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ABSTRACT: We consider the problem of obtaining a class C, of max-
imum cardinality p, of subsets SI’ Sz, ... S_ of the set N of integers
i 25 »eoy B gtch'that: P

(1) No subset S, is contair.ed in any other subset Sj.

(1i) If T is a subset of N such that each pair of integers
r, s contained in T is also contained in some S of
C, then T itself is contained in at least one S of C,

The problem is formulated as one in linear graphs, various
properties resulting from the graphical formulation are investigated,
and a method of constructing a class of subsets is given and proved to
be maximum. The maximum cardinality p is shown to be 3K when
n= 3k, 2« 3K-1l whenn= 3k-1, and 4 - 3%-l whenn = 3k + 1.
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A PROBLEM OF MAXIMUM CONSISTENT SUBSETS

I. Introduction:

We consider a problem of obtaining a maximum number of subsets of a
set of objects such that the class of subsets satisfies certain conditions. |

A set formulation and a linear graph formulation of the problem are
given. Various properties resulting from the graphical formulation are
investigated; a method of constructing a class of subsets is given and proved to be
maximurm.

II. Set formulation of the problem:

Given the set N of integers { 1,2,...,n}.
A, Find a set C of subsets Sl' SZ’ p— Sp of N such that:
(i) No subset Si is contained in any other subset S_,
(ii) If S is a subset of N such that-cach pair of integers xk,yk contained
in S ie also contai-.ed in some Sy of C, then SES‘j for at least one
Sj in C.

Determine a set C of maximum cardinality p when n is fixed, and

find this maximum p as a function of n.

The problem arose in obtaining an upper bound on the number of subsets of
possibly equivalent states in a sequential machine in a state reduction
procedure in ""State Reduction for Sequential Machines, "' IBM Research Report,
RC-121, June 15, 1959, by R. E. Miller.
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B. Show how these maximum sets of type C may be formed.

[ Is the solution unique for each n up to permutations of integers?
D. Find the cardinalities of the Si in the maximum sets.

E. Do all S.1 have the same cardinality for given n?

Two examples are now given which give maximum sets for n = § and
n =7. This is accompiished by partitioning the set N into several parts and
forming all subsets S, having one and only one member in each pariition,
1

Example 1: Letn =8. The maximum number of sets is obtained by the

partitioning:
123/456/78
The 18 resulting triples are:
147 247 347
148 248 348
157 257 357
158 258 358
167 267 367
168 268 368
Example 2: For n =7, two sets which are maximum using partitioning are:
{a) 123/45/67 gives the triples:
146 246 346
147 247 347
156 256 356

157 257 357 and
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(b) 123/4567 gives the pairs:
14 24 34
15 25 35
16 26 36
 Bry 27 37
III. Linear Graph Formulation - The Maximum Complete Subgraph Problem:
A, Given n, form an n-node linear graph G having the largest number of

maximum complete subgraphs (MCSG's) imbedded in the n-node graph.
The ideas and conceptis used in this formulation will be developed in
Section IV of this paper. There the problem will be stated explicitly and a

solution found.

B. Show how the graph G is formed.

G Is the graph G unique up to a relabelling of the nodes for each n?
D. Find the number of nodes in each MCSG of G.

E. Does each MCSG of G contain the same rumber of nodes ?

IV. The Problem Solution:

The linear graph concepts of the problem are now defined. Vzrious
interesting properties are investigated, and a method for construc ting a solution

to the MCSG problem is given.

Definition 1: an n-node graph G is defined by:
(2) A set o(G) of n objects a, b, .. called nodes. and
(b) a set A(G) consisting of some unordered pairs (a.b) of distinct elements

a and b of o(G). Such unordered pairs wiil be called arcs. No distinction

will be made between an arc (a, b) and an arc (b, a).
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Definition 2: A graph H is said to be a subgraph of G if ¢(H)S ¢(G) and

X (H) C 1 (G).
Definition 3: A subgraph H of G is said to be normal if A(H) consists of every

pair (a, b) of A (G) such that a and b are both in o(H).
A normal subgraph H of G is uniquely determined from a specification

of G and the nodes of H,

Definition 4: Given any graph G, we construct its complementary graph G'
by letting #G') = o{G), and A(G') consist of all unordered pairs (a, b) of

elements of O'(G_'; which are not in A(G).

Propert}: 1: (Duality Property) For every theorem concerning graphas

there is a dual theorem conce rning complementary graphs.

Definition 5: A graph G is said to be complete if A(G) contains all unordered
Pairs which may be constructed from elements of ¢(G). A graph H is said to
be nodal if X (H) is empty.

The complementary graph to a nodal graph is complete and vice-versa.
Any set S of nodes uniquely determines a complete graph G and a nodal graph H

such that 4 (G) = S and o(H) = 8.
Property 2: If H is a normal subgraph of G, then H' is a normal subgraph of G'.
Property 3: Any complete subgraph of a graph G is a normal subgraph of G.

Definition 6: A complete subgraph of a graph G is said to be an MCSG

(maximum complete subgraph) if it is not a subgraph of any other complete
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subgraph of G.
Definition 7: A nodal normal subgraph of a graph G is said to be an MNSG

(maximum nodal normal subgraph) if it is not a subgraph of any other nodal

nrormal subgraph of G.

Property 4: If H is an MCSG of G, then H' is an MNSG of G' and vice-versa.
Definition 8: If G is an n-node graph for which n > 1, let v(G) be the number of

MCSG's of G and V'(G) the number of MNSG's of G.

Property 5: v "(G) = v(G').

Definition 9: Define the MCSG problem to consist of finding an n-node graph K

having as many MCSG's a8 any other n-node graph. In other words, for fixed n,

we wish to find K which will maximize » (K).

This statement is the sarne as that in Section III. In Section V we

show that it is also equivalent to the statement inSection II.

Definition 10: Given two graphe Gl and G2 whose nodes are distinct, let

G = Gl + G, (the cardinal sum) be the graph formed by letting 0(G) = G(Gl) + 0(G,)

and A (G) = R[G]) + X{Gz}.
This form of addition is associative and commutative,

Definition 11: The graph G is said to be disconnected if it may be expressed

as the sum of two subgraphs G1 and GZ'
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Theorem 1: IfG-= GI + GZ’ then Gl and (}'2 are normal subgraphs of G and

v (G) = u(GI} + v(Gz)

M(G) = (G v(a,)

Proof: Any MCSG of G must be a subgraph of either C—1 or G,. Any MCSG of
either CI-l or (‘}2 i8 an MCSG of G. Hence v(G) = v(Gli + v(GZ).

Let A be an MNSG of G. Then o (A) may be written as
o (A) = O'(Alj + G[Az), where G(Al} and a(AZ} lie in O’(Gl) and G(GZ} respectively.
Since A is nodal and normal in G, if we let Al and A, be the corresponding nodal
subgraphs of GI and GZ, they must also be normal in Gl and GZ. respectively,
To show that they are maximum we note that if nodal normal subgraphs Bl and B2
of Gl and C}‘2 can be found such that Al is a subgraph of Bl and AZ is a subgraph
of BZ’ then Bl + BZ forms a nodal normal subgraph of G, and A can only be
maximum if A = Bl + BZ' Since B, + B2 is unique we see that there is 2
one-to-one correspondence between pairs of MNSG's in Gl and G.?. and

MNSG's of G. Hence Y (G) = u’(Gl) p’(Gz).

Theorem 2: Each node of G is in at least one MCSG of G and in at least one MNSG .-

of G,
Proof: Each node of G is simultaneously a complete subgraph of G and a noda!

normal subgraph of G. Hence, it is a subgraph of at least one maximum subgraph

of each of these types.
Theorem 3: Each MCSG of G shares at most one node with each MNSG of G,
==

Proof: If nodes a and b are nodes of an MCSG then (a,b) is in A (G) while
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if they nre nodes of an MNSG, then (a, b) is not in A (G).

Theorem 4: If (a,b) 1s in A(G), then there is at least one MCSG of G

containing both a and b,

Proof: The two nodes a and b determine a two node complete subgraph of

G. It must be a subgraph of at least one MCSG,

We will now proceed with the development of several results which lead
to the following four solutions to the MCSG problem which are the only solutions
for n >1, up to a permutation of nodes.

Define Cj as the complete j-node graph and let k be a positive
integer, Then depending on n, the solution K will be shown later to be one of
the following.

{a) When n = 3k, the solution K] is such that K'l =k x C3. (The

cardinal sum of K complete three node subgraphs).

(b) When n = 3k - 1, the solution KZ is such that K'_‘ =l = 1) C3 ol e
o
(c) Whenn = 3k + 1, a solution K3 18 such that K'3 = {k - l]C3 - &Cz.
(d) When n = 3k + ], a second sulution K4 is such that K'4 = (k - 1)C3 + C4.

Define the number of MCSG's for each of these graphs as g(n). From

Theorem 1 and the formula

v '"(C.) = j, we obtain the g(n) values shown in Table I,

J
gn) = »(K)) =35 or
gln) = v'(K,) = e
gln) = v (K, = v (K, = 4037
Table 1

De ‘inition 12: Let f(n) be the maximum value of v (G) over all n-node graphs G.
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The solution K is thus any n-node graph for which v (K) = f(n).

, and K4 are the only

Our object is to show that f(n) = g(n), and that Kl' X,, KB

graphs with this property.

Definition 13: Let G be an n-node graph and let S be any subset of 0(G). The

graph G - S is then defined by the rules:
(a) 0{G-S8)=0(G)-S, and
(b) " A(G - S) consists of all pairs in X(G) which contain no members

of S.

Theorem 5: If H is any nodal normal subgraph of G and B is the set of nodes
b such that (a, b)) is in X (G) for some a_in o(H), then v'{G - [O(H) + B] } = the
J r N

number of MNSG's of G containing H.

Proof: Any MNSG, say J, of G which contains H also defines an MNSG of
G - [o(H) + B], namely J - o¢(H), since J can contain no nodes of B. Also
any MNSG of G - [0(H) + B],say R. can be used to define an MNSG of G,

namely R + H.

Definition 14: An n-node graph Pn where n> 1is called an open path if l{Pn}

contains just [al, aa), (a.z, a3), —_— (a'n-l‘ an]. An n-node graph Qn 18 called a
closed path if )Lan} contains the n-1 pairs listed above and & 8 al) as well, We
note that Pl = Ql = C] is an isolated node. Also, we have P2 = QZ = C2 , but

P =C._.
3#03 4

Definition 15: Define r(n) = v '{Pn) and s(n) = v "Q,).
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Theorem 6: Whenn >4, the function r(n) satisfies the difference equation

rint = rin - 2) + r(n - 3) and when n > 6, the function s(n) satisfies

1"

sin) = 3r(n - 3) - r(n - 5) and hence when n >5 it satisfies

s(n}) = s(n - 2) + s(n - 3).

| Proof: Consider Pn first. The number of MNSG's contair.ing ay is r(n - 2) by

Theoremn 5. Those not containing a).1 must contain az and the number of these

'8 r(n - 3) by Theorem 5. Hence r(n) = r(n - 2) + r(n - 3).

Next consider Qn' The number of MNSG's containing a, 18 r{n - 3)

by Theorem 5. The number containing a, 18 r(n - 3) and the number containing
[ a3 18 r(n - 3). The overlapping of these categories is characterized by just

those MNSG's containing both al and a,. They number r(n - 5) and since they

were (ounted twice we subtract them, giving s(n) = 3r(n - 3) - r(n - 5). The
restrictions on n result from the corresponding restriction in the definition

of v {G)

The difference equation s8(n} = s(n - 2} + s(n - 3) is a simple consequence

0! the Linearity of the two previous expressions. This derivation, however, is

T

only valid if n > 9 and to obtain it for n > 5 we must inspect individual cases.

These are piven in Table II.

P

Definition 16: Define the degree of a node a of a graph G as the number of pairs

in A IG) containing a.

Definitior. 17 Define the degree of a graph G as maximum degree over all nodes

R s PP PR

in g(G).
A grapn of degree two or less must be a cardinal sum of open and

tlosed paths The proof rests on conventional graph theory and will not be
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treated here. We note that K'I, K'z_. and K'3 are of degree two or less,

while K'4 is of degree three.

Theorem 7: If K is any n-node graph which is a solution to the MCSG problem

and K' is of degree greater than two, then f(n)<f(n - 1) + f(n - 4),

Proof: Let « be a node of K' of degr~a three or greater. Those MNSG's of K'
COntaining a are no more nume rous than f(n - 4) by Theorem 5. On the other
hand, 1f node a is not contained in a given MNSG, then this MNSG of K' ig also

an MNSG of K' - a. Such MNSG's can thus be no more numerous than f(n - 1).

Theorem 8. Given any integer m we can always find an integer p > m for which

all p-node solutions K will have complementary graphs K' of degree two or less,

roof.  Assume we can find K' of degree greater than two for all P > m.
. . j 1/3
Pick @so that f(j)< av’ for all j€m + 3, Take v=1 4<3 . Assume that
h-1 h-4 h
1)< ay? whenever m< j <h. Then f(h) < f(h - 1) + f(h -4 < av + Qv <av ,

by direct computation. Thus we obtain f(p) < avP for all P. We know, however,

k 1/3
3

from the g(n) values of TableI that f(3k) > g(3k) =3 = 3k

)7, so if we make

1/3
P lurge enough we obtain a contradiction by virtue of v < 3 - Therefore K!'

1s of degree no greater than two for some p >m.

Theorem 9: If K is a solution to the MCSG problem and K' is of degree two
or less, then K' is the cardinal sum of subgraphs containing no more than

three nodes.

Proof, We will show that when n >4 we always have r(n) < g(n) and s(n) < g(n).
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Hence by Theorem 1 if an open of closed path of more than th.ree nodes existed
in K', we could replace this path by either K‘l, KIZ' or K'3.

To show that r(n) < gi{n) and s(n) < g(n) we check in Table II that these
relationships hold when 4 <n< 8. Also when n> 4 we have g(n) = 3g(n-3) and when
n > 2 we have g(n) <2g(n-1), because of the formulas given for g(n) in Table L.
Hence for n > 4 we have r(n) = r(n-2) + r(n-3)<g(n-2) + g(n-3) < 3gin-3) = g(n).

by induction on n. The same argument alsc yields s(n) < g(n).

n r(n) 8(n) g(n)
1 1 1 =
2 2 2 2
3 2 3 3
4 3 2 4
5 4 5 6
6 5 5 9
7 7 7 12
8 9 10 18
Table 1i
Theorem 10: The solution referred to in Theorems 8 and 9 is unique up to -

permutation of nodes and is either Kl, KZ' or KS’ depending on p.

Proof: By Theorem 9 the K' of Theorem 8 is a sum of graphs of degree two
or less and hence is a sum of graphs containing no more than three nodes. If,
however, K' contains as many as three two node graphs which are termse in

the sum. then these three may be replaced by the sum of two three nede graphs

with the resulting increase in ¥ (K) by a factor of 9/8. Hence we can have no more
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than two two-node graphs.

Isolated nodes of K' may always be eliminated if p > 1, since
g(n) is a monotone increasing function of n, and if k isolated nodes were
present we would have f(n) = g{n - k). Therefore, the only possible

solutions are Kl’KZ‘ or K3 if K' is of degree two or less.

Theorem 11: Kl is a unique solution to the MCSG problem if n = 3k,

Procf:  Apply Theorem 8 and let m = 3k + 1. Thus p> 3k + 1. It follows
from Theorem 10 that the corresponding K is either Kl, Kz, or K3. Hence
K' may be written as a sum containing the term kC3. This part of the
disconnected graph K' must, in itself, define a solution to the MCSG problem

for n = 3k because of Theorem 1. Thig solution is unique since, from

Theorem 10, K is unique.
Theorem 12: K3 and K4 are the only solutions whenn = 3k + 1, k> 1.

Proof: Consider I"{4 first, withn = 3k + 1 and g(n) = 4 - 3k-l. If K!
for n = 3k + 1 is of degree greater than two, then from Theorem 7 we have
f(n)< f{n - 1) = f(n - 4). Using Theorem 11, this means f(n) £3k+ 3k-l =4. Sk-l.
Therefore, g(n) = f(n) and K4 is a solution if any solution K with K' of
degree greater than two exists. Since K3 is the only possible solution
K with K' of degree two or less. and since v (K3} =p (K4) we see that
K3 and K4 are both solytions.
No other solution K can occur for this n, since K' would have at

least one node a of degree three or greater. But f(n) = f(n - 1) + f(n - 4),

and therefore K - a = Kl‘ Therefore K would be K4-
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Theorem 13; KZ is a unique solution whenn = 3k - 1. k >1,
Proof:  Suppose a solution K exists for this n, which is not KZ_ Then K'

must be of degree greater than two by Theorem 10. This means that

k-2 k-3 k-3
fin)£f(n - 1)+ f(n -4) =4- 3 + 4.3 =16 -3 . However,

gin) =2- 3}(_l = 18- 3k—3 and since f(n) > g(n) we see that K' cannot be
of degree greater than two. Hence, KZ is the unique solution if k > 3,

It is also a unique solution if 1< k< 3, because K' in these cases is a term
L = 2

in the sum forming KI—. fo- larger k

V. Equivalence of the two formulations of the MCSG problem:

To show that the formulations of the MCSG problem given in
Sections IT and II] are equivalent, we must show an 1somorphism between
r.-vode yraphs and sets C satisfying the conditions (i) and (i) of Section IIA.
I Given an n-node graph G, we may set the elements of ¢ (G) in
one -to-one correspondence with the integers 1,2, ..., n.

We let p = v (G). If AI'AZ' - .Ap are the MCSG's of G, then
we let Sl' SZ' e Sp be the sets of integers corresponding to
g(Ay). ol(Ay), ..., J{Ap]-

Condition~ (i) and (1i) of Section I1A then follow from the

definition of MCSG and Theorem 4,

-

Faven o cet C sausfying (i) nd{11)of Section 11A. we con=truct

[x%]

an n-node graph G by the following rules.
Let g(G) = {a], az ..... an} , any set of n objects. Put

(al, ajl in A (G) if and only if there is an element Sk of C such

that i and j are both in Sk, Given any element S} of C we
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can then form a set of nodes Sk corresponding to it. From
the construction of A (G), there must be a complete subgraph
Ak of G such that O'(Ak} = Sk.
If .&k is any complete subgraph of G, then since the conditions
of Section IIA (i1) are satisfied for the set of integers corresponding
to the nodes of A, we see tha* ~ {."k} corresponds to an S such
that SESJ, for some Sj in C. Since set inclusion among
subsets S corresponds to the subgrzph relationsnip among
complete subgraphs of (.. we see that Section I12 (1) implies
that the complete subgraphs Ak corresponding to the sets

Sk must be maximum.




