if |V (G)| is odd, then no elements of the

second type occur.

Lemma 3.2. For every graph G with |V (G)| ≥ 3 and for all v ∈ V (G), the canonical

line-bramble for v, denoted B, is a line-bramble of G.

Proof. By definition, each element of B is a connected subgraph. Since |V (G)| ≥ 3, each

element of B contains at least two vertices. All that remains to show is that each pair

of subgraphs X,Y in B intersect in at least one vertex. If |V (X)| = |V (Y )| = |V (G)|
2 ,

then X and Y intersect at v. Otherwise, without loss of generality, |V (X)| > |V (G)|
2 and

|V (Y )| ≥ |V (G)|
2 . If V (X) ∩ V (Y ) = ∅, then |V (X) ∪ V (Y )| = |V (X)|+ |V (Y )| > |V (G)|,

which is a contradiction.

Let v ∈ V (G) be an arbitrary vertex and let H be a minimum hitting set of B, the

canonical line-bramble for v. Consider the graph G − H. Since H is a set of edges, the

set V (G−H) = V (G). Then each component of G−H contains at most |V (G)|
2 vertices,

otherwise some component of G −H contains an element of B that does not contain an

edge of H. Similarly, if a component contains |V (G)|
2 vertices, it cannot contain the vertex

v. Thus, our hitting set H must be large enough to separate G into such components.

The next lemma follows directly:

Lemma 3.3. Let G be a graph with |V (G)| ≥ 3, let v be a vertex of G, and let B be the

canonical line-bramble for v. Then H ⊆ E(G) is a hitting set of B if and only if every

component of G − H contains at most |V (G)|
2 vertices, and v is not in a component that

contains exactly |V (G)|
2 vertices.

Note the similarity between this characterisation and the bisection width of a graph

(see Dı́az et al. [21], for example), which is the minimum number of edges between any

A,B ⊂ V (G) where A ∩ B = ∅ and |A| = b |V (G)|
2 c and |B| = d |V (G)|

2 e. (Later we show

that most of our components have maximum or almost maximum allowable order.) From

the above lemma we prove the following, which is slightly more useful in practice.

Lemma 3.4. Let G be a graph with |V (G)| ≥ 3, let v be a vertex of G, let B be the

canonical line-bramble for v, and let H be a hitting set of B. Then G−H contains at least

three components.

Proof. By Lemma 3.3, we have an upper bound on the order of the components of G−H.

If G − H contains only one component, clearly this component is too large. If G − H
contains only two components and n is odd, then one of the components must contain

more than n
2 vertices. If G−H contains only two components and n is even, it is possible
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that both components contain exactly n
2 vertices, however one of these components must

contain v. Thus G−H contains at least three components.

Given that the components of G−H are what is really important, we can also prove

the following lemma.

Lemma 3.5. Let G be a graph with |V (G)| ≥ 3, let v be a vertex of G, and let B be the

canonical line-bramble for v. If H is a minimum hitting set for B, then no edge of H has

both endpoints in the same component of G−H.

Proof. For the sake of a contradiction assume that both endpoints of an edge e ∈ H are

in the same component of G − H. Then consider the set H − e. By Lemma 3.3, H − e
is a hitting set of B, since the vertex sets of the components of G−H have not changed.

But H − e is smaller than the minimum hitting set H, a contradiction.

3.3 Proof of Result

Let G := Kn. When n ≤ 2, Theorem 1.2 holds trivially, so assume n ≥ 3. Firstly, we

determine a lower bound on the treewidth by considering a canonical line-bramble for v,

denoted B. Given that Kn is regular, it suffices to choose a vertex v of Kn arbitrarily.

If H is a minimum hitting set of a canonical line-bramble B, label the components of

G − H as Q1, . . . , Qp such that |V (Q1)| ≥ |V (Q2)| ≥ · · · ≥ |V (Qp)|. We refer to this as

labelling the components descendingly .

Consider a pair of components (Qi, Qj) where i < j and the components are labelled

descendingly. Call this a good pair if one of the following conditions hold:

1. |V (Qi)| < n
2 − 1,

2. n is even, |V (Qi)| = n
2 − 1, V (Qj) 6= {v}, and v /∈ V (Qi).

Lemma 3.6. Let G be a complete graph with n ≥ 3 vertices, let v be a vertex of G, let B
be the canonical line-bramble for v, and let H be a minimum hitting set of B. If Q1, . . . , Qp

are the components of G − H labelled descendingly, then Q1, . . . , Qp does not contain a

good pair.

Proof. Say (Qi, Qj) is a good pair. Let x be a vertex of Qj , such that if (Qi, Qj) is

of the second type, then x 6= v. Let H ′ be the set of edges obtained from H by

removing the edges from x to Qi and adding the edges from x to Qj . We add all

these edges by Lemma 3.5. Then the components for G − H ′ are Q1, . . . , Qi−1, Qi ∪
{x}, Qi+1, . . . , Qj−1, Qj − {x}, Qj+1, . . . Qp. By Lemma 3.3, to ensure H ′ is a hitting
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set, it suffices to ensure that V (Qi) ∪ {x} is sufficiently small, since all other com-

ponents are the same as in G − H, or smaller. If (Qi, Qj) is of the first type, then

|V (Qi) ∪ {x}| = |V (Qi)| + 1 < n
2 . If (Qi, Qj) is of the second type, |V (Qi) ∪ {x}| = n

2 ,

but it does not contain v. Thus, by Lemma 3.3, H ′ is a hitting set. However,

|H ′| = |H| − |V (Qi)| + |V (Qj)| − 1 ≤ |H| − 1, which contradicts that H is a minimum

hitting set.

Lemma 3.7. Let G, v,B and H be as in Lemma 3.6. Then G−H contains exactly three

components.

Proof. By Lemma 3.4, G − H contains at least three components. Now, assume G − H
contains at least four components and label the components of G −H descendingly. We

show that these components contain a good pair, contradicting Lemma 3.6.

If n is odd, there is a good pair of the first type when any two components contain

less than n−1
2 vertices. Thus at least three components have order at least n−1

2 . Then

|V (G)| ≥ 3(n−12 ) + 1 > n when n ≥ 2, which is a contradiction.

If n is even, there is a good pair of the first type when any two components contain

less than n
2 − 1 vertices. Similarly to the previous case, |V (G)| ≥ 3(n2 − 1) + 1 > n, again

a contradiction when n > 4. If n = 4 then each component is a single vertex. Take Qi, Qj

to be two of these components, neither of which contain the vertex v. Then (Qi, Qj) is a

good pair of the second type. Hence G−H does not contain more than three components,

and as such it contains exactly three components.

Lemma 3.8. Let G, v,B and H be as in Lemma 3.6, and let the components of G−H be

labelled descendingly. If n is odd then |V (Q1)| = |V (Q2)| = n−1
2 and |V (Q3)| = 1. If n is

even then |V (Q1)| = n
2 , |V (Q2)| = n

2 − 1 and |V (Q3)| = 1.

Proof. Lemma 3.7 shows that G−H contains exactly three components. By Lemma 3.6,

(Q2, Q3) is not a good pair. Hence |V (Q1)| ≥ |V (Q2)| ≥ n−1
2 when n is odd, and |V (Q1)| ≥

|V (Q2)| ≥ n
2 − 1 when n is even, or else there is a good pair of the first type. When n is

odd, it follows from Lemma 3.3 that |V (Q1)| = |V (Q2)| = n−1
2 , and so |V (Q3)| = 1. When

n is even, however, n
2 − 1 ≤ |V (Q1)|, |V (Q2)| ≤ n

2 . Since Q3 is not empty, it follows that

|V (Q3)| = 1 or 2. If |V (Q3)| = 1, then |V (Q1)| = n
2 , |V (Q2)| = n

2 − 1 and |V (Q3)| = 1, as

required. Otherwise, |V (Q1)|, |V (Q2)| = n
2 − 1 and |V (Q3)| = 2. But then at least one of

Q1, Q2 does not contain v, and V (Q3) 6= {v}. Thus either (Q1, Q3) or (Q2, Q3) is a good

pair of the second type, contradicting Lemma 3.6.

Lemma 3.9. Let G, v,B and H be as in Lemma 3.6. Then |H| = (n−12 )(n−12 ) + (n − 1)

when n is odd, and |H| = (n−22 )(n2 ) + (n− 1) when n is even.
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Proof. From Lemma 3.8 we know the order of the components of G−H. By Lemma 3.5,

H contains exactly every edge between each pair of components, and since G is complete

there is an edge for each pair of vertices. From this it is easy to calculate |H|.

Lemma 3.9 and the Treewidth Duality Theorem imply:

Corollary 3.10. Let G be a complete graph with n ≥ 3 vertices. Then

pw(L(Kn)) ≥ tw(L(Kn)) = bn(L(Kn))− 1 ≥





(n−12 )(n−12 ) + (n− 2) , if n is odd

(n−22 )(n2 ) + (n− 2) , if n is even.

Now, to obtain an upper bound on pw(L(G)), construct a path decomposition of L(G).

First, label the vertices of G by 1, . . . , n. Let T be an n-node path, also labelled by 1, . . . , n.

The bag Ai for the node labelled i, is defined such that Ai = {ij : j ∈ V (G)} ∪ {uw : u <

i < w}. For a given Ai, call the edges of {ij : j ∈ V (G)} initial edges and call the edges of

{uw : u < i < w} crossover edges. (Note here these edges of G are really acting as vertices

of L(G), but refer to them as edges for simplicity.)

Lemma 3.11. Let G be a complete graph with n ≥ 3 vertices. Then (T, {A1, . . . , An}) is a

path decomposition for L(G) of width (n−12 )(n−12 )+(n−2) if n is odd, or (n−22 )(n2 )+(n−2)

if n is even.

Proof. Each edge uw of G appears in Au and Aw as an initial edge. Observe that uw

is in Ai if and only if u ≤ i ≤ w, so the nodes indexing the bags containing uw form a

connected subtree of T . Finally, all of the edges incident at the vertex u appear in Au,

and the same holds for w, so if two edges of G are adjacent in L(G), they share a bag.

Now determine the size of Ai. The bag Ai contains n−1 initial edges and (i−1)(n− i)
crossover edges. So |Ai| = (n− 1) + (i− 1)(n− i). This is maximised when i = n+1

2 if n is

odd, and when i = n
2 or n+2

2 if n is even. From this it is possible to calculate the largest

bag size, and hence the width of T .

12,13,14
15,16;

12,23
24,25,26;
13,14
15,16

13,23
34,35,36;
14,15,16
24,25,26

14,24
34,45,46;
15,16,25
26,35,36

15,25
35,45,56;
16,26
36,46

16,26,36
46,56;

Figure 3.1: The described path decomposition for L(K6).

Lemma 3.11 gives an upper bound on pw(L(Kn)) and also on tw(L(Kn)). This, com-

bined with the lower bound in Corollary 3.10, completes the proof of Theorem 1.2.



Chapter 4

Treewidth of the Line Graph of a

Complete Multipartite Graph

4.1 Introduction

Recall the line graph L(G) of a graph G is the graph with V (L(G)) = E(G), such that

two vertices of L(G) are adjacent when the corresponding edges of G are incident at a

vertex.

A complete multipartite graph Kn1,n2,...,nk
is a graph with k colour classes, of order

n1, . . . , nk respectively, containing an edge between every pair of differently coloured ver-

tices. A complete graph Kn is a complete multipartite graph with n colour classes each

containing a single vertex. By extending the techniques from Chapter 3, we determine

bounds on the treewidth of the line graph of a complete multipartite graph. Given that our

constructed tree decomposition is once again a path decomposition, we get the following

result.

Theorem 1.3. If k ≥ 2 and n = |V (Kn1,...,nk
)|, then

1

2


 ∑

1≤i<j≤k
ninj


− n(k − 1)+

3

4
k(k − 1)− 1

≤ tw(Kn1,...,nk
) ≤ pw(Kn1,...,nk

) ≤

1

2


 ∑

1≤i<j≤k
ninj


+

1

2
n(k + 5) +

1

4
k(k − 1)− 4.

Theorem 1.3 implies that when n1 = · · · = nk = c, (that is, when our complete

multipartite graph is regular) then tw(L(Kc,...,c)) ≈ k2c2

4 (ignoring the lower order terms).

51



52 CHAPTER 4. LINE GRAPHS OF COMPLETE K-PARTITE GRAPHS

We improve this result, obtaining an exact answer for the treewidth of the line graph of a

regular complete multipartite graph.

Theorem 1.4. If k ≥ 2 and n1 = n2 = · · · = nk = c ≥ 1, then

tw(L(Kn1,...,nk
)) = pw(L(Kn1,...,nk

)) =





c2k2

4 − c2k
4 + ck

2 − c
2 + k

4 − 5
4 , if k odd and c odd

c2k2

4 − c2k
4 + ck

2 − c
2 − 1 , if c even

c2k2

4 − c2k
4 + ck

2 − c
2 + k

4 − 3
2 , if k even and c odd.

Note that this implies Theorem 1.2 is a special case of Theorem 1.4.

Recall the following conventions: if S is a subgraph of a graph G and x ∈ V (G)−V (S),

then let S ∪ {x} denote the subgraph of G with vertex set V (S) ∪ {x} and edge set

E(S) ∪ {xy : y ∈ S, xy ∈ E(G)}. Similarly, if u ∈ V (S), let S − {u} denote the subgraph

with vertex set V (S)− {u} and edge set E(S)− {uw : w ∈ S − {u}}.

4.2 Line-Brambles of a Complete Multipartite Graph

Recall the definitions and results of Section 3.2, as they form the basis of this section. Let

n := |V (G)| = n1 + · · ·+ nk. If n = k, then G = Kn and Theorem 1.2 determines tw(G)

exactly, so we may assume n > k. As stated in Theorem 1.3, we assume that k ≥ 2, since

if k = 1, then L(G) is the null graph. Let Xi be the ith colour class of G, with order ni.

Call Xi odd or even depending on the parity of |Xi|.
As in Chapter 3, consider a canonical line-bramble for v denoted B. However, we

shall choose vertex v from a colour class of largest order. Note that such a vertex has

minimum degree. Let H be a hitting set of B, and label the components of G − H by

Q1, . . . , Qp. Denote H and the labelling of its components together as (H, (Q1, . . . , Qp)).

Choose (H, (Q1, . . . , Qp)) such that the following conditions hold, in order of preference:

(0) |H| is minimised,

(1) |V (Q1)| is maximised,

(2) |V (Q2)| is maximised,
...

(p) |V (Qp)| is maximised,

(p+1) v is in the component of highest possible index.

By condition (0), H is a minimum hitting set. Note, as a result of this that |V (Q1)| ≥
|V (Q2)| ≥ · · · ≥ |V (Qp)|, otherwise we can keep H and easily find a better choice of

labelling. Call a choice of (H, (Q1, . . . , Qp)) that satisfies these conditions a good labelling .
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Consider a pair of components (Qi, Qj) where i < j and Q1, . . . , Qp is from a good

labelling. We call this a good pair when for all x ∈ Qj there exists y ∈ Qi such that xy is

an edge, and one of the following holds:

1. |V (Qi)| < n
2 − 1,

2. n is even, |V (Qi)| = n
2 − 1, v /∈ V (Qi) and V (Qj) ∩Xs 6= {v} for all colour classes

Xs.

Note this is very similar to the definition of a good pair in Chapter 3. However,

when considering the complete multipartite graph we also need to consider the interaction

between the colour classes and the hitting set H, hence the slightly more complex definition

above. The following lemma is essentially a more complex version of Lemma 3.6, adjusted

for our updated definition of a good pair.

Lemma 4.1. Let G be a complete multipartite graph G := Kn1,...,nk
such that k ≥ 2 and

n > k, let v be a vertex of G chosen from a largest colour class, let B be a canonical

line-bramble for v, and let (H, (Q1, . . . , Qp)) be a good labelling. Then Q1, . . . , Qp does not

contain a good pair.

Proof. Assume (Qi, Qj) is a good pair. For each Xs that intersects Qj , let xs be some

vertex of Qj ∩ Xs. If (Qi, Qj) is of the second type, choose each xs 6= v. Let Hs be the

set of edges created by taking H and removing the edges from xs to Qi, then adding the

edges from xs to (Qj−Xs). Thus we have removed |V (Qi)|− |V (Qi)∩Xs| edges and have

added |V (Qj)| − |V (Qj) ∩Xs| (by Lemma 3.5).

Suppose that |V (Qj)|−|V (Qj)∩Xs| > |V (Qi)|−|V (Qi)∩Xs| for each Xs that intersects

Qj . Then

∑

s:Xs∩V (Qj)6=∅

|V (Qj)| − |V (Qj) ∩Xs| >
∑

s:Xs∩V (Qj)6=∅

|V (Qi)| − |V (Qi) ∩Xs|.

However, since we are cycling through all colour classes that intersect Qj ,

∑

s:Xs∩V (Qj)6=∅

|V (Qj) ∩Xs| = |V (Qj)|.

If there are r such colour classes, then

(r − 1)|V (Qj)| > r|V (Qi)| −
∑

s:Xs∩V (Qj)6=∅

|V (Qi) ∩Xs| ≥ (r − 1)|V (Qi)|.

This implies |V (Qj)| > |V (Qi)|, which is a contradiction of condition (i). Hence, for some

s, |V (Qj)| − |V (Qj) ∩Xs| ≤ |V (Qi)| − |V (Qi) ∩Xs|. Fix such an s.
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A component of G−Hs is either one of Q1, . . . , Qi−1, Qi+1, . . . , Qj−1, Qj+1, . . . , Qp, or

Qi∪{xs} (which is connected since xs has a neighbour in Qi), or strictly contained within

Qj . Since H is a hitting set, to prove Hs is a hitting set it suffices to show that Qi ∪ {xs}
is sufficiently small, by Lemma 3.3. If (Qi, Qj) is of the first type, then |V (Qi) ∪ {xs}| =
|V (Qi)| + 1 < n

2 . So V (Qi) ∪ {xs} is sufficiently small. If (Qi, Qj) is of the second type,

|V (Qi) ∪ {xs}| = n
2 , but it does not contain v. Thus Hs is a hitting set. However,

|Hs| = |H| − (|V (Qi)| − |V (Qi) ∩Xs|) + (|V (Qj)| − |V (Qj) ∩Xs|) ≤ |H|. If |Hs| < |H|,
then condition (0) is contradicted. If |Hs| = |H|, since |V (Qi) ∪ {xs}| > |V (Qi)| and only

components of higher index have become smaller, Hs is a better choice of minimum hitting

set by condition (i), which is a contradiction.

If G is a star K1,n−1, then L(G) ∼= Kn−1 and tw(L(G)) = n − 2, which satisfies

Theorem 1.3. For technical reasons, most of our following results shall assume that G is

not a star. (The underlying reason for this is that Theorem 1.3 is a more useful result

when the colour classes are close to being the same size, and less useful when they more

irregular. The star is the most irregular complete bipartite graph.) If (H, (Q1, . . . , Qp)) is

a good labelling where p ≥ 4 and Q2, . . . , Qp are all singleton sets and contained within

one colour class, then say that (H, (Q1, . . . , Qp)) is a rare configuration.

Lemma 4.2. Let G be a complete multipartite graph G := Kn1,...,nk
such that G is not a

star and such that k ≥ 2 and n > k. Also let v be a vertex of G chosen from a largest

colour class, let B be a canonical line-bramble for v, and let (H, (Q1, . . . , Qp)) be a good

labelling. Then (H, (Q1, . . . , Qp)) is not a rare configuration.

Proof. Assume G is a rare configuration, but G is not a star. Let Xs be the colour class

of Q2, . . . , Qp. Since p ≥ 4, we may choose j ∈ {2, . . . , p} such that V (Qj) 6= {v}.
Suppose that one of the following conditions hold:

• |V (Q1)| < n
2 − 1,

• n is even, |V (Q1)| = n
2 − 1 and v /∈ V (Q1).

The component Q1 must contain at least two vertices not in Xs since G is not a star or

an independent set (since k ≥ 2). So for each x ∈ V (Q2) ∪ · · · ∪ V (Qp), there is some

y ∈ V (Q1) such that y /∈ Xs, so the edge xy exists. Then (Q1, Qj) is a good pair, which

contradicts Lemma 4.1. Thus by Lemma 3.3,

|Q1| =





n−1
2 , if n is odd

n
2 − 1 , if n is even and v ∈ V (Q1)

n
2 , if n is even and v /∈ V (Q1)
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Since at least two vertices of Q1 are not in Xs, we may choose y ∈ (V (Q1)−{v})−Xs. Say

y ∈ Xt. We can assume that v ∈ V (Q1) or v ∈ V (Qp), since if v ∈ V (Q2) ∪ . . . V (Qp−1),

then we can relabel the components Q2, . . . , Qp to obtain a choice of (H, (Q1, . . . , Qp))

which is better with regards to the condition (p+1). Thus let z ∈ V (Q2), and so z 6= v

since p ≥ 4. Let H ′ be the set of edges created by taking H and removing the edges from

y to Q3∪· · ·∪Qp−1, adding the edges from y to Q1−Xt, and removing the edges from z to

Q1−{y}. Then the three components of G−H ′ are Q1∪{z}−{y}, {y}∪Q3∪ · · ·∪Qp−1,
Qp. The component Q1 ∪ {z} − {y} is connected since Q1 − {y} contains a vertex not in

Xs and z ∈ Xs. Similarly, {y} ∪Q3 ∪ · · · ∪Qp−1 is connected since y ∈ Xt and all vertices

of Q3 ∪ · · · ∪Qp−1 are in Xs.

By Lemma 3.3, to show H ′ is a hitting set, it is sufficient to show that no component

of G − H ′ is too large. Since |V (Q1 ∪ {z} − {y})| = |V (Q1)| and v 6= z and H is a

hitting set, Q1∪{z}−{y} is sufficiently small. Similarly Qp is sufficiently small. However,

|V ({y} ∪ Q3 ∪ · · · ∪ Qp−1)| = p − 2. Since |V (Q1)| + · · · + |V (Qp)| = n, it follows that

p − 2 = n − |V (Q1)| − 1. In order to show this is sufficiently small, we need to consider

the parity of n, which we consider below. Also note,

|H ′| = |H| − (p− 3) + (|V (Q1)| − |V (Q1) ∩Xt|)− (|V (Q1)| − 1− |V (Q1) ∩Xs|).

Since |V (Q1) ∩Xt| ≥ 1 and |V (Q1) ∩Xs| ≤ |V (Q1)| − 2, we have |H ′| ≤ |H| − (p− 1) +

|V (Q1)| = |H| + 2|V (Q1)| − n. This also depends on the parity of n. Now we consider

these separate cases to check the order of {y} ∪Q3 ∪ · · · ∪Qp−1 and |H ′|.
Firstly, say n is odd. In this case |V (Q1)| = n−1

2 , so then |V ({y}∪Q3 ∪ · · · ∪Qp−1)| =
p − 2 = n − n−1

2 − 1 = n−1
2 , and so {y} ∪ Q3 ∪ · · · ∪ Qp−1 is sufficiently small, and H ′

is a hitting set. Also, |H ′| ≤ |H| + 2(n−12 ) − n < |H|, which contradicts condition (0).

Secondly, say n is even and v ∈ V (Q1). Then |V (Q1)| = n
2 − 1, implying p − 2 = n

2 , and

|H ′| ≤ |H| − 2. This contradicts condition (0). Finally, say n is even and v /∈ V (Q1).

Then |V (Q1)| = n
2 and v ∈ V (Qp). Then p− 2 = n

2 − 1, and |H ′| ≤ |H|+ 2(n2 )− n = |H|.
However, note that the order of the second largest component of G−H ′ is p− 2 = n

2 − 1,

whereas for G − H the order of the second largest component is 1. Since G is a rare

configuration but not a star, n ≥ 5, since |V (Q1)| ≥ 2 and p ≥ 4, implying n
2 − 1 > 1.

Thus H ′ is a better choice of minimum hitting set, by condition (2).

Thus, in either case, if G is not a star, but is a rare configuration, then there is a

contradiction to one of our conditions on (H, (Q1, . . . , Qp)).

The following lemma is similar to Lemma 3.7. The main difficulty here a rare config-

uration, for which we proved Lemma 4.2 in order to avoid.
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Lemma 4.3. Let G, v,B and (H, (Q1, . . . , Qp)) be as in Lemma 4.2. Then G−H contains

exactly three components.

Proof. G−H contains at least three components, by Lemma 3.4. Assume for the sake of

a contradiction that G − H contains p > 3 components. Since p ≥ 4, if all components

but Q1 are singleton sets in the one colour class, then we have a rare configuration. By

Lemma 4.2, this cannot occur. Thus either Q2 is not a singleton set, or Q2, . . . , Qp are not

all in one colour class. Consider a pair (Qi, Qj), where i ∈ {1, 2}, i < j and if |V (Qi)| = 1

then Qj and Qi are not in the same colour class. We can find such a pair for i = 1 and

for i = 2 since this is not a rare configuration. In either case, for all x ∈ V (Qj) there

exists a y ∈ V (Qi) such that xy is an edge, since there is always some y ∈ V (Qi) of a

different colour class to x. Since (Qi, Qj) is not a good pair by Lemma 4.1, we know

|V (Qi)| is too large. In particular, if n is odd, |V (Q1)| = |V (Q2)| = n−1
2 . However, since

each component must contain a vertex and p ≥ 4, the sum of the orders of the components

is at least 2(n−12 ) + 2 > n, which is a contradiction. If n is even and v is in neither Q1

nor Q2, then |V (Q1)| = |V (Q2)| = n
2 , which again means the sum of the orders of the

components is too large. Finally, if n is even and without loss of generality v ∈ V (Q2),

then |V (Q1)| = n
2 and |V (Q2)| = n

2 − 1, which still gives a contradiction on the orders of

the components. Hence G−H contains exactly three components.

Again, the following lemma is similar to Lemma 3.8.

Lemma 4.4. Let G, v,B and (H, (Q1, . . . , Qp)) be as in Lemma 4.2. If n is odd, then

p = 3, |V (Q1)| = |V (Q2)| = n−1
2 and |V (Q3)| = 1. If n is even, then p = 3, |V (Q1)| =

n
2 , |V (Q2)| = n

2 − 1 and |V (Q3)| = 1.

Proof. Lemma 4.3 shows that G −H contains exactly three components. Recall that in

a good labelling that |V (Q1)| ≥ |V (Q2)| ≥ |V (Q3)|. If |V (Q1)| = 1, then n = 3, and

since n−1
2 = 1, then our statement holds in this case. Thus we can assume n ≥ 4 and

|V (Q1)| ≥ 2. Hence (Q1, Qj) is a good pair for j > 1 unless Q1 is too large. If n is odd,

then |V (Q1)| = n−1
2 . If |V (Q2)| = 1, n−1

2 + 1 + 1 = n, implying n = 3. So |V (Q2)| ≥ 2,

and (Q2, Q3) is a good pair unless |V (Q2)| = n−1
2 , in which case |V (Q3)| = 1.

If n is even and v ∈ V (Q1), then |V (Q1)| = n
2 − 1. Again, if |V (Q2)| = 1 then

n
2 − 1 + 1 + 1 = n, implying n = 2. So |V (Q2)| ≥ 2, and (Q2, Q3) is a good pair unless

|V (Q2)| = n
2 , implying |V (Q3)| = 1. (Note here we’d need to relabel the components so

they are in descending order of size.) Finally, if n is even and v /∈ V (Q1), then |V (Q1)| = n
2 .

If |V (Q2)| = 1, then n
2 + 1 + 1 = n, implying n = 4. However, then |V (Q3)| = 1 and

our statement holds. If n ≥ 5, then |V (Q2)| ≥ n
2 − 1 else (Q2, Q3) is a good pair. Since
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we must have three components, |V (Q2)| = n
2 − 1 and |V (Q3)| = 1. Either way, our

components have the desired size.

Lemma 4.5. Let G, v,B and (H, (Q1, . . . , Qp)) be as in Lemma 4.2. If v /∈ Q3, then the

vertex in Q3 is in a different colour class to v.

Proof. By Lemma 4.4, |V (Q3)| = 1. Let x be the vertex in Q3. Assume for the sake

of contradiction that x, v are in colour class Xs. If n is odd then v ∈ V (Q1) or V (Q2),

but these components have the same order, by Lemma 4.4. If n is even, v ∈ V (Q2),

since otherwise v is in a component of order n
2 , again by Lemma 4.4. So without loss of

generality, v ∈ V (Q2). Define the hitting set H ′ as follows: from H, add all the edges

from v to Q2 −Xs (by Lemma 3.5), and then remove the edges from x to Q2 −Xs. Since

xv /∈ E(G), the components of G−H ′ are Q1, (Q2−{v})∪{x} and {v} (since x, v are in the

same colour class, (Q2−{v})∪{x} is connected). The orders of the components have not

changed, and v has not been placed into a component of order n
2 , so this is a hitting set by

Lemma 3.3. Note |H ′| = |H|+(|V (Q2)|−|V (Q2)∩Xs|)−(|V (Q2)|−(|V (Q2)∩Xs|)) = |H|,
so the order of the hitting set H has not changed. Since v is now in a component of higher

index, this contradicts condition (p+1).

The previous lemmas give a good idea of the structure of the components of G −H.

When dealing with a complete graph, this was sufficient. However, in the case of a complete

multipartite graph, we also need to know how the components of G−H interact with the

colour classes of G. As we might expect, in the optimal case, each colour class is essentially

split evenly across the two large components Q1 and Q2. In order to show this, however,

we need to be careful about the parity of n and the parities of n1, . . . , nk. (Obviously, an

odd number of vertices cannot be broken into two equal sized parts.) Recall that we label

the colour classes X1, . . . , Xn. For the following section, we assume that G is a complete

multipartite graph such that k ≥ 2 and G is not a star, and as such we have only three

components by Lemma 4.3.

Definition Let X∗i := Xi ∩ (V (Q1) ∪ V (Q2)), and say X∗i is even or odd depending on

the parity of its order.

Definition • A colour class Xi is called balanced if |V (Q1) ∩Xi| = |V (Q2) ∩Xi|.
• A colour class Xi is Q1-skew if |V (Q1)∩Xi| ≥ |V (Q2)∩Xi|+1. When |V (Q1)∩Xi| =
|V (Q2) ∩Xi|+ 1, we say Xi is just-Q1-skew.

• A colour class Xi is Q2-skew if |V (Q1) ∩Xi| + 1 ≤ |V (Q2) ∩Xi|. When |V (Q1) ∩
Xi|+ 1 = |V (Q2) ∩Xi|, we say Xi is just-Q2-skew.
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• (Xi, Xj) is called a skew pair if Xi is Q1-skew and Xj is Q2-skew.

For simplicity, if Xi is Q1-skew or Q2-skew, then we say Xi is skew . Similarly if Xi is

just-Q1-skew or just-Q2-skew, then we say Xi is just-skew .

We say G is an exception if n is even, and there is a colour class Xs such that |V (Q1)∩
Xs| = |V (Q1)| − 1 and |V (Q2)∩Xs| = |V (Q2)| − 1. We define the exception for technical

reasons, however we need to avoid the exception in the following lemma only.

Lemma 4.6. Let G be a complete multipartite graph G := Kn1,...,nk
such that k ≥ 2 and

n > max{4, k}. Also assume G is neither a star nor an exception. Let v be a vertex

of G chosen from a largest colour class, let B be a canonical line-bramble for v, and let

(H, (Q1, Q2, Q3)) be a good labelling. If (Xi, Xj) is a skew pair, then both Xi and Xj are

just-skew.

Proof. Since no colour class can be both Q1-skew and Q2-skew, i 6= j. Since n ≥ 5, by

Lemma 4.4, both Q1 and Q2 contain at least two vertices, and thus intersect at least two

colour classes.

First, we show that both X∗i and X∗j contain a vertex other than v. If X∗i = ∅, then Xi

is not skew. So now assume X∗i 6= ∅. Similarly, X∗j 6= ∅. If X∗i = {v}, then by Lemma 4.5,

Xi ∩ V (Q3) = ∅, and so Xi = {v}. But since v is in a largest colour class, every colour

class has order one, and as such k = n, which contradicts one of our assumptions on n.

Thus both X∗i and X∗j contain a vertex other than v, and since Xi is Q1-skew and Xj is

Q2-skew, there are vertices x ∈ (V (Q1) ∩Xi) − {v} and y ∈ (V (Q2) ∩Xj) − {v}. Then

define the hitting set H ′ as follows: remove the edges from x to V (Q2) from H, add all the

edges from x to V (Q1)−Xi (these edges are not in H by Lemma 3.5), remove the edges

from y to V (Q1)− {x}, and add the edges from y to V (Q2) ∪ {x}. Now G−H ′ contains

components (Q1 − {x}) ∪ {y}, (Q2 − {y}) ∪ {x} and Q3, assuming that (Q1 − {x}) ∪ {y}
and (Q2 − {y}) ∪ {x} are in fact connected (which we now prove).

If (Q1 − {x}) ∪ {y} is not connected, then it intersects only one colour class by

Lemma 3.5, which must be Xj since y ∈ Xj . Since x ∈ Xi, it follows that |V (Q1)∩Xj | =
|V (Q1)| − 1. Since Xj is Q2-skew,

|V (Q1)| = |V (Q1) ∩Xj |+ 1 ≤ |V (Q2) ∩Xj | ≤ |V (Q2)|.

Since |V (Q1)| ≥ |V (Q2)|, we have |V (Q1)| = |V (Q2)|, and each inequality in the above

equation is an equality. In particular, |V (Q2)∩Xj | = |V (Q2)|, and thus V (Q2) ⊆ Xj . But

Q2 intersects at least two colour classes, which is a contradiction. Thus (Q1 − {x}) ∪ {y}
is a connected component of G−H ′.
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If (Q2 − {y}) ∪ {x} is not connected, then it intersects only one colour class, which

must be Xi since x ∈ Xi. Since y ∈ Xj , it follows that |V (Q2) ∩Xi| = |V (Q2)| − 1. Since

Xi is Q1-skew,

|V (Q1)| ≥ |V (Q1) ∩Xi| ≥ |V (Q2) ∩Xi|+ 1 = |V (Q2)|.

By Lemma 4.4, either |V (Q1)| = |V (Q2)| (when n is odd) or |V (Q1)| = |V (Q2)|+ 1 (when

n is even). If |V (Q1) ∩Xi| = |V (Q1)|, then V (Q1) ⊆ Xi, contradicting our result that Q1

intersects at least two colour classes. Otherwise |V (Q1)∩Xi| = |V (Q1)|−1, which can only

happen when n is even. In this case, since |V (Q1)∩Xi| = |V (Q1)|− 1 and |V (Q2)∩Xi| =
|V (Q2)| − 1, G is an exception. This contradiction shows that (Q2 − {y}) ∪ {x} is a

connected component of G−H ′.
Thus G−H ′ contains components (Q1 − {x}) ∪ {y}, (Q2 − {y}) ∪ {x} and Q3. Hence

the orders of the components have not changed. Since the vertex v has not changed

components, H ′ is a legitimate hitting set. But since H is the minimum hitting set by

condition (0), |H ′| ≥ |H|. Hence

|H ′| =|H| − (|V (Q2)| − |V (Q2) ∩Xi|) + (|V (Q1)| − |V (Q1) ∩Xi|)
− (|V (Q1)| − 1− |V (Q1) ∩Xj |) + (|V (Q2)|+ 1− |V (Q2) ∩Xj |)

≥|H|.

Which implies

|V (Q2) ∩Xi|+ |V (Q1) ∩Xj | ≥ |V (Q1) ∩Xi|+ |V (Q2) ∩Xj | − 2.

Since Xi is Q1-skew and Xj is Q2-skew,

|V (Q1)∩Xi|+|V (Q2)∩Xj |−2 ≥ |V (Q2)∩Xi|+|V (Q1)∩Xj | ≥|V (Q1)∩Xi|+|V (Q2)∩Xj |−2.

This only holds if every inequality is actually an equality. That is, Xi is just-Q1-skew and

Xj is just-Q2-skew.

Lemma 4.6 exists to help prove the following far more useful lemma.

Lemma 4.7. Let G be a complete multipartite graph G := Kn1,...,nk
such that k ≥ 2,

n > k and such that G is not a star. Let v be a vertex of G chosen from a largest colour

class, let B be a canonical line-bramble for v, and let (H, (Q1, Q2, Q3)) be a good labelling.

If Xi is skew, then Xi is just-skew.

Proof. Suppose G is not an exception and n > 4. If there exists a Q1-skew colour class

Xs and a Q2-skew colour class Xt, then either (Xs, Xi) or (Xi, Xt) is a skew pair, and by

Lemma 4.6, Xi is just-skew, as required.
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Alternatively, either no colour class is Q1-skew or no colour class is Q2-skew. Suppose,

for the sake of contradiction, there is a skew colour class Xj that is not just-skew. In the

first case, for all `, |V (Q1) ∩X`| ≤ |V (Q2) ∩X`|, and |V (Q1) ∩Xj | + 2 ≤ |V (Q2) ∩Xj |.
Thus

|V (Q1)|+ 2 =(
∑

1≤`≤k, 6̀=j
|V (Q1) ∩X`|) + |V (Q1) ∩Xj |+ 2

≤(
∑

1≤`≤k, 6̀=j
|V (Q2) ∩X`|) + |V (Q2) ∩Xj | = |V (Q2)|.

This contradicts |V (Q1)| ≥ |V (Q2)|. Similarly, in the second case, |V (Q1)| ≥ |V (Q2)|+ 2,

which contradicts Lemma 4.4. Thus if n ≥ 5 and G is not an exception, then our statement

holds.

Consider the case when G is an exception. Then |V (Q1) ∩ Xs| = |V (Q1)| − 1 and

|V (Q2) ∩ Xs| = |V (Q2)| − 1. Since n is even, by Lemma 4.4, |V (Q1)| = |V (Q2)| + 1, so

Xs is just-skew. There are exactly two other vertices of Q1 ∪Q2, one in each component,

which we label x and y respectively. If x and y are in the same colour class, then that

colour class is balanced. Otherwise, x and y are in different colour classes, each of which

intersects Q1 ∪Q2 in one vertex. Such a colour class is just-skew, as required.

Finally, consider the case n ≤ 4. Then |V (Q1) ∪ V (Q2)| ≤ 3. Thus either |V (Q1)| =

|V (Q2)| = 1, or |V (Q1)| = 2 and |V (Q2)| = 1. If Xi is not just-skew, then Xi contains

at least two vertices in some component. Thus, the only possibility to consider is when

|V (Q1)∩Xi| = 2. But then Q1 is not connected, since both vertices are in the same colour

class, which contradicts the fact that Q1 is a connected component.

Thus Xi is just-skew.

From Lemma 4.7 and Lemma 4.4, we get the following results about |Q1 ∩ Xi| and

|Q2 ∩Xi|:

Corollary 4.8. Let G, v,B and (H, (Q1, Q2, Q3)) be as in Lemma 4.7. If a colour class

Xi does not intersect Q3, then

• if Xi is balanced, then |Q1 ∩Xi| = |Q2 ∩Xi| = ni
2

• if Xi is Q1-skew, then |Q1 ∩Xi| = ni+1
2 and |Q2 ∩Xi| = ni−1

2

• if Xi is Q2-skew, then |Q1 ∩Xi| = ni−1
2 and |Q2 ∩Xi| = ni+1

2

Corollary 4.9. Let G, v,B and (H, (Q1, Q2, Q3)) be as in Lemma 4.7. If a colour class

Xi does intersect Q3, then |V (Q3) ∩Xi| = 1 and

• if Xi is balanced, then |Q1 ∩Xi| = |Q2 ∩Xi| = ni−1
2

• if Xi is Q1-skew, then |Q1 ∩Xi| = ni
2 and |Q2 ∩Xi| = ni−2

2
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• if Xi is Q2-skew, then |Q1 ∩Xi| = ni−2
2 and |Q2 ∩Xi| = ni

2

As we might expect, there is approximately the same number of Q1 and Q2-skew colour

classes, since the extra vertices they contribute to Q1 and Q2 balance each other out.

Lemma 4.10. Let G, v,B and (H, (Q1, Q2, Q3)) be as in Lemma 4.7. If n is odd, then

there is an equal number of Q1-skew and Q2-skew colour classes. If n is even, then there

is one more Q1-skew colour class than there are Q2-skew colour classes.

Proof. Say there are a Q1-skew colour classes and b Q2-skew colour classes. By Lemma 4.7,

if Xi is Q1-skew, then |V (Q1) ∩ Xi| = |V (Q2) ∩ Xi| + 1, and if Xi is Q2-skew, then

|V (Q1) ∩Xi| = |V (Q2) ∩Xi| − 1. Thus

|V (Q1)| =
∑

1≤i≤k
|V (Q1) ∩Xi| = (

∑

1≤i≤k
|V (Q2) ∩Xi|) + a− b = |V (Q2)|+ a− b.

If n is odd, then by Lemma 4.4, |V (Q1)| = |V (Q2)|, so a = b, as required. When n is

even, |V (Q1)| = |V (Q2)|+ 1, so a = b+ 1.

From Lemma 4.3, Lemma 4.4, Corollary 4.8 and Corollary 4.9, we get the following

result that summarises this section:

Theorem 4.11. Let G be a complete multipartite graph G := Kn1,...,nk
such that k ≥

2, n > k and such that G is not a star. Let v be a vertex of G chosen from a largest colour

class, let B be a canonical line-bramble for v, and let (H, (Q1, . . . , Qp)) be a good labelling.

Then p = 3. If n is odd, then |V (Q1)| = |V (Q2)| = n−1
2 and |V (Q3)| = 1, and if n is

even, then |V (Q1)| = n
2 , |V (Q2)| = n

2 − 1 and |V (Q3)| = 1. For a colour class Xi,

dni − 2

2
e ≤ |V (Q1) ∩Xi|, |V (Q2) ∩Xi| ≤ b

ni + 1

2
c.

The bounds on |V (Q1)∩Xi| and |V (Q2)∩Xi| in the above theorem are a little weak.

However, it is difficult to improve Theorem 4.11 in general, given the broad set of possi-

bilities for the sizes of the different colour classes. Given a specific set of colour classes, it

would be possible to use the lemmas in this section to give a stronger bound.

Now we can use Theorem 4.11 to determine a lower bound on tw(L(G)).

Theorem 4.12. Let G be a complete multipartite graph G := Kn1,...,nk
where k ≥ 2. Then

tw(L(G)) + 1 = bn(L(G)) ≥ 1
2

(
∑

1≤i<j≤k
ninj

)
+ 3

4k
2 − kn− 3

4k + n.

Proof. First, consider the case when k ≥ 2, n > k and G is not a star. Then choose some

vertex v in a largest colour class of G, a canonical line-bramble for v denoted B and a

good labelling (H, (Q1, . . . , Qp)). It is sufficient to determine a lower bound on |H|, since
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H is a minimum hitting set for B by condition (0), and since B forces the existence of a

bramble of L(G) of the same order by Lemma 3.1. Using Theorem 4.11, we can determine

the structure of H. The set H contains all edges with an endpoint in Q1 and an endpoint

in Q2; simply count these edges. By Theorem 4.11, |V (Q1)∩Xi|, |V (Q2)∩Xi| ≥ dni
2 − 1e.

Since ni, nj ≥ 1, it follows that |V (Q1) ∩Xi||V (Q2) ∩Xj | ≥
(
ni
2 − 1

) (nj

2 − 1
)
− 1

4 . So we

count the edges from Q1 to Q2 as follows:

∑

i 6=j
|V (Q1) ∩Xi||V (Q2) ∩Xj | ≥

∑

i 6=j

(ni
2
− 1
)(nj

2
− 1
)
− 1

4

=
1

4


∑

i 6=j
ninj


− (k − 1)n+

3

4
k(k − 1)

=
1

2


 ∑

1≤i<j≤k
ninj


+

3

4
k2 − kn− 3

4
k + n.

This gives the required lower bound on |H| in this case.

It remains to check the cases when either n = k or G is a star. When n = k, G is

simply a complete graph, and our lower bound follows by Theorem 1.2. If G is a star,

then L(G) is a complete graph, and the lower bound follows by inspection.

Using the same techniques as in the proof of Lemma 4.12, we can also determine an

upper bound on |H|. We do this now. Note when considering the upper bound, we also

need to account for the edges from Q3 into the components Q1, Q2, but there are not many

of these edges.

Lemma 4.13. Let G, v,B and (H, (Q1, . . . , Qp)) be as in Theorem 4.11. Then

|H| ≤ 1
2

(∑
1≤i<j≤k ninj

)
+ 1

2n(k + 1) + 1
4k(k − 1)− 1.

Finally, our results in this section give a more detailed understanding of H when G is

regular. (This ties in with our previous statement about stronger bounds being possible

whenever specific information is known about the size of the colour classes.)

Theorem 4.14. Let G be a complete regular k-partite graph G := Kc,...,c, such that k ≥ 2

and n > k, let v be a vertex of G chosen from a largest colour class, let B be a canonical

line-bramble for v, and let (H, (Q1, . . . , Qp)) be a good labelling. Then p = 3. If n is odd,

then |V (Q1)| = |V (Q2)| = n−1
2 and |V (Q3)| = 1 and

• for one colour class Xi, we have |V (Q1) ∩Xi| = |V (Q2) ∩Xi| = c−1
2 and |V (Q3) ∩

Xi| = 1,

• for k−1
2 other colour classes Xi, we have |V (Q1)∩Xi| = c+1

2 and |V (Q2)∩Xi| = c−1
2 ,
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• for the remaining k−1
2 colour classes Xi, we have |V (Q1) ∩Xi| = c−1

2 and |V (Q2) ∩
Xi| = c+1

2 .

If n is even, then |V (Q1)| = n
2 , |V (Q2)| = n

2 − 1 and |V (Q3)| = 1. If n is even and c is

odd, then

• for one colour class Xi, we have |V (Q1) ∩Xi| = |V (Q2) ∩Xi| = c−1
2 and |V (Q3) ∩

Xi| = 1,

• for k
2 other colour classes Xi, we have |V (Q1) ∩Xi| = c+1

2 and |V (Q2) ∩Xi| = c−1
2 ,

• for the remaining k
2 −1 colour classes Xi, we have |V (Q1)∩Xi| = c−1

2 and |V (Q2)∩
Xi| = c+1

2 .

Finally, if n is even and c is even, then

• for one colour class Xi, we have |V (Q1) ∩Xi| = c
2 , |V (Q2) ∩Xi| = c

2 − 1 and

|V (Q3) ∩Xi| = 1,

• for the other k − 1 colour classes Xi, we have |V (Q1) ∩Xi| = |V (Q2) ∩Xi| = c
2 .

Proof. Since G is regular and n > k ≥ 2, G is not a star. The statements about the

number and order of the components of G−H all follow from Lemma 4.3 and Lemma 4.4.

Since n = ck, when n is odd, c is odd and k is odd. When n is even, at least one of c

and k are even. Then from Corollary 4.8, Corollary 4.9 and Lemma 4.10, the rest of the

theorem follows.

4.3 Path Decompositions

As we did in Chapter 3, we define a path decomposition for L(G) to determine an upper

bound on tw(G) and pw(G). Let T denote the underlying path. Since T is a path, it makes

sense to refer to a bag left or right of another bag, depending on the relative positions of

the corresponding nodes in T . If a bag is to the right of another bag and the nodes which

index them are adjacent in T , then we say it is directly right. Similarly define directly

left. In order to construct this path decomposition, we will use a hitting set H from a

good labelling, as well as the information we have about Q1, Q2 and Q3. For a vertex u of

G, let degi(u) be the number of edges in G incident to u with the other endpoint in the

component Qi.

First, label the vertices of Q1 by x1, . . . , x|V (Q1)| in some order, which we will specify

later. Similarly, label the vertices of Q2 by y1, . . . , y|V (Q2)|, again in an order we will later

specify. Finally, by Theorem 4.11, Q3 contains a single vertex, which we label z.

Then define the following bags:
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• γ := H = {uw ∈ E(G) : u,w are in different components of G−H},
• for 1 ≤ i ≤ |V (Q1)|,

αi :={x`u ∈ E(G) : u ∈ V (Q1), 1 ≤ ` ≤ i}
∪{xjw ∈ E(G) : w ∈ V (G)− V (Q1), i ≤ j ≤ |V (Q1)|},

• for 1 ≤ i ≤ |V (Q2)|,

βi :={y`u ∈ E(G) : u ∈ V (Q2), 1 ≤ ` ≤ i}
∪{yjw ∈ E(G) : w ∈ V (G)− V (Q2), i ≤ j ≤ |V (Q2)|}.

Each bag is indexed by a node of T . Left-to-right, the nodes of T index the bags in the

following order: β|V (Q2)|, . . . , β1, γ, α1, . . . , α|V (Q1)|. Let X denote the collection of bags.

We claim this defines a tree decomposition (T,X ) for L(G), independent of our ordering

of Q1 and Q2.

Lemma 4.15. Let G be a complete multipartite graph G := Kn1,...,nk
such that k ≥ 2 and

n > k. Also say G is not a star. Let v be a vertex of G chosen from a largest colour class,

let B be a canonical line-bramble for v, and let (H, (Q1, Q2, Q3)) be a good labelling. Then

(T,X ) is a tree decomposition of L(G), independent of the ordering used on Q1 and Q2.

Proof. Consider uw ∈ E(G). We require that the nodes indexing the bags containing uw

induce a non-empty connected subpath of T . Firstly, assume that u and w are in different

components of G−H. If u = xi and w = yj , then uw ∈ βj , . . . , β1, γ, α1, . . . , αi, meaning

uw is in precisely this sequence of bags. If u = xi and w = z, then uw ∈ γ, α1, . . . , αi. If

u = yj and w = z, then uw ∈ βj , . . . , β1, γ.

Secondly, assume that u and w are in the same component of G−H, which is either

Q1 or Q2, since by Theorem 4.11, |V (Q3)| = 1. If u,w ∈ V (Q1), then let u = xi be the

vertex of smaller label. Then uw ∈ αi, . . . , α|V (Q1)|. If u,w ∈ V (Q2), then similarly let

u = yi be the vertex of smaller label. Then uw ∈ β|V (Q2)|, . . . , βi. This shows that the

nodes indexing the bags containing uw induce a non-empty connected subpath of T .

All that remains is to show that if two edges are incident at a vertex in G (that is, the

edges are adjacent in L(G)), then there is a bag of X containing both of them. Now if the

shared vertex of the two edges is xi ∈ V (Q1), then by inspection both edges are in αi. If

the shared vertex is yj ∈ V (Q2), then both edges are in βj . Finally, if the shared vertex

is z, then both edges are in γ.

Now we determine the width of (T,X ), which is one less than the order of the largest

bag. To do so, we use a specific labelling of Q1 ∪ Q2. We do this in two different ways,

depending on whether or not G is regular.
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In our first ordering, label the vertices x1, . . . , x|V (Q1)| in order of non-decreasing size

of the colour class containing xi, and do the same for y1, . . . , y|V (Q2)|. We denote this

ordering as the red ordering .

6 = x1 7 = y1

1 = x2 2 = x3 3 = y2 4 = y3 5 = z

Figure 4.1: A red ordering for L(K5,2). Here v = 5, and Q1 = {1, 2, 6}, Q2 = {3, 4, 7}, Q3 =

{5}. The lemmas in the previous section actually give (without loss of generality) two

different possibilities for Q1, Q2, Q3. The choice shown is the better of the two, which we

determine simply by inspecting both.

37,47;
46

β3

37,47;
36,46

β2

37,47;
17,27,36
46,57

β1

17,27,36
46,56,57

γ

16,26;
17,27,36
46,56

α1

16,26;
17,27

α2

16,26;
27

α3

Figure 4.2: A path decomposition for L(K5,2) using the red ordering.

Lemma 4.16. Let G, v,B, (H, (Q1, Q2, Q3)) and (T,X ) be as in Lemma 4.15, but assume

the ordering on Q1 and Q2 is the red ordering. Then |αi| ≤ |α1| + n − 2, for all 1 ≤ i ≤
|V (Q1)|.

Proof. We will show that |αi| ≤ |αi−1|+2 for all i. This implies that |αi| ≤ |α1|+2(i−1).

Since i ≤ |V (Q1)| and |V (Q1)| ≤ n
2 by Lemma 3.3, this is sufficient.

αi ={x`u, xjw ∈ E(G) : u ∈ V (Q1), w ∈ V (G)− V (Q1), 1 ≤ ` ≤ i, i ≤ j ≤ |V (Q1)|}
={x`u ∈ E(G) : u ∈ V (Q1), 1 ≤ ` ≤ i}
∪ {xjw ∈ E(G) : w ∈ V (G)− V (Q1), i ≤ j ≤ |V (Q1)|}.

This is a disjoint union. Let Xs, Xt be the colour classes such that xi−1 ∈ Xs and xi ∈ Xt,
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and note that it is possible s = t. Then

|αi| − |αi−1| =|{x`u ∈ E(G) : u ∈ V (Q1), 1 ≤ ` ≤ i}|
− |{x`u ∈ E(G) : u ∈ V (Q1), 1 ≤ ` ≤ i− 1}|
+ |{xjw ∈ E(G) : w ∈ V (G)− V (Q1), i ≤ j ≤ |V (Q1)|}|
− |{xjw ∈ E(G) : w ∈ V (G)− V (Q1), i− 1 ≤ j ≤ |V (Q1)|}|
≤deg1(xi)− |{xi−1w ∈ E(G) : w ∈ V (G)− V (Q1)}|
= deg1(xi)− (degG(xi−1)− deg1(xi−1))

= deg1(xi)− (n− ns − deg1(xi−1))

=|V (Q1)| − |V (Q1 ∩Xt)| − (n− ns − |V (Q1)|+ |V (Q1 ∩Xs)|)
=2|V (Q1)|+ ns − |V (Q1 ∩Xt)| − n− |V (Q1 ∩Xs)|.

Assume for the sake of contradiction that |αi| − |αi−1| > 2. Then:

2|V (Q1)|+ ns > n+ |V (Q1) ∩Xs|+ |V (Q1) ∩Xt|+ 2.

By the ordering of the vertices in Q1, nt ≥ ns. Then by Theorem 4.11,

|V (Q1) ∩Xs|+ |V (Q1) ∩Xt| ≥
ns − 2

2
+
nt − 2

2
≥ ns − 2.

Hence 2|V (Q1)|+ns > n+ns−2 + 2; that is, 2|V (Q1)| > n. But |V (Q1)| > n
2 contradicts

Lemma 4.4.

By symmetry we have:

Lemma 4.17. Let G, v,B, (H, (Q1, Q2, Q3)) and (T,X ) be as in Lemma 4.15, but assume

the ordering on Q1 and Q2 is the red ordering. Then |βi| ≤ |β1| + n − 2, for all 1 ≤ i ≤
|V (Q2)|.

Using Lemmas 4.16 and 4.17, we determine the maximum size of a bag in this path

decomposition in terms of |H|.

Lemma 4.18. Let G, v,B, (H, (Q1, Q2, Q3)) and (T,X ) be as in Lemma 4.15. The maxi-

mum bag size of (T,X ), using the red ordering, is at most |H|+ 2n− 2.

Proof. By Lemma 4.16 and Lemma 4.17, the maximum size of a bag right of γ is at most

|α1|+n−2, and left of γ it is |β1|+n−2. By inspection, the edges in α1−γ are all adjacent

to x1. Hence there are at most n of them. Thus |α1| ≤ |γ| + n. Similarly |β1| ≤ |γ| + n.

Since γ = H, this is sufficient.

Given this, we can determine an upper bound on tw(L(G)).
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Theorem 4.19. Let G be a complete multipartite graph G := Kn1,...,nk
where k ≥ 2. Then

tw(G) ≤ 1

2


 ∑

1≤i<j≤k
ninj


+

1

4
k2 +

1

2
kn− 1

4
k +

5

2
n− 4.

Proof. If G, v,B, (H, (Q1, Q2, Q3)) and (T,X ) are as in Lemma 4.15, then we have a tree

decomposition of width at most |H| + 2n − 3 by Lemma 4.18. (Note since k ≥ 2, it

follows n ≥ 2 and so 2n − 3 is positive.) Then our result follows from Lemma 4.13. In

the remaining cases, G is either a complete graph or a star, and this result follows by

Theorem 1.2 or inspection, respectively.

Thus Theorem 1.3 follows from Theorem 4.12 and Theorem 4.19.

When G is regular, that is, n1 = · · · = nk, we can get a more accurate bound on the

treewidth. Define c := n1 to be the size of each colour class. We need a different ordering

of the vertices x1, . . . , x|Q1| and y1, . . . , y|Q2| to obtain our result. In order to do this,

we recall the notion of a skew colour class, as defined in Section 4.2, and the associated

results. First consider a colour class Xi that does not intersect Q3. If Xi is balanced, then

say every vertex of Xi is Type 1. If Xi is Q1-skew, then each vertex in Q1 ∩ Xi is Type

1 and each vertex in Q2 ∩Xi is Type 2. If Xi is Q2-skew, then each vertex in Q1 ∩Xi is

Type 2 and each vertex in Q2 ∩Xi is Type 1. Finally, each vertex in the remaining colour

class (that does intersect Q3) is Type 3. Thus each vertex of V (G)− z is either Type 1, 2

or 3. Label the vertices of Q1 in order x1, . . . , x|V (Q1)| by first labelling Type 1 vertices,

then Type 2 vertices, and finally Type 3 vertices. Do the same for y1, . . . , y|V (Q2)|. We

denote this ordering as the blue ordering .

3 = x1

4 = y1

x3 = 1

z = 2

5 = x2 6 = y2

Figure 4.3: A blue ordering for L(K2,2,2). Here, v = 2 and Q1 = {1, 3, 5}, Q2 =

{4, 6}, Q3 = {2}. Thus 1, 2 are Type 3 vertices, and all other vertices are Type 1.
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46;
16,26,36

β2

46;
14,16
24,26
36,45

β1

14,16
23,24
25,26
36,45

γ

13,35;
14,16
23,25
36,45

α1

13
15,35;
14,16
25,45

α2

13,15
35;14,16

α3

Figure 4.4: A path decomposition for L(K2,2,2) using the blue ordering.

Lemma 4.20. Let G be a complete k-partite graph with n > k, let v be a vertex of G, let

B be a canonical line-bramble for v and let (H, (Q1, Q2, Q3)) be a good labelling. If k ≥ 3,

then Q1 contains at least two Type 1 vertices, and Q2 contains at least one Type 1 vertex.

If k = 2 and c ≥ 3, then Q1 contains at least two Type 1 vertices, and Q2 contains at least

one Type 1 or Type 2 vertex.

Proof. If Xi is a colour class that does not intersect Q3, then it intersects both of Q1 and

Q2—if not, then by Lemma 4.7, |Xi| = 1 and G is a complete graph. Since we are trying

to find Type 1 and Type 2 vertices, from now on we only consider colour classes that do

not intersect Q3. If k ≥ 5, then there are at least four colour classes that do not intersect

Q3. From Theorem 4.14, there are either at least two Q1-skew and Q2-skew colour classes,

or at least four balanced colour classes. Even if each such colour class intersects each of

Q1 and Q2 only once, there are still enough colour classes of the correct skew to get all

our required Type 1 vertices. Similarly, if k = 4 and c is odd, then there are two Q1-skew

colour classes and one Q2-skew colour class, and if k = 4 and c is even, there are three

balanced colour classes. This is again sufficient.

If k = 3, then by Theorem 4.14 again, there are enough Q2-skew or balanced colour

classes to ensure that Q2 contains at least one Type 1 vertex. However, if n is odd, there

is only one Q1-skew colour class. In this case, c is odd, and so c ≥ 3. Thus that colour

class contains at least two vertices in Q1. Thus Q1 contains two Type 1 vertices.

Now assume k = 2 and c ≥ 3. If c is odd, there is one Q1-skew colour class, again by

Theorem 4.14. This colour class contains at least two vertices in Q1 and one in Q2, which

satisfies our requirement, now that Q2 only requires a Type 2 vertex. If c is even, then

there is one balanced colour class. Since c ≥ 3 and even, it follows that c ≥ 4 and each

component contains two vertices from this colour class. This is sufficient.

The following lemma strengthens Lemma 4.16 for the case when G is regular.

Lemma 4.21. Let G be a complete k-partite graph with n > k and k ≥ 2, let v be a vertex

of G, let B be a canonical line-bramble for v and let (H, (Q1, Q2, Q3)) be a good labelling.
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Let (T,X ) be our tree decomposition where Q1 and Q2 are ordered by the blue ordering.

If k ≥ 3 or c ≥ 3, then |α1| ≥ |α2| ≥ · · · ≥ |α|V (Q1)||.

Proof. We will show that |αi| ≤ |αi−1| for all i. We can write αi as the disjoint union

αi ={x`u ∈ E(G) : u ∈ V (Q1), 1 ≤ ` ≤ i}
∪{xjw ∈ E(G) : w ∈ V (G)− V (Q1), i ≤ j ≤ |V (Q1)|}.

Let Xs, Xt be the colour classes such that xi−1 ∈ Xs and xi ∈ Xt, and note that it is

possible that s = t. Define r := |{xixf ∈ E(G) : f < i}|. Then

|αi| − |αi−1| =|{x`u ∈ E(G) : u ∈ V (Q1), 1 ≤ ` ≤ i}|
− |{x`u ∈ E(G) : u ∈ V (Q1), 1 ≤ ` ≤ i− 1}|
+ |{xjw ∈ E(G) : w ∈ V (G)− V (Q1), i ≤ j ≤ |V (Q1)|}|
− |{xjw ∈ E(G) : w ∈ V (G)− V (Q1), i− 1 ≤ j ≤ |V (Q1)|}|

= deg1(xi)− r − |{xi−1w ∈ E(G)|w ∈ V (G)− V (Q1)}|
= deg1(xi)− r − (degG(xi−1)− deg1(xi−1))

= deg1(xi)− r − (n− ns − deg1(xi−1))

=|V (Q1)| − |V (Q1 ∩Xt)| − r − (n− ns − |V (Q1)|+ |V (Q1 ∩Xs)|)
=2|V (Q1)|+ ns − r − |V (Q1 ∩Xt)| − n− |V (Q1 ∩Xs)|.

Assume for the sake of contradiction that |αi| − |αi−1| > 0. Then:

2|V (Q1)|+ ns > n+ r + |V (Q1) ∩Xs|+ |V (Q1) ∩Xt|.

There are two cases to consider. Firstly, say that both xi−1 and xi are Type 1. So Xs

and Xt are both balanced or Q1-skew, and neither intersects Q3. Since G is regular,

nt = ns. Then by Corollary 4.8, |V (Q1) ∩ Xs| + |V (Q1) ∩ Xt| ≥ ns
2 + nt

2 = ns. Hence

2|V (Q1)|+ ns > n+ ns + r ≥ n+ ns, so 2|V (Q1)| > n, which contradicts Lemma 4.4.

Secondly, since we ordered our vertices by non-decreasing type, we can assume xi does

not have Type 1. However, by Lemma 4.20, Q1 contains at least two Type 1 vertices, xa

and xb. Note if two vertices of Q1 are in the same colour class, they have the same type,

so we know that xa and xb are in a different colour class to xi. Also, a, b < i, thus r ≥ 2.

Since nt = ns, by Theorem 4.11, |V (Q1) ∩ Xs| + |V (Q1) ∩ Xt| ≥ ns−2
2 + nt−2

2 = ns − 2.

Hence 2|V (Q1)|+ ns > n+ ns − 2 + r ≥ n+ ns, so 2|V (Q1)| > n, which again contradicts

Lemma 4.4.

We must also consider the equivalent argument for bags to the left of γ, as we did in

the general case. However, here the arguments are not quite the same.
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Lemma 4.22. Let G, v,B, (H, (Q1, Q2, Q3)) and (T,X ) be as in Lemma 4.21. If k ≥ 3 or

c ≥ 3, then |β1| ≥ |β2| ≥ · · · ≥ |β|V (Q2)||.

Proof. We will show that |βi| ≤ |βi−1| for all i. We can write βi as the disjoint union

βi ={y`u ∈ E(G) : u ∈ V (Q2), 1 ≤ ` ≤ i}
∪{yjw ∈ E(G) : w ∈ V (G)− V (Q2), i ≤ j ≤ |V (Q2)|}.

Let Xs, Xt be the colour classes such that yi−1 ∈ Xs and yi ∈ Xt, and note that it is

possible that s = t. Define r := |{yiyf ∈ E(G) : f < i}|. Then

|βi| − |βi−1| =|{y`u ∈ E(G) : u ∈ V (Q2), 1 ≤ ` ≤ i}|
− |{y`u ∈ E(G) : u ∈ V (Q2), 1 ≤ ` ≤ i− 1}|
+ |{yjw ∈ E(G) : w ∈ V (G)− V (Q2), i ≤ j ≤ |V (Q2)|}|
− |{yjw ∈ E(G) : w ∈ V (G)− V (Q2), i− 1 ≤ j ≤ |V (Q2)|}|

= deg2(yi)− r − |{yi−1w ∈ E(G)|w ∈ V (G)− V (Q2)}|
= deg2(yi)− r − (degG(yi−1)− deg2(yi−1))

= deg2(yi)− r − (n− ns − deg2(yi−1))

=|V (Q2)| − |V (Q2 ∩Xt)| − r − (n− ns − |V (Q2)|+ |V (Q2 ∩Xs)|)
=2|V (Q2)|+ ns − r − |V (Q2 ∩Xt)| − n− |V (Q2 ∩Xs)|.

Assume for the sake of contradiction that |βi| − |βi−1| > 0. Then:

2|V (Q2)|+ ns > n+ r + |V (Q2) ∩Xs|+ |V (Q2) ∩Xt|.

There are two cases to consider. Firstly, say that neither of yi and yi−1 have Type 3.

So neither Xs nor Xt intersects Q3. Since G is regular, nt = ns. By Corollary 4.8,

|V (Q2)∩Xs|+|V (Q2)∩Xt| ≥ ns−1
2 + nt−1

2 = ns−1. Hence 2|V (Q2)|+ns > n+r+ns−1 ≥
n+ ns − 1, and so 2|V (Q2)| > n− 1. However, Theorem 4.14 states that |V (Q2)| ≤ n−1

2 ,

so this is a contradiction.

Secondly, yi has Type 3. By Lemma 4.20, Q2 contains at least one non-Type 3 vertex;

this will be of a different colour class to yi and have a lower numbered index. Hence

r ≥ 1. By Theorem 4.11, |V (Q2)∩Xs|+ |V (Q2)∩Xt| ≥ ns−2
2 + nt−2

2 = ns− 2, and hence

2|V (Q2)|+ns > n+ r+ns− 2 ≥ n+ns− 1. Again, this contradictions Theorem 4.14.

Now we prove the most important fact, that γ is the largest bag.

Lemma 4.23. Let G, v,B, (H, (Q1, Q2, Q3)) and (T,X ) be as in Lemma 4.21. If k ≥ 3 or

c ≥ 3, then |α1| ≤ |γ| and |β1| ≤ |γ|.
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Proof. By inspection, α1 = {x1u, uw ∈ E(G) : u ∈ V (Q1), w ∈ V (G) − V (Q1)}. Thus

the edges of the form x1u are the only edges in α1 not in γ, and the edges between

Q2 and Q3 (all of which are adjacent to z) are the only edges in γ not in α1. Thus

|α1| + deg2(z) − deg1(x1) = |γ|. Suppose for the sake of contradiction that |α1| > |γ|.
Say x1 ∈ Xs and z ∈ Xt. By Lemma 4.20, x1 has Type 1, so s 6= t. Substituting

deg2(z) = |V (Q2)| − |V (Q2) ∩Xt| and deg1(x1) = |V (Q1)| − |V (Q1) ∩Xs| gives

|V (Q1)| − |V (Q2)| > |V (Q1) ∩Xs| − |V (Q2) ∩Xt|.

By Theorem 4.14, |V (Q1)|−|V (Q2)| ≤ 1. Similarly, since Xt intersects Q3, |V (Q2)∩Xt| =
c−1
2 if c is odd, and |V (Q2) ∩Xt| = c−2

2 if c is even. Since Xs ∩Q3 = ∅ and x1 has Type

1, |V (Q1) ∩ Xs| ≥ c
2 . Hence |V (Q1) ∩ Xs| − |V (Q2) ∩ Xt| ≥ 1

2 if c is odd, or 1 if c is

even. However, this value is an integer, so |V (Q1) ∩ Xs| − |V (Q2) ∩ Xt| ≥ 1, implying

|V (Q1)| − |V (Q2)| > 1, which is a contradiction of Theorem 4.14.

Now we consider β1 = {y1u, uw ∈ E(G) : u ∈ V (Q2), w ∈ V (G) − V (Q2)}. Suppose

for the sake of contradiction that |β1| > |γ|. Let y1 ∈ Xs and z ∈ Xt. By Lemma 4.20, x1

has Type 1 or Type 2, so s 6= t. Performing substitutions as we did in the α1 case gives

|V (Q2)| − |V (Q1)| > |V (Q2) ∩Xs| − |V (Q1) ∩Xt|.

Since Xs does not intersect Q3 and Xt does, by Theorem 4.14, |V (Q2) ∩Xs| ≥ c−1
2 and

|V (Q1) ∩ Xt| = c−1
2 or c

2 . Thus |V (Q2) ∩ Xs| − |V (Q1) ∩ Xt| ≥ 0 or −1
2 , but since it

is an integer, |V (Q2) ∩ Xs| − |V (Q1) ∩ Xt| ≥ 0, implying |V (Q2)| − |V (Q1)| > 0, which

contradicts Theorem 4.14.

By Lemmas 4.21, 4.22 and 4.23, γ is the largest bag in all but a few cases. Recall

γ = H. Hence, together with Theorem 4.14, we get the following result.

Theorem 4.24. If G is a regular k-partite graph such that n > k and k ≥ 2, and either

k ≥ 3 or c ≥ 3, then

tw(L(G)) = |H| − 1.

We now accurately determine |H| when G is regular.

We can determine |H| by calculating the number of edges between Q1 and Q2, and

the number of edges adjacent to z ∈ Q3. Theorem 4.14 gives us all we require. It follows

that:

|H| =





c2k2

4 − c2k
4 + ck

2 − c
2 + k

4 − 1
4 , if ck odd

c2k2

4 − c2k
4 + ck

2 − c
2 , if c even

c2k2

4 − c2k
4 + ck

2 − c
2 + k

4 − 1
2 , if k even and c odd.
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Theorem 1.4 always assumes that k ≥ 2. If n > k and either k ≥ 3 or c ≥ 3, the above

results prove the theorem. When n = k (which is also the case when c = 1), we determine

the treewidth using by Theorem 1.2. The final case is when k = 2 and c = 2. Here G

is a 4-cycle, and thus L(G) is also a 4-cycle. Since tw(K2,2) = 2 satisfies our result by

inspection, this proves Theorem 1.4.



Chapter 5

Treewidth of General Line Graphs

5.1 Introduction

Given our results in Chapters 3 and 4, we desire, if possible, to extend our results to the

class of general line graphs. Line-brambles, described in Section 3.2, work in the context

of an arbitrary graph G, and can always be used to construct lower bounds on tw(L(G)).

Recall that in Section 2.2, we proved the following well-known result.

Lemma 5.1. Let δ(G) be the minimum degree of a graph G. Then for every graph G,

tw(G) ≥ δ(G).

In general, δ(L(G)) ≥ 2 δ(G) − 2, and this is tight when G contains two adjacent

vertices of minimum degree. Thus, the following theorems are a significant strengthening

of Lemma 5.1 for the class of line graphs.

Theorem 1.5. For every graph G with minimum degree δ(G),

tw(L(G)) ≥ 2

9
δ(G)2 − 1.

Theorem 1.6. For every graph G with minimum degree δ(G),

pw(L(G)) ≥ 1

4
δ(G)2 − 1.

This result is tight up to lower order terms.

Ignoring the lower order terms, Theorem 1.6 is tight for the line graph of a complete

graph—it is not possible to improve the 1
4 coefficient in general. Similarly, Theorem 1.5 is

close to being tight, since 1
4 − 2

9 = 1
36 . If Theorem 1.5 is tight, then any family of graphs

that proves this must have differing treewidth and pathwidth. (This precludes any of our

results from Chapters 3 and 4 proving that Theorem 1.5 is tight.)

73
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It is well known that a graph G with average degree d(G) contains a subgraph H with

δ(H) > 1
2d(G). Given that L(H) is a subgraph of L(G) when H is a subgraph of G, it

follows from Theorem 1.5 that

tw(L(G)) ≥ tw(L(H)) ≥ 2

9
δ(H)2 − 1 >

1

18
d(G)2 − 1. (5.1)

It follows equivalently from Theorem 1.6 that

pw(L(G)) >
1

16
d(G)2 − 1. (5.2)

Note the similarity of (5.1) and (5.2) to a recent conjecture by Paul Seymour. This

conjecture was proven by DeVos et al. [19], using the theory of immersions.

Theorem 5.2 (DeVos et al. [19]). For every graph G with average degree d(G),

had(L(G)) ≥ c d(G)
3
2

for some constant c > 0. The exponent 3
2 is best possible when G is the complete graph.

Given that tw(G) ≥ had(G)− 1 for all graphs G, Theorem 5.2 implies

tw(L(G)) ≥ c d(G)
3
2 − 1.

(5.1) and (5.2) replace the exponent of 3
2 on d(G) with an exponent of 2. Given that the

exponent in Theorem 5.2 is best possible, (5.1) and (5.2) cannot be proven via a lower

bound on had(L(G)).

5.2 The General Lower Bound

To prove our results, we first prove a few facts about arbitrary tree decompositions of line

graphs.

Let (T, (Bx : x ∈ V (T ))) be a tree decomposition. Root the tree T at an arbitrary

leaf node r. Then orient every edge down the tree T , away from r. We can ensure that

every node in T has outdegree at most 2, as follows. Let u be a node in T with outdegree

greater than 2. Pick two out-neighbours of u and label them x and y. Delete the edges

ux, uy and create a new node z, and add the edges uz, zx, zy (where the first node is the

tail of the edge). In the bag Bz, place all vertices of the set (Bx∪By)∩Bu. This modified

tree decomposition is still valid, and maintains the same width. However, z has outdegree

exactly 2, and u has outdegree lowered by 1. Repeat this process until no node has

outdegree greater than 2. Call such a tree decomposition a degree-3 tree decomposition.

So for each graph G there is a degree-3 tree decomposition of width tw(G).



5.2. THE GENERAL LOWER BOUND 75

Let (T, (Bx : x ∈ V (T ))) be a degree-3 tree decomposition for the line graph L(G).

For every edge vw ∈ E(G) = V (L(G)), let Svw be the subtree of T induced by the nodes

that index a bag containing vw. A node x of T is a base node of a vertex v of G if Bx

contains every edge of G that is incident to v.

Lemma 5.3. Let (T, (Bx : x ∈ V (T ))) be a tree decomposition for a graph L(G) such that

each Svw is node-minimal. Then every non-isolated vertex of G has exactly one base node,

and Svw is a path between the base nodes of v and w.

Proof. As previously, refer to vertices of L(G) as edges for simplicity.

All of the edges incident at a vertex v of G form a clique in L(G). By the Helly

property, there is a bag containing all of the edges incident to v. Thus for all non-isolated

vertices of G there is at least one base node.

Suppose for the sake of a contradiction that some non-isolated vertex v has more than

one base node in T . Given that each Svw is connected, it follows that there must be two

adjacent base nodes of v in T . Let e be the edge between these two nodes, and label

the subtrees of T − e as T1 and T2. Without loss of generality, there exists some vertex

w ∈ N(v) such that w has a base node in T1. Say we remove the edge vw from all bags

indexed by nodes in T2. Given that all edges incident to vw appear in a base node of v

or w, both of which exist in T1, it follows that this is still a tree decomposition. However,

|Svw| has decreased (since we have removed vw from the other base node of v), and as

such this contradicts the fact that Svw was node-minimal. Hence each non-isolated v has

exactly one base node in T .

It remains to show that each Svw is a path. If x is a leaf node of Svw (note that this is

not necessarily a leaf of T itself), then by the node-minimality of Svw it must be the case

that if we removed vw from Bx, then we would no longer have a valid tree decomposition

of L(G). Hence either Svw = {x}, or there is some edge incident to vw that is present in

Bx but not in any other bag indexed by Svw.

If Svw = {x}, then Svw is a path, as required.

Otherwise, Bx is the only bag containing both vw and some neighbour of vw. Without

loss of generality, that neighbour is vz. Since Bx is the only bag containing vw and vz,

it must be the only base node for v. Hence, any leaf in Svw is the only base node for v

and/or the only base node for w, so it follows Svw is a path, since it may have at most

two leaves.

Everything in the proof of Lemma 5.3 also holds for path decompositions.
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Corollary 5.4. Let (T, (Bx : x ∈ V (T ))) be a path decomposition for a line graph L(G)

such that each Svw is node-minimal. Then every non-isolated vertex of G has exactly one

base node, and Svw is a path between the base nodes of v and w.

1 2 3 4 5

6 7 8

12,23; 1,2

36,37

67,78;

6,7

23,34
35,36,37
38;78

3

38,48
78;

34,35

8

34,35

45,48;

4,5

Figure 5.1: An example graph, together with a tree decomposition of its line graph. The

tree decomposition has base nodes labelled, unique base nodes for each non-isolated vertex,

and each S(v,w) as a path.

What Lemma 5.3 and Corollary 5.4 show is that, in some sense, there is only one way

to create a tree (or path) decomposition for a line graph—start with a tree T , place base

nodes for each non-isolated vertex (note isolated vertices have no influence on the line

graph) and place edges between the base nodes. The difficulty is determining the best

tree T and the best method of placing the base nodes. Note that the path decompositions

constructed in the proofs of Theorems 1.2, 1.3 and 1.4 all have this structure.

Let (T, (Bx : x ∈ V (T ))) be a degree-3 tree decomposition for L(G) such that each

Svw is node-minimal. For any node u of T , there are at most three subtrees in T − u,

since u has at most one parent (that is, one in-neighbour) and two children (that is, two

out-neighbours). Label these subtrees T0 (for the parent subtree) and T1, T2 (for the child

subtrees). Should one or more of T0, T1 and T2 not exist, then let that Ti = ∅.
For a subset Z ⊆ V (T ), define b(Z) = |{v ∈ V (G)|v has its unique base node in Z}|.

Lemma 5.5. Let (T, (Bx : x ∈ V (T ))) be a degree-3 tree decomposition for a line graph

L(G) such that each Svw is node-minimal. There exists a node u of V (T ) such that one

of the following holds:

1. b({u}) ≥ 1
3δ(G)

2. At least one of b(V (T1)), b(V (T2)) or b(V (T1) ∪ V (T2)) are in [13δ(G), 23δ(G)].

Note that T1, T2 are defined with respect to T − u.
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Proof. Traverse T , starting at r, as follows. If we are at a node u, and one of the child

subtrees has b(V (Ti)) >
2
3δ(G), then (and only then) traverse to the root of that subtree.

Note that we only ever travel in the direction of an oriented edge (and, obviously, a tree

is acyclic), so eventually this traversal must halt. Say the traversal halts at node u.

Thus b(V (T1)), b(V (T2)) ≤ 2
3δ(G). If b(V (Ti)) ≥ 1

3δ(G) for i = 1 or 2, then u satisfies

the second outcome. Otherwise b(V (T1) ∪ V (T2)) = b(V (T1)) + b(V (T2)) <
2
3δ(G). If

b(V (T1) ∪ V (T2)) ≥ 1
3δ(G), then u still satisfies the second outcome. Hence we assume

otherwise.

If u 6= r, then the parent of u exists, and we traversed from the parent of u to u. Thus,

b({u})+b(V (T1))+b(V (T2)) ≥ 2
3δ(G), by the rules of the traversal. Alternatively, if u = r,

then note there is no parent subtree T0, and so b({u}) + b(V (T1)) + b(V (T2)) = |V (G)| ≥
δ(G) ≥ 2

3δ(G). Hence, in either case b({u}) > 2
3δ(G)− 1

3δ(G) ≥ 1
3δ(G), satisfying the first

outcome.

Let (T, (Bx : x ∈ V (T ))) be a path decomposition for L(G) such that each Svw is

node-minimal. Root T at an endpoint r and orient all edges away from r. For any node

u of T , let T0 denote the parent subtree and T1 the child subtree. Should either of T0 and

T1 not exist, then let that Ti = ∅.

Lemma 5.6. Let (T, (Bx : x ∈ V (T ))) be a path decomposition for a line graph L(G) such

that each Svw is node-minimal, rooted at an endpoint r with all edges oriented away from

the root. There exists a node u of V (T ) such that b({u} ∪ T0) ≥ d12δ(G)e, but no node

closer to the root has this property. Note that T0 is defined with respect to T − u.

Proof. If u is the node furthest from r, then b({u} ∪ T0) = |V (G)| ≥ d12δ(G)e. Thus some

node with the desired property holds; it is sufficient to choose the closest such node to

r.

Take u to be the node guaranteed by Lemma 5.5. Say u has Type 1 or Type 2 depending

on which outcome of the lemma holds (if both hold, choose arbitrarily). If u has Type 1,

then let U ⊂ V (G) be a set of d13δ(G)e vertices with base node u. If u has Type 2, then

let U be all the vertices with base node in T1, T2 or T1 ∪ T2, depending on which value is

in [13δ(G), 23δ(G)]. If u is the node guaranteed by Lemma 5.6, then let U ⊂ V (G) be a set

of d12δ(G)e vertices with base node in T0 ∪ {u}, such that all vertices with a base node in

T0 are in U . (The choice of u allows this.)

Lemma 5.7. Let (T, (Bx : x ∈ V (T ))) be a degree-3 tree decomposition for a line graph

L(G) such that each Svw is node-minimal, and let u be the node guaranteed by Lemma 5.5.

If vw ∈ E(G), v ∈ U and w ∈ V (G)− U , then vw ∈ Bu.
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Proof. If u has Type 1, then every v ∈ U has base node u, so every edge of G with at least

one endpoint in U is in Bu.

Say u has Type 2. Since w is not in U , w has base node not in the same subtree of

T −u as v. This is because U contains all vertices of G with a base node in a given subtree

(or pair of subtrees). Hence the path from the base node of v to the base node of w must

travel through u and so vw ∈ Bu.

Lemma 5.8. Let (T, (Bx : x ∈ V (T ))) be a path decomposition for a line graph L(G)

such that each Svw is node-minimal, rooted at an endpoint r with all edges oriented away

from the root, and let u be the node guaranteed by Lemma 5.6. If vw ∈ E(G), v ∈ U and

w ∈ V (G)− U , then vw ∈ Bu.

Proof. Since v ∈ U , v has a base node in T0 ∪ {u}. Since w /∈ U , w has a base node

in T1 ∪ {u}. Hence the path from the base node of v to the base node of w must travel

through u and so vw ∈ Bu.

T0 T1 T2

(V (G)− U)

U

Figure 5.2: An edge with exactly one endpoint in U must be in u. Here we have the case

when U contains exactly the base vertices of V (T1) ∪ V (T2).

Showing that |Bu| is large is sufficient to prove our lower bounds on tw(L(G)) and

pw(L(G)). Consider the tree decomposition case first. If u has Type 1, then each v in

U has at least δ(G) neighbours, but at most d13δ(G)e − 1 neighbours are also in U , since

|U | = d13δ(G)e. Hence for each v ∈ U there are at least b23δ(G)c + 1 vertices w such

that w /∈ U and vw ∈ E(G). Hence by Lemma 5.7, |Bu| ≥ d13δ(G)e(b23δ(G)c + 1) >
1
3δ(G)23δ(G) ≥ 2

9δ(G)2.

Alternatively, u has Type 2. We can say that |U | = (12 + ε)δ(G) where |ε| ≤ 1
6 . (Note

ε may be negative.) Now each v ∈ U has at least (12 − ε)δ(G) + 1 neighbours in V (G)−U .

Hence by Lemma 5.7, |Bu| ≥ (12 + ε)δ(G)((12 − ε)δ(G)+1) > (12 + ε)(12 − ε)δ(G)2 ≥ 2
9δ(G)2,

since ε2 ≤ 1
36 . This proves Theorem 1.5.

Finally we consider the path decomposition case. Each vertex v in U has at least

b12δ(G)c+1 neighbours in V (G)−U . Hence by Lemma 5.8, |Bu| ≥ d12δ(G)e(b12δ(G)c+1) >
1
4δ(G)2. This proves Theorem 1.6.
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5.3 The General Upper Bound and Extensions

Călinescu et al. [11] and Atserias [3] independently proved the following upper bound on

tw(L(G)):

Theorem 5.9 (Atserias [3], Călinescu et al. [11]). Let ∆(G) be the maximum degree of a

graph G. Then for every graph G,

tw(L(G)) ≤ (tw(G) + 1)(∆(G))− 1.

Proof. Take a minimum width tree decomposition of G. Then replace every vertex in a

given bag with every edge incident to that vertex. This is a tree decomposition of L(G).

The width of this tree decomposition is at most (tw(G) + 1)(∆(G))− 1.

A similar result holds for the pathwidth as well.

Corollary 5.10. Let ∆(G) be the maximum degree of a graph G. Then

pw(L(G)) ≤ (pw(G) + 1)(∆(G))− 1.

Given the format of Theorem 5.9, we might hope that some analogous lower bound

exists in terms of minimum degree and treewidth. Consider the following: there exist

some constants c, c′ > 0 such that for every graph G with minimum degree δ(G),

tw(L(G)) ≥ c tw(G)δ(G) (5.3a)

pw(L(G)) ≥ c′ pw(G)δ(G). (5.3b)

(5.3a) and (5.3b) would be a strengthening of Theorems 1.5 and 1.6 respectively, since

pw(G) ≥ tw(G) ≥ δ(G). However, (5.3a) and (5.3b) do not hold. In some sense, this

implies Theorems 1.5 are best possible in the sense that we probably cannot replace δ(G)

with anything stronger. We now provide a proof of this fact—thanks to Bruce Reed for

this example.

For positive integers n, k construct the following graph Hn,k. Begin with the n × n
grid, and for each vertex v of the grid, construct k− deg(v) cliques of size k+ 1. For each

clique, add a single edge from a single vertex of the clique to the corresponding vertex v

of the grid. Every vertex of this graph has degree k, except those vertices of the cliques

which are adjacent to vertices on the grid, which have degree k + 1. Hence the minimum

degree δ(Hn,k) = k. Since Hn,k contains an n × n grid, it follows that tw(Hn,k) ≥ n. (In

fact, it can be shown that tw(Hn,k) = n when n ≥ k+ 1, but we omit this proof. Also, see

Lemma 2.23 for a proof that the grid has treewidth n.)

Lemma 5.11. pw(L(Hn,k)) ≤ 2n+ k +
(
k+1
2

)
− 1.



80 CHAPTER 5. GENERAL LINE GRAPHS

Proof. First construct a path decomposition for the line graph of the n×n grid. Label the

rows of the grid 1, . . . , n from top to bottom. Now any edge either has both endpoints in

the same row, or an endpoint in two sequential rows. So label the edges 1, . . . , 2n(n− 1)

in the following fashion. First label all of the edges in the row 1 in the from left to right.

Then label all edges with an endpoint in both row 1 and row 2 from left to right. Continue

with the edges in row 2, then the edges between rows 2 and 3, and so on and so forth.

Note that if two edges i, j are incident and i < j, then j ≤ 2n + i − 1. Hence define our

path decomposition (P,X ) as follows. Let P be a path with 2n(n− 1) nodes. For the ith

node in the path, let the bag indexed by this node (which we denote by Xi) contain edges

{i, . . . , 2n+ i− 1}. Note that the edges are really acting as vertices of the line graph, but

we refer to them as edges for simplicity. Also, for large values of i, not all of these edges

exist—in that case simply place the defined edges into the bag. Finally, note that currently

the largest bag has size 2n. All that remains is to extend this path decomposition for the

grid into a path decomposition for L(Hn,k).

For every vertex v of the n × n grid, there is a bag Xi that contains all edges of the

grid incident to v. (In some cases there may be several legitimate choices of Xi, if so,

choose one of them arbitrarily.) Refer to such an Xi as the bag corresponding to v. To

this bag, add all edges incident to v that are not in the grid. (Recall there are k − deg(v)

such edges.) Currently the largest bag has size ≤ 2n + k. For each bag corresponding

to some v, duplicate it k − deg(v) − 1 times. (By duplicate, we mean to subdivide an

edge incident to its node, and add a copy of Xi as the bag for that node.) Clearly, this

maintains all path decomposition properties. Then for each clique corresponding to v,

place all of the edges of that clique into exactly one of the copies of Xi; a different copy

of Xi for each clique. This gives a path decomposition for Hn,k. The largest bag has size

at most 2n+ k +
(
k+1
2

)
, which is sufficient to prove our result.

Now if either (5.3a) or (5.3b) hold, then pw(L(G)) ≥ c tw(G)δ(G) for some fixed con-

stant c > 0. However, consider Hn,k and set n ≥ k +
(
k+1
2

)
− 1 and k > 3

c . Then

pw(L(Hn,k)) ≤ 3n by Lemma 5.11 and c tw(Hn,k)δ(Hn,k) ≥ cnk > 3n, which is a contra-

diction. Hence neither (5.3a) nor (5.3b) hold.



Chapter 6

Treewidth of the Kneser Graph

and the Erdős-Ko-Rado Theorem

6.1 Introduction

Recall the following definitions. The set [n] = {1, . . . , n}. For any set S ⊆ [n], a subset

of S of size k is called a k-set , or occasionally a k-set in S. Let
(
S
k

)
denote the set of

all k-sets in S. We say two sets intersect when they have non-empty intersection. The

Kneser graph Kneser(n, k) is the graph with vertex set
([n]
k

)
, such that two vertices are

adjacent if they are disjoint.

In this chapter, we prove the following result.

Theorem 1.7. Let G = Kneser(n, k) with n ≥ 4k2 − 4k + 3 and k ≥ 3. Then

tw(G) =

(
n− 1

k

)
− 1.

This gives an exact answer for the treewidth of the Kneser graph when n is sufficiently

large. In order to prove this, we show that
(
n−1
k

)
− 1 is both an upper bound and lower

bound on the treewidth. We construct a tree decomposition directly in Section 6.3 to

prove an upper bound. In Section 6.4 we prove the lower bound by using the relationship

between treewidth and separators, which was previously discussed in Chapter 2.

We also prove the following more precise result when k = 2.

Theorem 1.8. Let G = Kneser(n, 2). Then

tw(G) =





0 if n ≤ 3

1 if n = 4

4 if n = 5
(
n−1
2

)
− 1 if n ≥ 6.

81
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The upper bounds for Theorem 1.8 are proved in Section 6.3, and the lower bounds in

Section 6.5.

In the process of proving Theorem 1.7, we prove the following generalisation of the

Erdős-Ko-Rado Theorem (Theorem 6.2 in Section 6.2), which says that if n ≥ 2k and H

is a complete subgraph in the complement of Kneser(n, k) then |H| ≤
(
n−1
k−1
)
. We prove the

same bound for balanced complete multipartite graphs.

Theorem 1.10. Say c ∈ [23 , 1) and n ≥ max{4k2 − 4k + 3, 1
1−c(k

2 − 1) + 2}. If H is a

complete multipartite subgraph of the complement of Kneser(n, k) such that no colour class

contains more than c|H| vertices, then |H| ≤
(
n−1
k−1
)
.

Note that similar, but incomparable, generalisations of the Erdős-Ko-Rado Theorem

have recently been explored in [36, 37, 99]. Theorem 1.10 is proven in Section 6.4, since

it follows almost directly from our proof of the lower bound on the treewidth of a Kneser

graph.

Finally, in Section 6.6, we are able to obtain a weaker result on the lower bound of

Kneser(n, k) for much smaller values of n. We do this by generalising the techniques used

to prove Theorem 1.7.

Theorem 1.9. Let G = Kneser(n, k) with n ≥ 1
2(
√

5k2 − 12k + 8 + 3k + 2) and k ≥ 3.

Then (
n− 1

k

)
−
(
n− 1

k − 1

)
− 1 ≤ tw(G) ≤

(
n− 1

k

)
− 1.

Recall that since k ≥ 3, Theorem 1.9 holds when n ≥ 3k − 1.

6.2 Basic Definitions and Preliminaries

From now on, we refer to the graph Kneser(n, k) as G, with n and k implicit.

Let ∆(H) be the maximum degree of a graph H and δ(H) be the minimum degree

of a graph H. Also let α(H) be the size of the largest independent set of H, where an

independent set is a set of pairwise non-adjacent vertices. If k = 1, then G is a complete

graph. If n < 2k then G contains no edges. If n = 2k then G is an induced matching.

From now on, we shall assume that n ≥ 2k+ 1 and k ≥ 2, since the treewidth is trivial in

the other cases.

In order to prove a lower bound on the treewidth of the Kneser graph, we the rela-

tionship between treewidth and separators. Recall the definition of a (k, S, c)-separator

in Section 2.5. For this chapter, always set S = V (G) and choose c ∈ [23 , 1), rather than
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[12 , 1). We do this to ensure that if X is a (|X|, S, c)-separator, then G−X can be parti-

tioned into two parts with less than c|G −X| vertices and no edges between them. This

(essentially) follows from Corollary 2.6. This gives the following lemma.

Lemma 6.1. Let X be a (|X|, V (G), c)-separator where c ∈ [23 , 1). Then V (G −X) can

be partitioned into two parts A and B, with no edge between A and B, such that

• (1− c)|G−X| ≤ |A| ≤ 1
2 |G−X|,

• 1
2 |G−X| ≤ |B| ≤ c|G−X|.

We use a few important well-known combinatorial results. Recall the following from

Chapter 1.

Theorem 6.2 (Erdős-Ko-Rado [28, 50]). Let G = Kneser(n, k) for some n ≥ 2k. Then

α(G) =

(
n− 1

k − 1

)
.

If n ≥ 2k + 1 and A is an independent set such that |A| =
(
n−1
k−1
)
, then A = {v|i ∈ v} for

a fixed element i ∈ [n].

The original Erdős-Ko-Rado Theorem defines A as a set of k-sets in [n], such that the

k-sets of A pairwise intersect. Our formulation in terms of vertices in the Kneser graph is

clearly equivalent. We will use Theorem 6.2 when determining an upper bound for tw(G).

The second major result is by Pyber [80]. Let A and B be sets of vertices of the Kneser

graph G, such that for all v ∈ A and w ∈ B the pair vw is not an edge. Then we say the

pair (A,B) are cross-intersecting families.

Theorem 6.3 (Erdős-Ko-Rado for Cross-Intersecting Families [78, 80]). Let n ≥ 2k and

let (A,B) be cross-intersecting families in G = Kneser(n, k). Then

|A||B| ≤
(
n− 1

k − 1

)2

.

If n ≥ 2k + 1 and (A,B) are cross-intersecting families such that |A||B| =
(
n−1
k−1
)2

, then

A = B = {v|i ∈ v} for a fixed element i ∈ [n].

As with Theorem 6.2, the original formulation by Pyber of Theorem 6.3 is more general.

We have given the result in an equivalent form that is sufficient for our requirements.

The first statement in the theorem was originally proven by Pyber [80]. Matsumoto and

Tokushige [78] proved the statement regarding the maximum choice of A and B.

Let X be a (|X|, V (G), 23)-separator and A,B the parts of the vertex partition of G−X
as in Lemma 6.1. Now for all v ∈ A and w ∈ B, v and w are in different components
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and as such are non-adjacent. So (A,B) are cross-intersecting families. We know |A| =

c|G −X| where 1
3 ≤ c ≤ 1

2 . By Theorem 6.3, it follows that c(1 − c)|G −X|2 ≤
(
n−1
k−1
)2

.

Thus |G − X| ≤
√

1
c(1−c)

(
n−1
k−1
)
. Since

√
1

c(1−c) is maximised when c = 1
3 , it follows that

|G−X| ≤ 3√
2

(
n−1
k−1
)
. This gives a lower bound on |X|, and as such a lower bound on the

treewidth (by Lemma 2.7). Hence tw(G) ≥
(
n
k

)
− 3√

2

(
n−1
k−1
)
− 1.

However, note that the parts A and B of V (G −X) are vertex disjoint, but that the

definition of a pair of cross-intersecting families does not require this. In fact, Theorem 6.3

shows that in the case where |A||B| is maximised, A = B. We show we can do better than

the above näıve lower bound on tw(G) when A and B are disjoint.

Before considering our final preliminary, we provide the following definitions. Consider

all of the a-sets in [b]. Define the colexicographic or colex ordering on the a-sets as follows:

if x and y are distinct a-sets, then x < y when max(x− y) < max(y − x). This is a strict

total order. A set X of a-sets in [b] is first if X consists of the first |X| a-sets in the colex

ordering of all the a-sets in [b].

Now consider the colex ordering of a-sets in [b]. All of the a-sets in [i] (where i < b)

come before any a-set containing an element greater than or equal to i + 1. To see

this, note if x is an a-set in [i] and y is an a-set with j ∈ y such that j ≥ i + 1, then

max(x − y) ≤ max(x) ≤ i, and max(y − x) ≥ j ≥ i + 1 since j ∈ y − x. We will use this

when determining the make-up of first sets in Section 6.4.

Let X be a set of a-sets in [b]. For p ≤ a, the p-shadow of X is the set {x : |x| = p,

and ∃y ∈ X such that x ⊆ y}. That is, the p-shadow contains all p-sets that are contained

within a-sets of X. If x is an a-set in [b], let the complement of x be the (b − a)-set

y = [b]− x. If X is a set of a-sets on [b], then the complement of X is X := {y : y is the

complement of some x ∈ X}. Note |X| = |X|.

Lemma 6.4 (A first set minimises the shadow [49, 64] (see Frankl [31] for a short proof)).

Let X be a set of a-sets on [b], p ≤ a and S be the p-shadow of X. Suppose |X| is fixed

but X is not. Then |S| is minimised when X is first.

This idea is also used by Pyber [80] and Matsumoto and Tokushige [78]. Intuitively,

the shadow S should be minimised whenever the a-sets of X “overlap” as much as possible,

so that each p-set in S is a subset of as many a-sets as possible.

6.3 Upper Bound for Treewidth

This section proves the upper bounds on tw(G) in Theorems 1.7 and 1.8.

In both Theorems 1.7 and 1.8, the upper bound is almost always
(
n−1
k

)
− 1. The only

exceptions are the trivial cases (when n ≤ 2k), and the case when k = 2 and n = 5, which
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is the Petersen graph. The Petersen graph is well known to have treewidth 4 ([75], for

example, or below).
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35,45

13,24

25,45

Figure 6.1: The Petersen graph Kneser(5, 2), together with a minimum width tree decom-

position of Kneser(5, 2).

What follows is a general upper bound on the treewidth of any graph, which is sufficient

to prove the remaining cases.

Lemma 6.5. If H is any graph, then tw(H) ≤ max{∆(H), |V (H)| − α(H)− 1}.

Proof. Let α := α(H). We shall construct a tree decomposition with underlying tree T ,

where T is a star with α(H) leaves. Let R be the bag indexed by the central node of T ,

and label the other bags B1, . . . , Bα. Let X := {x1, . . . xα} be a maximum independent

set in H. Let R := V (H)−X and Bi := N(xi)∪{xi} for all i ∈ {1, . . . , α}. We now show

this is a tree decomposition:

Any vertex not in X is contained in R. Given the structure of the star, any induced

subgraph containing the central node is connected. Alternatively, if a vertex is in X, then

it appears only in bags indexed by leaves. However, since X is an independent set, xi ∈ X
appears only in Bi, not in any other bag Bj . A single node is obviously connected. If vw

is an edge of H, then at most one of v and w is in X. Say v = xi ∈ X. Then v, w both

appear in the bag Bi. Otherwise neither vertex is in X, and both vertices appear in R.

So this is a tree decomposition. The size of R is |V (H)| − α(H). The size of Bi is the

degree of xi, plus one, which is at most ∆(H) + 1. From here our lemma is proven.

Note that we can do slightly better than the above result if the vertices in the leaf

bags are all known to have smaller than maximum degree. This is not an improvement

with regards to Kneser graphs, since they are regular, but is helpful in Lemma 2.1.
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We now consider Lemma 6.5 for the Kneser graph itself.

Lemma 6.6. If G is a Kneser graph with k ≥ 2 and n ≥ 2k+ 1, then tw(G) ≤
(
n
k−1
)
− 1.

Proof. By Lemma 6.5 and Theorem 6.2, and since n ≥ 2k + 1,

tw(G) ≤ max {∆(G), |V (G)| − α(G)− 1} = max

{(
n− k
k

)
,

(
n

k

)
−
(
n− 1

k − 1

)
− 1

}
.

Since k ≥ 2, tw(G) ≤
(
n−1
k

)
− 1, as required.

b b b b b

(
[n− 1]

k

)

N [(1, . . . , k − 1, n)] N [(n− k + 1, . . . , n)]

Figure 6.2: The tree decomposition described by Lemma 6.5 for Kneser(n, k). Recall that

the closed neighbourhood N [v] = N(v) ∪ {v}.

6.4 Separators in the Kneser Graph

To complete the proof of Theorem 1.7, it is sufficient to prove a lower bound on the

treewidth. The following lemma, together with Lemma 2.7, provides this. It is the heart

of the proof of Theorem 1.10.

Lemma 6.7. Let X be a (|X|, V (G), c)-separator of the Kneser graph G where c ∈ [23 , 1).

If n ≥ max{4k2 − 4k + 3, 1
1−c(k

2 − 1) + 2}, then |X| ≥
(
n−1
k

)
.

Proof. Assume, for the sake of a contradiction, that |X| <
(
n−1
k

)
. Then |G − X| >

(
n−1
k−1
)
. By Lemma 6.1, V (G − X) can be partitioned into two parts A and B such that

(1 − c)|G − X| ≤ |A| ≤ 1
2 |G − X| and 1

2 |G − X| ≤ |B| ≤ c|G − X| and no edge has an

endpoint in both A and B.

For a given element i ∈ [n], let Ai := {v ∈ A : i ∈ v}. Also define A−i := {v ∈ A : i /∈
v}. So Ai and A−i partition the set A, for any choice of i. Define analogous sets for B.

Claim 1. There exists some i such that |Bi| ≥ 1
k |B|.
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Proof. Since |A| ≥ (1− c)|G−X| > 0, there is a vertex v ∈ A. Without loss of generality,

v = {n− k + 1, . . . , n}. Each w ∈ B is not adjacent to v, and so w and v intersect. Thus

each w must contain at least one of n− k+ 1, . . . , n. Hence at least one of these elements

appears in at least 1
k |B| of the vertices of B, as required.

(n− k + 1, . . . , n)

Bn

Bn−k+2

Bn−k+1

b
b
b

BA

Figure 6.3: Diagram for Claim 1.

Without loss of generality, |Bn| ≥ 1
k |B|.

Claim 2. |Bn| >
(
n−3
k−2
)

+
(
n−2
k−2
)
.

Proof. Recall |B| ≥ 1
2 |G−X| ≥ 1

2

(
n−1
k−1
)
. Then by Claim 1 and our subsequent assumption,

|Bn| ≥ 1
k |B| ≥ 1

2k |G − X| ≥ 1
2k

(
n−1
k−1
)
. Assume for the sake of a contradiction that

|Bn| ≤
(
n−3
k−2
)

+
(
n−2
k−2
)
. So

1

2k

(
n− 1

k − 1

)
≤
(
n− 3

k − 2

)
+

(
n− 2

k − 2

)
.

Thus

(n− 1)! ≤ 2k(k − 1)((n− k)(n− 3)! + (n− 2)!).

Hence

n2 − 3n+ 2 = (n− 1)(n− 2) ≤ 2k(k − 1)(2n− k − 2) = 4k2n− 4kn− 2k3 − 2k2 + 4k.

So n2 + (4k − 4k2 − 3)n + 2k3 + 2k2 − 4k + 2 ≤ 0. Since n ≥ 4k2 − 4k + 3, it follows

2k3 + 2k2 − 4k + 2 ≤ 0. Given that k ≥ 1, this provides our desired contradiction.

Consider the set A−n, that is, the complements of the vertices in A that do not contain

n. So every set in A−n contains n. Let A−n
∗

:= {v − n : v ∈ A−n}. That is, remove n

from each set in A−n. There is clearly a one-to-one correspondence between (n − k)-sets

in A−n and (n− k − 1)-sets in A−n
∗
.
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Similarly, define B∗n := {v − n : v ∈ Bn}. That is, remove from each vertex of Bn the

element n, which they all contain. The resultant sets are (k − 1)-sets in [n− 1].

Claim 3. If v∗ ∈ B∗n and w∗ ∈ A−n∗, then v∗ 6⊆ w∗.

Proof. Assume, for the sake of a contradiction, that v∗ ⊆ w∗. Then it follows that v ⊂ w,

by re-adding n to both sets. Thus v and w are adjacent. However, v ∈ Bn ⊂ B and

w ∈ An ⊂ A, which is a contradiction.

Let S be the (k− 1)-shadow of A−n
∗
. Hence if v ∈ B∗n, then v /∈ S, by Claim 3. So, it

follows that

B∗n ⊆
(

[n− 1]

k − 1

)
− S.

Hence we have an upper bound for |B∗n| when we take |S| to be minimised. By

Lemma 6.4, |S| is minimised when A−n
∗

is first.

Claim 4. |A−n| ≤
(
n−3
k−2
)
.

Proof. |A−n| = |A−n| = |A−n∗|, so it is sufficient to show that |A−n∗| ≤
(
n−3
k−2
)
. Assume

for the sake of contradiction that |A−n∗| ≥
(
n−3
k−2
)

=
(
n−3

n−k−1
)
.

Firstly, we show that |S| ≥
(
n−3
k−1
)
. It is sufficient to prove this lower bound when

|S| is minimised. Hence we can assume that A−n
∗

is first, and contains the first
(
n−3

n−k−1
)

(n − k − 1)-sets in the colexicographic ordering. That is, it contains all (n − k − 1)-sets

on [n − 3]. This is because there are
(
n−3

n−k−1
)

such sets, and they come before all other

sets in the ordering. In that case, S contains all (k − 1)-sets in [n − 3]. Since all of the

(k − 1)-sets in [n− 3] are in S, it follows that |S| ≥
(
n−3
k−1
)
, as required.

Then it follows that |B∗n| ≤
(
n−1
k−1
)
−
(
n−3
k−1
)

=
(
n−3
k−2
)

+
(
n−2
k−2
)
. However, |B∗n| = |Bn| >(

n−3
k−2
)

+
(
n−2
k−2
)

by Claim 2. This provides our desired contradiction.

Bn

B−n

An

A−n

BA

Figure 6.4: Diagram for Claim 4.
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The basic idea is as follows. A large proportion of the vertices of B use the element

n. If v ∈ A, then v must intersect all vertices of B, including all those that use element

n. To do this, v can either use element n itself (which is, in some sense, the “easy” way),

or v can intersect each vertex of Bn in another element (the “hard” way). The important

fact, shown in Claim 4, it is not possible to have too many vertices intersect the vertices

of Bn the “hard” way. This forces the proportion of the vertices of A using element n to

be large.

Claim 5. |An| ≥ k
k+1 |A|.

Proof. First we show that |An| ≥ k|A−n|. Suppose otherwise, for the sake of a con-

tradiction. By Claim 4, |A| = |An| + |A−n| < (k + 1)|A−n| ≤ (k + 1)
(
n−3
k−2
)
. But

|A| ≥ (1 − c)|G − X|. Hence (1 − c)
(
n−1
k−1
)
< (k + 1)

(
n−3
k−2
)
. Thus (n − 1)(n − 2) <

1
1−c(k+ 1)(k− 1)(n−k) ≤ 1

1−c(k+ 1)(k− 1)(n− 2). Thus n < 1
1−c(k

2− 1) + 1, which con-

tradicts our lower bound on n. Then |An| ≥ k|A−n| = k(|A|−|An|). So (k+1)|An| ≥ k|A|
as required.

Given that a large proportion of the vertices of A use element n, the same principle

holds for the vertices of B here as held for A above. By repeatedly using similar arguments,

we force the proportion of the vertices using n in A and B to increase until all vertices of

A ∪B use element n.

Claim 6. Bn = B.

Proof. Suppose, for the sake of a contradiction, that there exists some vertex v ∈ B such

that n /∈ v. So each w ∈ An contains n (by definition) and some element of v (which is

not n), since vw is not an edge. Any vertex of An can be constructed as follows—take

element n, choose one of the k elements of v, and choose the remaining k − 2 elements

from the remaining n− 2 elements of [n]. Thus

|An| ≤ 1 · k
(
n− 2

k − 2

)
.

Note this is actually a weak upper bound, since we have counted some of the vertices of

An more than once. Recall |A| ≥ (1− c)|G−X| ≥ (1− c)
(
n−1
k−1
)
. So by Claim 5,

(1− c)k
(k + 1)

(
n− 1

k − 1

)
≤ k

k + 1
|A| ≤ k

(
n− 2

k − 2

)
.

Thus n−1
k−1 ≤ 1

1−c(k + 1) and n ≤ 1
1−c(k

2 − 1) + 1, which contradicts our lower bound on

n.
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Bn

An

A−n

BA

Figure 6.5: Diagram for Claim 6.

Claim 7. An = A.

Proof. This follows by essentially the same argument as Claim 6. Assume our claim does

not hold and there exists v ∈ A such that n /∈ v. By Claim 6, |Bn| = |B| ≥ 1
2

(
n−1
k−1
)
. There

is an upper bound on |Bn| equal to the upper bound on |An| in the proof of Claim 6. Then

1

2

(
n− 1

k − 1

)
≤ |B| = |Bn| ≤ k

(
n− 2

k − 2

)
,

and so n ≤ 2k(k − 1) + 1. This contradicts our lower bound on n.

BnAn

BA

Figure 6.6: Diagram for Claim 7.

Claims 6 and 7 show that every vertex in G−X = A∪B contains n. Thus |G−X| ≤
(
n−1
k−1
)

and |X| ≥
(
n−1
k

)
, our desired contradiction.

By Lemma 6.7, if X is a (|X|, V (G), 23)-separator of the Kneser graph G and n ≥
4k2 − 4k + 3, then |X| ≥

(
n−1
k

)
. Hence by Lemma 2.7, tw(G) ≥

(
n−1
k

)
− 1. This proves

Theorem 1.7.
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Also, Lemma 6.7 allows us to prove Theorem 1.10.

Proof of Theorem 1.10. Let C1, . . . , Cr be the colour classes of H and recall G =

Kneser(n, k). Let X := V (G) − V (H), so that X,C1, . . . , Cr is a partition of the ver-

tex set of G (and also G). In G there are no edges between any pair Ci, Cj , and

|Ci| ≤ c|H| = c|G−X| for each i. So X is a (|X|, V (G), c)-separator of G, and |X| ≥
(
n−1
k

)

by Lemma 6.7. Hence |H| ≤
(
n−1
k−1
)
.

6.5 Lower Bound for Treewidth when k = 2

To complete our proof of Theorem 1.8, we need to obtain a lower bound on the treewidth

when k = 2. If n ≤ 4, then Theorem 1.8 is trivial. When n = 5, then G is the Petersen

graph, which contains a K5-minor forcing tw(G) ≥ 4. Hence we may assume that n ≥ 6.

Assume, for the sake of a contradiction that tw(G) <
(
n−1
2

)
− 1. Let (T, (Bx : x ∈

V (T ))) be a minimum width tree decomposition for G, and normalise the tree decompo-

sition as allowed by Lemma 2.2. By Lemma 2.7, there exists some (
(
n−1
2

)
− 1, V (G), 23)-

separator X. In fact, by the proof of Lemma 2.7, we can go further and assert that X is

a subset of a bag of (Bx : x ∈ V (T )).

Now |G−X| =
(
n
2

)
−|X| >

(
n−1
1

)
= n−1. By Lemma 6.1, V (G−X) can be partitioned

into two parts A and B such that 1
3 |G −X| ≤ |A|, |B| ≤ 2

3 |G −X| and there is no edge

with an endpoint in A and B. (Note that this bound on |A| and |B| is slightly weaker

than in Lemma 6.1, but has the benefit of being the same on both parts.) Since n ≥ 6, it

follows that |A|, |B| ≥ 2. By Theorem 6.2, V (G − X) is too large to be an independent

set, and so it contains an edge, with both endpoints in A or both endpoints in B.

Without loss of generality this edge is {1, 2}{3, 4} ∈ A. Since every vertex in B must

intersect both endpoints, B ⊆ {{1, 3}, {1, 4}, {2, 3}, {2, 4}}. If B contains an edge, then

any other vertex in A or B must contain two elements of {1, 2, 3, 4}. So V (G − X) ⊆
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} and has maximum order 6. Otherwise, without

loss of generality, B = {{1, 3}, {1, 4}} and A = {{3, 4}, {1, i}|i /∈ {1, 3, 4}}, so |G−X| = n.

(Note A must be exactly that set, or |G−X| is too small.)

If n ≥ 7, then |G − X| ≥ 7 and the first case cannot occur. However in the second

case, |B| = 2 < 1
3 · 7 ≤ 1

3n. So neither case can occur, and we have forced a contradiction

on either |G − X| or |B|. This completes the proof when n ≥ 7. Hence, let n = 6, and

note |G−X| = 6 in either case. In the first case, G−X contains three disjoint matching

of three edges, so that, without loss of generality, the endpoints of one edge is in A and

then endpoints of the other two are in B. In the second case, the subgraph induced by A

forms a star. In either case, A is connected.
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Now we use the fact that X is a subset of some bag Bx. Now for all x ∈ V (T ),

|Bx| ≤
(
5
2

)
− 1 = 9. Since |G −X| = 6, it follows |X| = 9. Hence X is exactly a bag of

maximum order. Since A is a connected component for either choice of G − X, there is

some subtree of T − x that contains all vertices of A. Let y be the node of this subtree

adjacent to x. Also note, for either choice of G−X, that each vertex of X has a neighbour

in A. (In the first case, each vertex in X contains at most one element from {1, 2, 3, 4}
and so is adjacent to one of {1, 2}, {3, 4}. In the second case, no vertex of X uses element

1, and as such is adjacent to one of {1, 2}, {1, 5} and {1, 6}.) So every vertex of Bx is also

in bag By, which contradicts our normalisation.

Thus, if n ≥ 6, then tw(G) ≥
(
n−1
2

)
− 1. This completes the proof of Theorem 1.8.

6.6 A Weaker Lower Bound for Treewidth

We now extend our proof technique from Theorem 1.7 to prove Theorem 1.9.

The upper bound for Theorem 1.9 follows directly from Lemma 6.6. To prove the

lower bound, we follow the same process as in Section 6.4 and show that a large separator

is required. The following lemma is sufficient.

Lemma 6.8. Let X be a (|X|, V (G), 23)-separator of the Kneser graph G. If n ≥
1
2(
√

5k2 − 12k + 8 + 3k + 2) and k ≥ 3, then |X| ≥
(
n−1
k

)
−
(
n−1
k−1
)
.

Proof. We assume, for the sake of a contradiction, that |X| <
(
n−1
k

)
−
(
n−1
k−1
)
. Recall by

Lemma 6.1 that V (G−X) can be partitioned into two parts A and B with no edge between

A and B such that 1
3 |G −X| ≤ |A| ≤ 1

2 |G −X| and 1
2 |G −X| ≤ |B| ≤ 2

3 |G −X|. Since

|X| <
(
n−1
k

)
−
(
n−1
k−1
)
, it follows that |G−X| >

(
n
k

)
−
(
n−1
k

)
+
(
n−1
k−1
)

= 2
(
n−1
k−1
)
.

Now |B| ≥
(
n−1
k−1
)
. If |A| >

(
n−1
k−1
)
, then |A||B| >

(
n−1
k−1
)2

, which contradicts Theorem 6.3.

It follows that |A| ≤
(
n−1
k−1
)
.

As discussed in Lemma 6.7, if w ∈ A and v ∈ B, then w * v, since otherwise w and

v do not intersect and there is an edge between A and B. Let S be the k-shadow of A.

Then

B ⊆ V (G)− S.

First, we consider some results about the order of A. Define the sequence of integers

t2, . . . , tn−k+2 as follows:

• t2 :=
(
n−2
k−2
)
,

• ti := ti−1 +
(
n−i
k−2
)
.

Claim 1. |A| > t3.



6.6. A WEAKER LOWER BOUND FOR TREEWIDTH 93

Proof. Recall that |A| ≥ 1
3 |G−X| > 2

3

(
n−1
k−1
)
. Assume for the sake of a contradiction that

|A| ≤ t3 =
(
n−2
k−2
)

+
(
n−3
k−2
)
. Thus

2

3

(
n− 1

k − 1

)
<

(
n− 2

k − 2

)
+

(
n− 3

k − 2

)

2

3
(n− 1)(n− 2) < (k − 1)(n− 2) + (k − 1)(n− k)

2

3
(n2 − 3n+ 2) < 2kn− 2n− k − k2 + 2.

n <
1

2
(
√

3k2 − 6k + 4 + 3k).

Hence we have our required contradiction, since this forces n to be smaller than its lower

bound.

Claim 2. |A| ≤ tn−k+2.

Proof. Recall that

|A| ≤
(
n− 1

k − 1

)
=

(
n− 2

k − 1

)
+

(
n− 2

k − 2

)
=

(
n− 2

k − 1

)
+ t2.

|A| ≤
(
n− 3

k − 1

)
+

(
n− 3

k − 2

)
+ t2 =

(
n− 3

k − 1

)
+ t3.

...

|A| ≤
(
n− (n− k + 2)

k − 1

)
+ tn−k+2 =

(
k − 2

k − 1

)
+ tn−k+2 = tn−k+2.

Since t3 < |A| ≤ tn−k+2, and since t3 < · · · < tn−k+2, we can fix i such that ti−1 <

|A| ≤ ti. Then i ≥ 4.

Claim 3. |S| ≥
(
n−2
k

)
+
(
n−3
k−1
)

+ · · ·+
( n−(i−1)
k−(i−1)+2

)
.

Proof. Since |A| > ti−1 and |A| = |A|, it follows that |A| > ti−1. Now S is minimised when

A is first, by Lemma 6.4. Now we consider what A must contain when it is first. Note

ti−1 =
(
n−2
k−2
)

+ . . .
(n−(i−1)

k−2
)

=
(
n−2
n−k
)

+ · · ·+
( n−(i−1)
n−k−i−1

)
. The set A is a set of (n−k)-subsets,

so it must contain all (n− k)-subsets on {1, . . . , n− 2}, of which there are
(
n−2
n−k
)
. Next in

the ordering are the (n − k) sets using (n − 1) but not n or (n − 2). There are
(
n−3

n−k−1
)

of these, since (n − 1) is fixed in all of these sets and the remaining elements are chosen

from {1, . . . , n− 3}. Subsequently, A contains the sets using (n− 1) and (n− 2) but not

n or (n − 3), of which there are
(
n−4

n−k−2
)
. This follows in a logical fashion. Each of these

sets corresponds to a element in ti−1 (where ti−1 is represented as a sum). Given this,
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we determine what S contains when A is first. From the first set of
(
n−2
n−k
)

(n − k)-sets,

the shadow contains all k-sets on [n − 2]. There are
(
n−2
k

)
of these sets. Next, given all

(n−k)-sets using (n−1) but not n or (n−2), the shadow contains all k-sets using (n−1)

with the rest of the elements chosen from {1, . . . , n − 3}, of which there are
(
n−3
k−1
)
. Note

here we have only counted what is new to the shadow. Hence, when A is first, it follows

that |S| ≥
(
n−2
k

)
+
(
n−3
k−1
)

+ · · ·+
( n−(i−1)
k−(i−1)+2

)
. This lower bound for S holds in general.

Thus it follows that

|B| ≤
(
n

k

)
−
(
n− 2

k

)
−
(
n− 3

k − 1

)
− · · · −

(
n− (i− 1)

k − (i− 1) + 2

)
.

Note that
(
n− 1

k

)
=

(
n− 2

k

)
+

(
n− 2

k − 1

)

=

(
n− 2

k

)
+

(
n− 3

k − 1

)
+

(
n− 3

k − 2

)

=

(
n− 2

k

)
+ · · ·+

(
n− (i− 1)

k − (i− 1) + 2

)
+

(
n− (i− 1)

k − (i− 1) + 1

)
.

Hence it follows

|B| ≤
(
n− 1

k − 1

)
+

(
n− 2

k

)
+ · · ·+

(
n− (i− 1)

k − (i− 1) + 2

)
+

(
n− (i− 1)

k − (i− 1) + 1

)

−
(
n− 2

k

)
−
(
n− 3

k − 1

)
− · · · −

(
n− (i− 1)

k − (i− 1) + 2

)

=

(
n− 1

k − 1

)
+

(
n− (i− 1)

k − (i− 1) + 1

)
.

Also recall that
(
n− 1

k − 1

)
−
(
n− i
k − 1

)
=

(
n− 2

k − 2

)
+ · · ·+

(
n− i
k − 2

)
= ti.

So |A| ≤
(
n−1
k−1
)
−
(
n−i
k−1
)
.

Thus |A| + |B| ≤ 2
(
n−1
k−1
)

+
(
n−i+1
k−i+2

)
−
(
n−i
k−1
)
. Thus the following claim is sufficient to

give our required contradiction.

Claim 4.
(
n−i+1
k−i+2

)
−
(
n−i
k−1
)
≤ 0.

Proof. Assume otherwise. Thus
(
n− i+ 1

k − i+ 2

)
>

(
n− i
k − 1

)
.

If i ≥ k + 3, then
(
n−i+1
k−i+2

)
= 0, which is a contradiction. Hence i ≤ k + 2. Thus we obtain

from the above equation

(k − 1) . . . (k − i+ 3)(n− i+ 1) > (n− k − 1) . . . (n− i− k + 2).
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And so

(k − i+ 3)(n− i+ 1) > (n− k − 1)(n− k − 2)
n− k − 3

k − 1
. . .

n− k − (i− 2)

k − (i− 4)
.

Since i ≥ 4, we get (k−1)(n−3) > (n−k−1)(n−k−2). So n < 1
2(
√

5k2 − 12k + 8+3k+2),

giving a contradiction with our lower bound on n.

This completes the proof of Lemma 6.8.

Thus we have achieved our desired contradiction and shown that tw(G) ≥
(
n−1
k

)
−

(
n−1
k−1
)
−1 when n ≥ 1

2(
√

5k2 − 12k + 8+3k+2). This completes the proof of Theorem 1.9.

However, recall that the minimum degree is a näıve lower bound on the treewidth of any

graph. In our case, this gives tw(G) ≥
(
n−k
k

)
. We now show that the lower bound we have

constructed is actually an improvement.

Lemma 6.9. If n ≥ 2k + 1 and k ≥ 3, then
(
n−1
k

)
−
(
n−1
k−1
)
− 1 ≥

(
n−k
k

)
.

Proof. Assume for the sake of a contradiction that
(
n−1
k

)
−
(
n−1
k−1
)
≤
(
n−k
k

)
. This gives

(n− 1) . . . (n− k)− k(n− 1) . . . (n− k + 1) ≤ (n− k) . . . (n− 2k + 1),

(n− 1) . . . (n− k + 1)(n− 2k) ≤ (n− k) . . . (n− 2k + 1),

By cancelling (n − 2) with (n − k), (n − 3) with (n − (k + 1)) and so forth, we get the

following.

(n− 1)(n− 2k) ≤ (n− (2k − 2))(n− (2k − 1)),

(k − 2)n ≤ 2k2 − 4k + 1.

By substituting the lower bound for n, we get

2k2 − 3k − 2 ≤ 2k2 − 4k + 1.

This gives a contradiction for k > 3. By a slightly longer calculation which we omit, there

is also a contradiction when k = 3, as required.

6.7 Open Questions

We conjecture that Theorem 1.7 should also hold for smaller values of n.

Conjecture 6.10. Let G be a Kneser graph with n ≥ 3k and k ≥ 2. Then tw(G) =
(
n−1
k

)
− 1.
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This conjecture follows directly from Theorem 1.8 when k = 2. The Petersen graph

also shows that n ≥ 3k is a tight bound when k = 2.

In general, we can determine a slightly better tree decomposition when n ≤ 3k − 2.

Let X = {v ∈ V (G) : 1 ∈ v}, and let W be an independent set in V (G) − X such that

no two vertices of W have a common neighbour in X. We define a tree decomposition

for G with underlying tree T as follows. Let r denote the root node of T , and let r have

one child node for each vertex in W and each vertex in X adjacent to no vertex in W .

Label each of these child nodes by their associated vertex of G. Let each node labelled

by a vertex w ∈W have one child node for each vertex of N(w) ∩X. Label each of those

child nodes by their associated vertex of G, and note that since every vertex of X has at

most one neighbour in W , no vertex of G labels more than one node of T .

Define the bag indexed by r to be V (G) −W −X. Note this bag contains less than
(
n−1
k

)
vertices when W 6= ∅. If a node is labelled by a vertex v ∈ X, let the corresponding

bag be N(v)∪{v}. These bags contain
(
n−k
k

)
+ 1 vertices. If a node is labelled by a vertex

w ∈W , let the corresponding bag be {w}∪{u : uw ∈ E(G), 1 /∈ u}∪{u : ux ∈ E(G) where

xw ∈ E(G) and 1 ∈ x}. These bags contain less than
(
n−1
k

)
vertices whenever |W | ≥ 2,

since they contain no vertex in X, and each contains only one vertex from W . This is a

valid tree decomposition, but we omit the proof. When |W | ≥ 2, the width of this tree

decomposition is less than the width given by Lemma 6.5.

However, when |W | ≤ 1, this tree decomposition has the same width as given by

Lemma 6.5. We can construct W such that |W | ≥ 2 iff n < 3k − 1. For example, let

W = {{2, . . . , (k + 1)}, {(k + 1), . . . , 2k}}. If n ≤ 3k − 2, then any vertex of X must be

non-adjacent to at least one vertex of W . Alternatively, if n ≥ 3k − 1 and |W | ≥ 2, then

there exists two vertices x, y ∈ W such that |x ∪ y| ≤ 2k − 1. Then X contains a vertex

adjacent to both x and y. Hence, for general n, we cannot improve the lower bound on n

in Theorem 1.7 to 3k − 2 or below. This does leave a question about what may occur for

n = 3k− 1. It is possible that Theorem 1.7 holds for n ≥ 3k− 1, with the Petersen graph

as a single exception.

We now discuss possible strategies for proving results in the direction of Conjec-

ture 6.10. Let X be a (|X|, V (G), c)-separator (where c ∈ [23 , 1)) and say A and B are the

parts of V (G−X) by Lemma 6.1. In Lemma 6.7, we showed that B∗n ⊆
([n−1]
k−1

)
−S, where

S is the (k − 1)-shadow of A−n
∗
. Similarly, we can argue that B ⊆

([n]
k

)
− S, where S is

the k-shadow of A. This is a key point in the papers by Pyber [80] and Matsumoto and

Tokushige [78]. However, since A and B are disjoint, we could say that B ⊆
([n]
k

)
−(S∪A),

since B cannot contain a vertex in A, or a neighbour of such a vertex. However, we do

not know what choice of A minimises S ∪ A. (It can be seen that it is not the first |A|
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sets under the colex order.)

If we improved Lemma 6.7 by determining the optimal A, then we would improve both

Theorems 1.7 and 1.10. We believe that this should be possible, and that the optimal

choice of A that minimises S ∪ A should be similar to (but not exactly) the first |A| sets

under colex order. This would hopefully allow an argument similar to that of Pyber, and

give a lower bound on n that is linear in terms of k (ideally with a small constant).
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Part II

Graph Minors
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Chapter 7

Finding a Minor Quickly in

Graphs with High Average Degree

7.1 Introduction

This chapter presents a linear-time algorithm for finding an H-minor in a graph with high

average degree. Recall from Chapter 1 that

g(H) = inf{D : every graph G with average degree d(G) ≥ D contains an H-minor}.

We prove the following theorem.

Theorem 1.11. For every fixed t-vertex graph H, there exists a O(n) time algorithm that,

given an n-vertex graph G with d(G) ≥ 2(g(H) + t), finds an H-minor in G.

Given a t-vertex graph H, g(H) ≥ t−2, since d(Kt−1) = t−2 but Kt−1 cannot contain

an H-minor. As a result, 2(g(H) + t) is bound above by a small constant factor of g(H).

7.2 Algorithm

Given a vertex v of a graph G, we denote by degG(v) and NG(v) the degree and neigh-

bourhood of v in G, respectively. We drop the subscript when G is clear from the context.

Define a matching M ⊆ E(G) to be a set of edges such that no two edges in M share

an endpoint. Let V (M) be the set of endpoints of the edges in M . An induced matching

in G is a matching such that any two vertices x, y of V (M) are only adjacent in G when

xy ∈ M . Given a matching M in G, let G/M be the graph formed by contracting each

edge of M in G.

We may assume that t ≥ 3, since finding an H-minor efficiently is trivial when t ≤ 2.

Consider the following algorithm that takes as input a graph given as a list of vertices and
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a list of edges. The implicit output of the algorithm is the sequence of contractions and

deletions that produce an H-minor.

Algorithm 1 FindMinor (input: n-vertex graph G with d(G) ≥ 2(g(H) + t))

1: Delete edges of G so that 2(g(H) + t) ≤ d(G) ≤ 2(g(H) + t) + 1.

2: Delete vertices of low degree so that the minimum degree δ(G) > 1
2d(G).

3: Let S := {v ∈ V (G) : deg(v) ≤ d(G)2}, and let B := {v ∈ V (G) : deg(v) > d(G)2}.
[Note that B is possibly empty, and that S and B partition V (G).]

4: Say an edge vw ∈ E(G) is good if v, w ∈ S and |N(v)∩N(w)| ≤ 1
2(d(G)−2). Greedily

construct a maximal matching M of good edges.

[Note that it is possible that no edges are good, in which case M = ∅.]
5: If |M | > 1

8d(G)n, then greedily construct a maximal induced submatching M ′ of M .

That is, initialise M ′ := ∅ and Q := M , and repeat the following algorithm until

Q = ∅: pick an edge vw ∈ Q, add vw to M ′, and delete from Q the edge vw and every

edge with an endpoint adjacent to v or w.

Let G′ := G/M ′. Run FindMinor(G′) and stop.

6: Now assume |M | ≤ 1
8d(G)n. Let B′ := B ∪ V (M) and S′ := S − V (M).

[Note that, similarly to Step 3, S′ and B′ partition V (G).]

7: Greedily compute a maximal subset A of S′ such that each vertex u ∈ A is assigned to

a pair of vertices in N(u) ∩B′, and each pair of vertices in B′ has at most one vertex

in A assigned to it.

8: If 2|A| ≥ d(G)|B′| and B′ 6= ∅, then let G′ be the graph obtained from G as follows:

For each pair of distinct vertices x, y ∈ B′ with an assigned vertex z ∈ A, contract the

edge xz.

Run FindMinor(G′[B′]) and stop.

9: Now assume 2|A| < d(G)|B′| or B′ = ∅. Choose v ∈ S′ −A.

[We prove below that S′−A 6= ∅. Since v is not assigned, for every pair x, y of vertices

in N(v) ∩B some vertex z ∈ A is assigned to x, y.]

10: If |N(v)∩B′| ≥ t, then let G′ be the graph obtained from G as follows: For each pair

of distinct vertices x, y ∈ N(v) ∩ B′, if z is the vertex in A assigned to x and y, then

contract xz into x (so that the new vertex is in B′). Then G′[N(v) ∩ B′] ⊇ Kt ⊇ H.

Stop.

11: Otherwise let G′ := G[{v} ∪ (NG(v) ∩ S′)] and run an exhaustive search to find an

H-minor in G′.

[Below we prove that d(G′) > g(H) and |V (G′)| ≤ d(G)2 + 1.]
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7.3 Correctness of Algorithm

First, we prove that FindMinor(G) does output an H-minor. Define m := |E(G)|. We

must ensure the following: that FindMinor finds an H-minor in Steps 5 and 8; that

S′ −A 6= ∅ in Step 9; that the graph constructed in Step 10 contains a Kt subgraph; and

that our exhaustive search in Step 11 finds an H-minor of G.

Consider Step 5. Assume that FindMinor finds an H-minor in any graph G′ with

|V (G′)| < n where d(G′) ≥ 2(g(H) + t). Consider the induced matching M ′. Contracting

any single edge vw of M ′ does not lower the average degree, since we only lose |N(v) ∩
N(w)|+1 ≤ 1

2d(G) edges and one vertex. Since the matching is induced, contracting every

edge in M ′ does not lower the average degree. Since |M | > 1
8d(G)n, M is not empty and

M ′ is not empty. Thus d(G′) ≥ d(G) ≥ 2(g(H) + t) and |V (G′)| < |V (G)| = n. Thus, by

induction, running the algorithm on G′ finds an H-minor, and as such we find one for G.

If we recurse at Step 8, then 2|A| ≥ d(G)|B′| and B′ 6= ∅. Now |V (G′[B′])| = |B′| and

|E(G′[B′])| ≥ |A|, since every assigned vertex corresponds to an edge of G′[B′]. Thus

d(G′[B′]) =
2|E(G′[B′])|
|V (G′[B′])| ≥

2|A|
|B′| ≥ d(G).

Also, |V (G′[B′])| = |B′| < n, since otherwise A = S′ = ∅, contradicting 2|A| ≥ d(G)|B′| >
0. Hence, by assumption, the algorithm will find an H-minor in G′[B′]. Thus the algorithm

finds an H-minor for G.

Now we show that |S′| > |A| in Step 9. We have 2|A| < d(G)|B′| or B′ = ∅. First

consider the case when 2|A| < d(G)|B′|. Note that 2m = d(G)n, and that d(G)2|B| <
∑

v∈B deg(v) ≤ 2m, and so |B| < 2m
d(G)2

= 1
d(G)n. Now |S′| = |S| − 2|M | ≥ |S| − 1

4d(G)n by

Step 6. Thus,

|S′| ≥ |S| − 1

4d(G)
n = (n− |B|)− 1

4d(G)
n > n− 1

d(G)
n− 1

4d(G)
n =

4d(G)− 5

4d(G)
n.

By Step 9 and Step 6,

|A| < d(G)

2
|B′| = d(G)

2
(|B|+ 2|M |) < d(G)

2

(
1

d(G)
n+

1

4d(G)
n

)
=

5

8
n.

Thus, if |S′| ≤ |A| then 4d(G)−5
4d(G) n < 5

8n, so 3d(G) < 10. This is a contradiction since

d(G) ≥ 2(g(H) + t) ≥ 2t ≥ 4. Hence, |S′| > |A|. Now consider the case that B′ = ∅. Then

|S′| = n and A = ∅, since the vertices of A are assigned to pairs of vertices in B′. Hence

|S′| > |A|.
Now consider Step 10. The subgraph G′[N(v) ∩ B′] contains at least t vertices by

assumption. Each pair of distinct vertices x, y in N(v) ∩ B′ has an assigned vertex in A,

since otherwise v would have been assigned to x and y. Hence the vertex z exists, and
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x and y are adjacent after contracting xz. Therefore all pairs of vertices in N(v) ∩ B′

become adjacent, and G′[N(v)∩B′] is a complete graph. Hence we have found a Kt-minor

in G, and our desired H-minor is simply a subgraph of this Kt-minor.

Finally consider Step 11. Since G′ is an induced subgraph of G, if we can find H

as a minor in G′, we have an H-minor in G. We use an exhaustive search, so all we

need to ensure is that G′ does contain an H-minor. Thus, we simply need to ensure that

d(G′) > g(H). By Step 1 and Step 2, degG(v) > 1
2d(G) ≥ g(H) + t ≥ t. Since Step 10

was not applicable, v has at most t − 1 neighbours in B′. Thus v has some neighbour in

S′. Let w be a vertex of G′ − v. Thus vw is an edge and v, w ∈ S′. Since neither v nor w

was matched by M , and since M is maximal, vw is not good. Since v, w ∈ S′ ⊆ S, this

means that |N(v) ∩N(w)| > 1
2(d(G)− 2). Since v has at most t− 1 neighbours in B′, we

have |N(v)∩N(w)∩ S′| > 1
2(d(G)− 2)− (t− 1). Every common neighbour of v and w in

S′ is a neighbour of w in G′, by definition, so degG′(w) > 1
2(d(G) − 2) − (t − 1). Since v

is dominant in G′, d(G′) ≥ δ(G′) > 1
2(d(G)− 2)− (t− 1) ≥ 1

2(2(g(H) + t)− 2)− (t− 1) ≥
(g(H) + t− 1)− (t− 1) = g(H), as required.

7.4 Time Complexity

Now that we have shown that FindMinor will output an H-minor, we must ensure it

does so in O(n) time (for fixed H).

First, suppose FindMinor runs without recursing. Recall that our input graph G is

given as a list of vertices and a list of edges, from which we will construct adjacency lists

as it is read in. Since our goal in Step 1 is to ensure that m ≤ 1
2(2(g(H) + t) + 1)n, we

can do this by taking, at most, the first 1
2(2(g(H) + t) + 1)n edges, and ignoring the rest.

This can be done in O(n) time, and from now on we may assume that m ∈ O(n). In Step

2, since we are only deleting vertices of bounded degree, this can be done in O(n) time.

Clearly, Steps 3, 6 and 9 can be implemented in O(n) time. By definition, the degree of

any vertex in S or S′ is at most (2(g(H) + t) + 1)2. Hence Steps 4, 5, 7, 8 and 10 take

O(n) time. Finally, for Step 11 note that |V (G′)| ≤ d(G)2 + 1, so exhaustive search runs

in O(1) time for fixed H. Hence the algorithm without recursion runs in O(n) time.

Should FindMinor recurse, we need to ensure that the order of the graph we recurse on

is a constant factor less than n. Then the overall time complexity is O(n) (by considering

the sum of a geometric series). In Step 5, the endpoints of edges in M have degree

less than or equal to d(G)2, and so |M ′| ≥ 1
2d(G)2

|M | ≥ 1
16d(G)3

n. This ensures that

|V (G′)| ≤ (1− 1
16d(G)3

)n, as desired. In Step 8, the order of G′[B′] is at most 2|A|
d(G) ≤ 2n

d(G) .

Hence it follows that the overall time complexity is O(n).



Chapter 8

Hadwiger’s Conjecture for

Circular Arc Graphs

8.1 Introduction

Recall a circular arc graph G is an intersection graph where the vertex set is a collection

of arcs on a circle. Also recall the cover number β(G) is the size of the smallest set of

arcs in V (G) which cover the entire circle. If no set of arcs cover the entire circle, then

β(G) =∞, and G is an interval graph. A normal Helly circular arc graph G is a circular

arc graph for which β(G) > 3.

In this chapter, we prove the following weakening of Hadwiger’s Conjecture:

Theorem 1.12. For a normal Helly circular arc graph G, had(G) ≥ χ(G)− 1.

To prove this, we let G be a vertex-minimum counterexample, that is, had(G) <

χ(G) − 1 and had(G′) ≥ χ(G′) − 1 for every circular arc graph G′ with β(G′) > 3 and

less vertices than G. Given that (as shown in Chapter 1) Hadwiger’s Conjecture holds for

interval graphs, we can assume that β(G) is finite. (If β(G) = ∞, then there is a point

on the circle with no arcs—we can “cut” the circle at this point and convert G into an

interval graph, for which Hadwiger’s Conjecture holds.)

We shall show that either had(G) ≥ χ(G)− 1 or that we can colour G with less than

χ(G) colours, either of which form a contradiction.

8.2 Preliminaries

For a circular arc graph G, recall the maximum load L(G) is the maximum number of arcs

at any point of the circle. For simplicity, let L := L(G). Since all of these arcs intersect,
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this forces the existence of a clique of order L(G), and so χ(G) ≥ L(G). Let q be a point

of maximum load, and let Q be the vertex set of the clique at q. Define the interval graph

H such that H := G−Q.

From now on, we choose to think of G as like an interval graph in the following sense:

“cut” the circle at point q and straighten it to obtain a line. Then G is the interval graph

H, plus the vertices of Q, each of which is represented by two intervals—one starting at

−∞ and one ending at +∞. For such a vertex u ∈ Q, call the interval at starting −∞
the left interval of u and the interval ending at +∞ the right interval of u. Denote the

vertices of Q as Q-vertices and the remaining vertices as H-vertices. For an H-vertex v,

define l(v) to be the left endpoint of the interval, and r(v) to be the right endpoint. For

a Q-vertex u, let r(u) be the right endpoint of the left interval of u, and l(u) be the left

endpoint of the right interval. The left endpoint of the left interval is always −∞ and the

right endpoint of the right interval is +∞, so we do not need to denote these specifically.

It is well known that we can assume all intervals have distinct endpoints (except for the

endpoints −∞ and +∞), since we can perturb the endpoints of an interval to ensure this.

For two points p and r on the line, denote p is left of r by writing p < r. We say an

H-vertex v covers an H-vertex w if l(v) < l(w) and r(w) < r(v). A Q-vertex v covers an

H-vertex w if r(w) < r(v) or l(v) < l(w). A Q-vertex v covers a Q-vertex w if r(w) < r(v)

and l(v) < l(w).

Define a small vertex v of G to be a vertex such that there is no vertex w covered by

v. Then call any other vertex large. For each large vertex v there is a small vertex w such

that w is covered by v.

Define k := χ(G)− L(G).

A graph is colour critical if any vertex deletion causes the chromatic number to de-

crease. This concept was first introduced by Dirac [24].

Lemma 8.1. If G is the vertex-minimum counterexample to Theorem 1.12, then G is

colour critical.

Proof. Say that G is not colour critical. Then there exists v ∈ V (G) such that χ(G−v) =

χ(G). Then note that had(G−v) ≤ had(G), since vertex deletion is a valid operation when

constructing a minor. Also, β(G − v) ≥ β(G) > 3, since any set of vertices covering the

circle in G−v also covers the circle in G. So had(G−v) ≤ had(G) < χ(G)−1 = χ(G−v)−1.

Thus G − v is a smaller counterexample, contracting our assumption that G is a vertex-

minimum counterexample.

Every colour critical graph has minimum degree δ(G) ≥ χ(G) − 1. So Lemma 8.1

implies the following:
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Corollary 8.2. If G is the vertex-minimum counterexample to Theorem 1.12, then the

minimum degree of G is δ(G) ≥ χ(G)− 1 = L+ k − 1.

If u is a Q-vertex and v is an H-vertex, then we say that u is a left-Q-neighbour of

v if uv ∈ E(G) and the interval of v intersects the left interval of u. In this case we

also say v has a left-Q-neighbour. Similarly we define right-Q-neighbour. Lemma 8.3

through to Corollary 8.5 prove some basic but important results about the structure of

the neighbourhood of a vertex of H.

Lemma 8.3. Let G be the vertex-minimum counterexample to Theorem 1.12, let Q be the

set of vertices at a point of maximum load q and let H := G − Q. Then no H-vertex v

has both a left-Q- and right-Q-neighbour.

Proof. Say v ∈ V (H) has a left-Q-neighbour u and a right-Q-neighbour w. Then {v, u, w}
cover the entire circle, contradicting β(G) > 3.

Lemma 8.4. Let G,Q,H be as in Lemma 8.3. If v is an H-vertex with no right-Q-

neighbour, then v has at least k H-neighbours that are at r(v) and not at l(v), which we

call right-only-H-neighbours.

Proof. First suppose v is small. Then every neighbour of v is either at l(v) and/or r(v).

Since deg(v) ≥ (L+k−1) by Corollary 8.2, and since v can have at most (L−1) neighbours

at l(v), v has at least k neighbours at r(v) that are not at l(v). Every Q-neighbour of v, if

there are any, is at l(v) since left-Q-neighbours come from −∞. Thus v has k H-neighbours

at r(v) and not at l(v).

Alternatively, v is large. Let u be the vertex covered by v with rightmost left endpoint.

Now u is small—if u covers some w, then v covers w and l(w) > l(u), contradicting the

choice of u. Similarly, each vertex w at r(u) and not at l(u) has l(w) > l(u), so w must

be at r(v). Since u has k right-only-H-neighbours, so does v.

By symmetry we have:

Corollary 8.5. Let G,Q,H be as in Lemma 8.3. If v is an H-vertex with no left-Q-

neighbour, then v has at least k H-neighbours that are at l(v) and not at r(v), which we

call left-only-H-neighbours.

Definition Let s1, . . . , sk−1 be the first (k − 1) vertices of H by left endpoint, where

l(s1) < l(s2) < · · · < l(sk−1). Call this set S. Let t1, . . . , tk−1 be the last (k − 1) vertices

by right endpoint, where r(t1) < r(t2) < · · · < r(tk−1). Call this set T .

In Section 8.3, we shall attempt to construct a series of paths starting in S and ending in

T . Before doing so, we prove a series of useful results about S and T .
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Lemma 8.6. Let G,Q,H be as in Lemma 8.3. If u is a vertex in Q, then u is adjacent

to at least one of si and ti for all i ∈ {1, . . . , k − 1}.

Proof. Say u ∈ Q is not adjacent to si and ti. Then the left interval of u is adjacent to at

most s1, . . . , si−1 from H, and the right interval of u is adjacent to at most ti+1, . . . , tk−1

from H. The vertex u also has L − 1 neighbours in Q. Thus, deg(u) ≤ (i − 1) + ((k −
1) − i) + (L − 1) = L + k − 3 < L + k − 1 ≤ δ(G) by Corollary 8.2, which is the desired

contradiction.

Lemma 8.7. Let G,Q,H be as in Lemma 8.3. Each vertex of S has a left-Q-neighbour,

and each vertex of T has a right-Q-neighbour.

Proof. Say si has no left-Q-neighbour. Then si has k left-only-H-neighbours by Corol-

lary 8.5. However, the only plausible left-only-H-neighbours are s1, ..., si−1, of which there

are less than k. A similar argument holds for ti.

By Lemma 8.7 and Lemma 8.3, we get the following:

Corollary 8.8. Let G,Q,H be as in Lemma 8.3. The sets S and T are vertex disjoint.

Lemma 8.9. Let G,Q,H be as in Lemma 8.3. Both S and T are cliques.

Proof. Say sisj /∈ E(G), for some i < j. By Lemma 8.7 and Lemma 8.3, si has no right-

Q-neighbour, so si has k right-only-H-neighbours by Lemma 8.4. However, since sj is not

adjacent to si, the only possible right-only-H-neighbours of si are si+1, ..., sj−1, of which

there are less than k. A similar argument holds for T .

Label the vertices of Q twice, as follows. First, label using q1, . . . , qL such that r(q1) <

r(q2) < · · · < r(qL) with respect to the left interval of each of these vertices. Second, label

using q′1, . . . , q
′
L such that l(q′L) > l(q′L−1) > · · · > l(q′1) with respect to the right interval

of each of these vertices.

Define the sets Si = {q1, . . . , qi} and Ti = {q′L, q′L−1, . . . , q′L−(k−1)+i}. No vertex of Si

intersects si and no vertex of Ti intersects ti, as shown below.

Lemma 8.10. Let G,Q,H be as in Lemma 8.3. No vertex in Si intersects si, and no

vertex in Ti intersects ti.

Proof. Since S is a clique by Lemma 8.9, we know that at l(si), the vertices s1, . . . , si are

all present. Hence, at most (L− i) Q-vertices are at this point, else the load here is greater

than the maximum load. Thus, if some qj ∈ Si is at this point, then so are qj+1, ..., qL by

how we have chosen our labels, and so the load at l(si) is greater than L. Therefore no

vertex in Si is at l(si), and since si has a left-Q-neighbour by Lemma 8.7 and no H-vertex
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has both a left- and right-Q-neighbour by Lemma 8.3, Si ∩ N(si) = ∅. Again, a similar

argument holds for ti.

By Lemma 8.6 and Lemma 8.10, we get the following:

Corollary 8.11. Let G,Q,H be as in Lemma 8.3. No vertex of Q is in Si and Ti

8.3 Special Path Sets

Recall, our goal is to show that vertex-minimum counterexample G either contains a

complete minor of order χ(G)− 1 = L+ k − 1, or has a re-colouring with one less colour

(that is, with at most L + k − 1 colours). Firstly, we shall try to construct a minor. We

describe this minor using the terminology of models, which can be found in Section 2.2.

In our intended model, our branch sets will be the L vertices of our clique Q, and a set of

(k − 1) paths which link si and ti by travelling around the circle. If successful, this will

give us a minor of order L+ k − 1; see Lemma 8.12. We construct these paths as follows:

Definition A special path set P is a set of paths P1, . . . , Pk−1 in H (where k = χ(G) −
L(G)) that satisfy the following properties:

(P1) P1, ..., Pk−1 are pairwise vertex-disjoint.

(P2) si ∈ Pi for all i, and tj /∈ Pi for all i 6= j.

If ti ∈ Pi, then call Pi finished, otherwise it is unfinished.

Lemma 8.12. Let G be the vertex-minimum counterexample to Theorem 1.12, let Q be

the set of vertices at a point of maximum load q and let H := G−Q. Then there does not

exist a special path set P such that each Pi ∈ P is finished.

Proof. Assume, for the sake of a contradiction, such a P does exist. To find our contra-

diction, we show had(G) ≥ L + k − 1 = χ(G) − 1. Our KL+k−1-model will contain the

following branch sets:

• Qi := {qi} for all i ∈ {1, ...,L(G)}
• Pi from P for i ∈ {1, ..., (k − 1)}

Each of these sets is clearly connected, so it remains to show that they are pairwise

adjacent. Since qi ∈ Qi and qj ∈ Qj , and qi, qj ∈ Q, which is by definition a clique, these

sets are clearly adjacent. Also, since si ∈ Pi and sj ∈ Pj and S is a clique by Lemma 8.9,

Pi and Pj are adjacent. Finally, consider some Pi and some Qj . Now, qj is adjacent to

either si or ti by Lemma 8.6, so since Pi is finished and ti ∈ Pi, it follows that Qj and Pi

are adjacent.
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So, if all of our paths are finished, G is not a counterexample. Thus, we can assume at

least one path in P is unfinished. We use the fact that P contains an unfinished path to

determine some key facts about the structure of G, which will help with the recolouring.

Define the point p on the line to be the last point (from left to right) that has all

(k − 1) paths of P present. That is, p is the endpoint of the first path in P to “stop”.

Choose our P so that:

(C1) The point p, as defined above, is as far to the right as possible.

(C2) Subject to (C1), |V (P1)∪ · · · ∪ V (Pk−1)| is minimised. When there is no ambiguity,

we shall denote |V (P1) ∪ · · · ∪ V (Pk−1)| = V (P).

(C3) Subject to (C1) and (C2), for each Pi ∈ P the jth vertex v in Pi has l(v) as far to

the left as possible.

Call a vertex on some Pi ∈ P a path vertex . Any remaining vertex of H that is not

some ti we shall call a free vertex .

Lemma 8.13. Let G,Q,H be as in Lemma 8.12, and let P be a special path set chosen

with respect to (C1),(C2) and (C3). Every Pi ∈ P is an induced path, and no vertex of Pi

is covered by any other vertex of Pi.

Proof. Say Pi is not induced. Then we can clearly take an induced path in Pi from si to

the last vertex of Pi by right endpoint. Call this path P ∗i , and construct a special path

set P∗ from P by replacing Pi with P ∗i . Since si ∈ P ∗i , and we only removed vertices from

P ∗i , P∗ is a special path set. The path P ∗i travels as far along the interval as Pi, so the

position of p has not changed. However P ∗i ( Pi, so |V (P∗)| < |V (P)|, contradicting our

choice of P.

Similarly, if we have some v, w ∈ Pi such that v is covered by w, then since Pi is

induced, either v follows directly after w in Pi or vice versa. However, since any neighbour

of v is a neighbour of w, v has no other neighbours in Pi, so v is either the first vertex or

the last vertex of Pi. It is not the case that v = si or v = ti, since such vertices can not

be covered by another vertex of the same path, by definition. Hence v is the last vertex

of Pi, but v 6= ti. If we remove v from Pi then, as above, p has not moved but the number

of vertices on Pi has fallen. As before, this contradicts our choice of P.

Lemma 8.14. Let G,Q,H and P be as in Lemma 8.13. Then p is at the end of an

unfinished path.

Proof. The point p is certainly at the end of some path Pi by the second half of Lemma 8.13,

so say Pi is finished. Thus p = r(ti). Since not all of these paths are finished, there is an
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unfinished path Pj that ends at a vertex aj . Thus r(aj) > p, but this means that aj ∈ T .

Hence either aj = tj , and Pj is finished, or aj 6= tj and this is not a special path set.

From this point forward, we say that p is the endpoint of an unfinished path Pi, and ai

is the last vertex of Pi; that is, p = r(ai). In Lemma 8.15 to Lemma 8.20 we prove some

useful facts about the structure of the paths of P and the free vertices. The basic idea

behind these results is that, if they did not hold, then it would be possible to construct a

“better” set of paths P. These results will help with recolouring in Section 8.4.

Lemma 8.15. Let G,Q,H and P be as in Lemma 8.13. There is neither a free vertex

nor the vertex ti at p.

Proof. Let u be a vertex at p such that u is either a free vertex or u = ti. Hence u is not

on any path, by the definition of a free vertex, and by (P2). Then add u on to path Pi

and rename it P ∗i . Keep all the other paths the same, and call this new set P∗. Now P∗

satisfies (P1) since we only added vertices to Pi that were not on any other path. Also P∗

satisfies (P2) since we did not place any tj(j 6= i) onto Pi. Thus P∗ is a special path set.

However, Pi now ends at r(u), which is to the right of p. All other paths still end right of

p. Thus P∗ contradicts our choice of P.

Lemma 8.16. Let G,Q,H and P be as in Lemma 8.13. The number of H-vertices at

point p is at least (k + 1).

Proof. Define p+ε to be the point on the line immediately to the right of p, that is, before

any other endpoint of any other interval. The load at p + ε is one less than the load at

p, and every vertex at p + ε is at p. Let v be the last vertex by left endpoint such that

r(v) < p + ε. Let w be the first vertex by right endpoint such that l(w) > p + ε. Such a

w exists since l(ti) > p + ε. Then either v has no right-Q-neighbour or w has no left-Q-

neighbour—otherwise both w and v have both left- and right-Q-neighbours, contradicting

Lemma 8.3. Say that v has no right-Q-neighbour. Then v has k right-only-H-neighbours,

by Lemma 8.4. Each of these vertices must be at p + ε by the choice of v, similar to the

second half of Lemma 8.4. There are k H-vertices at p + ε, and thus k + 1 at point p

including ai. If w has no left-Q-neighbours, the result also follows by symmetry, using

Corollary 8.5.

We say a path Pj of our special path set appears twice at point r if there are two

vertices of Pj at point r. Note that since all paths in P are induced, there can be at most

two vertices of Pj at any given point. (If there are three vertices of Pj at a point, then

path Pj contains a triangle.)
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Corollary 8.17. Let G,Q,H and P be as in Lemma 8.13. Some path Pj 6= Pi appears

twice at point p.

Proof. By Lemma 8.16, there are at least (k + 1) H-vertices at p, but from Lemma 8.15,

none of these vertices can be free, or ti. Since there are only (k − 1) paths, this means

some path must appear more than once at p, and it cannot be Pi. (In fact, there are at

least two paths that appear twice at p.)

Lemma 8.18. Let G,Q,H and P be as in Lemma 8.13. If Pj appears twice at point p,

then one of the two vertices of Pj at p is tj.

Proof. Say Pj appears twice at p and let aj and bj be the two vertices of Pj at p, such that

aj is before bj on Pj , and bj 6= tj . Now remove bj and anything later from Pj , and add bj

to Pi. Rename this path P ∗i . So P ∗i remains connected since bj is at p. Also relabel Pj as

P ∗j , now that it only goes as far as aj . Label by P∗ the path set P with Pi, Pj replaced by

P ∗i , P
∗
j respectively. Now, P∗ satisfies (P1) trivially—we only deleted vertices after and

including bj from Pj before adding bj to P ∗i . Also, since bj 6= tj , and sj is before aj on

Pj , (P2) still holds. Now P ∗i ends at r(bj) and P ∗j ends at r(aj), both of which are after

p. All other paths remain unchanged and end after p. Thus P∗ contradicts the choice of

P.

Corollary 8.19. Let G,Q,H and P be as in Lemma 8.13. There is a finished path Pj

that appears twice at p, one of the vertices of Pj is tj.

From now on, we shall refer to a path satisfying Corollary 8.19 as a blocking path, since

it blocks point p from being any further to the right.

Definition Consider the graph formed from G by deleting Q, all of P, and all remaining

ti, leaving only free vertices. Call a component in this graph a free component . A free

component is a connected subgraph of H.

Lemma 8.20. Let G,Q,H and P be as in Lemma 8.13. There is no free component that

is adjacent to two vertices from Pi and two vertices from Pj − tj, where Pj is a blocking

path.

Proof. Assume some free component U is adjacent to two vertices from Pi and two vertices

from Pj−tj . Now, since U covers a connected part of the line, it follows that U is adjacent

to connected subsets of Pi and Pj− tj , of order greater than one. Let xi be the first vertex

of Pi adjacent to U , and yi the vertex after it in Pi. Define xj , yj similarly for Pj − tj .
As before, let ai be the last vertex of Pi and aj the last vertex of Pj − tj ; both of these
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vertices and tj are at p by Lemma 8.14 and the definition of a blocking path. To show

a contradiction, we again construct a better path set than P. Now since U defines a

connected part of the line the same way that a vertex does, we can consider the point

l(U), the left end point of U . Since no vertex of S is free, l(U) > l(sk−1). Hence xi, xj

are at l(U). Firstly, partition Pj − tj into the following subpaths: P 1
j := (sj , ..., xj) and

P 2
j := (yj , ..., aj). Similarly let P 1

i := (si, ..., xi) and P 2
i := (yi, ..., ai). There are two cases

to consider, depending on the relationship between the right endpoints of xi and xj :

Case 1: r(xi) < r(xj). Note that in this case xj and yi are adjacent. Define P ∗j and

P ∗i as follows:

• P ∗j = P 1
j ∪ P 2

i ∪ tj .
• P ∗i = P 1

i ∪ U∗ ∪ P 2
j , where U∗ is a path through U from a vertex adjacent to xi to

one adjacent to yj .
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Figure 8.1: An illustration of Case 1, showing the paths before and after our rearrange-

ment. The “second halves” of Pi and Pj swap with each other, and vertices of U are used

to maintain connectivity. (In this figure U is just a single vertex, but the principle holds

when U is a connected subgraph.) After this change, all paths extend past the point p.

Now, since xj is adjacent to yi and ai is adjacent to tj at p, P ∗j is a connected path.

Similarly since U is adjacent to xi and yj , P
∗
i is a connected path. Now let P∗ be the path

set formed by replacing Pi, Pj ∈ P with P ∗i , P
∗
j . (P1) holds since we partitioned Pj − tj

and Pi, meaning no vertex appears in both P ∗j and P ∗i . (P2) holds since si ∈ P 1
i ⊂ P ∗i

and sj ∈ P 1
j ⊂ P ∗j , and since Pi is unfinished and we only considered Pj − tj , we ensure

no vertex of T is placed on the wrong path. Thus P∗ is a special path set. Since P ∗i ends

at either r(aj) and P ∗j ends at r(tj), all of which are further right than p, it follows that

P∗ contradicts the choice of P.
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Case 2: r(xj) < r(xi). Note that here xi is adjacent to yj . Define P ∗j and P ∗i as

follows:

• P ∗j = P 1
j ∪U∗ ∪P 2

i ∪ tj , where U∗ is a path through U from a vertex adjacent to xj

to one adjacent to yi.

• P ∗i = P 1
i ∪ P 2

j .
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Figure 8.2: Case 2 is similar to Case 1, except the free vertices are used in the other path.

Define P∗ as before. By an almost identical argument to the above, we find P∗ con-

tradicts the choice of P.

Lemma 8.21. Let G,Q,H and P be as in Lemma 8.13. Every vertex entirely after p is

in T .

Proof. By Lemma 8.15, there are no free vertices at point p. Now let u be the first

H-vertex by right endpoint entirely after p.

We claim u has no left-Q-neighbour. Otherwise, there is a left-Q-neighbour of u at p.

By Corollary 8.19 there is some blocking path Pj , and thus tj is at p. Now the left-Q-

neighbour of u is also a left-Q-neighbour of tj . However, tj also has a right-Q-neighbour

by Lemma 8.7, contradicting Lemma 8.3. Hence u has no left-Q-neighbour.

So u has k left-only-H-neighbours by Corollary 8.5. All of these are at p, by our choice

of u, so none of them are free vertices, by Lemma 8.15. Recall Pi is the path that ends at

p and ai is the last vertex of Pi. Then ai is not one of these k vertices, since p = r(ai).

Hence there is some path Pj such that two vertices of Pj are left-only-H-neighbours of u.

(In fact, there are at least two.) These two vertices are also at p by choice of u. Hence Pj is

a blocking path by Lemma 8.18. Thus tj is a left-only-H-neighbour of u. But then u must

also be a vertex of T , since these vertices are the last k− 1 vertices by right endpoint, and
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r(u) > r(tj). Then, if v is any vertex entirely after p, then r(v) > r(u) by the definition

of u, so v ∈ T by the same argument.

Finally, Lemma 8.22 through to Lemma 8.26 prove a series of results about the struc-

ture of the free components of G. Again, these results will help with recolouring in

Section 8.4.

Lemma 8.22. Let G,Q,H and P be as in Lemma 8.13. If U is a free component and Pj is

a blocking path, then there exists a vertex w ∈ Pi∪Pj such that the connected part of the line

defined by U is entirely covered by the interval of w, that is, l(w) < l(U) < r(U) < r(w).

Proof. First suppose that U is not adjacent to tj and suppose this lemma does not hold.

Then, let xi, xj be vertices on Pi, Pj respectively at point l(U). Then since there is no

vertex w on either of these paths covering U , there is some other vertex yi, yj on Pi, Pj− tj
respectively at r(U). This contradicts Lemma 8.20.

Alternatively, suppose that U is adjacent to tj . First we claim U is entirely left of p.

Since no vertex of T is free, U cannot be entirely after p by Lemma 8.21, and U cannot

be at p by Lemma 8.15. Thus U is entirely to the left of p.

So tj is at r(U) since tj is at p. Then if aj is the penultimate vertex on Pj , then aj is

also at p by Corollary 8.19. Since aj < tj , aj is at r(U). Hence if aj does not cover U ,

there is some other vertex of Pj at l(U). But then U is adjacent to two vertices of Pj − tj ,
and by Lemma 8.20, U is adjacent to only one vertex of Pi, which must cover U .

Now, we generalise our definition of left-Q-neighbours and right-Q-neighbours to free

components—a free component U has a left-Q-neighbour if there is a vertex in Q whose

left interval intersects U . Similarly we define right-Q-neighbour of U .

Corollary 8.23. Let G,Q,H and P be as in Lemma 8.13. A free component U does not

have both a left-Q-neighbour and a right-Q-neighbour.

Proof. From Lemma 8.22 and Corollary 8.19, U is covered by some vertex w. Since w

does not have both left- and right-Q-neighbours by Lemma 8.3, neither does U .

Lemma 8.24. Let G,Q,H and P be as in Lemma 8.13. A free vertex u is adjacent to at

most three vertices from any path Pf .

Proof. Say u is adjacent to r ≥ 4 vertices of Pf . Label them x1, ..., xr in their order in

Pf . Then consider the path P ∗f with x2, ..., xr−1 replaced by u. This path still ends at the

same place, but since we have removed at least two vertices and replaced them with only

one, the number of vertices on the path has decreased. Thus if P∗ is P with Pf replaced

by P ∗f , then P∗ contradicts condition (C2) in the choice of P.
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Lemma 8.25. Let G,Q,H and P be as in Lemma 8.13. If a free vertex u is adjacent to

distinct vertices x, y, z ∈ Pf for some Pf , where x, y, z is the order of the vertices in the

path, then x and y are both at l(u).

Proof. Some vertex in Pf is at l(u) and some vertex in Pf is at r(u). Since u is adjacent

to only x, y, z ∈ Pf , then x is at l(u) and z is at r(u). If y is not at l(u), then construct

P ∗f from Pf by replacing y with u. Now P ∗f is still a path and it ends at the same place

as before, but l(u) < l(y), contradicting (C3) in the choice of P.

Lemma 8.26. Let G,Q,H and P be as in Lemma 8.13. A free component U has a

right-Q-neighbour.

Proof. Let u be the vertex of U such that r(u) = r(U). The free component U has a

right-Q-neighbour if and only if u has a right-Q-neighbour, so suppose u does not. Thus

by Lemma 8.4 u has k right-only-H-neighbours. By our choice of u, there are no free

vertices other than u at r(u). Hence all of these k vertices are path vertices.

We claim that for each Pf , there is at most one vertex of Pf which is a right-only-H-

neighbour of u. By Lemma 8.24, |N(u) ∩ Pf | ≤ 3. If |N(u) ∩ Pf | = 1, then this vertex

must be at l(u) and r(u), so it is not a right-only-H-neighbour. If |N(u) ∩ Pf | = 2, then

one of these two vertices is at l(u), so there is at most one right-only-H-neighbour of u

in Pf . Finally |N(u) ∩ Pf | = 3, then by Lemma 8.25, two of these vertices are at l(u), so

again Pf contributes at most one right-only-H-neighbour of u.

However, there are only (k−1) paths, and each path contributes at most one right-only-

H-vertex, meaning together there are at most (k−1) vertices, which is a contradiction.

All of these lemmas together give enough of an idea of the structure of G, forcing

enough non-adjacency amongst the vertices to allow us to determine a colouring of G with

less than χ(G) colours.

8.4 Colouring G

Given all the facts we have proven about our graph, we will now show how to colour G

with less that χ(G) = L(G) + k colours, proving that there are no counterexamples. We

will colour the graph in three parts.

First, we colour the clique Q with L colours, such that the vertex qi is coloured i.

Then, we colour the vertices of our special path set P and the remaining vertices of T .

Finally we colour the free vertices. Call this colouring c. For X ⊂ V (G), c(X) will denote

the set of colours assigned to the vertices in X.
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For f ∈ {1, . . . , k− 1}, define τf = Pf ∪ tf . If Pf is finished, then τf = Pf . If not, then

τf can be thought of as a path from sf to tf with the final edge missing. We shall now

colour all of the τf .

We want to define (k− 1) disjoint sets of colours Ek−1, . . . , E1, where Ef is the palette

for τf , that is, a set of colours we shall allow use of for τf . By doing this, we ensure that

there can be no monochromatic edge from a vertex in one path to a vertex in another—the

sets of colours we use for each path is different.

Recall that Sf = {q1, . . . qf} and Tf = {q′L, . . . q′L−(k−1)+f}. Let A := c(Sk−1) and

B := c(T1). Note that |A| = |B| = (k − 1).

Construct Ek−1, . . . , E1 in that order by the following algorithm. A colour in some Ef

is said to be used.

Say we are constructing Ef .

• Now f ∈ A. If f ∈ B, then set Ef = {f, αf}, where αf is a new colour. Say Ef has

Type 1.

Otherwise f /∈ B. Then select a colour from c(Tf ) that has not been used before by any

palette, and call it bf . (In Lemma 8.27 below, we prove that this is always possible.) Since

Tf ⊆ T1, we have bf ∈ B.

• If bf ∈ A, then set Ef = {bf , αf}, where αf is a new colour. Say Ef has Type 2.

• Finally, if f /∈ B and bf /∈ A, then let Ef = {f, αf , bf}, where αf is a new colour.

Say Ef has Type 3.

We have used (k − 1) new colours α1, . . . , αk−1. However, we need to ensure that the

above algorithm constructs well-defined sets of distinct colours.

Lemma 8.27. Let G be the vertex-minimum counterexample to Theorem 1.12, let Q be

the set of vertices at a point of maximum load q and let H := G −Q. Let P be a special

path set chosen with respect to (C1),(C2) and (C3). It is possible to construct a set of

palettes as described above, and these palettes are pairwise disjoint.

Proof. It is sufficient to prove the following stronger statement by induction: For all

f ∈ {(k − 1), . . . 1}, the sets Ek−1, . . . , Ef are well-defined and pairwise disjoint, and
k−1⋃
j=f

Ej contains (k − f) colours in B, and {1, . . . , f − 1} ∩ (
k−1⋃
j=f

Ej) = ∅.

First we show it is possible to construct Ek−1, the base case:

• Note that (k − 1) ∈ A. If (k − 1) ∈ B, then Ek−1 = {(k − 1), αk−1}. So far we have

used one colour from B, and we have not used 1, . . . , (k − 2).
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If (k − 1) /∈ B, then the algorithm selects a colour bk−1 from c(Tk−1) = {c(q′L)} that has

not been used before—since we have not used any colours yet, this is fine.

• If bk−1 ∈ A, then Ek−1 = {bk−1, αk−1}. So far we have used one colour from B.

The vertex q′L cannot be in Sk−1 and Tk−1 by Corollary 8.11. Since bk−1 ∈ c(Tk−1),
bk−1 /∈ c(Sk−1) and we have not used 1, . . . , (k − 2).

• If bk−1 /∈ A, then Ek−1 = {k − 1, αk−1, bk−1}. So, again, we have used one colour

from B, and we have not used 1, . . . , (k − 2).

Now, since we can find bk−1 if it is required, Ek−1 is well-defined, and since we have only

defined one palette, all defined palettes are disjoint trivially. Also note that we have used

one colour from B and we have not used 1, . . . , (k − 2), satisfying our other requirements.

Now, by induction, say we have constructed Ek−1, . . . Ef+1, and that we have used

(k − f − 1) colours from B and we have not used 1, . . . , f . We show it is possible to

construct Ef as required:

• If f ∈ B, then Ef = {f, αf}. Hence we use one more colour from B, and 1, . . . , (f−1)

remain unused.

If f /∈ B, then the algorithm selects an unused colour bf from the set c(Tf ) =

{c(q′L), . . . , c(q′L−(k−1)+f )}. There are (k − f) colours in this set, and they are all in

B. However, we have only used (k − f − 1) colours in B. Hence since c(Tf ) ⊆ B, there is

at least one unused colour bf ∈ c(Tf ).

• If bf ∈ A, then Ef = {bf , αf}. Hence we use one more colour from B, and 1, . . . , (f−
1) remain unused, since bf /∈ c(Sf ) by Corollary 8.11, similar to the base case.

• If bf /∈ A, then Ef = {f, αf , bf}. So, again, we have used one more colour from B
and 1, . . . , (f − 1) all remain unused.

Thus Ef is well-defined. Since 1, . . . , f are not used in Ek−1, . . . , Ef+1, and bf was chosen

such that it had not been used, all defined palettes are pairwise disjoint. Also, 1, . . . , (f−1)

remain unused and only k− f colours from B have been used, so our induction holds.

Now we have enough to colour G with only less than χ(G) colours and obtain our

contradiction.

Theorem 8.28. Let G be a vertex-minimum counterexample to Theorem 1.12. Then G

can be coloured with L+ k − 1 = χ(G)− 1 colours.

Proof. Recall that we can colour Q with L colours such that c(qf ) = f . All that remains

to do is to colour τf for f ∈ {1, . . . , k − 1} and the free components.
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Firstly we colour τk−1, ..., τ1 using the sets Ek−1, ..., E1 we constructed in Lemma 8.27.

We claim we can colour each τf with the colours of Ef without creating a monochromatic

edge.

First note that since the colours of the palettes are pairwise disjoint, there will be no

monochromatic edge between a vertex of τf and τg for f 6= g, and since the paths are

induced, there will be no monochromatic edge inside τf as long as we ensure there are no

monochromatic edges between consecutive vertices on τf . The only thing to be careful of

is monochromatic edges between τf and Q.

Say Ef has Type 1. Note we can use αf for any vertex of τf since it is a new colour,

that is, a colour not used by Q. We now show that f can be used for any vertex other than

tf . Since f ∈ c(Sf ), the left interval of the vertex qf does not reach l(sf ) by Lemma 8.10,

and since f ∈ B, the right interval of qf does not reach r(t1). Since there is only one

vertex of T in τf , qf intersects only one vertex of this set. Thus, τf can be coloured by

assigning tf the colour αf , and alternating between f and αf from right to left along the

path.

Say Ef has Type 2. This case is very similar to the previous one; αf is available for

any vertex, and bf is available for any vertex other than sf , by the mirror of the previous

argument. Colour sf by αf and alternate bf and αf along the rest of the path from left

to right.

Say Ef has Type 3. Partition τf into two subpaths τ1f , the vertices of τf without qf

as a right-Q-neighbour, and τ2f , the remaining vertices of τf that do have qf as a right-Q-

neighbour. Now the vertices of τ1f can all use either αf or f , since they do not intersect

the right interval of qf by definition, and they do not intersect the left interval of qf by

Lemma 8.10. Since the vertices of τ2f have a right-Q-neighbour they do not have a left-Q-

neighbour by Lemma 8.3. Hence none of these vertices are adjacent to the left interval of

the vertex of Q coloured bf , and since bf ∈ c(Tf ), none are adjacent to the right interval

of this Q-vertex by Lemma 8.10. Hence we can use bf or αf for any vertex of τ2f . So

colour τ1f such that the last vertex has colour f , that is, colour it f and alternate αf , f

back towards sf , and colour the first vertex of τ2f by αf and alternate bf , αf from left to

right along τ2f .

Hence we can colour each τf as required. So far we have used L + k − 1 colours. We

need to colour the rest of the graph without using any new colours. Only the free vertices

remain. Let U be a free component. Then we claim we can colour U with the existing

colours.

By Lemma 8.26, U has a right-Q-neighbour, and by Corollary 8.23 it has no left-Q-

neighbour. We shall colour the vertices of U by traversing the component from right to
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left, and colouring a vertex u when we reach its right endpoint, with any available colour.

It suffices to show that when we come to colour u that one of the L + k − 1 colours is

not assigned to a vertex adjacent to u. Since U has no left-Q-neighbour, neither does u.

Thus, if there is a Q-vertex adjacent to u, it is at r(u). Similarly, by the order in which

we colour the free vertices, any coloured free vertex in the neighbourhood of u is at r(u).

So if a colour d appears in the neighbourhood of u but not on a vertex at r(u), then it

must appear on a path vertex.

We claim that for a path Pf , there is at most one colour on a vertex in Pf ∩ N(u)

that is not at r(u). For each path Pf , there is at least one vertex of that path at r(u), so

there is at least one colour of c(Pf ∩ N(u)) at r(u). Hence, if |c(Pf ∩ N(u))| ≤ 2, there

is at most one colour of c(Pf ∩ N(u)) not at r(u), as required. Since Pf ⊆ τf , and τf is

coloured with Ef , we have |c(Pf ∩ N(u))| ≤ |Ef |. Hence if |Ef | = 2 (that is, if Ef has

Type 1 or Type 2), our claim holds.

Otherwise, |Ef | = 3, and Ef has Type 3. When we coloured τf with three colours,

we actually 2-coloured each of the two subpaths of τf . Hence if N(u) only intersects

one subpath of τf , then |c(Pf ∩ N(u))| ≤ 2, and we get the same result as above. If

|c(Pf ∩ N(u))| = 3, then N(u) contains vertices from both subpaths. By Lemma 8.24,

|Pf ∩N(u)| ≤ 3, so |c(Pf ) ∩N(u)| = 3 and N(u) contains either one vertex from τ1f and

two from τ2f , or vice versa. In the first case, c(Pf ∩ N(u)) = {f, αf , bf}. Let the three

vertices of Pf ∩N(u) be x, y, z by their order in Pf . By Lemma 8.25, x and y are at l(u),

and z is at r(u). If y is also at r(u), then we have only one colour of this set not at r(u).

Otherwise, r(y) < r(u) and thus any right-Q-neighbour of y is a right-Q-neighbour of u.

Since y ∈ τ2f , y has qf ∈ Q as a right-Q-neighbour where c(qf ) = f . But then, f is at

r(u), so again there is only one colour of c(Pf ∩ N(u)) not at r(u). In the second case,

c(Pf ∩N(u)) = {αf , f, αf}, so |c(Pf ∩N(u))| = 2, and our claim holds.

Now, there are (k − 1) paths, and for each path there is at most one colour on that

path not at r(u). Since these are the only colours not at r(u), there are only (k−1) colours

adjacent to u that are not at r(u). There are at most (L − 1) colours at r(u) since L is

the maximum load. Thus there are at most (L− 1) + (k− 1) = L+ k− 2 colours adjacent

to u. We are colouring with L+ k− 1 colours, so there is always a colour free for u. Thus

our claim holds.

Thus, we can colour G with only L+ k − 1 colours, which contradicts χ(G) = L+ k.

This completes the proof of Theorem 1.12.
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8.5 Extensions

The question remains as to whether Theorem 1.12 can be improved, either by removing

the −1, and thus proving Hadwiger’s Conjecture for circular arc graphs when β(G) > 3,

or by removing the requirement on the cover number.

We believe that it should be possible to prove that had(G) ≥ χ(G) whenever G is

a circular arc graph with β(G) > 3, and that this should be able to be proven using

techniques similar to those found in this chapter. Note the following facts. A special path

set can be expanded to contain k paths rather than k−1 paths without too much trouble.

All of the important results about the nature of special path sets still hold if we make this

adjustment. However, there are some issues with the colouring arguments that need to

be fixed. For example, if we place a new colour in each palette E1, . . . , Ek, then there are

k new colours. Together with the L colours of Q, this give χ(G) colours in total, which

does not give the improvement we require. Our initial attempts to fix this issue involved

colouring one of the paths with only existing colours, possibly using the fact that at least

one of the paths is unfinished. If Pf is unfinished, then τf is a path with an edge missing,

which should be easier to colour than a normal path.

On the other hand, proving had(G) ≥ χ(G) when β(G) ≤ 3 is likely to be much harder.

First note that the assumption β(G) > 3 is used repeatedly in the proofs of this chapter,

and there is no obvious way to get similar results without this assumption. It is likely

that when β(G) ≤ 3, the constructed minor will need to contain two sets of paths, rather

than a clique and a single special path set. Note, however, that if β(G) = 1, then G

contains a dominating vertex, a vertex adjacent to all other vertices. A vertex minimum

counterexample does not contain such a vertex, since adding a dominating vertex increases

both the chromatic number and the Hadwiger number by 1. Thus removing such a vertex

lowers both parameters by 1, and gives a smaller counterexample. Thus we would only

need to prove the conjecture when β(G) ∈ {2, 3}.
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Chapter 9

Linkages in Interval Graphs

9.1 Introduction

Recall that there is some slight overlap in terminology between two different concepts

of “linked”. In this chapter, we shall not use the concept of linkedness presented in

Chapter 2, so there should be no confusion. Recall 2k distinct vertices s1, . . . , sk, t1, . . . , tk

can be linked if there exists a set of k pairwise vertex disjoint paths P1, . . . , Pk such that

Pi starts at si and ends at ti. The paths P1, . . . , Pk are called a linkage. For a graph G,

if |V (G)| ≥ 2k and if any 2j distinct vertices (where j ≤ k) can be linked, then we say

the graph G is k-linked . (Note that if any 2k distinct vertices can be linked, then so can

any 2j distinct vertices for j < k.) We call the vertices s1, . . . , sk sources and t1, . . . , tk

targets.

The power of a path, P kn , is the graph formed by taking the n-vertex path and adding

edges between any two vertices u, v where the distance d(u, v) ≤ k. That is, if we label the

vertices of the path 1, . . . , n, then there is an edge between i and j whenever |i− j| ≤ k.

We shall always label the vertices in this fashion, and we say vertices are left or right

of each other with respect to this labelling. It is clear that P kn is k-connected whenever

n > k. The graph P kn is the interval graph of {[i, i + k] : 1 ≤ i ≤ n}. (Given that no

interval is completely covered by another, P kn is a proper interval graph.)

The interval graphs are a subset of the chordal graphs. To see this, take a cycle of

length at least 4 and consider the intervals of this cycle in the real line. Let v be the

vertex with the leftmost right endpoint; v has two neighbours in the cycle, but they are

both at the right endpoint of v and this forces a triangle as an induced subgraph of the

cycle. Thus every cycle of length at least 4 has a chord. Recall the following linkage result

for chordal graphs.

Lemma 9.1 (Böhme et al. [9]). If G is a (2k − 1)-connected chordal graph, then G is

123
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k-linked.

We now provide an alternate proof of Lemma 9.1.

Proof. As discussed in Section 2.4, if G is a chordal graph, then it is possible to find a tree

decomposition T of G such that every bag of the tree decomposition is a clique. Since G is

(2k− 1)-connected, for any two adjacent bags X,Y of T , it follows that |X ∩ Y | ≥ 2k− 1,

since the set X ∩ Y is a cut-set. Similarly, any cut set must contain X ∩ Y for some pair

of adjacent bags X,Y ; otherwise it is possible to find a path in G between any pair of

vertices x, y by taking vertices along the path in T between a bag containing x and a bag

containing y.

Perform induction on k ≥ 1. The base case is clear since a 1-connected graph is 1-

linked. Now consider the case for general k. Given 2k distinct vertices s1, . . . , sk, t1, . . . , tk,

let G′ := G−{s2, . . . , sk, t2, . . . , tk}. Since G is (2k−1)-connected and only 2(k−1) = 2k−2

vertices have been deleted, the graph G′ is connected. Let P1 be an induced path from

s1 to t1 in G′. The path P1 is also an induced path from s1 to t1 in G which avoids

s2, . . . , sk, t2, . . . , tk. Consider G−P1. Since P1 is induced, it contains at most two vertices

in every bag of T , or else P1 contains a triangle. Hence G−P1 is (2k−3)-connected, since

deleting P1 deleted at most two vertices from X ∩ Y for any pair of adjacent bags X,Y .

Since 2k − 3 = 2(k − 1) − 1, the graph G − P1 is (k − 1)-linked by induction. Thus, let

P2, . . . , Pk be the linkage for s2, . . . , sk, t2, . . . , tk in G− P1. Thus the set P1, P2, . . . , Pk is

the required linkage for s1, . . . , sk, t1, . . . , tk in G.

We now show that Lemma 9.1 is tight, even for powers of a path. (Böhme et al. proved

a similar result, but not in this fashion.) Consider P 2k−2
3k−1 ; it is sufficient to show that this

graph is not k-linked. Let si = i and ti = 2k − 1 + i for 1 ≤ i ≤ k. Note that si is not

adjacent to ti for any choice of i. Thus each path from si to ti contains at least three

vertices. However, k pairwise vertex disjoint paths, each containing at least three vertices

requires a total of at least 3k vertices. Hence, P 2k−2
3k−1 is not k-linked.

This above example can be extended to powers of paths with n > 3k − 1 as long as

we ensure our choice of sources and targets are close to one another (that is, they induce

a subgraph that is a power of a path of length 3k − 1).

Before proving Theorem 1.13, we prove a more powerful result for the class of powers

of a path.



9.2. “SELECTION SORT” PATHS IN THE POWER OF A PATH 125

9.2 “Selection Sort” Paths in the Power of a Path

Consider the power of a path P k+rn . We desire to show this graph is something like k-

linked for a small integer r > 0. In order to do this, we need to restrict the sources and the

targets, otherwise this is impossible. First, given any source-target pair si, ti, we declare

that the vertex on the left will always be the source, and the vertex on the right will always

be the target. More drastically, we need to ensure that the minimum distance between

any source si and target tj is at least k
r . By ensuring that the sources and targets are “far

apart”, there is enough “room” to be able to organise the paths such that each reaches

the correct target. Also note that this restriction ensures that the example proving the

tightness of Lemma 9.1 is not an obstruction to this alternate result.

Lemma 9.2. Let s1, . . . , sk, t1, . . . , tk be distinct vertices in the graph P k+rn (with r > 0)

such that si is left of ti for all i, and such that the distance between any source and any

target in P k+rn is at least k
r . Then s1, . . . , sk, t1, . . . , tk can be linked.

Given the restrictions in Lemma 9.2, note the following. Say si is the rightmost source

and tj is the leftmost target. Now the distance between si and tj is at least k
r . (In fact,

that the distance between si and tj is at least k
r is sufficient to prove all other sources and

targets are far enough apart.) Given that P k+rn is k-connected, it is possible to take paths

starting at {s1, . . . , sk} − si and ending at the k − 1 vertices immediately left of si, that

do not use any vertex right of si. (This last part follows from the fact that we can ensure

these paths are actually paths in P kn , and the k consecutive vertices ending at si are a cut

set of P kn .)

s3
b b b b b b

s2

b b b b

s1
b b b b b b b b b b b

si
k − 1

Figure 9.1: It is sufficient to take paths from the sources to the k− 1 vertices immediately

left of si, and then take paths from those k vertices (that is, including si) to the correct

corresponding targets.

A similar fact holds concerning the vertices immediately right of tj . Thus, if we can

link the k vertices ending at si with the k vertices starting at tj (for any possible choice

of the k pairs), then this is sufficient to prove Lemma 9.2. So the following lemma is

sufficient.
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Lemma 9.3. Let n ≥ 2k, and let s1, . . . , sk be the first k vertices of the graph P k+rn (in any

order) and t1, . . . , tk be the last k vertices (again in any order). If r > 0 and the distance

between the rightmost source and the leftmost target is at least k
r , then s1, . . . , sk, t1, . . . , tk

can be linked.

We can actually go further than this. Partition the vertices of P k+rn into blocks of size

k, such that the first k vertices form the first block, the second k vertices the second, and

so on. Note that the first block contains exactly the sources; call this the source block,

and label it 0. Label the subsequent blocks consecutively. All vertices in the jth block

are distance j from the final source. Whenever n 6≡ 0 mod k, the targets will not all be

in the same block, and will be split over two consecutive blocks. Given that the distance

between sources and targets is at least dkr e, it follows that the first block that contains

targets will be labelled dkr e or higher. From the targets in the second target block take

the set of edges into the corresponding non-target vertices of the first target block. This

is possible given that the targets and corresponding non-targets are distance k in Pn. If

we construct the correct paths from the sources into the vertices of the first target block,

then those paths with the above edges added give the desired linkage.

Also note all vertices of the first target block are still at a distance of at least dkr e from

the sources. If the distance is greater than dkr e, then take a set of edges from each vertex

in the first target block to the corresponding vertex in the previous block. If we construct

a set of paths from the sources to the block before the first target block, then we can add

these edges to get the desired linkage. By doing this repeatedly, we can ensure we only

need paths from the source block to the block dkr e.
Finally note that since both sources and targets appear in any order, we can permute

the labels of the targets so that they appear in the obvious order (that is, t1 before t2

and so on), as long as we perform the corresponding permutation on the sources. Taken

together, this means it is sufficient to prove Lemma 9.4 in order to prove Lemma 9.2.

Lemma 9.4. Consider the graph P k+rn where r > 0 and n = dkr ek+k. Label the last k ver-

tices t1, . . . , tk, such that tk is the last vertex, tk−1 the second last and so on. Label the first

k vertices s1, . . . , sk. Regardless of the order of s1, . . . , sk, the vertices s1, . . . , sk, t1, . . . , tk

can be linked.

Proof. Recall that we have partitioned the vertices of P k+rn into dkr e+1 blocks of k vertices

each, labelled from 0 to dkr e. Each path from a source to a target will intersect each block

exactly once. Label each vertex of a block by one of p1, . . . , pk to denote which path it is

on. Label each source si with pi. As long as
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• the vertex labelled with pi in one block is adjacent to the vertex labelled pi in the

previous block, and

• each ti is labelled pi,

then the required linkage has been constructed.

Let 1 ≤ j ≤ dkr e. In the jth block, label the first min{jr, k} vertices by p1, . . . , pmin{jr,k}

in that order, and call this set of labels the first subset. When min{jr, k} = jr, we may

still have the labels pjr+1, . . . , pk to place. Place these remaining labels on the remaining

k−jr vertices of the jth block in the same order as the labels appear in the 0th block. Call

this the second subset. The final block is labelled dkr e, and so for this block all vertices are

labelled by the first subset, and so each ti is labelled by pi. Hence this labelling satisfies

the second bulleted requirement above.

It remains to check that the first requirement holds. Consider the jth block. It is easy

to see that the vertices labelled p1, . . . , p(j−1)r are adjacent to the equivalently labelled

vertices in the previous block. (In fact, this fact would hold even if the graph was P kn .)

The remaining labels may have appeared on the corresponding vertex in the previous

block, or on a vertex at most r vertices before the corresponding vertex, given the r new

labels in the first subset. However, in P k+rn each vertex is adjacent to k+ r vertices before

it in the ordering, so the first bulleted requirement holds. This proves the lemma.

We call these “selection sort” paths since if r = 1, then the labels in each block appear

to be undergoing selection sort—each block in sequence is another pass over the linked

list and another label is placed in the correct position. Finally at the last step, all labels

are in the correct position, and the sources are linked up to the correct targets. When

r > 1, this is equivalent to selection sort with more labels moved at every given step. This

means less steps are required. We need to ensure that the sources and targets are far

enough apart so that “selection sort” has the “time” (by which we mean, the space in the

vertex set) to run completely. Given that each vertex is adjacent to k+ r vertices after it

in the ordering, a label can only be moved up by at most r places, so this process cannot

obviously be improved. Because of this, Lemma 9.4 is best possible in the sense that if

r = 0 and the ordering of the sources is not simply s1, . . . , sk, then it is impossible to

link the sources and targets; as we try to build the paths from the sources to the targets,

sequential vertices in a given path must be corresponding vertices in sequential blocks, or

some other path cannot be extended. However, this means no kind of “rearrangement” is

possible, and as such the sources and the targets will not link up correctly. So we cannot

ensure k-connectivity gives even our weakened version of k-linked.

We discuss a use of this “selection sort” technique in Section 9.4.
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9.3 Improved Linkages in Interval Graphs

The result of Section 9.2 is of some interest, but it would be far more preferable to extend

Lemma 9.2 to a more general class of graphs. Here we extend a limited version of this

result to the class of interval graphs.

Theorem 1.13. Let G be a d3k2 e-connected interval graph, and let s1, . . . , sk, t1, . . . , tk be

2k pairwise distinct vertices, such that no source si and no target tj are adjacent, and

such that si is left of ti for all i. Then s1, . . . , sk, t1, . . . , tk can be linked.

Note that this is essentially Lemma 9.2 generalised for the interval graph when r = k
2 .

Many of the techniques used in the proof of Theorem 1.13 are similar to those used in

Chapter 8. Also note that since si and ti are not adjacent, the requirement that si is left

of ti is unambiguous.

First, we recall the following basic facts about an interval graph G (which are quite

similar to the basic facts about circular arc graphs). Given that every vertex of the

interval graph corresponds to an interval on the real line, we often treat the vertex and

its corresponding interval interchangeably. (Only in rare cases do we need to be more

explicit.) Thus every vertex v has a left endpoint denoted l(v) and a right endpoint denoted

r(v). By perturbing the endpoints of all the intervals, we can ensure that no point is an

endpoint (left or right) of more than one interval. Connected induced subgraphs also have

corresponding intervals on the real line (that is, the union of all the intervals corresponding

to vertices of the subgraph); hence if U is a connected induced subgraph we define l(U) and

r(U) to be its endpoints. If we consider all of the right endpoints of the vertices in G, define

the leftmost of these points to be the start point . Also define the rightmost left endpoint of

a vertex to be the final point . The minimum load `(G) is the minimum number of vertices

at any point between the start and final points. (We make this restriction, otherwise the

minimum load might be 0.) It is well known and easily seen that the minimum load is

equal to the connectivity of G.

Define a special path set P to be a set of paths P1, . . . , Pk in G that satisfy the following

properties.

(P1) P1, . . . , Pk are pairwise vertex-disjoint.

(P2) si ∈ Pi for all i, and tj /∈ Pi when j 6= i.

This is essentially identical to the definition of a special path set in Chapter 8, however

note that there are k (and not (k − 1)) paths in P. If ti ∈ Pi we say that Pi is finished,

otherwise it is unfinished. If all paths are finished, then we say P is itself finished, otherwise

it is unfinished. Let pi be the rightmost point of Pi, for all Pi.
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Obviously, if P is finished then it is a linkage, and Theorem 1.13 holds. Otherwise, we

can assume that every special path set is unfinished. Let X ⊆ {p1, . . . , pk} be the set of

right endpoints from unfinished paths, and let p be the leftmost point in X (note X 6= ∅).
Choose P so that

(C1) The point p, as defined above, is as far right as possible.

(C2) Subject to (C1), |V (P1) ∪ · · · ∪ V (Pk)| is minimised.

This choice of P (specifically the definition of p) is different than the choice of P in

Chapter 8. The definition of p is done this way since now we cannot assume that the

sources and the targets form cliques at the start and end of the interval respectively, as

was the case in Chapter 8. Also, the requirement (C3) is no longer required since it was

previously included to assist with colouring, which is not relevant here.

We will prove a contradiction by showing that P can be modified so that p is moved

further to the right, which gives a better choice of P.

Say Pi is the unfinished path such that pi = p, and say Pj is a path (finished or

unfinished) such that pj > p. If replace Pi with a path that is either finished, or unfinished

with a right endpoint further right than p, then p itself has been moved further right. (It

is possible p may no longer refer to the same pi, but the point it refers to will be right of

the old p given that p is leftmost in X.) If, while replacing Pi with this new path, we also

replace Pj with another shorter path, then as long as the right endpoint of the new Pj is

right of the original p, the new p is still further right than the old p. This follows even if

Pj has gone from finished to unfinished. This means we can replace Pi (and perhaps Pj)

in a way that is essentially identical to Chapter 8 in order to construct a better choice of

P. As a result, for many of our basic results we shall simply cite the appropriate previous

result.

Lemma 9.5. Let G be a d3k2 e-connected interval graph, and let s1, . . . , sk, t1, . . . , tk be 2k

distinct vertices, such that no source si and no target tj are adjacent, and such that si

is left of ti for all i. Let P be the special path set chosen with respect to (C1) and (C2).

Then every Pi ∈ P is an induced path, and no vertex of Pi other than si or ti is covered

by any other vertex of Pi.

Proof. This follows from Lemma 8.13. However note a slight weakening—it is possible

that the source or the target on Pi is covered by another vertex. This is because si and ti

are not necessarily at the start and end of the interval.

As before, a vertex of G that is in no path of P and is not a target is called a free

vertex .
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Lemma 9.6. Let G, s1, . . . , sk, t1, . . . tk, and P be as in Lemma 9.5. Let Pi be the unfin-

ished path such that pi = p. Then there is neither a free vertex nor the vertex ti at p, and

as such ti is right of p.

Proof. The first part of this lemma follows from Lemma 8.15. The second part follows

from the self-evident fact that the unfinished path Pi is not adjacent to ti at any point,

and from the relative positions of si and ti on the real line.

By Lemma 9.5, every path Pj of P is induced, so it follows that at any point on the

real line at most two intervals in Pj are present. If a path Pj contains two vertices at a

point r, we say Pj appears twice at point r. If Pi is the path such that pi = p, then Pi

does not appear twice at point p, since p is the right endpoint of an end vertex of the Pi.

Lemma 9.7. Let G, s1, . . . , sk, t1, . . . tk, and P be as in Lemma 9.5. If Pj appears twice

at point p, then one of the two vertices of Pj at p is the vertex tj.

Proof. This follows from Lemma 8.18.

Now, consider the point p + ε, the point just after p but before the left endpoint of

any other vertex. At p + ε there are at least d3k2 e vertices, since p + ε is left of l(ti) by

Lemma 9.6 and thus left of the final point. Hence at p itself there are at least d3k2 e + 1

vertices. By Lemmas 9.6 and 9.7, all of the vertices at p are on paths of P, and any

path that appears twice at point p includes a target vertex. There must be dk2e+ 1 paths

appearing twice at point p, otherwise there are insufficient vertices at p. Hence there is at

least one target at p, and so no source at p.

If Pi is the unfinished path such that p = pi, then Pi contains at least two vertices

since the vertex at p is not si. Let yi denote the rightmost vertex of Pi such that no target

at p is also at l(yi). We show that such a vertex is well-defined. If v is the vertex of Pi

adjacent to si, then either l(v) is inside si, or it is left of l(si). In either case, any target

at both p and l(v) must be adjacent to si, contradicting our assumption about G. Hence

there exists some vertex of Pi such that there is no target at both its left endpoint and at

p, and so yi is well-defined. It also follows that yi 6= si, so let xi denote the neighbour of

yi in Pi that is before yi in the path.

Recall that a maximal connected induced subgraph of G containing only free vertices,

is called a free component . Denote the free component at l(yi) by U , and say U = ∅ if

there is no such free component. We define the reverse point q to be l(U) if U 6= ∅, or

l(yi) if U = ∅. It is possible that the reverse point is left of the start point; if it is not, we

say it has type 1 and if it is we say it has type 2. When q has type 1, we have a situation

similar to Lemma 8.20, but when q has type 2 our proof is rather different.
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Lemma 9.8. Let G, s1, . . . , sk, t1, . . . tk, and P be as in Lemma 9.5. Let q be the reverse

point. Then q does not have type 1.

Proof. Since q is right of the start point and q is the endpoint of some vertex, it follows

that there are at least d3k2 e + 1 vertices at q (for the same reason there are at least that

many at p). By the maximality of U , at most one of these vertices is a free vertex, so it

follows that at least dk2e paths of P appear twice at q. Given that dk2e + 1 paths of P
appear twice at p, it follows that some path Pj appears twice at q and at p. Let Pi be the

path such that p = pi; it follows i 6= j, since Pi does not appear twice at point p. Denote

the vertices of Pj at q by aj , bj such that r(aj) < r(bj). Denote the vertices of Pj at p

by cj , tj such that r(cj) < r(tj). It is possible that bj = cj , but otherwise aj , bj , cj , tj are

pairwise disjoint and r(bj) < r(cj). This follows since there are no targets at both q and

p, by choice of yi and since q ≤ l(yi) < p.

Given this, the path Pj has the form (sj , . . . , aj , bj , . . . , cj , tj). Denote the vertex of

Pi at p by ai. Then Pi has the form (si, . . . , xi, yi, . . . , ai). It is possible that si = xi

and/or yi = ai. Partition these paths into the following subpaths: P 1
j := (sj , . . . , aj),

P 2
j := (bj , . . . , cj), P

3
j := (tj) and P 1

i := (si, . . . , xi), P
2
i := (yi, . . . , ai).

Consider P 1
j ∪ U ∪ P 2

i ∪ P 3
j . We can replace Pj with this path which travels from sj

to tj , however, we will also need to replace Pi, otherwise P 2
i is contained into two paths

of P. Fortunately, the set P 2
j is not longer being used in Pj , and this subpath covers the

real line from q to p, and as such covers l(yi), a point which contains xi. Hence replace Pi

with P 1
i ∪ P 2

j .

q p

si
b b b b b

xi

yi

b b b
ai

U

sj
b b b

aj

bj

b b b b b b

cj

tj

Pi

Pj

q p

si b b b b b
xi

yi

b b b b b b

aiUsj
b b b

aj

bj

b b b b

cj

tj

Pi

Pj

Figure 9.2: The subpath P 2
j is placed into Pi, and P 2

i is placed into Pj . It may be necessary

to place vertices of U into Pj to maintain connectivity. Note the similarity to Figure 8.2.

The right end of each path remains unchanged except for Pi, and pi ≥ r(ci) > p. Hence

p has been moved further right, contradicting our choice of P.
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In the proof of Lemma 9.8, we essentially “swap” the middle sections of Pi and Pj in

such a way that Pj is still finished, but Pi is now able to travel further right. This is the

key idea in the proof of Theorem 1.13. However, we also must deal with a few other cases.

Lemma 9.9. Let G, s1, . . . , sk, t1, . . . tk, and P be as in Lemma 9.5. Let q be the reverse

point. Then q does not have type 2.

Proof. In order to prove this, we also define a second reverse point. Let Pi be the unfinished

path such that p = pi. Let the free component at r(xi) be denoted U ′ (and let U ′ = ∅ if

there is no such free component). Then let the second reverse point q′ := r(U ′) (or r(xi)

if U ′ = ∅). Since Pi does not appear twice at p and since there are no free vertices at p,

it follows that q′ < p. As with q in Lemma 9.8, there are dk2e paths appearing twice at q′,

and as such there exists a Pj that appears twice at q′ and p.

Let ai be the vertex of Pi at p and partition the path Pi as in Lemma 9.8: P 1
i :=

(si, . . . , xi) and P 2
i := (yi, . . . , ai). Given that q is left of the start point, it follows that

P 2
i ∪ U covers the entire real line from the start point to p. Hence, since Pj contains a

target at p, it follows that r(sj) < p and as such sj is adjacent to P 2
i ∪ U .

If P 1
i is adjacent to Pj − sj , then replace Pj with {sj} ∪ P 2

i ∪ U ∪ {tj} and Pi with

P 1
i ∪ (Pj−{sj , tj}). In this case p is further right, since the new Pi ends further right than

p due to Pj appearing twice at p.

p

si
b b b b b

xi

yi

b b b
ai

U

sj
b b b b b b b b b

tj

Pi

Pj

p

si
b b b b b

xi

yi
b b b b

aiU
sj

b b b b b b b b b

tj

Pi

Pj

Figure 9.3: Given that q is left of the start point, it is easy to place P 2
i ∪ U into Pj . This

leaves Pj−{sj , tj} available for Pi. When Pj− sj is adjacent to P 1
i , this is sufficient. Also

note the second reverse point is not used in this case.

However, it is possible that P 1
i is not adjacent to Pj−sj . This means that l(Pj−sj) >

r(xi), and since sj is at l(Pj − sj), it follows sj is adjacent to some vertex of P 2
i . Since

Pj appears twice at q′, the subpath Pj − sj is adjacent to P 1
i ∪U ′. Hence replace Pj with
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{sj} ∪P 2
i ∪ {tj} and replace Pi with P 1

i ∪U ′ ∪ (Pj −{sj , tj}). The point p has once again

been moved further right, contradicting our choice of P.

q′ p

si
b b b b b

xi

yi

b b b b
ai

U ′

sj
b b

tj

Pi

Pj

q′ p

si
b b b b b

xi

yi
b b b b

ai

U ′

sj

b b

tj

Pi

Pj

Figure 9.4: Using the second reverse point, it is possible to place P 2
i into Pj and then

Pj − {sj , tj} into Pi, maintaining connectivity with U ′.

Given that reverse point q must exist and have either type 1 or type 2, Lemma 9.8 and

Lemma 9.9 are sufficient to prove that a finished P must exist. This proves Theorem 1.13.

The connectivity requirement in Theorem 1.13 is tight. Let k be even, and

consider G := P
3k
2
−1

n , where n = 2k + 3k
2 − 1. Label the vertices (in order)

s1, . . . , sk, a1, . . . , a 3k
2
−1, t k

2
+1, . . . , tk, t1, . . . , t k

2
. The graph G is not 3k

2 -connected, and no

si and tj are adjacent, so if we show s1, . . . , sk, t1, . . . , tk cannot be linked, then Theo-

rem 1.13 is tight.

Suppose for the sake of a contradiction there is a linkage P1, . . . , Pk. Each Pi in the

linkage contains si and ti, but all other vertices in Pi are labelled by some aj . Since no

source is adjacent to no target, each Pi contains at least three vertices.

Say there exists some aj adjacent to both si and ti where i ≤ k
2 . Now since aj is

adjacent to si, it follows that j ≤ k
2 + i − 1. Since aj is adjacent to ti, it follows that

j ≥ k
2 + i. So there is no such aj . As a result, each Pi contains four vertices when

i ≤ k
2 . Thus the linkage contains at least 3k2 + 4k2 vertices in total, but this is greater than

n = 2k+ 3k
2 − 1, the number of vertices in G. Hence s1, . . . , sk, t1, . . . , tk cannot be linked.

Theorem 1.13 is a restricted extension of Lemma 9.2 for the broader class of interval

graphs. We believe that it should be possible to extend the entire lemma, and as such

make the following conjecture.

Conjecture 9.10. Let s1, . . . , sk, t1, . . . , tk be 2k distinct vertices in (k + r)-connected

interval graph G (with r > 0), such that si is left of ti for all i, and such that the distance
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between any source and any target in G is at least k
r . Then s1, . . . , sk, t1, . . . , tk can be

linked.

Our motivation for Theorem 1.13 comes from Theorem 1.12. Recall that given a

circular arc graph, we can delete the vertices at a point and obtain an interval graph.

Constructing a linkage along this interval was a key step in trying to construct a complete

minor in our proof of Theorem 1.12. However, the requirement that source and target

vertices be non-adjacent (or even further apart) essentially forces the cover number of

the circular arc graph, β, to be large. (This is to say, if there is a small vertex cover

of the circular arc graph, then there is probably a short path between any source and

any target, depending on where we “cut” the circle.) As a result of this Conjecture 9.10,

while interesting, would not really assist in Chapter 8. Any attempt to prove Hadwiger’s

Conjecture for circular arc graphs when β is small will require some alternate approach.

Finally, it is also worth asking whether Theorem 1.13 can be extended to the more

general class of chordal graphs. Unfortunately, the answer to this question is no. We

provide a counterexample that is (2k − 2)-connected but not k-linked, even when sources

and targets are not adjacent. (This is essentially a more general example that Lemma 9.1

is tight.)

Given the connection between chordal graphs and treewidth as seen in Section 2.4 and

the proof of Lemma 9.1, we shall exhibit this graph as a tree decomposition. The vertices

of G are exactly the vertices that appear in at least one bag of the tree decomposition,

and E(G) contains all acceptable edges for the tree decomposition—if two vertices share

a bag, then they are adjacent. Recall that as long as every two adjacent bags in the tree

decomposition contain at least 2k− 2 vertices in common, then the chordal graph G that

arises from this tree decomposition is (2k − 2)-connected, since deleting any set of less

than 2k − 2 vertices leaves a vertex present in each pair of adjacent bags which is enough

to ensure connectivity.

Let the underlying tree T be the star with k leaves, such that each edge has been

subdivided k − 1 times. The vertices of G are as follows:

• sources s1, . . . , sk,

• targets t1, . . . , tk,

• a1, . . . , ak−1, called the a-vertices,

• bi1, . . . , bik for all 1 ≤ i ≤ k.

In the bag indexed by the centre node, which we label C, place the vertices

{s1, . . . , sk, a1, . . . , ak−1}. Denote the path in T from the centre node to the ith leaf as

the ith path. Let Bi denote the bag adjacent to C in the ith path. The bag Bi contains
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all vertices of C except si, and also includes vertex bi1. For each subsequent bag on the

ith path, remove a source vertex and add a vertex from bi1, . . . , b
i
k, until the final bag on

the ith path contains {a1, . . . , ak−1, bi1, . . . , bik}. To this final bag, also add ti. Given the

way we have constructed these bags, it is clear that adjacent bags contain at least 2k − 2

vertices in common. Hence the chordal graph that arises from this tree decomposition is

(2k − 2)-connected.

However, we cannot link each si to ti in this graph G. Note that si does not appear

in any bag along the ith path, and ti only appears at the end of the ith path. Thus any

path from si to ti contains a vertex in C ∩Bi = {s1, . . . , sk, a1, . . . , ak−1}−{si}, since this

set of vertices separates the graph such that si and ti are in different components. Given

that this path cannot use another source, it must contain an a-vertex. But there are k

paths, and only (k − 1) a-vertices, and as such we cannot link these sources and targets,

even though they are not adjacent.

9.4 Hadwiger Number of the Power of a Cycle

Recall the kth-power of a cycle Ckn is the graph formed by taking a cycle and adding edges

between any two vertices at distance at most k.

In Chapter 1, we proved a lower bound on had(Ckn) when n ≡ 1 mod k and n ≥ 2k+1.

As promised, we prove a lower bound that is independent of the modulus of n, using the

results of Section 9.2.

Lemma 9.11. If n ≥ k2 + 2k, then had(Ckn) ≥ 2k.

Proof. Label the vertices of the power of the cycle 1, . . . , n clockwise. The graph Ckn −
{1, . . . , k+1} is isomorphic to the power of a path P kn−k−1. Given Lemma 9.4, we construct

a set of k − 1 paths in P kn−k−1 (and thus in Ckn) from k + 2, . . . , 2k to n − k + 2, . . . , n

respectively. These paths form k − 1 branch sets of the K2k model. (It is clear that

these branch sets are adjacent to each other.) The remaining k + 1 branch sets are

singleton branch sets {{1, }, . . . , {k+1}}. (Note these vertices form a clique.) Each vertex

i ∈ 1, . . . , k is adjacent to {n− k+ i, . . . , n} and {k+ 2, . . . , k+ i}, and as such is adjacent

to every one of the paths. Finally, the vertex k+1 is adjacent to k+2, . . . , 2k+1 and so is

also adjacent to each one of the paths. This gives a complete model with k+1+k−1 = 2k

branch sets, as required.

Note that the above minor is very similar to the minor we attempted to construct in

Chapter 8, but much stronger given what we know about the power of a cycle.
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Recall we proved in Section 1.4 that pw(Ckn) ≤ 2k. For large n, this means

2k − 1 ≤ had(Ckn)− 1 ≤ tw(Ckn) ≤ pw(Ckn) ≤ 2k.

Thus Lemma 9.11 is almost best possible.



Bibliography

[1] Albertson, M. O., Chappell, G. G., Kierstead, H. A., Kündgen, A., and Ramamurthi,

R. (2004). Coloring with no 2-colored P4’s. Electron. J. Combin., 11 #R26.

[2] Appel, K. and Haken, W. (1976). A proof of the four color theorem. Discrete Math.,

16(2), 179–180.

[3] Atserias, A. (2008). On digraph coloring problems and treewidth duality. European

J. Combin., 29(4), 796–820.

[4] Belkale, N. and Chandran, L. S. (2009). Hadwiger’s conjecture for proper circular

arc graphs. European J. Combin., 30(4), 946–956.

[5] Bellenbaum, P. and Diestel, R. (2002). Two short proofs concerning tree-

decompositions. Combin. Probab. Comput., 11(6), 541–547.

[6] Bodlaender, H. L. (1993). A tourist guide through treewidth. Acta Cybernet., 11(1-

2), 1–21.

[7] Bodlaender, H. L. (1998). A partial k-arboretum of graphs with bounded treewidth.

Theoret. Comput. Sci., 209(1-2), 1–45.

[8] Bodlaender, H. L., Grigoriev, A., and Koster, A. M. C. A. (2008). Treewidth lower

bounds with brambles. Algorithmica, 51(1), 81–98.
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intersecting families of sets. SIAM. J. Discrete Math., 26(4), 1657–1669.

[37] Gerbner, D., Lemons, N., Palmer, C., Pálvölgyi, D., Patkós, B., and Szécsi, V.
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Erdős-Ko-Rado theorem. Electron. J. Combin., 21(1), P1.48.

[45] Harvey, D. J. and Wood, D. R. (2014b). Treewidth of the line graph of a complete

graph. J. Graph Theory (to appear).

[46] Jensen, T. R. and Toft, B. (1995). Graph Coloring Problems. John Wiley.

[47] Jung, H. A. (1970). Eine Verallgemeinerung des n-fachen Zusammenhangs für

Graphen. Math. Ann., 187, 95–103.

[48] Karapetjan, I. A. (1980). Coloring of arc graphs. Akad. Nauk Armyan. SSR Dokl.,

70(5), 306–311.

[49] Katona, G. O. H. (1968). A theorem of finite sets. In Theory of Graphs (Proc.

Colloq., Tihany, 1966), pages 187–207. Academic Press, New York.

[50] Katona, G. O. H. (1972). A simple proof of the Erdős-Chao Ko-Rado theorem. J.
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a:b-colourable, 43

b-fold chromatic number, 43

fractional chromatic number, 44

bramble, 24

bramble number, 24

hitting set, 24

branch decomposition, 30

branchwidth, 31

Cartesian product, 34

Cartesian tree product number, 34

chordal graph, 25

circular arc graph, 13, 105

cover number, 13

H-vertices, 106

left/right-Q-neighbour, 107

maximum load, 13, 105

normal Helly circular arc graph, 15, 105

one vertex covers another, 106

palette, 117

proper circular arc graph, 15

Q-vertices, 106

left/right interval of Q-vertex, 106

small/large vertex, 106

special path set, 109

blocking path, 112

free component, 112

free vertex, 110

path appears twice at point r, 111

path vertex, 110

colex ordering, see colexicographic ordering

colexicographic ordering, 84

colour critical, 106

complete multipartite graph, 7, 51

cross-intersecting families, 83

fractional Hadwiger number, 41

graph parameter, 21

grid-like-minor of order t, 41

maximum order of a grid-like-minor, 41

H-model, 23

branch set, 23

Hadwiger number, 10

Helly property, 4

independent set, 9, 82

independence number, 9

intersection graph, 12

interval graph, 12

final point, 128

maximum load, 13

minimum load, 128

proper interval graph, 123

special path set, 128

free component, 130

free vertex, 129

path appears twice at point r, 130

reverse point, 130
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start point, 128

k-colouring, 10

chromatic number, 10

k-connected set, 39

externally k-connected set, 40

k-linked set, 36

linkedness, 36

k-set, 81

k-simplicial, 25

k-tree, 25

Kneser graph, 8, 81

lexicographic product, 7, 34

lexicographic tree product number, 34

line graph, 7, 45

base node, 75

complete graph

components labelled descendingly, 48

good pair, 48

complete multipartite graph

balanced colour class, 57

blue ordering of vertices, 67

exception graph, 58

good labelling, 52

good pair, 53

just-skew colour class, 58

rare configuration, 54

red ordering of vertices, 65

skew colour class, 58

line-bramble, 46

canonical line-bramble for v, 46

quasi-line graph, 7

linked, 15, 123

k-linked graph, 15, 123

linkage, 15, 123

source, 123

target, 123

minor, 1

minor-closed, 1

p-shadow, 84

path decomposition, 4, 45

pathwidth, 4, 45

ψn,k, 22

r-integral Hadwiger number, 41

S-function, 4

separator, 26

separation number, 26

tangle, 31

tangle number, 31

tied, 6, 21

polynomially tied, 6, 21

tree decomposition, 3

degree-3 tree decomposition, 74

normalised tree decomposition, 23

treewidth, 3

well-linked set, 38

externally-well-linked set, 38

well-linked number, 38


	Abstract
	Declaration
	Preface
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction and Literature Review
	Graph Minors
	Treewidth
	Hadwiger's Conjecture
	A Unifying Example

	I Treewidth
	Parameters Tied to Treewidth
	Introduction
	Basics
	Brambles
	k-Trees and Chordal Graphs
	Separators
	Branchwidth and Tangles
	Tree Products
	Linkedness
	Well-linked and k-Connected Sets
	Grid Minors
	Grid-like Minors
	Fractional Open Problems

	Treewidth of the Line Graph of a Complete Graph
	Introduction
	Line-Brambles and the Treewidth Duality Theorem
	Proof of Result

	Treewidth of the Line Graph of a Complete Multipartite Graph
	Introduction
	Line-Brambles of a Complete Multipartite Graph
	Path Decompositions

	Treewidth of General Line Graphs
	Introduction
	The General Lower Bound
	The General Upper Bound and Extensions

	Treewidth of the Kneser Graph and the Erdos-Ko-Rado Theorem
	Introduction
	Basic Definitions and Preliminaries
	Upper Bound for Treewidth
	Separators in the Kneser Graph
	Lower Bound for Treewidth when k=2
	A Weaker Lower Bound for Treewidth
	Open Questions


	II Graph Minors
	Finding a Minor Quickly in Graphs with High Average Degree
	Introduction
	Algorithm
	Correctness of Algorithm
	Time Complexity

	Hadwiger's Conjecture for Circular Arc Graphs
	Introduction
	Preliminaries
	Special Path Sets
	Colouring G
	Extensions

	Linkages in Interval Graphs
	Introduction
	``Selection Sort" Paths in the Power of a Path
	Improved Linkages in Interval Graphs
	Hadwiger Number of the Power of a Cycle

	Bibliography
	Index


