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Single column model simulations using the UK Met Office Unified Model, as used
in the Australian Community Climate Earth System Simulator, are presented for
the Tropical Warm Pool–International Cloud Experiment (TWP–ICE) field study.
Two formulations for the representation of clouds are compared with the extensive
observations taken during the campaign, giving insight into the ability of the model
to simulate tropical cloud systems. During the active monsoon phase the modelled
cloud cover has a stronger dependence on relative humidity than the observations.
Observed ice cloud properties during the suppressed monsoon period show that the
ice water content is significantly underestimated in the simulations. The profiles of
modelled ice fall speeds are faster than those observed in the levels above 12 km,
implying that the observations have smaller sized particles in larger concentrations
than the models. Both simulations show similar errors in the diurnal cycle of
relative humidity during the active monsoon phase, suggesting that the error is
less sensitive to the choice of cloud scheme and rather is driven by the convection
scheme. However, during the times of suppressed convection the relative humidity
error is different between the simulations, with congestus convection drying the
environment too much, particularly in the prognostic cloud-scheme simulation.
This result shows that the choice of cloud scheme and the way that the cloud and
convection schemes interact plays a role in the temperature and moisture errors
during the suppressed monsoon phase, which will impact the three-dimensional
model simulations of tropical variability. Copyright c© 2011 Royal Meteorological
Society
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1. Introduction

The Tropical Warm Pool–International Cloud Experiment
(TWP–ICE) was a major field campaign held in the Darwin

area in northern Australia in January and February 2006
(May et al., 2008). One of the main aims of the experiment
was to provide boundary conditions and validation data for
modelling studies to help facilitate model development with
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a focus on tropical convection and clouds. The Darwin area
experiences a wide array of convective systems consisting
of active monsoon periods with typical maritime storms
and break periods with more coastal and continental
convection (Keenan and Carbone, 1992). The observations
collected during the TWP–ICE campaign allow for a detailed
evaluation of the ability of numerical models to simulate
the evolution of tropical cloud systems and their effect on
the environment. Global climate models (GCMs) must be
able to represent cloud-scale processes and the feedbacks
between clouds and the large-scale environment to ensure
accurate projections of climate change.

Single column models (SCM) are useful tools in
the evaluation and development of atmospheric physical
parametrizations in numerical models (e.g. Randall et al.,
1996). The SCM represents a vertical column in a GCM and
calculates the temporal evolution of the vertical profiles of
temperature and moisture as well as that of many subgrid-
scale variables, such as clouds and radiation. The advection
by the large-scale flow is prescribed and the errors produced
by the model’s physical parametrizations will be reflected
in the temperature and moisture fields as well as in the
parametrized variables themselves. An advantage of the SCM
approach is that by keeping the large-scale atmospheric
circulation close to observations, a better assessment of
the physical parametrizations is enabled. Single column
models provide a simple, inexpensive means to identify
parametrization errors and inadequacies, however, care
needs to be taken in the interpretation of the SCM evaluation
as the errors seen in the SCM may not be the same as those in
the full three-dimensional GCM due to the lack of feedbacks
between the subgrid- and grid-scale processes in the SCM. If
the SCM forcing data are realistic then the SCM may produce
smaller biases than the GCM. However, because there is no
feedback to the larger scales in the SCM simulation, the
biases could grow with time and become larger than those
of the full GCM (see e.g. Bergman and Sardeshmukh, 2003).

The primary aim of the work presented here is to use
the SCM approach with a version of the UK Met Office
SCM to assess the ability of two fundamentally different
parametrizations of clouds to reproduce the observed
thermodynamic and cloud structures as well as the associated
radiative fluxes during the TWP–ICE experiment. The two
model versions used are based on the UK Met Office
Unified Model (MetUM), whereby one version uses a new
generation prognostic cloud scheme (Wilson et al., 2008a)
while the other employs the current (or control) diagnostic
scheme used routinely in the model (Smith, 1990). The
results presented here complement the study of Wilson
et al. (2008b) who compared the same two representations
of clouds using climate simulations. The next section will
describe the model and the forcing and validation data used
in this study. Section 3 describes the general characteristics
of the TWP–ICE meteorology and discusses the model
performance for two of the weather regimes that occurred
during the campaign. Section 4 presents a detailed validation
of the simulated cloud cover and section 5 evaluates the
ice cloud properties simulated by the cloud schemes. A
summary of the findings is discussed in section 6.

2. Experiment design

The Australian Community Climate Earth System Simulator
(ACCESS) is a new coupled climate and earth system model

that is being developed as a joint initiative between the
Australian Bureau of Meteorology and the Commonwealth
Scientific and Industrial Research Organisation (CSIRO) in
partnership with Australian universities. The model provides
a framework for numerical weather prediction and studies
of climate change and enables research into processes
occurring in the Earth system. (For information on the
modelling system see http://www.accessimulator.org.au/)
The atmospheric component of ACCESS is the MetUM and
throughout this paper the model will be referred to as the
ACCESS model. As part of the ACCESS project this model
needs to be extensively validated in the Australian region.
One of the experiments designed to evaluate the ACCESS
atmospheric model in the Australian region is to run the
SCM for the TWP–ICE case. This intensive field campaign
has produced a dataset for model evaluation that provides
a good test for the parametrizations within GCMs, such as
the ACCESS model.

2.1. Description of the ACCESS/MetUM single column
model

The ACCESS SCM used in this study is the MetUM version
7.1 with 38 vertical levels, and is based on the second
version of the Hadley Centre Global Environment Model
(HadGEM2) described in Collins et al. (2008). The large-
scale cloud scheme used in the model is described by either
the diagnostic scheme of Smith (1990) with modifications
(Wilson et al., 2004) or a new prognostic cloud scheme
(Wilson and Bushell, 2007; Wilson et al., 2008a); note that
the ice condensate is prognostic in both schemes. The
cloud fraction from the simulation using the diagnostic
scheme is the sum of the cloud fraction from the large-
scale cloud scheme of Smith (1990) and a diagnostic
convective cloud fraction described by Gregory (1999).
The new prognostic cloud scheme that has been developed
for the MetUM includes prognostic variables for the cloud
liquid-water content, the cloud ice-water content, the bulk
cloud fraction, the liquid cloud fraction and the ice cloud
fraction. Diagnostic cloud schemes such as the Smith (1990)
scheme are relatively simple in their representation of cloud
properties and exhibit strongly constrained relationships
between cloud variables. These relationships restrict the
variability of the cloud fields and can produce unrealistic
cloud properties (Wilson et al., 2008a). The new PC2
cloud scheme (prognostic cloud, prognostic condensate)
was designed to be more realistic by allowing a greater
number of degrees of freedom in the cloud variables.

When the PC2 scheme is used several changes are made
to the parametrization of the convective updrafts. The
first is an increase in the proportion of condensate that is
detrained high in the convective plumes, rather than being
precipitated. The second change is a reduction of the phase-
change temperature between liquid and ice condensate in the
convective updrafts. In the PC2 simulation this temperature
is reduced from the control value of 0◦C to −10◦C. These
changes have been found to be necessary to produce realistic
anvil clouds due to the direct interaction of the large-scale
cloud variables in PC2 with the convection scheme (see
Wilson et al. (2008b) for more details on these changes).
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2.2. The TWP–ICE forcing and validation data

The large-scale single-column model forcing and evaluation
dataset for TWP–ICE was derived by Xie et al. (2010)
from the constrained variational objective analysis approach
described in Zhang and Lin (1997). The aim of the objective
analysis is to make minimum adjustments to the original
sounding data to constrain the wind, temperature and
humidity fields to satisfy conservation of mass, moisture,
energy and momentum through a variational technique.
The constraint variables used are surface pressure, surface
latent and sensible heat fluxes, wind stress, precipitation,
net radiation at the surface and top of the atmosphere, and
variability of total column water content. The method takes
into account measurement uncertainties in the radiosonde
data and it has been shown that the magnitude of the
adjustments required to meet conservation is comparable to
these uncertainties (Zhang and Lin, 1997).

The domain used in the objective analysis covers an
area of roughly 150 km in radius centred on Darwin.
Within this area there were five boundary sounding
stations that measured the vertical profiles of temperature,
relative humidity and winds every 3 h during the
intensive observation period. At the Atmospheric Radiation
Measurement (ARM) Darwin site, which is at the centre of
the analysis domain, soundings were available four times
a day. The original soundings had a dry bias that has
been corrected by Hume (2007). The amount of missing
data range from 5 to 30% for the five boundary sounding
sites, with the largest amount of missing data occurring
for the soundings taken from the ship (Xie et al., 2010).
The variational analysis also required domain-averaged
surface and top of the atmosphere measurements and these
were provided by the Australian Bureau of Meteorology
polarimetric and weather radar data (Keenan et al., 1998),
surface radiative and turbulence fluxes from the ship and
land stations, surface meteorological fields from both the
local mesonet and sounding stations, cloud liquid-water
path from the ARM site and the ship, and satellite data from
the Multi-functional Transport Satellite (MT-SAT). Any
missing observations that the variational analysis needed
were provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF) model data, where these data
were adjusted using the linear regression equations that were
derived at times when observations were available (Xie et al.,
2010).

The model is initialized once on 19 January 2006 and
then run for 25 days. The observational forcing dataset has
a temporal resolution of 3 h and this has been interpolated
to the model time step of 30 min. The lower boundary
condition used in the SCM experiments is a prescribed sea-
surface temperature and the model calculates the turbulent
fluxes of sensible and latent heat at the surface. This method
is preferred to the prescription of turbulent surface fluxes as
it allows the model to develop some feedback between the
thermodynamic structure of the atmosphere and the surface
heat and moisture exchange. However, as the experiment
domain contains a mixture of land and ocean, this approach
limits the usefulness of the results to periods that were
not dominated by strong diurnal forcing due to local
topography. This means that results towards the end of
the simulation must be treated with caution, as convection
during the break period is primarily initiated on circulations
driven by local topography (e.g. sea breezes; May et al.,

2008). Three-dimensional advective tendencies are specified
as forcing from the variational objective analysis and the
model horizontal wind fields are relaxed back to those
observed using a 3 h relaxation time-scale. We chose not to
nudge the temperature and moisture fields for two reasons:
nudging can mask errors from the model physics that affect
temperature and humidity (Ghan et al., 1999), and nudging
these fields can also change cloud morphology through
the elimination of radiative feedbacks on cloud formation
(Menon et al., 2003). As one of the aims of this study is to
examine the different effects of the diagnostic and prognostic
cloud schemes on both the cloud and radiative fields as well
as the state variables of temperature and humidity, nudging
these variables was deemed unsuitable. All cloud fields in the
model are initialized to zero and some spin-up over the first
few hours of the simulation is unavoidable. Due to a lack of
observations, advection of cloud fields is not included in the
simulations.

3. Model evaluation

This section provides a general overview of the model
simulations highlighting some of the model behaviour
with the different treatments of cloud. A more in-depth
analysis of the simulated cloud fields will then be carried
out in sections 4 and 5. The Darwin ARM site has a suite
of active remote sensing instruments that provide vertical
cloud structure information. The Active Remotely Sensed
Cloud Layers (ARSCL) data have been provided as part
of the TWP–ICE validation dataset and give information
on the location of cloud layers (see Clothiaux et al. (2000)
for details). The observations have been interpolated to
the 38 model vertical levels and the horizontal winds have
been used with a horizontal grid box size of 300 km to
calculate the appropriate averaging time-scale as described
by Protat et al. (2010). Sensitivity tests varying the size of
the domain for these calculations showed little influence on
the resulting cloud fractions. The observed cloud cover is
shown in Figure 1 along with the cloud fraction from the
two model simulations. The observations show that four
meteorological regimes were observed during TWP–ICE.
As discussed by May et al. (2008) TWP–ICE was initially
characterized by an active monsoon period from 19 January
to 25 January 2006, with deep convective clouds observed on
all days. This period was followed by a suppressed monsoon
phase until 2 February, characterized by relatively shallow
convection with convective cloud tops <8 km and extensive
cirrus. After a few clear days the regime shifted to the
break monsoon period from 6 February (Julian day 37)
where the convection was dominated by intense afternoon
thunderstorms and squall lines.

The strong forcing associated with the deep convection
during the active monsoon phase produces average surface
rain rates of 17 mm day−1 and there is little deviation
between the observed and modelled precipitation rates (not
shown). This is to be expected as the use of precipitation
as a constraint in the generation of the forcing dataset will
produce upward motion at the times of rainfall. During
the active monsoon phase both models show reasonable
agreement with the cloud cover observations, but there
are notable differences between the modelled and observed
cloud fields. Initially the diagnostic cloud scheme produces
clouds that extend higher than the observations and those
produced by the prognostic scheme PC2. Neither scheme
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active suppressed break

Figure 1. Cloud or hydrometeor fraction: (a) observed, (b) single column model (SCM) with PC2 cloud scheme and (c) SCM with diagnostic cloud
scheme.

reproduces the reduction of cloud fraction with height
seen in the observations, particularly the results from the
diagnostic scheme. The lack of clear sky in the simulations
during the active phase is apparent as are the lower cloud-
top heights after 21 January. On 24–25 January when a
mesoscale convective system was present in the experiment
domain, both models produce similar cloud fractions that
are much larger than those observed by the radar and lidar
above 10 km. Given that the cloud radar had degraded
sensitivity during TWP–ICE due to an earlier lightning
strike (May et al., 2008), satellite retrievals of cloud-top
temperature from MT-SAT have been analysed for a 300 km
horizontal domain centred on the radar site. For the first half
of 24 January clouds with cloud-top temperatures between
−70 and −90◦C covered 40–63% of the domain, which
is about 10% larger than the radar–lidar retrievals for
clouds at 14–15 km that have three-hourly averaged cloud
cover between 27 and 55%. At these times the overestimate
the cloud cover with maximum values at these heights
>95%. After this time both the radar–lidar and satellite
derived cloud cover observations show reduced high cloud
cover, while the models continue to produce cloud cover at
14–15 km >90% for the remainder of the active monsoon
phase.

During the suppressed monsoon phase from 26 January
the cloud structure changed from being characterized by
the deep convective clouds of the preceding active monsoon
phase, to shallow and occasional mid-level convective clouds
topped by an extensive high-level cloud shield (Figure 1).

During this phase the mean rainfall over the TWP–ICE
domain was much lower than during the active monsoon
period. The cumulative surface precipitation from the
models over the suppressed phase is 5 mm greater than the
19 mm observed (not shown). The top and base of the cirrus
cloud during the suppressed phase is initially well modelled,
however, after Julian day 30 the observations show the
cloud gradually rising and this is not captured by the model
using either of the cloud schemes. During the suppressed
phase of the simulations there is a warm bias in the levels
above 12 km. The warming is a response to the radiative
heating due to the lack of forcing above 16 km. Similar to
Woolnough et al. (2010) and others no large-scale forcing is
applied above 150 hPa due to uncertainties in the forcings at
high altitudes. Results from a climate model study by Boyle
and Klein (2010) that used operational analyses to run short-
term forecasts for TWP–ICE, showed a substantial warm
bias above 200 hPa during the suppressed phase compared
with the heating profiles derived from the same variational
analysis used here to force the SCM, suggesting that there
may be imbalances in the large-scale forcings at upper levels.
The prognostic cloud scheme reduces the cirrus cloud cover
too much after day 30 compared with the observations and
the diagnostic scheme (Figure 1). The diagnostic scheme
produces more shallow cloud cover than is observed, as
well as mid-level clouds with tops <8 km. These clouds
continue to be present more in the simulation with the
diagnostic scheme compared with the observations and the
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Figure 2. Average diurnal cycle during the (a) active monsoon phase of observed/analysed and simulated outgoing longwave radiation at the top of the
atmosphere (W m−2), (b) incoming solar radiation at the surface (W m−2) and (c) total column cloud fraction. Observed values are shown by the solid
line, those from the simulation with the PC2 cloud scheme are shown as the dotted line and the dashed line shows the results from the simulation with
the diagnostic cloud scheme. (d)–(f) Same as (a)–(c) except for the suppressed monsoon phase.

PC2 simulation when the suppressed phase of TWP–ICE
transitioned into a few clear days before the break period.

The monsoon break period is a difficult period to simulate
with a SCM. In the observations this period was characterized
by continental and coastal convection generated from sea
breezes, resulting in strong but local convective events. As the
processes forming sea breezes and the resulting convection
are not included in SCMs, the models cannot be expected to
simulate the associated cloud fields realistically. If they do
so, this will most likely be an artefact of the forcing dataset,
which through the use of precipitation as a constraint will
produce mean upward motion at large scales at the time
of rainfall, when it is clear from the observations that this
motion was strongly focused in coastal and island sea breezes
(see May et al., 2008). For the reasons above we refrain from
an in-depth discussion of the results for this period.

3.1. The active monsoon period (Julian days 19–24)

After providing an overview of the general model
performance, we will now analyse the model behaviour
for the active and suppressed (section 3.2) monsoon periods
observed during TWP–ICE. Radiation fields can be used
to evaluate the combined effects of the cloud layers on
the absorption and reflection of the solar and infrared

radiation. Figure 2(a) shows the average diurnal cycle over
the active period of outgoing long-wave radiation (OLR)
at the top of the atmosphere. The simulations capture
the trend shown in the observations of OLR increasing
throughout the morning and decreasing after the onset of
convection in the afternoon. In general the sign of the biases
shown by both models is the same, with too little OLR in
the morning and too much in the afternoon and evening.
The simulation with the prognostic scheme is better able
to maintain high cloud around the local midnight hours
compared with the diagnostic scheme and produces a better
amplitude in the diurnal cycle of OLR, however, PC2 does
not clear cloud fast enough throughout the morning. The
total column cloud amount as seen from above is calculated
from the simulations using the assumption of a maximum
randomly distributed cloud field (i.e. maximum overlap of
adjacent but random overlap of separate cloudy layers).
Both simulations produce lower total column cloud cover
(Figure 2(c)) than is observed, particularly the prognostic
scheme, for which cloud cover at times is 20% lower than
observed. This underestimate of cloud cover contributes to
the OLR error during the latter half of the day.

The times when both of the models agree well with
the observed OLR is at noon and it is at this time when
the relative humidity bias from both simulations is the
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Figure 3. Diurnal cycle of relative humidity (%) bias for the active (a, b) and suppressed (d, e) monsoon phases for the simulation with the PC2 cloud
scheme (a, d) and the diagnostic cloud scheme (b, e). The average profiles of relative humidity for the (c) active and (f) suppressed phases for the
prognostic (diagnostic) cloud scheme simulation in the solid (dashed) lines.

lowest in the upper levels (see Figure 3). During the active
monsoon phase both simulations produce generally similar
biases in relative humidity. The diurnal cycle of the relative
humidity biases show that when convection is triggered
in the early afternoon, the upper levels of the convective
clouds develop a positive bias with a negative bias below,
and this relative humidity error structure persists into the
early morning. The relative humidity bias produced in these
SCM simulations has been documented in previous studies
of active convection using the three-dimensional MetUM
by Petch et al. (2007), where it was identified that the main
cause of the bias was a sharp reduction in mass flux at the
top of convective plumes. Improvements to the convection
scheme reduced the bias, however, the vertical structure of
the relative humidity error remained (Petch et al., 2007).
The reproduction of this bias gives credence to the use
of this SCM methodology to examine the performance
of the physical parametrizations in simulations of tropical
convection.

The average diurnal cycle of incoming solar radiation at
the surface during the active monsoon phase is generally well
simulated by the prognostic cloud scheme (Figure 2(b)),
while the diagnostic scheme underestimates the solar
radiation at the surface by up to 150 W m−2. From the
afternoon into the early evening both of the models simulate
too much incoming solar radiation at the surface. When
convection becomes active in the early afternoon the levels

below 4 km have the strongest negative relative humidity
bias as shown in Figure 3, and this could be due to the
convection being too efficient at drying these levels or not
enough evaporation occurring from the stratiform rain to
moisten the atmosphere. Other studies using the MetUM
have noted deficiencies in the representation of cloud pools
during active convection (Petch et al., 2007; Willett et al.,
2008). The results of this study support the idea of Petch
et al. (2007) that the downdrafts from deep convection in
the model and their impact on the boundary layer plays a
role in the temperature and moisture biases produced by the
model in the low levels, which leads to errors in the surface
radiation budget (Figure 2(a)).

Average temperature and moisture increments over the
active monsoon period from each of the physical processes in
the SCM and the observational/advective forcing are shown
in Figure 4 for the two simulations with different cloud
schemes. Convection is the dominant physical process in
both simulations during this period of TWP–ICE, acting to
warm and dry the atmosphere, opposing the cooling and
moistening from the large-scale processes. The stratiform
rain, driven by the microphysics of the stratiform cloud
component, acts to cool and moisten the atmosphere
below the freezing level (around 5 km height) through
evaporation and melting, and warm and dry the levels above
by condensation. Heating from short-wave radiation and
long-wave cooling are largest from about 5–14 km. The
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Figure 4. Average active monsoon phase (a) temperature (K day−1) and (b) water vapour (g kg−1 day−1) increments from the observations/analysis
(advective tendencies, obs/anal), convection (conv), the boundary layer scheme (bl), the microphysics or large-scale rain scheme (lsr), the short-wave
(sw) and long-wave (lw) radiation, the cloud scheme (cld) and the total increment for the simulation using the PC2 cloud scheme. (b) and (d) are for
the diagnostic cloud-scheme simulation.

boundary layer transports warm, moist air from the surface
to the lowest levels of the atmosphere and the condensational
heating from the cloud schemes, which have contributions
from each of the other budget components, is dominant at
the freezing level, where vapour detrained from convective
plumes is condensed into large-scale condensate.

The simulation using the prognostic cloud scheme has
stronger tendencies from convection at the freezing level. At
this level in both simulations the gradient of the convective
heating and drying rate changes and reflects the large effect
of detrainment as the buoyant air reaches the more stable
layer near the melting level at about 5 km. The simulation
with PC2 shows less of a change in the convection tendency
profiles of temperature and vapour due to the effect of
convective plumes detraining both vapour and condensate.
While this change from convection is balanced mostly by
the large-scale cloud temperature and moisture increments,
there is a stronger dry bias at this level in the PC2 simulation
(Figure 3). Although the boundary layer negative relative
humidity bias is similar for both simulations, convective
drying and boundary layer moistening is stronger in the
run with the diagnostic scheme. The increased convection
gives rise to greater cloud cover from the diagnostic scheme
simulation and produces a larger underestimate of incoming

solar radiation at the surface as compared with the PC2
simulation (see Figure 2(a)).

As was found by Wilson et al. (2008b) the average mass
flux is reduced in the PC2 simulation compared with
the diagnostic cloud-scheme simulation (see Figure 5(a)).
However, when averaged over only the times when the deep
convection scheme is active, the updraft mass flux from
the PC2 simulation is larger between the boundary layer
and 13 km during the active monsoon phase (Figure 5(c)).
The reason for the reduced strength of convection in the
upper troposphere is because the detrainment rates are
increased between 10 and 13 km in the prognostic scheme
simulation (not shown) due to the tuning of the convective
precipitation function as discussed in section 2.1. During the
active monsoon phase both deep and mid-level convection
are not triggered as often in the prognostic cloud-scheme
simulation. However, when there is convection the deep
scheme produces larger mass fluxes and the increased mass
flux averaged over all times from the diagnostic scheme
simulation is due to the contributions from mid-level
convection (Figute 5(d)). Willett et al. (2008) found that
deep convection in the MetUM often terminated at levels
too low and that resulted in mid-level convection acting on
local instabilities that were not initiated from the surface.
For this SCM case study, the larger mass flux from deep
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Figure 5. (a) Average updraft mass flux (kg m−2 s−1) for the prognostic and diagnostic cloud-scheme simulations for the active monsoon phase (solid
and dashed lines respectively) and the suppressed monsoon phase (solid and dashed lines with circles). (b) Average updraft mass flux over only those
times when convection is active. (c) Average updraft mass flux over only those times when the deep convection scheme is active. (d) Average mass flux
over those times when the mid-level and shallow convection schemes are active.

convection in the prognostic scheme simulation and the
smaller mass flux from mid-level convection are arguably
more realistic during this active monsoon phase.

The reduction in mass flux over the active phase in the
PC2 simulation is due to changes in the thermodynamic
structure of the atmosphere, with larger negative relative
humidity biases below 6 km in this simulation (Figure 3).
The less moist mid-lower troposphere limits the strength
of convection as demonstrated by Derbyshire et al. (2004).
The differences in temperature and moisture between the
simulations during the active monsoon phase are primarily
caused by the direct coupling between the prognostic cloud
and convection schemes, where there is a change from
the diagnostic cloud scheme to detrain condensate directly
into the large scale and an associated tuning to allow
more detrainment rather than convective precipitation.
These changes produce similar average evaporation rates
from the large-scale precipitation between the simulations
(Figure 6(a)). Convective detrainment and evaporation are
the two sources of moisture needed to balance the warming
during the times of deep convection. Given the larger relative
humidity bias this balance is achieved less in the prognostic
cloud-scheme simulation.

The simulations have a cold bias of similar magnitude
between 7 and 15 km where cloud ice concentrations
are maximal. This cold bias has been documented in
active convection studies with the global MetUM using

the diagnostic cloud scheme, where it has been noted that
the convection scheme does not warm enough to offset the
radiative cooling (Willett et al., 2008). Figure 4(a) shows
that the model produces the same bias when the prognostic
cloud scheme is used due to the counteracting changes in
the long-wave cooling and convective warming increments
during times of deep convection.

3.2. The suppressed monsoon period (Julian days 25–35)

The average diurnal cycle of OLR during the suppressed
monsoon phase of TWP–ICE shows that the prognostic
cloud scheme captures the increasing OLR in the early
morning reasonably well, however, the OLR is increased too
much into the later morning hours and remains higher than
the observations for the remainder of the day (Figure 2(d)).
The diagnostic cloud-scheme simulation on the other hand,
underestimates the average OLR during the morning hours
by up to 10 W m−2, and similar to the prognostic scheme
overestimates the OLR in the middle of the day. Both
simulations produce greater amplitudes in the average
diurnal cycle of OLR compared with the observations and
often the gradient of the simulated diurnal cycle of OLR
is opposite to that observed, particularly for the diagnostic
scheme simulation. The lowest observed OLR occurs during
the early afternoon, which coincides with the times of
coldest cloud-top temperature observations from Tropical
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Figure 6. Average evaporation (g kg−1) from the large-scale precipitation
for the (a) active and (b) suppressed monsoon phases, with the prognostic
(diagnostic) cloud-scheme simulation shown by the solid (dashed) lines.

Ocean Global Atmosphere Coupled Ocean–Atmosphere
Response Experiment (TOGA COARE) for convectively
suppressed tropical oceanic conditions (Chen and Houze,
1997). The representation of OLR and the incoming short-
wave radiation in the afternoon is the least well captured
in the simulation with PC2, which is shown to be at least
partly caused by an underestimate of cloud cover of between
10 and 15%. The early morning is the time when the OLR
error is the largest from the diagnostic scheme simulation,
even though the total cloud cover at these times is in
reasonable agreement with the observations (Figure 2(f)).
This suggests that the simulated vertical distribution of
cloud and/or the in-cloud water contents are different to
those observed and these will be examined in the following
sections.

The almost 20% reduction in observed cloud cover during
the morning is simulated too late in the models, with the
magnitude not reduced enough by the diagnostic scheme
and too much by the prognostic scheme (Figure 2(f)). This
reduced cloud cover in the PC2 simulation produces greater
OLR and incoming solar radiation at the surface from
late morning throughout the remainder of the day. The
relative humidity errors shown in Figures 3(d) and (e) for
the suppressed monsoon phase are negative in the levels
below 10 km for the prognostic cloud-scheme simulation
and vary in sign for the simulation using the diagnostic

cloud scheme. During the suppressed phase there is greater
temporal and vertical variability in the relative humidity
errors than during the active monsoon phase. The largest
difference in relative humidity between the simulations is
between 4–5 and 7–9 km, where the sign of the bias differs,
with the PC2 simulation producing the negative relative
humidity bias.

The average temperature and moisture increments for the
suppressed monsoon period are shown in Figure 7 for the
two simulations. There is little difference in the increments
between the simulations, except for PC2 having stronger
average convective temperature tendencies in the low levels.
The fact that this does not translate into greater cloud
cover compared with the diagnostic scheme simulation is
due to more of the shallow cloud drizzling away each time
step in the PC2 simulation. This can be seen by the larger
evaporation rates from the large-scale microphysics in the
PC2 simulation compared with that from the diagnostic
scheme simulation (Figure 6(b)). As discussed by Wilson
et al. (2008b), the large in-cloud condensate amounts from
convective detrainment in shallow convection allow for the
efficient removal of cloud water through the generation of
precipitation in the PC2 simulation. They found that with
increased vertical resolution the reduction of liquid water by
precipitation was decreased and instead it was the erosion
term, which models the entrainment of dry air, that reduced
the cloud water. For the TWP–ICE case study the enhanced
precipitation in the PC2 simulation acts to reduce the dry
bias in the boundary layer. As the radiation scheme is called
before the microphysics in the SCM, the radiative properties
of the clouds are similar to those from the diagnostic cloud-
scheme simulation, although the PC2 simulation produces
a larger overestimate of incoming short-wave radiation at
the surface (see Figure 2(e)).

The modelled cloud fractions from convective clouds
with tops extending to 8 km was shown in Figure 1
to be overestimated in both simulations during the
suppressed phase. A lack of mid-level cloud cover is a
well known shortcoming of GCMs. In the tropics this
error has been associated with a lack of detrainment from
the cumulus parametrization at these levels (e.g., Bodas-
Salcedo et al., 2008) and the temperature and moisture
increments in Figure 7 show that the extensive mid-
level clouds in the simulations is forced by the advective
tendencies derived from the observations. Even though
congestus convection is not explicitly parametrized in the
MetUM, Willet et al. (2008) showed that the model is
capable of producing this type of convection in suppressed
regimes, although in their three-dimensional simulations the
convection was too weak and shallow compared with cloud
resolving model results. In this case study the congestus
convection during the suppressed monsoon phase dries the
environment too much, particularly in the PC2 simulation
(Figure 3).

Similar to the active monsoon phase the strength of
convection averaged over the suppressed phase is weaker in
the PC2 simulation, except for the heights between 3 and
7 km where the average mass flux is very similar between
the two simulations (Figure 5). This average is produced
in a different way than during the active phase, with
weaker deep convection in the prognostic scheme simulation
and larger mass fluxes from mid-level convection in the
low to mid-troposphere. During the suppressed monsoon
phase the prognostic cloud-scheme simulation produces less
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Figure 7. As in Figure 4 except for the suppressed monsoon phase.

detrainment than the diagnostic scheme simulation but a lot
more evaporation (Figure 6). However, similar to the active
monsoon phase the balance is not achieved in the models,
with a larger negative relative humidity bias produced in
the PC2 simulation. As discussed in the previous section
the reason for the relative humidity differences between
the simulations in convective environments is mostly due
to the direct detrainment of condensate into the large
scale in the prognostic scheme simulation, which as will
be shown in section 6 produces an overestimate of the
in-cloud ice-water contents of these clouds. The large in-
cloud ice-water contents allow large particles to form that
quickly fall to the surface and limit the evaporation in the
cloud and sub-cloud layers. Note that the tuning applied
to the convective precipitation function occurs only deep
in the convective plumes (Wilson et al., 2008b) and is
not having an effect for these suppressed monsoon phase
convective clouds with tops up to 8 km. Typically the
convective processes during suppressed convection act to
moisten the atmosphere, preconditioning the environment
for subsequent deep convection (e.g. Johnson and Lin, 1997).
The moisture errors shown by the model parametrizations
in the suppressed phase of TWP–ICE will have an impact
on the ability of the three-dimensional model to correctly
simulate tropical variability.

4. Comparison of cloud variability between the prognos-
tic and diagnostic cloud schemes

The TWP–ICE dataset is one of the most comprehensive
datasets to jointly evaluate tropical clouds and the large-scale
environment they are embedded in. This section will take
advantage of this by developing some diagnostic approaches
that aim to provide more insight into the simulation of the
cloud fields in the SCM. The two model versions employed
here use significantly different treatments of clouds and
it is of great interest to highlight possible reasons for the
differences in the cloud simulations as well as advantages
and disadvantages of the methods employed. One of the
most important distinctions between the model versions is
the interaction between the convection and the stratiform
cloud schemes. In the PC2 simulation the convection scheme
detrains condensate and associated cloud fraction, directly
into the cloud scheme thereby allowing the prognostic cloud
scheme to reflect details of the convective clouds. This differs
from the diagnostic scheme where the detrained condensate
evaporates and the radiative effect of the convective cloud
is represented by a separate diagnostic cloud category.
Interesting insight on these scheme interactions can be
obtained by comparing the resulting cloud fields for the
TWP–ICE case, which exhibits quite varied convection
characteristics.
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Figure 8. Three-hourly averages of cloud area fraction during the active monsoon phase plotted as a function of relative humidity at the heights of 2, 5,
11 and 15 km for the observations (asterisk: a,d,g,j), the SCM with the prognostic cloud scheme (circle: b,e,h,k) and the SCM with the diagnostic cloud
scheme (square: c,f,i,l).

Early cloud parametrizations were frequently based on an
explicit relationship between grid-average relative humidity
and cloud fraction (e.g., Slingo, 1987). None of the two
schemes employed here uses such an explicit relationship
and it is therefore of interest to compare the simulated
relative humidity–cloud fraction relationships with those
from the TWP–ICE dataset. Figure 8 shows the area cloud
fractions during the active phase of TWP–ICE, plotted as
a function of relative humidity at four different heights.
The observed relative humidity has been calculated from

the observed/analysis temperature and specific humidity
fields using the same equations that are used in the model
to calculate the saturation mixing ratio. For temperatures
above 0◦C vapour saturation pressure over water is used
and below this temperature the saturation is calculated
over ice. At 2 km all observed clouds during the active
monsoon phase of TWP–ICE occur at relative humidities
of 80% or higher (Figures 8(a)–(c)). The bulk of the
simulated clouds also occur above this relative humidity,
however, both simulations produce clouds at significantly
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lower relative humidities and in general the model clouds
occur at lower relative humidities than the observations.
The models produce too many clouds with cloud fractions
>0.15. The largest three-hourly averaged cloud fraction
observed at 2 km is 0.2, whereas the models both produce
cloud fractions >0.4. At 2 km the observations do not
show a tendency for higher cloud fractions to be associated
with higher relative humidities, however, this relationship is
shown in the simulated cloud fields.

Figures 8(d)–(f) show that at 5 km the number of
occurrences of clouds with area fraction<0.1 is well captured
by the models, however, these clouds are produced when the
relative humidity is about 10% less than that observed. There
are no observed clouds with a cloud fraction of 1 at this height
during the active period, however, the diagnostic scheme
produces numerous occurrences of clouds with 100% cloud
cover. While the prognostic scheme does not produce total
cloud cover at any time, the values from PC2 are typically
higher than those observed. As at 2 km, the models show a
strong relationship between higher cloud fractions occurring
at higher relative humidities, with correlation coefficients of
0.84 and 0.92 for PC2 and the diagnostic scheme respectively.
The observations on the other hand show a correlation <0.4
at 5 km.

At 11 km the observed cloud fractions tend to be larger
than 0.1, occurring between relative humidities of 65 and
105% (Figure 8(g)–(i)). The diagnostic scheme captures a
wider range of the observed variability in this relationship
at 11 km due to the contributions to the cloud fraction
from both the large-scale cloud scheme and the convective
cloud fraction scheme, however, there are too many clouds
produced by this simulation at relative humidities >105%.
Both simulations overestimate the number of times that
there is total cloud cover, however, PC2 is not as prevalent
as the diagnostic scheme in simulating cloud fractions of 1,
and represents the number of occurrences of cloud fractions
<0.5 reasonably well. At 11 and 15 km the observations
and model results produce supersaturation with respect
to ice. Supersaturations with respect to ice are commonly
observed due to the process of ice crystal nucleation not
being activated at low supersaturations (e.g. Heymsfield and
Miloshevich, 1993). Many models convert supersaturation
directly to ice, as is the equivalent treatment for warm-phase
microphysics, however, these models tend to produce upper
tropospheric dry biases (see e.g. Tompkins et al., 2007).

At 15 km there is only ice cloud and the observations show
that the clouds that occur at this height during the active
phase occur with cloud fractions <0.3. The diagnostic cloud
scheme shows a strong relationship between cloud fraction
and relative humidity, something that is not observed nor
shown by the prognostic cloud scheme. The clouds at this
height represent six separate events in the observations but
only two in the PC2 simulation and three in the diagnostic
scheme simulation. The first event is at the beginning of the
experiment (Figure 1) and the cloud fractions generated by
the prognostic scheme sit in the middle of the observations
with values of about 0.08 that are independent of relative
humidity. The second event for the PC2 simulation is at
the end of the active period when a mesoscale convective
system developed in the TWP–ICE domain. Both of the
simulations produce complete cloud cover for this event
at 15 km, with some clouds produced at 120% relative
humidity. The observations on the other hand produce cloud
fractions for this event of <0.3 at 15 km and the relative

humidities at which these clouds occur do not exceed 110%.
As discussed previously, the cloud radar was operating with
reduced sensitivity during TWP–ICE, however, deriving
cloud cover from IR satellite data shows that the high cloud
fraction derived from the radar–lidar at these times was
underestimated by no more than 10%. Both of the models
produce larger and more persistent cloud cover at 15 km
than is observed. The positive relative humidity bias that
is generated at the tops of convective clouds is part of the
reason for the models producing higher and more persistent
cloud cover than observed, particularly during the final days
of the active period when the strength of convection was
overestimated in the simulations.

During the suppressed monsoon phase the observed
clouds tend to occur at lower relative humidities than during
the active phase (Figure 9). Both models fail to capture
the clouds that occur with relative humidities <40% at
2 km. At humidities greater than this the prognostic scheme
represents the observed relationship between cloud fraction
and relative humidity well, better than the clouds at 2 km
during the active monsoon phase. The simulation using
the diagnostic cloud scheme, with a separate diagnostic
cloud fraction to represent the convective clouds, produces
cloud fractions that are generally much larger than those
observed at both 2 and 5 km. At 5 km PC2 produces
a good representation of cloud fractions, though, as with
the diagnostic cloud-scheme simulation, there are more
occurrences of cloud at this height than in the observations.
These results demonstrate that the prognostic cloud scheme
is able to represent cloud cover from both convective and
large-scale sources without using a separate scheme as is the
case for the diagnostic cloud-scheme simulation.

Figures 9(g)–(i) show that during the suppressed
monsoon phase near the base of the cirrus cloud at 11 km the
observations and modelled cloud fractions show a strong
relationship with relative humidity. Both of the models
exhibit a tighter relationship than is observed and produce
more occurrences of cloud fractions larger than 0.2 and
not enough <0.1. Similarly at 15 km neither of the models
simulate the numerous observed cloud fractions <0.1 and
produce many instances of three-hourly averaged total cloud
cover that is never observed. It is worth noting that if
the observed horizontal advection of cloud fraction was
available and included in the forcing, this would act to
further increase the PC2 cloud fraction in the upper levels.
As in the active monsoon phase at 15 km there are times
when PC2 generates ice cloud fractions that are independent
of relative humidity as shown in Figure 9(k), and also
apparent at 11 km in Figure 9(h). These instances occur
when cloud fraction generated at this height remains at
constant values for extensive periods of time and shows
no sensitivity to the relative humidity fluctuations of the
environment. The reason for this is the assumptions relating
to which microphysical processes cause a change in the
prognostic cloud fractions. In PC2 ice cloud fraction reduces
due to the microphysical processes of sublimation, melting
and evaporation, with the fall of ice increasing the cloud
fraction when the cloud fraction of the layer above is greater
than that in the present layer (Wilson et al., 2008a). The
process of deposition is assumed to increase the ice water
content (IWC) but not the cloud fraction. In the long-
lived cirrus cloud of the suppressed monsoon phase, the
upper levels of the cloud act as the generating layer, with
depositional growth and fall out of ice the only microphysical
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Figure 9. As in Figure 8 except for the suppressed monsoon phase.

processes active in the model. While the ice-water content
fluctuates due to these processes, the cloud fraction does
not. The constant value of the PC2 cloud fraction during
these times generally agrees better with the observations
than the diagnostic scheme in these cloud layers, however,
there is no correlation between the changes in IWC and
cloud fraction in the PC2 simulation. The observations at
the top of the cirrus cloud have a correlation coefficient
between IWC and cloud fraction of 0.85, the corresponding
value for the diagnostic scheme is 0.72, while for PC2 the
value is −0.1. Lower in this cloud layer sublimation occurs
and consequently reduces the PC2 ice cloud fraction as

a function of the reduced ice-water content and produces
correlation coefficients of 0.84 for PC2, 0.8 for the diagnostic
scheme and 0.78 for the observations.

Using the same assumptions that are made in PC2 for the
effect of sublimation on the cloud fraction (Wilson et al.,
2008a), the effect of depositional growth on the ice cloud
fraction can be formulated as

�Ci = A

(
1 + �qi

qi(A
/

Ci)

)1
/

2

− A (1)
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Figure 10. As in Figure 9 except that it shows the PC2 cloud fractions that are simulated when the effect of depositional growth of ice particles is included
as a source of cloud fraction (triangle).

where Ci is the ice cloud fraction, A is the area of the grid
box that contains ice and is above ice saturation, qi is the
grid box mean ice water and qi(A

/
Ci) is the amount of ice

that is present in the region of the grid box where deposition
is occurring. Allowing the cloud fraction to increase as a
function of the vapour depositional growth rate of ice gives
more realistic variations in the PC2 cloud fractions (see
Figure 10). The result of deposition acting as a source of
ice cloud fraction produces cloud cover that more closely
resembles that from the Smith scheme at 15 km, with the
cloud fractions now converging to total cloud cover as the

relative humidity approaches 100%. This change to PC2
results in larger cloud fractions in the upper troposphere
and while many aspects of the TWP–ICE simulation are
improved with this change, other biases, such as the too
low OLR during the early morning hours, are exacerbated.
Further work is currently underway to examine the effects
of additional microphysical source and sink terms on the
cloud fractions, although the preliminary results presented
in Figure 10 look promising and the inclusion of the
deposition term as a source of cloud fraction improves
ACCESS coupled model simulations (Zhian Sun, 2011;
personal communication).
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Figure 11. (a) Normalized histogram of the observed cloud area fraction as a function of height during the active monsoon phase with the solid line
showing the average cloud fraction. (c) As for (a) except for the SCM results for the PC2 scheme. (e) As for (a) except for the SCM results for the
diagnostic cloud scheme. (b), (d) and (f) As in (a), (c) and (e) except for the suppressed monsoon phase.

The vertical distribution of clouds, along with the
total cloud amount and optical properties, determines
the radiative budget of the atmospheric column. The
observations of the average cloud vertical distribution at the
main ARM site in Darwin (Figure 11(a)) show a trimodal
structure during the active phase with peaks at 1, 5.5 and
9.5 km, similar to other studies of tropical convection
(Johnson et al., 1998). The lowest peak is from shallow
boundary layer clouds, the middle peak is due to the low
to mid-level clouds occurring during the earlier stages of
the monsoon convective systems lifecycle (Xie et al., 2010)
and the highest peak is from anvil clouds developed from
the outflow of deep convection. The SCM vertical cloud
distributions have average peaks at similar heights to the
observations, however, the mid- and upper peaks occur at
higher altitudes in the models, particularly the upper level
peak in PC2, which is 2 km higher than that observed. As
well as the average vertical cloud profile, Figure 11 shows
normalized histograms of the cloud fraction as a function
of height. The observations (Figure 11(a)) show that the
boundary layer clouds predominately occur with cloud
fractions <0.3. The PC2 cloud scheme produces a good
average boundary layer cloud fraction during the active
phase, however, there are more clouds simulated with cloud

fractions between 0.3 and 0.4 and not enough with fractions
of 0.1 and below. The SCM run with the diagnostic cloud
scheme shows higher average boundary layer cloud cover
than the observations and the PC2 results, predominately
due to more occurrences of cloud with cloud fractions
>0.25.

When the models simulate cloud between 5 and 10 km
during the active phase the cloud fraction tends to be too
large (Figures 11(a), (c) and (e)). The observed distribution
of cloud cover shows many clouds occurring with cloud
fraction between 0.4 and 0.8, however, the PC2 cloud cover
for these heights tends to be either close to 1 or <0.4 and
overall gives an average smaller cloud fraction. In contrast,
the diagnostic scheme produces an average cloud fraction at
these heights that is larger than that observed. There is less
clear sky in the levels between 8 and 15 km in the models than
is observed, particularly the diagnostic scheme that produces
frequent occurrences of complete cloud cover. In the levels
above 10 km the observations never show cloud fractions
of 1, and instead show a tendency to reduce the cloud
fraction with height so that at 15 km cloud predominately
occurs with cloud fractions <0.1. The prognostic cloud
scheme does a better job than the diagnostic scheme at
producing the observed normalized histogram in the levels
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above 10 km, but still produces too many clouds with cloud
fractions larger than 0.95 and as such the average cloud
fraction across these levels is higher than that observed.

For the suppressed monsoon phase of TWP–ICE the
average observed cloud fraction shows two peaks at 1 and
13 km (Figure 11(b)). There is little observed cloud between
3 and 9 km, with the cloud occurring almost always having
cloud fractions <0.1. The average boundary layer cloud
cover is captured well with the prognostic cloud scheme but
significantly overestimated by the diagnostic scheme. The
cloud fraction produced by the diagnostic cloud-scheme
simulation in the levels between 3 and 9 km is overestimated,
with numerous occurrences of cloud fractions >0.2. The
PC2 simulation also overestimates the average cloud cover
at these heights, however, the clouds that are produced tend
to have cloud fractions <0.1.

The observations show an increase in the height of the
high cloud maximum between the active and suppressed
phases of about 3.5 km. The height of the PC2 high cloud
maximum also increases between the monsoon phases but
only by 1 km, which means the height of the maximum
is overestimated by 1 km during the suppressed monsoon
times. The diagnostic scheme produces the peak high cloud
cover at 14 km, the same height as the prognostic scheme,

however, the average amount from this simulation is greater
than the PC2 cloud fraction and the observations. This is due
to the diagnostic scheme producing high cloud with fractions
typically larger than 0.85 or between 0.25 and 0.35. As in
the active phase the observations show the cloud fraction
tends to decrease with height and above 10 km the observed
clouds mostly occur with cloud fractions <0.25 during the
suppressed phase. The prognostic scheme generates cloud
fractions above 10 km with low cloud fractions between 0.1
and 0.25, but also produces cloud fractions of 0.6 and larger
more often than is observed. There is almost no observed
high cloud during the suppressed monsoon phase with cloud
fractions >0.9, whereas, the models simulate a significant
number of clouds with these high cloud fractions. The cirrus
cloud also extends to 18 km in the observations but due to
the lack of forcing above 16 km the models only produce
cloud condensate up to this height, as discussed previously.

5. Ice cloud properties during days 25–30 of the
suppressed monsoon phase

Observations of IWC and ice fall velocity have been obtained
from a radar–lidar retrieval (Delanoë and Hogan, 2008;
Protat et al., 2010) for days 25–30 of the suppressed

Figure 12. (a) Average profiles of non-zero ice water content (log (g m−3)) over days 25–30 for the observations (solid line), the simulation with the PC2
scheme (dashed line), the large-scale component from the simulation with the diagnostic cloud scheme (dotted line) and the convective + large-scale
components from the diagnostic scheme simulation (dot-dash line). (b) Probability distribution function of ice water content. (c) Average profiles of
ice-fall velocity. (d) Probability distribution function of ice-fall velocity profile. The diagnostic scheme results in (c) and (d) include only the large-scale
component.
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monsoon phase. Figure 12(a) shows that when ice is
present over this 5 day period, the models systematically
underestimate the amount observed; note that the ice
content is a prognostic variable in both simulations. The
observations show a trimodal structure in the ice-water
content profile with peaks at 6, 9 and 13 km. The large-
scale component of IWC from the diagnostic scheme
simulation also shows three peaks at approximately the
correct heights, however, the amounts averaged over the
times when ice is present are significantly underestimated.
When the convective component of ice water is added to the
large-scale value the diagnostic scheme simulation produces
a result that more closely resembles that from the prognostic
scheme in the levels below 6 km. However, care needs to be
taken in the interpretation of this comparison below 10 km as
the number of occurrences is only four in the observational
dataset and at these times there was precipitation reaching
the surface, which can cause attenuation and as such
uncertainties in the quantities retrieved.

Both simulations produce a peak in IWC at 12 km,
however, the cloud ice-water contents from PC2 below
11 km drop off by more than an order of magnitude
compared with small changes from the diagnostic scheme
simulation. The PC2 simulation produces an average non-
zero value at 10 km of 2.8 × 10−4 g m−3 (the threshold used
in the calculations is 1 × 10−10 g m−3), which is significantly
less than the observed value of 4 × 10−3 g m−3. At 10 km the
cumulative ice-water contents over this 5 day period agree
well between the observations and the two model results (not
shown), even though as Figure 12(a) shows this agreement
comes about due to large differences between the modelled
amounts and hence number of occurrences. The distribution
of IWC over these 5 days illustrated in Figure 12(b) shows
that the prognostic scheme produces more variability in
ice amounts, however, both simulations underestimate the
amount seen in the observations, with PC2 producing
more occurrences of high ice-water content than the
diagnostic scheme simulation. The observed distribution in
Figure 12(b) agrees well with the observations over Darwin
presented in Protat et al. (2010) that covered a 6 month
period.

The particle size distributions used in the model and
IWC retrieval are both based on gamma functions, although
they do differ in their formulations and this may lead to
some differences between the models and observations.
However, as shown in an objective intercomparison study
by Heymsfield et al. (2008), the size distribution assumption
used for the IWC retrieval is not typically the main source
of error. The underestimate of modelled IWC found for
TWP–ICE agrees with the underestimate of IWC in frontal
clouds in the MetUM that was documented by Bodas-
Salcedo et al. (2008) using CloudSat radar reflectivities. In
that case the microphysical assumptions, including the size
distributions, were made as consistent as possible between
the model and the observations.

The average fall velocity of ice decreases as the height
at which it occurs increases in both the model and the
observations, as shown in Figure 12(c). The diagnostic cloud
scheme produces a gradient of this change in fall speed with
height closest to the observations in the levels below 8 km,
however, the average values are slower than the observations,
while those from PC2 are faster. Figures 12(c) and (d) show
only the ice-fall velocities for the large-scale component of
ice water from the diagnostic scheme simulation because the

microphysics in the convection scheme is highly simplified
in the model and does not allow for the calculation of a fall
speed. Given that the in-cloud IWCs from the diagnostic
scheme simulation cover a similar range of values when
the convective component is excluded (not shown), the fall
speeds shown in Figures 12(c) and (d) would not be expected
to vary greatly if we included the convective cloud values.

The observations have been converted from a reflectivity-
weighted fall speed to a mass-weighted fall speed so as to
match the model results. The conversion applied assumes
that the reflectivity-weighted value is 1.4 times the mass-
weighted fall speed, however, there will be some variability
in this linear conversion based on the properties of the ice
clouds changing with height (Matrosov and Heymsfield,
2000). The faster fall speed from the prognostic cloud
scheme compared with the diagnostic scheme reflects the
increase in the amount of in-cloud IWC in the levels below
8 km in the PC2 simulation (Figure 13). Above 12 km the
models produce faster fall speeds than the observations,
even though the IWC at these heights is significantly
less than that observed (see Figure 12(a)). This implies
that the observations have smaller sized particles in larger
concentrations than the models and could be caused by
any number of deficiencies in the model parameterizations,
including the assumed ice particle size distribution, the fall
speed equation, and the formulations for growth of particles
by deposition and aggregation.

The majority of the ice falls with velocities between 25
and 30 cm s−1 in both the models and the observations
(Figure 12(d)), however, the models both show larger
skewness and kurtosis in their distributions of ice-fall
velocity. The peak of the distribution being well represented
by the models gives further support for the size distribution
differences between the models and the retrieval not
contributing significantly to the disagreement shown in
Figure 12(c). The distribution from the simulation with the
diagnostic cloud scheme is bimodal with a secondary peak
at 50–55 cm s−1, which is not seen in the observations. The
PC2 distribution of ice-fall speeds is more representative
of the observations than the diagnostic scheme in terms of
the kurtosis, however, the results from this simulation show
that the model is at times producing fall speeds that are
much larger than those observed, with the maximum fall
speed simulated by the prognostic scheme about twice that
observed.

The quantity that is important for the microphysical and
radiative transfer calculation is the in-cloud condensate,
which is the grid-box average condensate amount normal-
ized by the cloud cover. Figure 13 shows the in-cloud IWC
plotted as a function of cloud fraction for the observations
taken from days 25 to 30 of the suppressed monsoon period
and the models at four different heights. At 5 km the diag-
nostic scheme simulation produces too many occurrences
of large in-cloud IWC compared with the observations and
these tend to occur with much larger associated cloud frac-
tions. The prognostic cloud scheme produces significantly
more occurrences of high in-cloud IWC at 5 km compared
with both the observations and the diagnostic scheme simu-
lation, however, in contrast to the diagnostic scheme results
the associated cloud fractions are <0.05, which is the value
that the observed cloud fractions tend to be at this height
(Figure 13(a)–(c)). These high values of in-cloud IWC allow
the growth of large particles in the PC2 simulation and are
the reason why the fall speeds at this height are faster than
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Figure 13. In-cloud ice water content (IWC/cloud fraction) (g m−3) over Julian days 25–30 plotted as a function of cloud fraction at the heights of 5,
7.5, 11 and 15 km for the observations (asterisk: a,d,g,j), the SCM with the prognostic cloud scheme (circle: b,e,h,k) and the SCM with the diagnostic
cloud scheme, where the ice water content includes the contribution from both convective and large-scale sources (square: c,f,i,l). At 11 and 15 km every
third data point is plotted.

those observed (see Figure 12(c)). The PC2 simulation pro-
duces higher in-cloud IWC compared with the observations,
typically by two orders of magnitude. A similar result can
be seen at 7.5 km with both simulations overestimating the
in-cloud IWC, more so for the prognostic cloud-scheme
simulation (Figure 13(d)–(f)).

The in-cloud IWC at 11 km is well simulated by both
models (Figure 13(g)–(i)), with the observed tendency for
in-cloud IWC to decrease with decreasing cloud fraction

captured by both cloud schemes. The diagnostic scheme
results tend to underestimate the in-cloud IWC, while on
average PC2 captures the observed values. At 15 km the
models and the observations sit in different phase spaces. The
observations show typical in-cloud IWCs of between 0.1 and
0.01 g m−3, whereas the models are both generally two orders
of magnitude less, with PC2 typically generating higher
in-cloud IWCs than the simulation with the diagnostic
cloud scheme. The models produce cloud fractions at this
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height that are too large (Figure 13(j)–(l)), and this result,
compounded with the much smaller IWCs that the models
produce at 15 km (Figure 12(a)), is the reason why the
models have significantly smaller in-cloud IWCs. The large-
scale ice cloud fraction in the diagnostic cloud scheme
increases as a monotonic function of increasing IWC, and
the observations at 15 km do not show this relationship.
This highlights the need for a prognostic cloud scheme to be
able to obtain the observed relationship between ice cloud
fraction and IWC.

Using observations from three field campaigns consisting
mostly of stratocumulus and frontal cirrus, Wood and
Field (2000) showed that the Smith scheme tends to
underpredict cloud fraction for a given grid-box mean
condensate. However, for the case of the cirrus cloud during
the suppressed monsoon phase of TWP–ICE, if the observed
values of IWC, temperature and water vapour are used to
calculate the cloud fraction from the Smith scheme, the
result is an overestimate of cloud cover. Therefore, even if
the model produced unbiased temperature, moisture and
IWCs, the cloud fraction for this cloud would still be too
large.

6. Summary and discussion

The ACCESS SCM, which is equivalent to the MetUM
SCM of the UK Met Office, has been used to simulate
the TWP–ICE period to investigate the ability of the
model to represent the vertical distribution and temporal
evolution of tropical cloud systems. Two SCM simulations
have been analysed, each using a different representation
of clouds. A new prognostic cloud scheme, PC2, has been
developed at the UK Met Office to overcome some of
the problems associated with the tightly constrained cloud
fields that are produced by the diagnostic scheme used
in the MetUM. The ACCESS SCM produced generally
reasonable representations of the TWP–ICE cloud fields.
Both simulations overestimate the average high cloud cover,
however, this is due to different distributions of cloud
cover from the two cloud schemes. While the diagnostic
scheme tends to predominately produce cloud fractions
close to 1, PC2 produces less overcast conditions with more
occurrences of low cloud fractions, in better agreement
with the observations. However, the total column cloud
cover from the prognostic cloud scheme is significantly
underestimated. The observations show a tendency during
both the active and suppressed monsoon phases to reduce the
cloud cover as a function of height in the upper troposphere.
Both cloud scheme simulations show a weaker tendency for
this trend during the active phase of TWP–ICE, however,
only the prognostic scheme shows any evidence of this trend
during the suppressed phase. The average low-level cloud
cover from the prognostic cloud scheme agrees reasonably
well with the observations during both monsoon phases,
whereas the low cloud cover from the diagnostic scheme
simulation is too large.

The direct detrainment of condensate and cloud
fraction from convection into the large-scale variables
in the prognostic cloud-scheme simulation changes the
moistening due to convective detrainment and large-scale
evaporation compared with the diagnostic-cloud scheme
simulation. This results in a larger negative relative humidity
bias for the prognostic cloud-scheme simulation in the
mid-lower troposphere, particularly during the suppressed

monsoon phase. The drier atmosphere reduces the average
updraft mass flux in the PC2 simulation, however, during
the active monsoon phase when the deep convection scheme
in the model is triggered, the associated convection is
stronger in the prognostic scheme simulation and there
is less mass flux produced by mid-level convection. During
the suppressed monsoon phase the prognostic cloud-scheme
simulation produces large values of in-cloud IWC that are
significantly greater than the observations and the diagnostic
scheme simulation in the levels below 8 km. This allows the
growth of large particles with faster fall speeds than observed,
that rapidly fall to the surface limiting the evaporation in
the cloud and sub-cloud layers.

In a study of climate sensitivity using a multithousand
member ensemble Sanderson et al. (2008) found that the
two parameters that explained 70% of the variance were
the ice-fall speed and the entrainment coefficient. This
result suggests that in order to reduce uncertainty in climate
projections greater accuracy in the representations of the ice-
fall speed are necessary, which implies that the ice properties
in models, including the size distributions, need to be better
constrained. For the initial suppressed phase of TWP–ICE
the models produced faster ice-fall speeds in the upper
troposphere, which together with an underestimate of the
IWC means that the observations have smaller sized particles
in larger concentrations than the models. The model does
not assume that supersaturation with respect to ice in a
cloudy portion of the grid box is immediately converted to
ice and instead explicitly models the process of deposition,
therefore, the microphysical processes and the distribution
of moisture are important in determining the IWC from
large-scale processes. The faster fall speeds at the top of
the cloud will reduce the time that the particles have to
grow within these cloud layers, which will contribute to the
underestimate of IWC shown. As well as the size distribution
and formulation of the microphysical processes, the subgrid-
scale moisture distribution in the model strongly influences
the amount of moisture available for the growth of ice
particles (Wilson et al., 2008a). This distribution in the
MetUM creates a subgrid horizontal water flux that enhances
the moisture in the cloudy part of the grid box at the expense
of the clear-sky moisture (Tompkins et al., 2007), yet the
IWCs are underestimated in this case study. The moisture
distribution that influences the IWC is a function of a
number of tuning parameters: the critical relative humidity
and the width of the moisture distribution in the portion of
the grid box that contains ice (Wilson and Bushell, 2007).
All of these parametrizations and parameters affect the IWC
produced by the model and further research is needed to
determine the key sources of the error.

One of the disadvantages of a scheme with prognostic
cloud fractions is the complexity due to the need to represent
source and sink terms for each physical process in the model.
A long-lived cirrus cloud during the suppressed monsoon
phase showed that the assumptions in PC2 that depositional
growth and fall out of ice do not change the cloud fractions
resulted in constant cloud fractions for close to 2 days. The
addition of depositional growth as a source of ice cloud
fraction in PC2 produced cloud fractions above 10 km that
agree more with those from the diagnostic cloud scheme and
reduced the underestimate in total column cloud fraction
and on average improved the radiative fluxes.

Lin et al. (2004) suggested that the inability of
many models to simulate realistic representations of the

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 734–754 (2012)



Prognostic and Diagnostic Cloud Scheme Analysis Using TWP-ICE 753

Madden–Julian oscillation (MJO) may be caused by
systematic diabatic heating profile errors. Temperature and
moisture errors in the SCM simulations were seen to be the
most pronounced during the suppressed monsoon period
and also quite different between the two simulations. This
suggests that the choice of cloud scheme and the way that
the scheme interacts with the convection scheme plays an
important role in the relative humidity errors during times of
suppressed convection. Other studies such as Li et al. (2008)
have identified the link between poor simulations of
suppressed convection leading to unrealistic simulations of
subseasonal variability in tropical convection, including the
MJO. The GEWEX Cloud Systems Study Group (GCSS)
is currently organizing a model intercomparison study
based on TWP–ICE. The experiments being performed
use the forcing and evaluation dataset that was used
in this study. Hence, the outcomes of these model
simulations, in particular the high resolution CRMs, will
enable a more rigorous assessment of the link between the
cloud scheme and the convection parametrization in the
ACCESS/MetUM SCM.
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