METEOROLOGY OF SO CLOUD REGIMES Workshop on Southern Ocean clouds & and meteorology

Shannon Mason

Monash Weather and Climate

Nov 27 2012

S. Mason

Introduction

Cloud regimes

- Regime meteorology
- Vertical pressure
- Rotantial tamparatur
- Relative humidity
- Wind speed and direction
- Temperature advection
- Identifying case studies
- Future work

Characterising the meteorological context of the ISCCP cloud regimes.

- Looking at DJF: this is when TOA shortwave flux biases are greatest
- ► DJF is also best for ISCCP observations
- ERA-Interim data

Introduction

S. Mason

Introduction

Cloud regimes

- Regime meteorology ^{Vertical pressure}
- Potential temperature
- Relative humidity
- Wind speed and direction
- Temperature advection
- Identifying case studies
- Future work

ISCCP histograms

Sorted lowest to highest, thinnest to thickest:

- S1–S3: boundary layer clouds
- S4 & S5: mid-topped clouds
- S6 & S7: deep clouds
- ► S8: cirrus

S. Mason

Introduction

Cloud regimes

- Regime neteorology Vertical pressure velocity Potential temperat Relative humidity Wind speed and
- Temperature advection

Identifying case studies

Future work

Selected regimes:

- S1: prevalent marine BL clouds,
- S4 & S5: high latitudes, associated with TOA SW flux bias
- S6 & S7: fronts and extratropical cyclones

Outline

METEOROLOGY OF SO CLOUD REGIMES

S. Mason

Introduction

Cloud regimes

Regime meteorology

Vertical pressure velocity Potential temperatu

Wind speed and direction

Temperature advection

Identifying case studies

Future work

ntroduction Cloud regimes

2 Regime meteorology

Vertical pressure velocity Potential temperature Relative humidity Wind speed and direction Temperature advection

- 3 Identifying case studies
- 4 Future work

S. Mason

Introduction

Regime meteorology ^{Vertical pressure}

Potential temperature Relative humidity Wind speed and direction

Temperature advection

Identifying case studies

Future work

Introduction Cloud regimes

2 Regime meteorology Vertical pressure velocity Potential temperature Relative humidity Wind speed and direction Temperature advection

3 Identifying case studies

4 Future work

Outline

Google

Google

Google

Ň

Google

Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2012 Cnes/Spot Image Image U.S. Geological Survey Image PCC/NASA

\$3

Ň

Google

Google

Google

Google

Google

58

Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2012 Cnes/Spot Image Image U.S. Geological Survey Image PCC/NASA

54

55

56

57

\$3

Ň

51

52

Google

Google

Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2012 Cnes/Spot Image Image U.S. Geological Survey Image PCC/NASA

Google

Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2012 Cnes/Spot Image Image U.S. Geological Survey Image PCC/NASA

Google

Google

S. Mason

Introduction Cloud regimes

Regime meteorology

- Vertical pressurvelocity
- Potential temperature Relative humidity
- Wind speed and direction
- Temperature advection

Identifying case studies

Future work

S. Mason

Introduction

Regime meteorology

velocity

Relative humidity Wind speed and direction

Temperature advection

Identifying case studies

Future work

Introduction Cloud regimes

2 Regime meteorology Vertical pressure velocity Potential temperature Relative humidity Wind speed and direction Temperature advection

3 Identifying case studies

4 Future work

Outline

S. Mason

Introduction Cloud regimes

- Regime meteorology
- Vertical pressure velocity
- Potential temperature
- Relative humidity
- Wind speed and direction
- Temperature advection

Identifying case studies

Future work

Future work

- Case studies
- Organisation around extratropical cyclones
- Microphysics