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ABSTRACT

This study presents amethod for comparing convection-permittingmodel simulations to radar observations

using an innovative object-based approach. The method uses the automated cell-tracking algorithm, Thun-

derstorm Identification Tracking Analysis and Nowcasting (TITAN), to identify individual convective cells

and determine their properties. Cell properties are identified in the same way for model and radar data,

facilitating comparison of their statistical distributions. The method is applied to simulations of tropical

convection during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) using the Weather

Research and Forecasting Model, and compared to data from a ground-based radar. Simulations with dif-

ferent microphysics and model resolution are also conducted. Among other things, the comparisons between

the model and the radar elucidate model errors in the depth and size of convective cells. On average, sim-

ulated convective cells reached higher altitudes than the observations. Also, when using a low reflectivity

(25 dBZ) threshold to define convective cells, the model underestimates the size of the largest cells in the

observed population. Some of these differences are alleviated with a change of microphysics scheme and

higher model resolution, demonstrating the utility of this method for assessing model changes.

1. Introduction

Recent improvements in computing capabilities have

allowed many researchers and operational centers to

run numerical models at sufficient resolution that con-

vective processes can be treated explicitly. It has become

common to configure models with horizontal grid spac-

ings of O(1 km), which may not truly resolve deep con-

vection processes but permit them to evolve in a relatively

realistic way. These so-called convection-permitting

models are based on more realistic assumptions than

coarser-resolution simulations with parameterized con-

vection. However, they still require substantial valida-

tion to determine how realistic their representations of

convective-scale processes actually are. The focus of this
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study is on the application of an innovative object-based

method of model evaluation at the convective scale.

Diagnosing the errors in convection-permitting models

is the first step toward their improvement, but is also

valuable in determining their limitations. Evaluation of

models at the convective scale is especially important

because these models have already formed the bench-

mark for modern high-resolution numerical weather

prediction and are frequently used to inform the devel-

opment of parameterizations.With the significant uptake

of popular community models, like the Weather Re-

search and Forecasting (WRF) Model, which are con-

figured at convection-permitting resolution for a broad

range of applications, identifying their weaknesses is

critical for the user community.

Evaluating models at the convective scale is challeng-

ing. Moist convection has inherently low predictability

andmodels have difficulty simulating the correct location

and timing of individual convective clouds, which makes

direct comparisons between observed and simulated

processes problematic. [These difficulties have led to sig-

nificant activity in the field of spatial verificationmethods,

e.g., Gilleland et al. (2010).] Such problems may be ex-

acerbated if comparisons rely on ground-based mea-

surements with incomplete spatial coverage, such as rain

gauges. Moreover, rainfall is a two-dimensional field

that is the product of a sequence of processes and cannot

easily be used to unambiguously determine differences

between modeled and observed convective structures.

Ground-based radar on the other hand provides three-

dimensional observations of convective structures at

frequent time intervals (typically about 10 min), and its

continuous spatial coverage allows the statistics of a

cloud population to be determined, which provides a

useful basis for model evaluation.

Various methods have been used to take advantage of

radar data for the purposes of model validation and

evaluation. A standard approach is to compare con-

toured frequency with altitude diagrams (CFADs) de-

rived from both model and observed data (Rogers et al.

2007; Van Weverberg et al. 2011; Caine 2009; Caine

et al. 2009). Similar to the creation of CFADs, another

approach is to calculate the coverage of an observed

quantity and compare these measurements with model

data. Illingworth et al. (2007) calculated cloud fraction

from radar data and compared it with model results,

while May and Lane (2009) calculated a statistical cov-

erage product (SCP), which involves calculating the

fractional coverage of reflectivity values greater than

a chosen threshold, the fractional coverage of rain,

snow, graupel, and hail, and the maximum reflectivity

anywhere on the grid. One consequence of using frac-

tional coverage or CFADs to validate a numerical model

is that the horizontal structure of individual convective

elements is lost. To avoid the loss of horizontal structure

an object-based methodology can be used. Davis et al.

(2006) used an object-based approach to verify precip-

itation forecasts. In their analysis rain area and intensity

were used as the basis for comparison between observed

and simulated data.

The technique described in this paper differs from the

previous authors’ in that an automated cell-tracking al-

gorithm is used to objectively identify, track, and provide

information about the three-dimensional characteris-

tics of individual storms or storm cells. Specifically, the

method utilizes Thunderstorm Identification Tracking

Analysis and Nowcasting (TITAN; Dixon and Wiener

1993), an established algorithm usually applied to radar

data, to characterize and compare the statistics of con-

vective cells observed by ground-based radar and sim-

ulated using the WRF Model. This paper builds upon

the work of Pinto et al. (2007) in which TITAN was first

used to analyze model results. By identifying individual

convective cells as objects for the basis of comparisons,

a large number of cell properties can be recorded, even

over a relatively short time period. The statistical distri-

butions of those properties in themodel and observations

are compared, avoiding some of the predictability issues

or loss of spatial information inherent in other methods.

Other authors have also used objective tracking and

identification algorithms for comparing observations

and model results (e.g., Wilcox 2003; Zhang et al. 1999).

However, unlike TITAN, these other methods are two-

dimensional and do not provide information about the

vertical structure of individual convective cells, which is

part of the focus of this study.

The aim of this study is to describe the application of

TITAN for evaluating convection-permitting model

simulations. To illustrate this method a series of model

simulations of tropical convection observed during the

Tropical Warm Pool-International Cloud Experiment

(TWP-ICE) are compared to observations from the

Bureau ofMeteorology radar at Gunn Point near Darwin,

Australia. The TWP-ICE experiment was conducted

in the region surrounding Darwin during January and

February 2006 (May et al. 2008). Over the course of the

experiment synoptic conditions ranged from an active

monsoon to a period with relatively suppressed con-

vection, and finally to monsoon break conditions. The

time period for this investigation (spanning 1200 UTC

8 February 2006 to 1200 UTC 13 February 2006) was

chosen to coincide with the break conditions sampled

during TWP-ICE, which occur when the low-level zonal

winds revert to an easterly flow, advecting drier air to the

region (Keenan and Carbone 1992). Convection during

break periods tends to be smaller in scale (than convection
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occurring during the monsoon), is locally forced, and

often initiates along sea-breeze fronts. The localized

nature of the convection within the break lends itself to

the method because numerous convective systems evolve

and decay within the radar range.

Other studies have analyzed convective-permitting

simulations during TWP-ICE (e.g., Wapler et al. 2010;

Caine 2009; Varble et al. 2011; Wang and Liu 2009;

Fridlind et al. 2012; Wapler and Lane 2012), exploring

aggregate properties of the convective processes and

their sensitivity to physical parameterizations. In the

spirit of providing a proof of concept of the TITAN

analysis, the simulations presented herein are designed

specifically with the comparison to radar in mind, and

the simulations do not encompass the entire TWP-ICE

period, only a 5-day period during the break regime.

Even though the period of study is relatively short

(constrained mostly by computational limitations and

the length of the convective regime), it will be shown that

these simulations expose important differences between

the observed and modeled convective systems. More-

over, the method is also used to examine the effects of

changes in model physics and resolution on the model

outcomes.

The remainder of this paper is organized as follows:

section 2 describes the data and methods used in the

analysis with some further details provided in the ap-

pendixes. In section 3 results obtained using some tra-

ditional methods of model evaluation are presented

alongwith an analysis of observed and simulated statistics

of the convective cell properties defined by TITAN. The

sensitivity of results to model microphysics and model

resolution is also explored. Finally, the results and their

implications are summarized in section 4.

2. Data and methods

a. The Gunn Point radar

The model evaluation technique employed here re-

volves around comparison between the model simula-

tions and observed reflectivity data from theGunn Point

radar in Darwin. The Gunn Point radar is a C-Band

Polarimetric (CPOL) radar operating at a 5-cm wave-

length, which has an uncertainty of 1 dBZ [see Keenan

et al. (1998) for details]. Reflectivity data were obtained

in Cartesian format consisting of 40 vertical levels

spaced 500 m apart (0.5–20 km), with each vertical level

containing 121 3 121 grid points spaced 2.5 km apart;

the temporal resolution of these data is 10 min, which is

the time taken to complete a full 3D volume scan. The

radar-derived rainfall rate is also determined using the

algorithm described by Bringi et al. (2001), which was

developed and tested using data from the Gunn Point

radar and evaluated against a rain gauge network. The

algorithm takes advantage of the polarimetric variables

available from the CPOL radar for a more accurate

determination of rainfall.

b. The Weather Research and Forecasting Model

In this study the Advanced Research Weather Re-

search and Forecasting (ARW-WRF) Model, version

3.1.1 (Skamarock et al. 2008), is used to simulate tropical

convection occurring over Darwin. Most of the analyses

presented herein are derived from a nested simulation

that uses four one-way nested domains. The locations of

the outer domain and three (one-way) nested domains

are shown in Fig. 1a (with solid lines) and have hori-

zontal grid spacings equal to 33.75, 11.25, 3.75, and

1.25 km, respectively. These four domains have horizontal

FIG. 1. (a) The spatial extent of the domains used in the ARW-

WRF simulations. The configuration using four domains is repre-

sented by the solid lines and the configuration using five domains is

represented by the dotted lines. (b) Example of the valid radar

domain at 2.5-km altitude with circular radar mask applied.
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dimensions of 1603 90, 2233 115, 3193 157, and 2443
244 grid points, respectively. The dimensions of the in-

nermost domain were chosen to encompass the range

of the Darwin (Gunn Point) radar (Fig. 1b). Each do-

main uses 64 vertical levels with a 10-mb model top and

a 5-km-deep upper-level absorbing layer.

The various physics packages common to all simulations

include the Rapid Radiative Transfer Model (RRTM;

Mlawer et al. 1997), the Goddard shortwave radiation

scheme (Chou and Suarez 1994), the Noah land surface

model (Chen andDudhia 2001), and theMellor–Yamada–

Janji�c 2.5-level boundary layer scheme (Mellor and

Yamada 1982; Janji�c 2001). The Betts–Miller–Janji�c

cumulus parameterization scheme (Betts andMiller 1986)

is used in the first two domains only. Domains 3 and 4,

with their 3.75- and 1.25-km horizontal grids, are convec-

tion permitting and convective processes are thereby

treated explicitly. Two different simulations are runwith

the high-resolution setup. The first uses the Purdue–Lin

microphysics scheme (Lin et al. 1983; Rutledge and

Hobbs 1984); this simulation is used for most of the

paper and is referred to as simply the ‘‘Lin simulation.’’

The second configuration uses the Thompson micro-

physics scheme (hereafter referred to as the ‘‘Thompson

simulation’’) (Thompson et al. 2008). The outer domain

of all simulations receives its initial and boundary con-

ditions from the European Centre for Medium-Range

Weather Forecasts (ECMWF) Interim Re-Analysis

(ERA-Interim) data (Dee et al. 2011); the 6-hourly

ERA-Interim data is interpolated in time to provide

the boundary conditions for the model. The simulations

are initialized at 1200 UTC 8 February 2006 and end at

1200 UTC 13 February 2006: a period classified as be-

longing to the monsoon break regime (May et al. 2008).

The first 12 h of these simulations are regarded as spinup

time and excluded, leaving 4.5 days of simulation for the

analysis. The performance of the simulation is, of

course, affected by its 5-day length and biases could

develop. An alternate approach might be to reinitialize

the model periodically and/or include internal grid

nudging. However,Wapler et al. (2010) showed for their

simulations that the model performance (in terms of

rainfall) was not necessarily better with a shorter simu-

lation lead time. Furthermore, reinitializing the simu-

lations would lead to discontinuities in the cell locations,

disrupting the cell-tracking feature within TITAN. As

discussed earlier, the sensitivity of model performance to

such changes in simulation design are not the focus of this

study and could be explored in further research.

c. Microphysics schemes

The model simulations examined herein rely heavily

on the details of the microphysics schemes used for both

the simulation of convection, and in determining the

simulated radar reflectivity (derived later). Therefore, a

brief description of the microphysics schemes used in

the simulations is provided in this section.

The Lin microphysics scheme is a single-moment bulk

microphysical parameterization that simulates five

forms of water (cloud water, cloud ice, rain, snow, and

graupel). Cloud water and cloud ice are assumed to have

negligible terminal velocities because of their small size,

and are therefore nonprecipitating. Of the three pre-

cipitating fields (rain, snow, and graupel) particle-size

distributions are assumed to follow a Marshall–Palmer

or exponential equation of the following form:

N(D)5N0e
(2lD) , (1)

where N(D) is the number concentration of particles

with diameterD, N0 is the intercept parameter, and l is

the slope parameter that is defined as

lx5

�
pN0,xrx
rairqx

�1/4

, (2)

where rair is the density of dry air; and rx, qx, andN0,x are

the density, mixing ratio, and intercept parameter of the

hydrometer category (with subscript s, g, and r corre-

sponding to snow, graupel, and rain, respectively). In

version 3.1.1 of theARW-WRFModel these parameters

are N0,s 5 3 3 106, N0,g 5 4 3 106, N0,r 5 8 3 106, rs 5
100 kg m23, rg 5 400 kg m23, and rr 5 1000 kg m23.

The Thompson microphysics scheme simulates the

same five classes of water as the Lin scheme (cloud

water, cloud ice, rain, snow, and graupel). However, as

well as predicting the mixing ratio for these five species,

this version of the Thompson scheme also predicts the

cloud ice and rain number concentration (i.e., it is a

double-moment scheme for both cloud ice and rain).

This configuration of the Thompson microphysics

scheme uses an exponential distribution to represent the

particle-size distributions for the hydrometeor species,

with the exception of snow, which is the sum of an ex-

ponential and gamma function (Thompson et al. 2008).

Furthermore, for rain the Thompson scheme has an in-

tercept value N0,r and a slope parameter lr dependent

on both the rainwater mixing ratio qr and the rain

number concentration Nr [see Eqs. (B4) and (B5) of

appendix B]. The Thompson scheme represents graupel

in a similar fashion to the Lin scheme, with the exception

that the intercept parameter N0,g is a function of the

graupel mixing ratio, rather than simply a constant as in

theLin scheme. In version 3.1.1 of theARW-WRFModel

the intercept value for graupel was updated [as seen in

Eq. (B10)] and is now expressed in a similar fashion to the
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rain intercept parameter described in Thompson et al.

(2008). Finally, in the Thompson scheme the particle-size

distribution for snow is represented by the sum of an

exponential and gamma function shown in Eq. (B11),

which is a function of both temperature and mixing ratio.

For additional differences between the two microphys-

ics schemes see Lin et al. (1983), Chen and Sun (2002),

Thompson et al. (2004, 2008), Field et al. (2005), and

Morrison and Pinto (2005).

d. Simulated radar reflectivity

Radar reflectivity (dBZ) is not a prognostic variable

within the ARW-WRF Model. As radar reflectivity is

proportional tomass squared, for the liquid phase (where

the particles are assumed to be spherical) it is straight-

forward to calculate reflectivity as it is simply the integral

of the sixth moment of the drop size distribution (see

appendixes A and B). For the ice phase, reflectivity is

still generally weighted to the sixthmoment of the particle-

size distribution, but for example, assumptions on the ice

density are also important. Therefore, to compare data

from the numerical model to those observed by a radar,

a conversion between simulated variables and radar re-

flectivity is required. Many authors have developed such

conversion algorithms (Anagnostou and Krajewski 1997;

Chandrasekar and Bringi 1987; Koch et al. 2005) and the

concept behind them is that particle-size distributions

(specific for a given microphysics parameterization

scheme) can be used to calculate the combined surface

area that a distribution of particles would present to an

unattenuated radar beam. The algorithms used herein

are slightly different to account for the differences in

the microphysical parameterizations, and details of

these algorithms are provided in appendixes A and B.

Figure 2 shows example observed and (Lin) simulated

reflectivities on two different days during the simulated

period. These figures highlight the development of

‘‘Hector’’ thunderstorms (Figs. 2c,d) over the Tiwi Is-

lands, the two islands to the northwest of the mainland,

and localized convection forming over the mainland

(Figs. 2a,b). Qualitatively, the model simulations appear

to provide a realistic representation of the convection

and its spatial characteristics.

e. Cell-tracking and identification method

The technique used in this study exploits the cell-

tracking algorithm found in the TITAN software package

(Dixon andWiener 1993). TITAN was first developed in

the 1980s at the National Center for Atmospheric Re-

search (NCAR) to identify and track convective cells in

radar data (NCAR 2012).

TITAN has been used for a variety of applications

including nowcasting, case studies, climatology studies,

and weather modification studies (Krauss and Santos

2004; May and Ballinger 2007; Potts et al. 2000; Vallgren

2006; Horvath et al. 2008). TITAN defines a storm as

a contiguous region of reflectivity at or above a user-

defined threshold. Once identified, TITAN then ap-

proximates the defined region as either an ellipse or

polygon, the vertical overlap of these regions defines the

three-dimensional structure of the storm. For simplicity,

in this study storms are approximated as ellipses. The

number of storms identified by TITAN is sensitive to

aminimum storm volume parameter.May and Ballinger

(2007) used a minimum storm volume of 30 km3 to

eliminate noisy data, in this study a larger minimum

storm volume of 100 km3 was chosen to exclude storms

that are poorly resolved by the model (although it is

conceivable that there are some storm geometries that

remain poorly resolved). Figure 3 shows an example of

the storms identified by TITAN, in this example a

threshold of 45 dBZ is used to define the storms. For

a given storm identified by TITAN (defined by a specific

dBZ threshold) a number of quantities are calculated

and tracked through its lifetime, examples include the

location of the storm, the length of the major and minor

axes of the storm ellipse, the orientation of the storm,

the maximum height of the storm, the maximum size of

the storm region, and the speed and direction of the

storm propagation.

The application of TITAN to radar data is well estab-

lished. However, in order to use the cell-identification

algorithm within TITAN as a tool for model assessment,

the model output must be manipulated into a form

compatible with the TITAN software and consistent with

the radar data (Pinto et al. 2007). Three-dimensional

model microphysical quantities are stored every 10 min

for the length of each simulation, which matches the

temporal resolution of the Gunn Point radar data. After

the model microphysical variables are converted to sim-

ulated reflectivity, the data are interpolated and averaged

to the same grid specifications as the data from the Gunn

Point radar. Thus, for each model time period the data

are interpolated onto 40 equally spaced vertical levels

ranging from 0.5 to 20 km (500-m spacing), and averaged

onto a Cartesian grid with a spacing of 2.5 km in each

horizontal direction (which by design is an integer mul-

tiple of the model grid spacing). At each vertical level

circular masks are applied to limit the simulated re-

flectivity data to the same area observable by the radar

(e.g., Fig. 1b). Finally, the data are converted to meteo-

rological data volume (MDV) format, the native input

format for TITAN.The TITANalgorithm is then applied

to this processed model data (i.e., the TITAN procedures

are completed ‘‘offline’’). At this stage the source of the

data is not relevant toTITANand the algorithmproceeds
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in exactly the same way as with the radar observations to

identify, track, and provide information on the charac-

teristics of the simulated storm cells.

Applying TITAN to the analysis period (4.5 days,

10-min interval data) gives sample sizes (number of cells)

on the order of 1000–2000. This allows simulated storm

properties to be compared with the observed storm prop-

erties in a statistical fashion.

As TITAN allows storms to be identified by choosing

a reflectivity threshold, different properties of the storms

can also be investigated by changing the reflectivity

threshold. For example, a relatively low reflectivity thresh-

old (for example 25 dBZ), would likely contain information

about the larger storm complex, including stratiform

precipitation. If, on the other hand, a reflectivity thresh-

old of 45 dBZ is used to define the storms, then the cell

properties identified by TITAN will provide information

primarily about the intense convective cores (May and

Ballinger 2007). Such statistics are examined in the next

sections.

3. Results

A comparison of observed and simulated convective

cell properties determined using TITAN will be exam-

ined shortly. However, before introducing these results

some more traditional analysis is performed to contrast

some of the results shown in later sections. Figures 4a,b

show the domain-averaged rain rate and accumulated

precipitation, derived from the radar and obtained from

the Lin simulation (both are calculated over the range of

the radar). These figures show that themodel approximately

FIG. 2. Example (a),(c) observed and (b),(d) simulated reflectivity fields at 2.5 km.Note that (a) and (b) are at the same time, but (c) and

(d) differ by 2 h, 10 min. Wind direction and magnitude are shown by the black arrows in the simulations (10-m altitude), with the

reference vector shown at the top right.
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FIG. 3. (a) Sample reflectivity field derived from the Lin simulation at 1040UTC9 Feb 2006. (b)As in

(a), but with green shading denoting the storms identified by TITAN using a 45-dBZ threshold.
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reproduces the number of large precipitation events,

their duration, and their intensity. However, there are

differences in the timing and intensity of individual

events. During the first two days the Lin simulation

domain-averaged precipitation and rain rate track the

observations well. However, the model produces a large

event on 11 February, whereas the observations show

two smaller events before and after the modeled one.

Despite this difference, by the end of the period the

simulation and observations are in good agreement (in

terms of rain rate) in the last 12 h of the simulation. The

differences between observed and simulated precip-

itation are likely due to a combination of errors inmodel

initial and boundary conditions as well as errors in physical

parameterizations (e.g., Wapler et al. 2010; Wapler and

Lane 2012). Further efforts with ensembles would expose

the relative importance of these errors.

a. Pixel-based evaluation

One possible reason for differences between observed

and simulated precipitation is inadequate representation

of the properties of convection within the model, leading

to differences in the three-dimensional distribution of

hydrometeors. Figures 5a,b show statistics of echo-top

heights at various reflectivity values derived from the

radar data and the Lin simulation. These statistics were

created using a simple pixel-based approach, where for

each horizontal grid point in the domain the maximum

height of a given reflectivity value is calculated. For most

reflectivity thresholds the spread of echo-top heights is

overestimated in the Lin simulation, seen as an over-

estimation in both the interquartile range (IQR) and the

height of the 95th percentile. Median-simulated echo-top

heights are underestimated at all but the highest reflec-

tivity thresholds. Nonetheless, the median in both the

model and the observations show a similar decreasing

trend with reflectivity threshold.

Figures 5c–f show histograms of echo-top height for

the radar and the Lin simulation, for two different re-

flectivity thresholds (25 and 45 dBZ). [Here and through-

out the manuscript these two thresholds are used to

distinguish between the properties of intense convective

cores (45 dBZ) and broader stratiform regions (25 dBZ).]

At the 25-dBZ threshold the observations show a broad

peak between 7 and 10 km, followed by a rapid drop of

in frequency above 10 km. In contrast, the Lin simula-

tion shows a sharp peak around 5 km and a shallow

dropoff in frequency with height. At the 45-dBZ thresh-

old the observed and simulated echo-top height dis-

tributions are more similar, with the simulated peak

occurring around the correct height. However, once again

the radar observations show a rapid decrease in frequency

with increasing height (above 7 km) that is not found in the

simulations. The number of samples that contribute to

each distribution is also displayed in Fig. 5 (shown in the

top-right corner of Figs. 5c–f). Note that the number of

samples (total reflectivity area) is less in the simulated data

for both reflectivity thresholds compared to the observa-

tions, and is substantially lower for the 25-dBZ threshold.

Thus, the total storm area is underestimated by the

model. The large difference in sample sizes seen here also

highlights a potential problemwith pixel-based evaluation

of echo-top height. Namely, the size and number of dis-

crete convective cells are inseparable and determining the

underlying cause of differences between two datasets

(e.g., model and observations) is difficult. In the fol-

lowing sections it will be shown that the TITAN ap-

proach of analyzing cells as individual objects can, among

other things, delineate errors associated with cell size.

b. TITAN statistics

The TITAN algorithm is applied to the 4.5-day sim-

ulation period to identify the convective cells in the

simulations and observations. The time series of the

number of identified convective cells in the radar and

FIG. 4. (a) Domain-averaged rain rate derived fromLin simulation

and radar data. (b) Domain-averaged accumulated precipitation.

(c) Number of storms identified by TITAN using a 25-dBZ re-

flectivity threshold.
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the Lin simulation (using a 25-dBZ threshold) are shown

in Fig. 4c. Although there is some correspondence be-

tween rain rate (Fig. 4a) and the number of cells, there is

not a direct relationship. For example, in some cases there

is good agreement between the modeled and simulated

rain rate but not the number of cells, and vice versa.

Figure 6 shows observed and simulated statistics of

maximumstormheight and cell size producedbyTITAN,

as a function of the reflectivity threshold used to define

the cells. Here, cell-top height (or simply storm height)

is defined as the maximum height of the reflectivity

threshold used to define the storm cell, and storm size is

defined as the downward projection of the maximum

storm dimensions. Note that this analysis circumvents the

problem of biases in storm size affecting the echo-top

height statistics seen inFig. 5 because theTITANanalysis

allows the storm height and storm size properties to be

analyzed independently.

FIG. 5. Echo-top height statistics for (a) the radar and (b) the Lin simulation, where the statistics have been derived

using a traditional pixel-based approach for determining echo-top height. In the box-and-whisker plots the inter-

quartile range is displayed by the box, and the whiskers extend to the 5th and 95th percentiles. (c)–(f) Histograms of

echo-top height for the same data when a threshold of 25 dBZ is used [(c) radar, (d) Lin], and when a 45-dBZ

threshold is used [(e) radar, (f) Lin].
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The results in Fig. 6 include all storms identified by

TITAN between the 0000 UTC 9 February 2006 and

1200 UTC 13 February 2006. Note that no temporal

information has been included in Fig. 6, and each cell

identified by TITAN is treated as an independent sam-

ple regardless of whether TITAN has identified the

storm previously. In this way the bulk statistics of the

storm cell properties are examined over the analysis

period. There are 2859 (2220) cells identified by TITAN

in the radar data (Lin simulation) when a reflectivity

threshold of 25 dBZ is used to define the cells, and 1150

(1037) cells identified in the radar data (Lin simulation)

when 45 dBZ is the threshold. Thus, despite the un-

derrepresentation in total simulated storm area noted in

Fig. 5, the Lin simulation and the radar data possess a

similar number of convective cells.

Figures 6a,b show the cell-top height statistics for the

radar and Lin simulation, respectively (note again that

this statistic is different from the simple pixel-based

echo-top statistic seen in Fig. 5 because it is denoting the

distribution of the tops of discrete cells). Statistics ob-

tained when a reflectivity threshold of 18 dBZ is used to

FIG. 6. Box-and-whisker plots derived from all storms identified by TITAN during the analysis period for different

reflectivity thresholds. The interquartile range is displayed by the box, and the whiskers extend to the 5th and 95th

percentiles. Cell-top height statistics for the (a) radar and (b) Lin data. (c),(d) The storm size statistics, with only the

median and interquartile range displayed. (e),(f) As in (c),(d), but that the whiskers are also displayed.

566 MONTHLY WEATHER REV IEW VOLUME 141



define the cells have been included in these two figures

as previous authors have used the 18-dBZ contour

a proxy for cloud-top height (Magagi and Barros 2004;

Heymsfield et al. 2000; Dupree et al. 2006).1 There are

substantial differences between the simulated and ob-

served storms. The simulated interquartile range is large

and approximately constant over the reflectivity thresh-

olds in themodel, while it is small and decreasing with the

reflectivity threshold in the observations.Median cell-top

heights show opposite trends for the observed and sim-

ulated storms; the median cell-top height of the observed

(simulated) storms is a maximum (minimum) at the low-

est reflectivity threshold and gradually decreases (in-

creases) as the reflectivity threshold is increased. At the

largest reflectivity thresholds the cell tops are too high.

These differences are in contrast to the median trends

versus reflectivity threshold exposed using the traditional

approach (cf. Fig. 5), which appears to show better

agreement with the observations. However, those tradi-

tional statistics combine cell sizes and heights together,

and opposing errors in these two properties can com-

pensate one another.

To further elucidate the differences between the ob-

served and simulated distribution of storm-top heights,

the histograms for the 25- and 45-dBZ thresholds are

shown (Fig. 7). For the 25-dBZ threshold (Figs. 7a,b)

both the simulated and observed height distributions

appear qualitatively similar. However, although the

peak in the modeled distribution and its median (Figs.

6a,b) are approximately 2 km lower than observed, the

modeled distribution features a greater occurrence of

cells between approximately 11 and 16 km high. At the

45-dBZ threshold the median of the simulated distri-

bution is approximately 2 km too high (Figs. 6c,d) and

the distribution is too broad and flat (Figs. 7c,d). Note

that errors in the model reflectivity conversion algorithm

might explain part of the relatively large differences near

the melting level (;5 km); however, the differences at

FIG. 7. Histograms of cell-top height when the 25-dBZ threshold is used to define the storms in the (a) radar and

(b) Lin data. (c),(d)As in (a),(b), but a 45-dBZ threshold is used. The number of cells identified for these thresholds is

also displayed in the legend.

1 Note that 18 dBZ corresponds to the detection limit of the

precipitation radar on board the Tropical Rainfall Measuring

Mission (TRMM) satellite and will generally be an underestimate

of true cloud-top height.
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higher altitudes are most likely attributable to actual

differences between the modeled and observed cell

characteristics. Thus, these comparisons show that the

simulated convection produces an overrepresentation of

deep convective cells, which is worse at higher reflectivity

thresholds (more intense cells).

Figures 6c,d show the median and IQRs of storm sizes

for both the radar and the Lin simulation. The median

storm sizes and 25th percentile compare reasonably well

in both datasets. However, the main difference occurs at

the upper percentiles; the 75th percentile is approxi-

mately 50–100 km2 smaller in the model than observed.

The differences for the larger cells are further high-

lighted in Figs. 6e,f (where the whiskers extend to the

95th percentile) and exceed 1000 km2. These figures

show that the Lin simulation is failing to represent the

size of the larger storms, which is consistent with the

simulation underestimating total area (Fig. 5) while

producing a similar number of convective cells. The

disagreement in size is worse at the lower reflectivity

thresholds, suggesting increased difficulty representing

the stratiform area of storms compared to the size of

intense convective cores. Finally, TITAN also records

the horizontal geometry of the (elliptical) cells and the

analysis found the modeled cells to have lower eccen-

tricity than the observed cells (not shown). Thus, this

comparison shows that the simulated cells are too small

and too circular, in addition to being too deep.

In addition to the geometry of the detected cells, the

TITAN algorithm also records temporal information

about the cell age. The cell age corresponds to either the

time since the cell first initiates or the time since a cell

entered the analysis domain. Although not shown here,

the shape of the age distributions of cells in the Lin

simulation are similar to those observed by radar, with

only minor differences for the youngest and oldest cells.

These similarities suggest that the different cell geom-

etries discussed above are not directly related to dif-

ferences in the age of cells (e.g., there is not a simulated

dominance of older cells that might be expected to be

deeper).

Further details of the differences between the ob-

served and simulated cell-top height distributions are

exposed by considering how they vary with cell age

(Fig. 8). For the 25-dBZ threshold (Figs. 8a,b) during the

first 10 min of detection (the first bin) the simulated storms

FIG. 8. Cell-top height statistics as a function of storm age. (a),(b) The results of the radar and Lin data when the

25-dBZ threshold is used to define the storms. (c),(d) As in (a),(b), but a 45-dBZ threshold is used.
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have a lower median cell-top height and interquartile

range than observed. The observed median cell-top

height increases gradually to 10 km (at ages of about

1 h, 40 min), compared to the more rapid simulated

increase to 10 km (at about 1 h). The interquartile range

increases more rapidly with age in the simulation, and at

almost all ages the interquartile ranges are larger in the

simulation than the observations. These differences are

exacerbated at the 45-dBZ threshold (cf. Figs. 8c,d).

Although some of these differences might be explained

by changes in simulated stormmorphology as they enter

the highest resolution domain, these results show that

the simulated storms deepen more rapidly than ob-

served and provide further evidence that the simulated

cell tops are predominantly too high.

In summary, the results of this section elucidate spe-

cific differences between the observed and simulated

storms. In general the Lin simulation produces convec-

tive cells that are predominantly too tall and horizon-

tally too small. These two errors are combined together

and can compensate one another using traditional pixel-

based echo-top statistics, but are separable using the

TITAN method. The model simulation had substan-

tial difficulty representing the area of storms using the

25-dBZ threshold. This means the stratiform area is mis-

represented, which is controlled, in part, by the cloud

microphysics scheme andmay be sensitive to the specific

scheme used. The sizes of intense convective cores are

better represented in the model, albeit still too small,

presumably because their sizes are more constrained by

the dynamics. Nonetheless, the characteristics of the

convective cores (too tall and too small) are consistent

with insufficient entrainment and detrainment, which

could be a result of the model resolutions used. Un-

derestimating mixing between the intense convective

cores and their environment would lead to an over-

estimation of the updraft strength, and therefore the

height of the convective cells.Moreover, underestimating

detrainment could also lead to an underproduction of

stratiform precipitation atmidlevels and hence storm size

at the lower reflectivity thresholds. These hypotheses will

be investigated in more detail in the next two sections.

c. Sensitivity to microphysics

The previous section identified errors in the repre-

sentation of convective cell properties, and suggested

that errors at lower reflectivity thresholds might be

explained by certain aspects of the microphysics pa-

rameterization. Indeed, many previous studies have

demonstrated how convective cell properties are sensi-

tive to microphysics (e.g., Bryan and Morrison 2012;

Morrison and Milbrandt 2011; Morrison et al. 2009;

Varble et al. 2011, etc.). In this section, the sensitivity of

the convective cell properties to cloud microphysics is

examined; theARW-WRFModel is integrated a second

time with the same setup described previously, except

that the Thompson microphysics scheme is used instead

of the Lin microphysics scheme.

The distributions of cell-top heights and storm sizes

as a function of reflectivity threshold for the Thompson

simulation are shown in Figs. 9b,d. For ease of com-

parison the results for the Lin simulation have been

reproduced in Figs. 9a,c, and the median observed cell-

top heights are also shown in Figs. 9a,b. Figure 9 shows

that the greatest difference produced by changing to the

Thompson microphysics scheme occurs in the distribu-

tion of cell-top heights when reflectivity values below

35 dBZ are used to define the storms. While the median

and 25th percentile are similar between the Lin and

Thompson simulations, the height of the 75th percentile

is reduced considerably for the Thompson case. Above

35 dBZ there is less difference between the cell-top

heights of the Lin and Thompson simulations, except the

IQR has reduced in the Thompson simulation, which

also improves its agreement with the observations

(cf. Fig. 6a). However, as with the Lin simulation, the

Thompson simulation shows an increase in the me-

dian cell-top height with increasing reflectivity thresh-

old, which is opposite to what is observed. Nonetheless,

the largest beneficial change in the cell-top height has

occurred in the representation of the heights of strati-

form cloud and/or weak convection (i.e., the lower

reflectivities).

Figures 9c,d show that despite the improvements in

cell-top height (at lower reflectivities), storm sizes are

very similar in the Lin and Thompson simulations. The

cumulative distribution function (CDF) of cell sizes at

the 25- and 45-dBZ thresholds (not shown) also illus-

trates that the size distributions between the Lin and

Thompson simulations are in close agreement to one

another and changing the microphysics does not provide

an improved representation of cell sizes. This result

suggests that errors in cell sizes might also be explained

by other model characteristics, such as model resolution

(see the next section).

To further elucidate the changes in the cell-top height

behavior, histograms at the 25- and 45-dBZ threshold

are determined for the Thompson simulation (Figs. 10b,d)

and reproduced for the Lin simulation (Figs. 10a,c).

At the 25-dBZ threshold the peak in the Thompson

histogram has moved to a higher altitude and broadened

compared to the Lin histogram. Comparison of these

figures with the observed histograms (dashed line in Fig.

10) shows that the Thompson histogram more closely

resembles the observed distribution. At the higher

(45 dBZ) threshold, the Thompson histogram is slightly
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narrower than Lin, but certainly not narrow enough to

be classed as a good representation of the observations.

Statistical tests can also be applied to the TITAN-

derived distributions to objectively determine whether

changing the microphysics scheme (or any other model

property) has improved the simulation in a statistically

significant way. The two-sample Kolmogorov–Smirnov

(K–S) test is applied to both the radar and Lin, and the

radar and Thompson histograms for a variety of re-

flectivity thresholds (Table 1). The null hypothesis for

the K–S two-sample test is that the two samples are

drawn from the same continuous distribution. If the P

value is high (close to 1) then the null hypothesis cannot

be rejected, which can be interpreted to mean that the

modeled distribution is drawn from the same distribu-

tion as the observations, implying statistically significant

agreement.

From Table 1 it can be seen that the Thompson mi-

crophysics has significantly improved the cell-top height

statistics for low reflectivity values. The P values for the

K–S test are greater than;0.9 for reflectivity thresholds

below 30 dBZ, indicating that the Thompson and radar-

derived histograms are likely drawn from the same dis-

tribution at the 90% significance level. In contrast, the P

values are small for the comparison between the radar

and the Lin simulation cell-top height distributions,

implying poor agreement between the two distributions.

Table 1 also summarizes the findings regarding storm

size; the ARW-WRF Model performs badly at repre-

senting the storm size distributions at low reflectivity

values (in both the Lin and the Thompson simulations).

However, at higher reflectivity thresholds (.;40 dBZ)

both the Lin and the Thompson simulations provide

a good representation of the storm size distribution, with

the K–S test indicating the model and radar histograms

are likely drawn from the same distribution at the 90%

significant level. Thus, these tests show that at thresholds

less than 30 dBZ the Thompson simulation provides

a better representation than the Lin simulation of the

observed cell-top height distribution; however, changing

the microphysics scheme does not improve the storm

size statistics.

To gain some insight into why the Thompson simu-

lation better represents the observed echo-top height

distributions at low reflectivities, Fig. 11 shows vertical

profiles of hydrometeor mixing ratios for both simula-

tions. Figures 11a,b show the domain-averaged mixing

ratio for the Lin and Thompson simulation, respectively.

FIG. 9. Cell-top height statistics as a function of reflectivity threshold for (a) Lin and (b) Thompson simulations. For

comparison the observed median cell-top height values are shown by the crosses. The storm size statistics are shown

as a function of reflectivity threshold for (c) Lin and (d) Thompson.
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The Thompson simulation has snow as the dominant

hydrometeor category at higher altitudes, whereas the

Lin simulation has graupel as the dominant category

with very little snow. There is significantly more water at

higher altitudes in the Thompson simulation than in the

Lin simulation. Figures 11c,f also show the mixing ratios

averaged over the 25- and 45-dBZ cells; this comparison

demonstrates that the relative amplitudes of rain and

graupel are similar in the Lin simulation, regardless of

the reflectivity threshold. However, the Thompson sim-

ulation shows a change in the relative amplitudes of

snow (the dominant ice category) and rain depending on

the reflectivity threshold. This comparison suggests that

Thompson simulation exhibits different microphysical

behaviors for strong and weak cells, whereas the Lin

simulation does not.

Recent studies using the ARW-WRF Model during

TWP-ICE have compared the performance of these two

microphysics schemes (e.g., Wu et al. 2009; Wang et al.

2009). Specifically, Wang et al. (2009) link the over-

representation of cirrus in simulations with the Thomp-

son scheme to an overrepresentation of snow.Moreover,

Wu et al. (2009) compare graupel from simulations with

the Thompson and Lin schemes to polarimetric radar ob-

servations and find that the Lin (Thompson) scheme

overrepresents (underrepresents) the amount of grau-

pel. Given the large differences between the graupel and

snow concentrations seen in the two simulations here

(Fig. 11) and their similarity to the results of Wang et al.

(2009, their Fig. 6), it is likely that similar biases are

present (even though there may be differences in the

implementations of the schemes). Moreover, given that

graupel has a significantly higher terminal velocity than

snow, it follows that the Lin simulation should pre-

cipitate more water mass than the Thompson simula-

tion, with the Thompson simulation retaining more

hydrometeor mass aloft. The domain-averaged hydro-

meteor sedimentation flux for both simulations is shown

in Fig. 12, along with a comparison of the rain rates

(during a period that the simulated timing of convection

in both simulations agrees well with the observations).

Indeed, the Lin simulation has a much larger flux of

graupel than the Thompson simulation, the Lin simu-

lation has a negligible flux of snow, and the flux of rain is

FIG. 10. Histograms of cell-top height for the (a) Lin and (b) Thompson simulations with a 25-dBZ threshold.

(c),(d) As in (a),(b), but for a 45-dBZ threshold. For comparison the observed cell-top height distributions are shown

by the dashed line.
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larger in the Lin simulation (Figs. 12a,b). Accordingly, the

rain rates in the Thompson simulation are smaller than

the Lin simulation (Fig. 12c). [Note that some studies

(e.g., Morrison et al. 2009) note increased rain with two-

moment schemes compared to similar one-moment

schemes; however, in this case the differences in the rep-

resentation of graupel and snow aloft probably makes the

most important contribution to the differences in rain.]

The cell-top height distribution at the 25-dBZ thresh-

old is significantly improved in the Thompson simulation

compared to the Lin simulation. The distribution for the

Lin simulation is too peaked and the altitude of the peak

is too low, whereas the Thompson simulation has

a broader distribution with a peak at higher altitudes (cf.

Fig. 10). The peak in the 25-dBZ histogram in the Lin

simulation corresponds to the intersection of the graupel

and rain at about 5 km (Figs. 11c and 12a) and themixing

ratios and fluxes of rain (graupel) drop off rapidly with

increasing (decreasing) altitude. In comparison, in the

Thompson simulation (Figs. 11d and 12b) the mixing

ratio and flux of rain extends higher above the melting

level (;5 km); the mixing ratio and flux of graupel also

extends well below the melting level. Thus, in the

Thompson simulation both rain and graupel are less

peaked in the vertical. The (supercooled) rain extends to

approximately 9 km, causing the broader cell-top height

distribution that agreeswith the observations. In contrast,

above the melting level the Lin simulation has no rain

above 6 km; given that liquid water makes a stronger

contribution to radar reflectivity than ice species, modi-

fying the ability of the Lin scheme to retain supercooled

water might improve its representation of the cell-top

height distribution at low reflectivity thresholds.

The 45-dBZ threshold cell-top height distributions for

both simulations (Figs. 10c,d) show an overrepresentation

of storm tops between about 10–15-km altitudes. This

overrepresentation may be related to too much hy-

drometeor mass being transported aloft. Indeed, the

Thompson simulation, with its greater mass of hydro-

meteors aloft, has a stronger peak in the histogram at

these heights. As suggested earlier, the model may

produce updrafts that are too strong and hence too tall

due to insufficient entrainment, which would transport

too much water aloft. This will be considered further in

the next section.

d. Sensitivity to resolution

In the previous sections it was found that the simu-

lated convective cells were predominantly too tall and

too small, a problem that could only be partly remedied

with changes to themodel microphysics. One hypothesis

is that at 1.25-km horizontal grid spacing, entrainment/

detrainment is poorly represented (e.g., Bryan et al.

2003; Bryan and Morrison 2012) leading to biases in the

updraft characteristics. This should result in unrealisti-

cally large updraft speeds and consequently higher cell-

top heights than observed. For example, Blossey et al.

(2007) found that changing horizontal resolution modi-

fied the strength of the convective overshoot, while in

a study by Lang et al. (2007) CFADS of vertical velocity

(their Fig. 8) indicated that when changing from 1000- to

250-m grid spacing the frequency of updrafts with speeds

greater than 5 m s21 decreased, as did the altitude these

updrafts reached. Furthermore, underestimating de-

trainment and mixing might lead to an underestimation

of the stratiform area as well. To test this hypothesis,

another experiment was performed (using the Lin mi-

crophysics) with an additional nested domain included

with horizontal grid spacing of 417 m. This fifth domain

encompassed the same horizontal area as the 1.25-km

domain in the previous simulations; to accommodate

this, the dimensions of the transitional domains were

increased. See Fig. 1a for the location of these new do-

mains (shown with dotted lines). Specifically, the 33.75-,

11.25-, 3.75-, 1.25-, and 0.417-km domains have horizontal

dimensions of 1803 90, 2833 154, 5023 289, 7183 487,

and 745 3 745 grid points, respectively. All other param-

eters were kept the same as the Lin simulation described

above.

Figures 13a,b show the cell-top height and size dis-

tributions as a function of reflectivity threshold for the

0.417-km simulation. This new simulation shows notable

improvements. Although the previously seen unreal-

istic trend of increasing median cell-top heights with

TABLE 1. Results of the Kolmogorov–Smirnov two-sample test

comparing histograms of cell-top height and storm size derived

from theARW-WRF simulations to those derived from radar data.

The test was applied between (left column) the radar and the Lin

simulation, (middle column) radar and Thompson simulation, and

(right column) radar and 0.417-km (Lin) simulation. Higher P

values correspond to better agreement between modeled and ob-

served distributions, and values greater than 0.7 are in bold.

dBZ Type

P value

Lin

P value

Thompson

P value

Lin (0.417 km)

25 Height 0.361 0.983 0.724
29 Height 0.139 0.983 0.139

33 Height 0.080 0.724 0.139

37 Height 0.080 0.231 0.043

41 Height 0.080 0.231 0.139

45 Height 0.230 0.043 0.139

25 Size 0.000 0.000 0.000

29 Size 0.000 0.001 0.000

33 Size 0.042 0.022 0.007

37 Size 0.528 0.359 0.949

41 Size 0.999 0.949 0.9999

45 Size 0.999 0.983 0.9997
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reflectivity threshold is still present between 25 and

35 dBZ, above 39 dBZmedian cell-top heights begin to

decrease as the reflectivity threshold is increased, con-

sistent with the observations. The storm size distribution

has also improved; recall the major deficiency in the size

distribution for the 1.25-km simulation was the under-

estimation of the size of the largest storms (Figs. 6e,f).

In the 0.417-km simulation, although the median sizes

do not change considerably compared to the 1.25-km

simulation (not shown), the 95th percentile of the size

has increased, e.g., at the 25-dBZ (45 dBZ) threshold it

has increased from 1700 to 2300 km2 (400 to 700 km2).

However, at the lower thresholds these values are still

substantially smaller than observed. The K–S test dem-

onstrates improvement in the size distribution (Table 1),

with observed and simulated sizes at thresholds of

37 dBZ and higher being drawn from the same distri-

bution at the 90% confidence level. Significant dis-

agreement remains at lower thresholds.

The histograms of cell-top height show some im-

provement at 0.417-km grid spacing (Figs. 13c,d) com-

pared to 1.25 km (Figs. 7b,d) with slightly lower cell-top

heights. For example, at the 25-dBZ threshold the dis-

tribution is less peaked at ;5-km altitudes, which is in

FIG. 11. The domain-averaged mixing ratios calculated over the 4.5-day simulation period for the (a) Lin and

(b) Thompson simulations. (c),(d) As in (a),(b), but mixing ratios averaged over all 25-dBZ cells. (e),(f) As in

(c),(d), but for 45-dBZ cells. Each panel shows themixing ratios of cloudwater (QC), rain (QR), cloud ice (QI), snow

(QS), and graupel (QG).
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better agreement with the observations. Also, at the

45-dBZ threshold, the distribution is slightly more peaked

around the 7–9-km altitudes at the expense of some of

the higher-altitude contributions to the distribution.

Specifically, there is a notable reduction in frequency

between 10- and 13-km altitudes for the 45-dBZ thresh-

old; this improves the comparison with the observations

at these altitudes and supports the hypothesis described

in the previous section that too much water mass was

transported to these altitudes with the 1.25-km model.

The K–S test (Table 1) demonstrates some improvement

(although not nominally statistically significant) at the

25-dBZ threshold, with the simulated and observed cell-

top heights drawn from the same distribution at the 70%

confidence level. Significant disagreement remains at

higher thresholds.

In an attempt to investigate whether increasing the

horizontal resolution has led to an increase in entrain-

ment, Figs. 14a,b show histograms of updraft velocity for

the 1.25- and 0.417-km simulations at both 5- and 10-km

altitudes. These figures show that at 5-km altitude, the

1.25-km simulation has a lower frequency of velocities

above 12 m s21 than the 0.417-km simulation, whereas

at 10-km altitude, the 1.25-km simulation has a higher

proportion of velocities above 12 m s21. The opposite

relationship occurs below 12 m s21. Figure 14c shows

the ratio of the frequency of velocities at 10 and 5 km

(Fig. 14b divided by Fig. 14a); while there are more

strong updrafts at 10 km compared with 5 km in both

simulations, the 1.25-km simulation has much greater

relative frequency of strong updrafts at 10 km. Thus, it

seems reasonable that increased entrainment and

mixing in the 0.417-km simulation has led to a relative

decrease in updraft velocities at higher altitudes, which

ultimately reduces cell-top height. Note that vertical

profiles of hydrometeor mixing ratios (from the 0.417-km

simulation) averaged across the convective cells defined

by the 25- and 45-dBZ thresholds (not shown) are qual-

itatively similar to those shown in Figs. 11c,e, indicating

that differences found between the 1.25- and 0.417-km

simulations are likely result of changed dynamics

rather than microphysics.

FIG. 12. The domain-averaged hydrometeor sedimentation flux calculated over the 4.5-day simulation period for

(a) the Lin simulation and (b) the Thompson simulation; fluxes of rain, snow, and graupel are shown. (c) The rain rate

from the observations, Lin, and Thompson simulations on 10 Feb 2006. Note the abscissae of (a) and (b) are different.

574 MONTHLY WEATHER REV IEW VOLUME 141



In summary, these higher-resolution simulation re-

sults suggest that some of the errors in the height and

size of the convective cells can be remedied with in-

creased model resolution. However, even at grid spac-

ings as small as 0.417 km, entrainment processes are not

properly represented by the numerical model (e.g.,

Bryan et al. 2003; Bryan and Morrison 2012) and even

higher model resolution is required. Such increases in

resolution are beyond our current capabilities but will be

the subject of continuing research.

4. Summary and conclusions

This study has presented a method for comparing

convection-permitting model simulations to radar ob-

servations using an innovative object-based approach.

The method uses the automated cell-tracking algorithm

TITAN to identify individual convective cells and de-

termine their properties like depth, size, longevity, and

shape. Cell properties are identified in the same way for

model and radar data, facilitating comparison of their

statistical distributions. Examining the statistics of the

cloud populations alleviates the difficulties caused by

errors in timing and location of the simulated storms,

and is an improvement over some other statistical

methods because it retains information about the spatial

characteristics of discrete convective elements. Moreover,

the method allows properties of high-reflectivity regions

(strong convective cores) and low-reflectivity regions

(including stratiform clouds) to be evaluated separately.

To demonstrate the capabilities of the method, it was

applied to a simulation of tropical convection duringTWP-

ICE, an experiment based around Darwin, Australia.

The 4.5-day period used for the analysis occurred during

a monsoon break regime, which is characterized by di-

urnally forced localized convective systems. A nested

version of the ARW-WRF Model was used and com-

parisons of clouds simulated on its 1.25-km horizontal

grid spacing domain were made with observations from

Darwin’s Gunn Point radar. Additional simulations with

different microphysics and higher model resolution were

also conducted.

FIG. 13. (a) The cell-top height and (b) storm size statistics as a function of reflectivity threshold for the five-domain

(0.417-km grid spacing) Lin simulation. For comparison the observedmedian cell-top height values are shown by the

crosses in (a). Histograms of cell-top height when the thresholds of (c) 25 and (d) 45 dBZ are used to define the

storms in the five domain (0.417-km grid spacing) simulation. For comparison the observed cell-top height distri-

butions are shown by the dashed line.
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The comparisons between the model and the radar

elucidated errors in the depth and size of convective

cells. On average, simulated convective cells reached

higher altitudes than the observations. Also, when using

a low-reflectivity (25 dBZ) threshold to define convec-

tive cells the model underestimated the size of the

largest convective cells. The most intense convective

cores (reflectivity .45 dBZ) occurred over a narrow

distribution of altitudes in the observations and the

model produced a much broader distribution. Changing

the model’s microphysics parameterization from the Lin

scheme to the Thompson scheme alleviated some of the

problems exposed using a 25-dBZ threshold, yet did not

improve the representation of the 45-dBZ cores.

Moreover, increasing the model’s horizontal resolution

made a slight improvement to the height and size of

the convective cores. These results are consistent with

a potential underestimation of entrainment in the

1.25-km resolution simulations.

This study has, however, compared modeling results

to observations from only one radar, which restricts the

geographic size of the comparison region. Computa-

tional resources also limited the size of our highest-

resolution domains and the length of the period of

interest. These limitations place some uncertainty on

the comparisons of storms near the margins of the radar

range/model domains, or complexes that extend over

the entire radar range. While not shown here, similar

analyses were attempted during the active monsoon

region; TITAN analysis during the active monsoon us-

ing low reflectivity thresholds (;25 dBZ) were unusable

because the reflectivity was often greater than this thresh-

old everywhere. Nevertheless, this study has been able to

demonstrate notable (and statistically significant) dif-

ferences between themodel and the observations during

our period of interest. More importantly, statistically

significant improvements were identified by a change in

model configuration. The method could be readily ex-

tended to longer time periods and/or comparisons be-

tween simulations using a larger domain and observations

from a network of radars with overlapping ranges.

In summary, we have presented a powerful method

for evaluating model simulations, which is able to expose

errors in the representation of convective structures in

models with explicit representation of convective pro-

cesses. Themethod is flexible and can be used to compare

models with observations or utilized to evaluate changes

in model configurations like resolution or physical pa-

rameterizations. Used in isolation, or in tandem with

other established evaluation approaches, this convective

cell-based approach provides an additional tool for

assessing and improving deficiencies in cloud andmodern

numerical weather prediction models. Further applica-

tion of this method to other models, scenarios, and more

extensive datasets are planned for the future.
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APPENDIX A

Simulated Radar Reflectivity for the Lin
Microphysics Scheme

The algorithm used to convert the microphysical data

for the Lin simulation was obtained from the data vi-

sualization package Read/Interpolate/Plot (RIP). The

description of the reflectivity formulation for the Lin

scheme below is based heavily on the work by Stoelinga

(2005).

a. Equivalent reflectivity factor for rain

The equivalent reflectivity factor for rain Ze is taken

as the sixth moment of the size distribution. Thus, for

a Marshall–Palmer distribution we have

Ze 5

ð
D6N0e

2lD dD . (A1)

Assuming the rain droplets are perfectly spherical and

D ,, 1 cm, after some calculation the equivalent reflec-

tivity for rain becomes

Ze,r 5
G(7)N0,r

l7
, (A2)

where G(n) is the Euler gamma function, substituting

Eq. (2) for l and noting G(7) 5 720 we get

Ze,r 5
720(rairqr)

7/4

N3/4
0,r (prr)

7/4
. (A3)

Equation (A3) describes the equivalent reflectivity fac-

tor for rain in terms of known constants and the pre-

dicted mixing ratio of rain.

b. Equivalent reflectivity factor for snow and graupel

To obtain the equivalent reflectivity factors both snow

and graupel, Eq. (A3) is modified with the assumption

that the snow and graupel particles are spheres of solid

ice. Equation (A4) relates the diameter that a solid ice

sphere would have to obtain the same reflectivity as a

particle of snow (or graupel) that does not have constant

density:

Dsolid 5Ds

�
rs
ri

�1/3

, (A4)

where ri is the density of ice and rs is the density of snow.

Substituting Eq. (A4) into Eq. (A1) and including

a factor that accounts for ice having a different reflective

capacity than water we get

Ze,x5
720N0,x

l7

�
rx
ri

�2
 
jKj2i
jKj2w

!
, (A5)

where jKj2i is the dielectric constant for ice (0.176) and

jKj2w is the dielectric constant for liquid water (0.93) and

the subscript x represents either snow or graupel. Fi-

nally, we can use the following equation to rearrange

Eq. (A5)

�
rx
ri

�2
 
jKj2i
jKj2w

!
5

�
rx
rw

�2�rw
ri

�2
 
jKj2i
jKj2w

!
5 0:224

�
rx
rw

�2

,

(A6)

where rw is the density of liquid water (1000 kg m23)

and ri is the density of ice (917 kg m23).

Thus, the reflectivity factor for snow and graupel are

represented by Eqs. (A7) and (A8), respectively:

Ze,s 5
720(rairqs)

7/4

N3/4
s (prs)

7/4
3 0:224

�
rs
rw

�2

; (A7)

Ze,g5
720(rairqg)

7/4

N3/4
g (prg)

7/4
3 0:224

�
rg

rw

�2

. (A8)

Last, to take into account the brightband effect due to

melting ice particles, when snow or graupel is found

above 08C, these frozen particles are assumed to have

a liquid outer skin and scatter the radar beam like liquid

water. Consequently the factor of 0.224 in Eqs. (A7) and

(A8) is removed for snow and graupel particles at tem-

peratures above 08C.
The reflectivity factors for rain, snow, and graupel

[Eqs. (A3), (A7), (A8)] can then be added to obtain the

total reflectivity factor for each model grid cell. As re-

flectivity factors are typically measured in mm6 m23 the

total reflectivity factor is multiplied by 1018 to convert it

from m6 m23 to the standard units used for radar data.

Finally, to convert the reflectivity factor to the standard

unit (dBZ), the logarithm of the total equivalent re-

flectivity factor is multiplied by 10:

Ze(in dBZ)5 10 log10[Ze(in mm6 m23)] . (A9)
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APPENDIX B

Simulated Radar Reflectivity for the Thompson
Microphysics Scheme

The algorithm used to convert the microphysical

data to simulated radar reflectivity was obtained from

G. Thompson (2011, personal communication).

The description of how to convert output from the

Thompson scheme to simulated radar reflectivity described

below is based on the formulation of the Thompson mi-

crophysics scheme found in version 3.1.1 of the ARW-

WRF Model. Note that the implementation of the

Thompson scheme differs depending on which version

of the ARW-WRF Model is used.

a. Equivalent reflectivity factor for rain

In the Thompson scheme particle-size distributions

(except for snow) are represented as a generalized gamma

function of the following form:

N(D)5N0D
me(2lD) . (B1)

In the case of rain, m 5 0 and Eq. (B1) reduces to the

Marshall–Palmer distribution shown in Eq. (1), and

consequently Eq. (A2) can be used to determine the

reflectivity factor for rain. However, unlike the Lin

scheme, in version 3.1.1 of the ARW-WRF Model the

Thompson scheme predicts the rain number concen-

tration as well as the rain mixing ratio (i.e., it is double

moment in rain). A general description and the formu-

lation of a double-moment scheme like the one found in

the ARW-WRF version 3.1.1 of the Thompson scheme

can be found in Morrison and Pinto (2005), Morrison

et al. (2009), and Morrison and Milbrandt (2011). What

is relevant to the discussion here is that both N0,r and lr
are a function of both the mixing ratio and number

concentration values (qg and Ng, respectively), where

lr 5

�
crNrG(mr 1 dr 1 1)

qrG(mr 1 1)

�1/d
r

, (B2)

where cr 5 (prr)/6 and dr 5 3 and

N0,r 5
Nrl

m
r
11

r

G(mr 1 1)
. (B3)

Recalling m 5 0 and substituting the above values for

cr and dr we get

lr 5

�
prrNrG(4)

6qrG(1)

�1/3
(B4)

and

N0,r 5
Nrlr
G(1)

. (B5)

Finally, substituting Eqs. (B4) and (B5) into Eq. (A2)

yields

Ze,r 5

�
6

p

�2�q2r
Nr

�
G(7)rair
[rrG(4)]

2
. (B6)

b. Equivalent reflectivity factor for graupel

In the particle-size distribution function for graupel

m 5 0 and so Eq. (B1) reduces to the classic Marshall–

Palmer distribution once again. It is again assumed that

the graupel particles are spheres of solid ice with constant

density, and after including the factor that accounts for ice

having a different reflective capacity than water we have

Ze,g5
G(7)N0,g

l7g

�
rg

ri

�2
 
jKj2i
jKj2w

!
. (B7)

Here again jKj2i and jKj2w are the dielectric constants for

ice and liquid water and jKj2i /jKj2w 5 0:189.

In version 3.1.1 of the ARW-WRF Model in the

Thompson scheme lg is described by the following

equation:

lg5

 
pN0,grg

6rairqg

!1/4

, (B8)

which when substituted into Eq. (B7) yields

Ze,g5
720(rairqg)

7/4

N3/4
0,g (prg)

7/4
3 0:189

�
rg

ri

�2

. (B9)

The intercept parameter for graupel takes on a form

similar to the intercept parameter for rain described by

Thompson et al. (2008):

N0,g5

�
N12N2

2

�
tanh

"
(qg02 qg)

qg0

#
1

�
N11N2

2

�
,

(B10)

whereN15 13 104,N25 53 106 and qg05 0.153 1023.

c. Equivalent reflectivity factor for snow

In the Thompson scheme the particle-size distribution

for snow is represented by the sum of a gamma and

exponential distribution, more specifically
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N(D)5
M4

2

M3
3

�
k0e

2
M2
M3

D
0
D
1 k1

�
M2

M3

D

�m
s

e
2

M2
M3

D
1
D
�
,

(B11)

where k05 490.6, k15 17.46,D05 20.78,D15 3.29,ms5
0.6357, and Mn is the nth moment of the distribution

given by

Mn5

ð
DnN(D) dD . (B12)

However, for efficiency and simplicity the Thompson

scheme relies on the power-law relationship between

moments of the particle-size distribution as a function of

temperature, developed by Field et al. (2005):

Mn 5 a(n,Tc)M
b(n,T

c
)

2 , (B13)

where

log10a(n,Tc)5 a11 a2Tc1 a3n1 a4Tcn1 a5T
2
c 1 a6n

2

1 a7T
2
c n1 a8Tcn

2 1 a9T
3
c 1 a10n

3

and

b(n,Tc)5 b11 b2Tc1 b3n1b4Tcn1 b5T
2
c 1 b6n

2

1 b7T
2
c n1 b8Tcn

21 b9T
3
c 1 b10n

3 .

The constants ax and bx are not relevant to the discussion

here, and can be found in Field et al. (2005) and

Thompson et al. (2008).

However, to use Eq. (B13), the second moment of the

distribution must be precalculated and used as a refer-

ence. In this case M2 5 qsrair0.069
21.

In the Thompson scheme the assumption that snow

particles are spherical is dropped, instead the Thompson

scheme assumes that the mass of the particles is pro-

portional to the square of the particle diameter. Con-

sequently radar reflectivity (for snow) is taken as the

fourth moment of the particle-size distribution, where

M45

ð
D4N(D) dD’ a(4,Tc)

�qsrair
0:069

�b(4,T
c
)

. (B14)

Once again and including the factor to account for the

difference in reflectance between water and ice we have

the following:

Ze,s ’ 0:189

�
rs
ri

�2

a(4,Tc)
�qsrair
0:069

�b(4,T
c
)

. (B15)

A description of the algorithm that takes into account

brightband effect due to the melting ice particles in the

algorithm can be found in Blahak (2007).

Finally, the reflectivity factors for rain, snow, and

graupel [Eqs. (B6), (B9), (B15)] can then be added to

obtain the total reflectivity factor for each model grid

cell and Eq. (A9) is used to convert the reflectivity factor

to the standard unit (dBZ).
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