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Abstract The Monash Epicyclic Parallel Manipulator (MEPaM) is a novel six-degree-of-
freedom (dof) parallel mechanism with base mounted actuators. Closed form equations of
the inverse dynamic model of MEPaM are obtained through two different methods, with
simulation showing these models to be equivalent. The base inertial parameters for the dy-
namic model of MEPaM are determined, reducing the number of inertial parameters from
100 to 28. This significantly simplifies the dynamic calibration model and thus the number
of computations required.

Keywords Parallel mechanisms · Inverse dynamics · Base inertial parameters

1 Introduction

The dynamics of a robotic mechanism is useful in simulation and control scenarios. Two
dynamic problems exist: inverse and direct dynamics. The inverse dynamic problem de-
termines the required actuator torques for a given trajectory of the mechanism whereas the
direct dynamic problem determines the trajectory of the manipulator for a given set of actua-
tor torques/forces. The inverse dynamic problem is associated with dynamic calibration and
control of the mechanism whilst the direct dynamic problem is used in simulations [2, 7, 19].

The closed loop nature of parallel mechanisms adds significant complexity to the kine-
matic and dynamic models. Many techniques have been used to formulate the inverse dy-
namic problem of parallel mechanisms—the principle of virtual work [9, 32, 33], Kane’s
Equation [27], Euler–Lagrange energy based methods [14, 25] and the recursive Newton–
Euler algorithm [8, 15]. The complexity of the inverse dynamic models of parallel mecha-
nisms is increased with the introduction of constraint equations, leading to extremely large
equations. However, methods exist whereby the constraint equations are naturally embedded
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into the model through the velocity constraints inherent in the mechanism, leading to closed
form solutions. Khalil and Ibrahim [21] generalised methods presented in [16, 17, 20] to
obtain closed form inverse dynamic models of parallel robots without the introduction of
constraint equations. They consider the platform and legs as independent entities, then use
the manipulator Jacobian to project the dynamics of the platform and passive joints into the
active joint space. The Natural Orthogonal Complement (NOC) is another method that has
been used to derive the inverse dynamics of a parallel mechanism without the use of explicit
constraint equations [1, 11, 28, 31, 34, 35]. This method uses the orthogonal complement
of the velocity constraint matrix (which need not be determined) to derive a closed form ex-
pression of the inverse dynamics of the mechanism in terms of only the active joint variables.
Computation cost is an important factor in inverse dynamics modelling, with the NOC and
Khalil–Ibrahim methods shown to be more efficient than the virtual work and Newton–Euler
methods, respectively [1, 20]. However, the computational efficiency of these two methods
has not been compared to date despite both methods similarly avoiding the use of explicit
constraint equations.

The Monash Epicyclic Parallel Manipulator (MEPaM) is a novel three-legged six-degree-
of-freedom (dof) parallel manipulator which uses a cable pulley system to allow all actuators
to be mounted on the base. Three-legged six-dof parallel mechanisms with base mounted ac-
tuation have been proposed before [6, 26, 30]; however, the main focus of these works has
been on design, geometric modelling and workspace analysis with scarce information on
the dynamics of such mechanisms reported. It is important to investigate the dynamics of
this class of manipulators as they have the least moving masses and inertias among the six-
dof manipulators. Our previous study investigated the geometric models, singularities and
workspace of MEPaM [5]. It was found that the mechanism has relatively simple kinemat-
ics when compared to other six-dof parallel mechanisms and interior parallel singularities
which are wholly dependent on the orientation of the platform and independent of its posi-
tion.

In this paper, the inverse dynamic model of MEPaM is derived using two methods—the
NOC method developed by Angeles and Lee [3] and the method presented by Khalil and
Ibrahim [21], with the computational efficiency of the two methods compared. Further, we
derive the minimum number of inertial parameters required to calculate the inverse dynamic
model of MEPaM and investigate the effect using these parameters has on the computational
efficiency of the two methods. The frame assignment of MEPaM is provided in Sect. 2 and
the velocity and acceleration analysis in Sect. 3. The inverse dynamic models are derived
in Sect. 4, with the base inertial parameters of these models determined in Sect. 5. Finally,
Sect. 6 verifies the correctness of the derived models through simulation and investigates
their computational efficiency.

2 Frame assignment

MEPaM consists of three serial legs which connect to a common platform. Each leg contains
a two-dof planar driving arm consisting of the planet—Lever Arm A—and the carrier—
Lever Arm B—which are driven by two base-mounted rotary motors. A passive cylindrical
rod which is perpendicular to the driving arm attaches to the common platform via a univer-
sal joint, forming a closed chain when all three legs are connected. A diagram of MEPaM is
shown in Fig. 1.
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Fig. 1 The Monash Epicyclic
Parallel Manipulator

Table 1 Khalil–Kleinfinger
Parameters for Leg i of MEPaM
(i = 1,2,3)

j aj αj dj θj bj γj

1i wxi
π
2 ri βia wzi γi

2i d1i 0 0 βib 0 0

3i d2i π li 0 0 0

2.1 Serial leg frames

The frame assignment for leg i of MEPaM is shown in Fig. 2. The rotation axis of the
cylindrical joint is orthogonal to the two rotation axes of the universal joint, and therefore
the origin of the frame for the cylindrical joint is assigned at the universal joint origin, i.e.
the connection point of the leg to the platform. Thus—to simplify the dynamic analysis—the
revolute of the cylindrical joint coupled with the universal joint rotations can be considered
to form a spherical joint and serve as the joint at which the serial leg is cut from the platform.
Hence, the serial legs can be considered as Revolute–Revolute–Prismatic chains, with the
two revolute joints being active and the prismatic joint passive. The dynamic analysis can
be further simplified by assuming the links of the legs of MEPaM have ‘virtual’ actuators
attached directly at the location of the joints. The relationship between the physical variables
θia , θib and li and the ‘virtual’ variables βia , βib and li is [5]

βia = θia, βib = θib − θia, li = li . (1)

A Jacobian relationship is used to convert the dynamic model between the two variable
sets and can be written in a matrix form, i.e.

θ̇ i = Aβ β̇ i (2)

where θ̇ i = [θ̇ia θ̇ib]T , β̇ i = [β̇ia β̇ib]T and Aβ = [ 1 0
1 1

]
.

The Khalil–Kleinfinger convention [22] is used to describe the geometry of the legs, with
the parameters for leg i of MEPaM tabulated in Table 1.
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Fig. 2 Kinematic Parameters for Khalil–Kleinfinger Notation

The general transformation from the base frame FB to the end effector frame F3i for a
leg of MEPaM is of form

BT3i =
[

BQ3i
Bp3i

01×3 1

]
(3)

where BQ3i is the 3 × 3 rotation matrix between FB and F3i and Bp3i is the position of the
end effector of the serial leg in FB , both in terms of the parameters in Table 1.

2.2 Platform frame

The frame assigned to the moving platform, FP , is used to describe the position and orien-
tation of the platform with respect to the base frame FB . This relationship is described by
the transformation matrix between FB and FP , i.e.

BTP =
[

BQP
BpP

01×3 1

]
(4)

where BQP is the 3 × 3 rotation matrix between FB and FP and BpP is the position of the
platform origin in FB . The location of FP is defined by the centre of the three universal
joints of the moving platform. Figure 3 illustrates the assignment of FP and the parameters
of the platform. With respect to Fig. 3, the co-ordinates of the three vertices in FP are

P b1 = [
d31 0 0

]T
, P b2 = [−d32s2 d32c2 0

]T
, P b3 = [−d33s3 −d33c3 0

]T
(5)

where ci = cosψi and si = sinψi .

2.3 Position constraints

Due to the closed loop nature of MEPaM, constraints are placed onto the position of the
legs and the platform. As the location of the frame origins for the serial legs are at the
platform vertices—the centre of the universal joints—the position constraints are formulated
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Fig. 3 Definition of FP

by equating the position components of Eq. (3) to the vertex co-ordinates given by Eq. (5)
represented in FB . That is,

[
Bp3i

1

]
= BTP

[
P bi

1

]
,

Bp3i = BpP + BQP
P bi

(6)

for i = 1,2,3. Equation (6) represents three loop equations in terms of the joint and task
space variables. These loop equations are used to solve the inverse and direct geometric
problems, solutions to which can be found in [5].

3 Velocity and acceleration

3.1 Twists of the serial legs

The twists (the velocity and angular velocity) of the bodies of the serial legs are derived using
standard methods for serial robots which utilise the link transformation matrices defined by
the parameters in Table 1, i.e. recursive algorithms outlined in robotics textbooks [2, 7, 19].
The acceleration and angular acceleration are derived similarly.

3.2 Serial leg Jacobian

The end effectors of the serial legs are expressed in terms of the active and passive joints
of MEPaM. Thus, the linear velocity of the connection point to the platform—the centre of
the universal joint—can be expressed in terms of the active and passive joint rates. This is
given by the result of the recursive algorithm in Sect. 3.1 for link 3i, or equivalently through
differentiation of the left hand side of Eq. (6). Hence, the linear velocity of the end effector
of the serial legs in the global base frame FB can be expressed in the form

Bv3i = BJ3i q̇i (7)

where Bv3i is the 3 × 1 linear velocity vector of the end effector of leg i in FB , BJ3i is the
3 × 3 serial leg Jacobian of the end effector of leg i in FB and q̇i = [β̇ia β̇ib l̇i]T is the vector
of active and passive joint rates of leg i.
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Fig. 4 Forces applied to
platform by serial legs of
MEPaM

3.3 Platform velocity

Considering the right hand side of Eq. (6), the linear velocity of the connection point Bi

can also be expressed in terms of the twist of the platform. Letting Bρi = BQP
P bi =

[Bbxi
Bbyi

Bbzi]T represent the vector between the origin of the platform and the platform
vertices, as illustrated in Fig. 4, the linear velocity of Bi in terms of the platform twist is

Bvi = BvP + BωP × Bρi

= [
13 −B ρ̂i

]
[

BvP
BωP

]

= BJt i
B tP (8)

where B ρ̂i is the skew-symmetric matrix associated with Bρi which performs the cross-
product, BtP is the twist of the platform with respect to the base frame and BJt i is the
platform Jacobian with respect to the base frame for point Bi .

3.4 Manipulator Jacobian

Due to the position constraints given by Eq. (6), Eqs. (7) and (8) are equivalent and represent
the velocity constraints of MEPaM, i.e.

BJ3i q̇i = BJt i
BtP . (9)

As a result of Eq. (9), the joint rates of leg i can be written in terms of the twist of the
platform,

q̇i = BJ−1
3i

BJt i
BtP . (10)

Concatenating Eq. (10) for i = 1,2,3 yields

⎡

⎣
q̇1

q̇2

q̇3

⎤

⎦ =
⎡

⎣
BJ−1

31
BJt1

BJ−1
32

BJt2
BJ−1

33
BJt3

⎤

⎦B tP ,

q̇ = BJ−1
F

B tP

(11)
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where BJ−1
F is a 9 × 6 matrix which relates all the joint rates of MEPaM—active and

passive—to the twist of the platform. This matrix can be simplified by only considering
the active joints, i.e.

⎡

⎣
q̇A1

q̇A2

q̇A3

⎤

⎦ =
⎡

⎣
BJ−1

31 (1 : 2, :)BJt1
BJ−1

32 (1 : 2, :)BJt2
BJ−1

33 (1 : 2, :)BJt3

⎤

⎦B tP ,

q̇A = BJ−1
M

BtP

(12)

where BJM is the 6×6 manipulator Jacobian relating the twist of the platform to the rates of
the active joints q̇A. Note that BJ−1

3i (1 : 2, :) indicates that only row 1 and 2 of the inverse se-
rial Jacobian matrix of interest is considered as these correspond to the active joint variables
βia and βib . Further, the manipulator Jacobian expressed in FP is

P JM =
[

BQT
P 03×3

03×3
BQT

P

]
BJM. (13)

The linear and angular acceleration of the platform can then be found by differentiating
Eq. (12), i.e.

B ṫP = BJM q̈A + B J̇M q̇A. (14)

Equation (14) are the acceleration constraints of the manipulator.

3.5 Passive joint rates

The dynamic model requires the rates of change of the passive joints. Considering that these
correspond to the three rows of BJ−1

F given by Eq. (11) ignored in Eq. (12), they can be
expressed in terms of the twist of the platform as

⎡

⎣
l̇1
l̇2
l̇3

⎤

⎦ =
⎡

⎣
BJ−1

31 (3, :)BJt1
BJ−1

32 (3, :)BJt2
BJ−1

33 (3, :)BJt3

⎤

⎦ BtP ,

l̇ = JL
B tP .

(15)

Further, through substitution of Eq. (12) into Eq. (15) for the twist of the platform, the
rates of the passive joints can be expressed in terms of the rates of the active joints, i.e.

l̇ = JL
BJM q̇A. (16)

Thus, the acceleration of the passive joints can be found in terms of the active joints, i.e.

l̈ = JL
BJM q̈A + J̇L

BJM q̇A + JL
B J̇M q̇A. (17)

4 Inverse dynamic modelling

The inverse dynamic model of a parallel mechanism calculates the required torques to
achieve a specified trajectory; typically as a function of the position, velocity and accel-
eration of the joint variables of the legs and the Cartesian coordinates of the platform of the
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manipulator. The inverse dynamic model of MEPaM is formulated using two methods—
the Natural Orthogonal Complement and the method of Khalil and Ibrahim [21]. Both these
methods embed the constraints imposed by the closed-loop nature of the mechanism into the
modelling procedure via the velocity relationships derived in Sect. 3. This avoids the use of
explicit constraint equations and allows for closed form solutions to be obtained. Frictional
effects are not considered in the derivation of the models.

4.1 Natural orthogonal complement

4.1.1 Overview

The Natural Orthogonal Complement (NOC) was originally used to solve the inverse dy-
namics of serial mechanisms [3, 4] and later parallel mechanisms [1, 11, 28, 31, 34, 35].
These mechanisms consist of p rigid bodies under holonomic constraints. The NOC method
uses the wrench of each of the bodies in its derivation of the inverse dynamic model, whereby
the wrench iwi is given by the Newton–Euler equation. For the ith body in frame Fi , the
Newton–Euler equation at the origin of Fi can be written as [19]

iwi =
[
mi13 −i η̂i
i η̂i

iIi

][
i v̇i − ig

iω̇i

]
+

[
iωi × (iωi × iηi )

iωi × (iIi
iωi )

]
(18)

where

– iwi = [ifi T inT
i ]T is the wrench of the ith body acting at the origin of Fi ;

– ivi and iωi are the linear and angular velocities of the ith body with i v̇i and iω̇i the
associated linear and angular accelerations in Fi ;

– ig is the 3 × 1 vector of the acceleration due to gravity in Fi ;
– mi is the mass of the ith body;

– iIi is the 3 × 3 inertia matrix of the ith body in Fi , with iIi =
[ XXi XYi XZi

XYi YYi YZi

XZi YZi ZZi

]
;

– iηi = mi
isi = [MXi,MYi,MZi]T are the first moments around the origin of Fi with i η̂i

being the associated skew-symmetric matrix;
– isi is the 3 × 1 vector from the origin of Fi to the centre of mass of the ith body; and
– 13 is the 3 × 3 identity matrix.

Through the use of the properties of vector cross products, Eq. (18) can be expressed as

iwi =
[
mi13 −i η̂i
i η̂i

iIi

]
i ṫi +

[
03×3 −iω̂i

i η̂i

03×3
iω̂i

iIi

]
iti −

[
mi13
i η̂i

]
ig

= Mi
i ṫi + Wi

iti − Gi
ig (19)

where iti = [ivi
T iωT

i ]T is the twist of the ith body and iω̂i is the skew-symmetric matrix
associated with iωi .

The wrench, iwi , can be decomposed into a working (iwW
i ) and non-working (iwN

i )
wrench. The working wrench can be further decomposed to consist of actuator (iwa

i ), dis-
sipate (iwd

i ) and gravity (iwg

i ) wrenches, i.e. iwW
i = iwa

i + iwd
i + iwg

i [3, 4]. Note that iwg

i

has been accounted for in Eq. (19). Thus, applying Eq. (19) to all p bodies, a system of
equations can be derived, i.e.

wW + wN = Mṫ + Wt − Gg (20)
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where

– M = diag([M1 . . .Mp]) and W = diag([W1 . . .Wp]) are 6p × 6p generalised matrices;
– G = diag([G1 . . .Gp]) is a 6p × 3p matrix;

– t = [1tT1 . . . ptTp ]T , wW = [1wW
1

T
. . . pwW

p

T ]T and wN = [1wN
1

T
. . . pwN

p

T ]T are 6p

dimensional vectors; and
– g = [1gT

1 . . . pgT
p ]T is a 3p dimensional vector.

It was shown that the kinematic constraints of a mechanism under holonomic constraints
obeys the following relationship with t [3, 4],

Kt = 06p (21)

where K is the 6p × 6p velocity constraint matrix of rank m—the number of indepen-
dent holonomic constraints—whilst the number of degrees-of-freedom is n = 6p − m. This
means that the generalised twist t can be written in terms of the independent variables α, i.e.

t = Sα̇, ṫ = Sα̈ + Ṡα̇ (22)

where S is the twist mapping matrix of dimension 6p × n.
Substituting Eq. (22) into Eq. (21) yields

KS = 06p. (23)

Hence, S is the natural orthogonal complement of K. It was shown that the non-working
wrench lies in the null-space of ST , thus pre-multiplication of Eq. (20) eliminates wN [3, 4],
i.e.

ST wa = ST Mṫ + ST Wt − ST Gg − ST wd . (24)

Substitution of Eq. (22) into Eq. (24) for t and ṫ results in

τ a = Iα̈ + Cα̇ − τ g − τ d (25)

where I = ST MS is the n × n generalised inertia matrix, C = ST (MṠ + WS) is the n × n

generalised coupling matrix and τ g = ST Gg, τ d = ST wd , τ a = ST wa are the n × 1 vectors
of generalised gravity, dissipate and actuator forces, respectively [3, 4]. Hence, Eq. (25)
represents the inverse dynamic model of the mechanism of interest obtained through the
NOC method. Further, the inverse dynamic model derived using the NOC method is wholly
in terms of the rates of the independent variables α.

4.1.2 NOC and MEPaM

To derive the inverse dynamic model of MEPaM using the NOC method, the wrenches
and twists of all the bodies of MEPaM need to be derived. MEPaM consists of ten rigid
bodies—three for each of the legs plus the platform. The wrenches of the bodies are given
by Eq. (19), with the twists of the legs derived using standard methods for serial robots,
i.e. recursive algorithms outlined in robotics textbooks [2, 7, 19]. As a result, the twist of
body ji (i.e. the j th body of the ith leg of MEPaM) in Fj i can be written as

j itj i = j iYj i q̇ (26)
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where j iYj i is a 6×9 Jacobian matrix relating the twist of body ji to the rates of all the joints
of MEPaM. However, the NOC method requires the twists of the bodies to be expressed in
terms of only the active joint rates q̇A. From Eq. (16), the passive joint rates are expressed
with respect to the active joint rates, thus Eq. (26) can be written as

j itj i = j iSj i q̇A (27)

where j iSj i is a 6 × 6 Jacobian (twist mapping) matrix relating the twist of body ji to the
active joint rates of MEPaM. Further, the twist of the platform P tP in FP can be written in
terms of the active joint rates using Eq. (13), i.e.

P tP = P JM q̇A. (28)

Thus the twists of all the bodies of MEPaM are known in terms of the active joint rates.
Hence, the generalised twist of MEPaM is of form

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

11t11
21t21
31t31
12t12
22t22
32t32
13t13
23t23
33t33
P tP

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

11S11
21S21
31S31
12S12
22S22
32S32
13S13
23S23
33S33
P JM

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

β̇1a

β̇1b

β̇2a

β̇2b

β̇3a

β̇3b

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

,

tM = SM q̇A

(29)

where tM is the 60 × 1 generalised twist vector of MEPaM and SM is the 60 × 60 twist
mapping matrix of MEPaM.

With the twist mapping matrix known, the inverse dynamic model of MEPaM in terms
of the β variables, λ, can be derived using Eq. (25), i.e.

λ = IM q̈A + CM q̇A − λg (30)

where IM is the 6 × 6 generalised inertia matrix of MEPaM, CM is the 6 × 6 generalised
coupling matrix and λg is the 6 × 1 vector of generalised gravity forces.

4.2 Khalil–Ibrahim method

The Khalil–Ibrahim method cuts the legs from the platform at the connection joint (i.e.
the S-joint for analysis of MEPaM), with the dynamics of the legs and platform derived
as independent entities. The Jacobians in Sect. 3 are used to link the subsystems together,
with the dynamics of the platform and passive joints projected into the active joint space
through BJM , such that the inverse dynamic model is given by

λ = ha + BJT
M

(
BwP +

m∑

i=1

BJT
ti

BJ−T
i (:, ci )h

p

i

)

(31)
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where λ is the vector of actuator torques, BwP is the wrench of the platform in FB , hi is the
inverse dynamic model of the ith leg with ha being the vector of active joint torques, hp the
vector of passive joint torques and ci are the columns associated with the passive joints. In
the proceeding subsections, it is shown how Eq. (31) is obtained through the derivation of
the inverse dynamic model of MEPaM.

4.2.1 Platform and leg dynamics

The wrench of the platform of MEPaM is described by the Newton–Euler equation, i.e.
Eq. (19), with the reference point chosen to be the origin of FP . Note that as this wrench
is with respect to FB , the first moment of the platform is BηP = BQP

P ηP and the inertia
tensor is BIP = BQP

P IP
BQT

P .
The inverse dynamic model of the legs of MEPaM can be derived using classical tech-

niques for serial robots such as the Euler–Lagrange, recursive Newton–Euler or NOC meth-
ods found in robotics textbooks, i.e. [2, 7, 19]. These methods will yield the same symbolic
closed form expression for the inverse dynamics of the serial legs which are used in formu-
lating the complete inverse dynamic model of MEPaM.

4.2.2 Motor torques

The motor torques in terms of the β variables, λ, are determined by combining the dynamic
models of the platform and the legs. The wrench of the platform BwP consists of the force,
B fP , and torque, BτP , that the platform exerts onto an external environment. This force
and torque is generated by the forces and torques applied to the platform by the serial legs
of MEPaM. Due to the assumption of considering the connection joint of the legs to the
platform to be a spherical joint, the torque applied by the legs on the platform is zero, i.e.
Bτ i = 0. Thus, the legs only produce a three dimensional force, Bfi , on the platform. With
aid of Fig. 4, the wrench of the platform can be derived as

BwP =
[

B fP
BτP

]
=

3∑

i=1

[
13

B ρ̂i

]
B fi . (32)

Due to the properties of skew-symmetric matrices, B ρ̂i = −B ρ̂
T
i . Hence, with reference

to Eq. (8), Eq. (32) becomes

BwP =
3∑

i=1

BJT
ti

B fi . (33)

Thus, the task at hand is to find the forces, B fi , that the legs exert on the platform.
The motor torques for the individual legs can be written in terms of the dynamic model,

i.e.

λi = hi + BJT
3i

B fi (34)

where hi is the inverse dynamic model of the serial leg i, B fi is the reaction force between the
serial leg and platform which is mapped into the joint space of the leg through the transpose
of the serial leg Jacobian BJ3i and λi is the vector of motor torques for leg i. As the third
joint of leg i is a passive prismatic joint, the corresponding motor torque is 0. Hence, the
motor torque of leg i is

λi = [
λia λib 0

]T
(35)
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with λia being the torque for the virtual motor associated with the variable βia and λib the
torque for the virtual motor associated with the variable βib.

Equation (34) can be rearranged to express the reaction force in terms of the motor
torques and leg dynamic model, i.e.

Bfi = BJ−T
3i (λi − hi ). (36)

Substituting Eq. (36) into Eq. (33) for Bfi yields

BwP =
3∑

i=1

BJT
ti

BJ−T
3i (λi − hi ),

3∑

i=1

BJT
ti

BJ−T
3i λi = BwP +

3∑

i=1

BJT
ti

BJ−T
3i hi .

(37)

Using Eqs. (11), (12) and (35), Eq. (37) becomes

3∑

i=1

BJT
ti

BJ−T
3i (:,1 : 2)

[
λia

λib

]
= BwP +

3∑

i=1

BJT
ti

BJ−T
3i hi

BJ−T
M

⎡

⎣
λA1

λA2

λA3

⎤

⎦ = BwP + BJ−T
F

⎡

⎣
h1

h2

h3

⎤

⎦

(38)

where λAi = [λia λib]T and hi = [h1i h2i h3i]T .
Thus, the motor torques for MEPaM in terms of the dynamics of the legs and platform is

λ = BJT
M

(
BwP + BJ−T

F h
)

(39)

where λ = [λT
A1 λT

A2 λT
A3]T .

The Jacobian transpose maps a Cartesian force into the active joint space of the robot,
hence the terms of hi corresponding to the active joints of MEPaM can be extracted out
of the bracketed term of Eq. (39), i.e. the columns for which BJT

M
BJ−T

F contains one entry
which is 1 and the other five are 0. Thus, the inverse dynamic equation of MEPaM in terms
of the β-variables is

λ = ha + BJT
M

(
BwP +

3∑

i=1

BJT
ti

BJ−T
3i (:,3)hp

i

)

(40)

where ha = [h11 h21 h12 h22 h13 h23]T correspond to the inverse dynamic model of the active
revolute joint and hp = [h31 h32 h33]T are the inverse dynamic models of the passive joints.

4.3 Inverse dynamic model for the actual motors

The models of Eqs. (30) and (40) do not account for the base mounted actuation of the
legs of MEPaM, they are derived assuming that the actuators are directly mounted at the
joints. The torques required for the actual system, τ i , can be obtained by using the Jacobian
relationship given by Eq. (2) i.e.

τ = JT
β λ (41)
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where JT
β = diag([AT

β AT
β AT

β ]) is a 6×6 mapping matrix. Hence, the inverse dynamic model
of MEPaM has been found.

4.4 Comparison

The NOC and Khalil–Ibrahim methods both obtain closed form expressions of the inverse
dynamic model of MEPaM. With regards to computation, the NOC method will require
more operations due to the presence of large matrices. This inference is explored in Sect. 6.
Through expressing the twists of all the rigid bodies in terms of the active joint rates, the
NOC method produces a model that is completely in terms of the active joints whilst the
Khalil–Ibrahim method can be made to do so through substitution of Eqs. (12) and (14) for
the platform rates and Eqs. (16)–(17) for the passive joint rates.

Expressing the model in terms of only the active variables is advantageous in most in-
stances but there are situations when this may not be the case. Dynamic calibration utilises
the inverse dynamic model to identify the inertial parameters of a mechanism, with accurate
knowledge of these parameters paramount in dynamically compensated control algorithms.
A trajectory is prescribed and implemented for the mechanism to follow, with measurements
of the active joints position (i.e. by an encoder) and the torques of the motors (i.e. a motor
current) made in this situation. As the inverse dynamic model can be expressed in a lin-
ear form with respect to the inertial parameters [19, 24], the inertial parameters are found
by solving an over-determined linear system of equations whereby the coefficient matrix
is populated in terms of the geometric parameters and the position, velocities and accel-
erations of the joint and task space variables. Typically, the passive joint and task space
variables are expressed in terms of the active variables, i.e. the passive joint rates are given
by Eqs. (16)–(17) and task space rates given by Eqs. (12) and (14). However, if there are
redundant sensors measuring the passive joints or an inertial measurement unit on the plat-
form, the rates of the passive joints and/or the platform can be measured as opposed to
estimated. This can improve the accuracy of the inertial parameter estimation and hence the
computed torque calculation provided by the inverse dynamic model when compared to a
measured motor torque. In this regard, the Khalil–Ibrahim model offers the flexibility to in-
clude such measurements in the inverse dynamic model but the NOC method does not due
to its implementation being wholly in terms of the active joints.

5 Base inertial parameters

The dynamic model of a robot is in terms of the inertial parameters of its rigid bodies. For a
rigid body, there are ten inertial parameters, i.e.

χ i = [
XXi XYi XZi YYi YZi ZZi MXi MYi MZi mi

]T
. (42)

Hence, for a robot with n rigid bodies, the dynamic model is in terms of 10n inertial pa-
rameters. However, not all of these parameters have a direct impact on the dynamic model.
As a result, the number of inertial parameters can be reduced through elimination of these
parameters and grouping of other parameters. This reduced set of parameters is known as
the base inertial parameters. They are the minimum number of inertial parameters required
to compute the dynamic model of a robot [29] and as a result reduce computation cost [23].
Further, knowledge of the base inertial parameters is critical in a dynamic calibration of a
robot as they are the only parameters that are identifiable [10, 13, 23].
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When the dynamic model of a robot is expressed with respect to the frame origins of the
links—not the centre of mass—the model is linear with respect to the inertial parameters
of the mechanism [24]. This allows for the inverse dynamic model to be written in a closed
linear regressor form, i.e.

τ = Dχ (43)

where D is the n × k dynamic regressor of the mechanism in terms of the geometric param-
eters, joint and task space variables, and χ is the k × 1 vector of inertial parameters of the
parallel mechanism (n is the number of actuators, k is the number of inertial parameters).
This regressor form of the inverse dynamic model is utilised in dynamic calibration to solve
for the inertial parameters and is also useful in the design of advanced control laws such as
a sliding mode controller.

The base inertial parameters can be determined by investigating the linear dependence
of the columns of the symbolic regressor matrix or through use of QR decomposition on
a numerical regressor [12]. However, as the complexity of the mechanism increases, this
becomes a cumbersome task and prone to error. Recursive energy relationships have instead
been used to determine the base parameters. This method exploits the fact that the sum of
potential and kinetic energy when derived with respect to the frame origin of a rigid body is
linear with respect to the inertial parameters [13, 19, 20], i.e.

Ej = KEj + PEj = ejχ j (44)

where Ej is the total energy of link j , ej is a 1 × 10 vector of the partial derivatives of Ej

with respect to the inertial parameters (i.e. an energy function for each inertial parameter)
and χ j is the 10 × 1 vector of standard inertial parameters for link j . The expression for
the elements of ej , ek (k = 1, . . . ,10) are found in Appendix A. The base parameters are
derived using the expressions of ek as follows [13, 19, 20]:

– If ek is a constant, then the parameter χk has no effect on the dynamic model. Thus, χk can
be eliminated from χ j ; or

– If ek can be expressed as a linear combination of ek1, . . . , ekr , i.e. ek = κk1ek1 + · · · +
κkrekr , then χk can be grouped with parameters χk1, . . . , χkr . The grouped parameters
take the form χRkm = χkm +κkmχk , for m = 1, . . . , r and replace the associated parameters
in χ j .

Grouping relations for serial robots [13] and those with more complex structures [18]
have been derived using the energy relations for prismatic and revolute joints. The rules for
serial robots are included in Appendix B for ease of reference, with a thorough explanation
provided in [13, 19].

5.1 Base parameters of the serial legs of MEPaM

MEPaM consists of three identical legs which have three links, i.e. each leg has a total of 30
standard inertial parameters. Applying the rules in Appendix B to the serial legs of MEPaM,
the number of inertial parameters for each leg is reduced to 7, i.e.

χRi = [
ZZR1i MXR1i MY1i ZZR2i MXR2i MYR2i m3i

]T
. (45)
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The grouping parameters defined in Eq. (45) are:

ZZR1i = ZZ1i + d1i
2m2i ,

MXR1i = MX1i + d1im2i ,

ZZR2i = ZZ2i + ZZ3i + 2d2iMX3i ,

MXR2i = MX2i + MX3i ,

MYR2i = MY2i − MY3i .

5.2 Base parameters of the closed loop mechanism

As shown in [20], the recursive energy relations can be used to group parameters of the
platform with those of the serial legs. This is achieved by exploiting the velocity condition
at the cut joint. For MEPaM, as the origin of F3i is at the platform vertex Bi , then the
velocity of the tip of the serial legs and the platform vertex are the same, i.e.

Bv3i = BvP + BωP × Bρi . (46)

Equivalently, the velocity of the common point can be expressed as follows

P v3i = P vP + P ωP × P ρi . (47)

Through utilisation of this property and the energy relations, some parameters of the con-
nection link, i.e. link 3i, can be grouped with parameters of the platform. As is evident from
Eq. (45), only the mass of the third link, m3i , has an effect on the dynamics and has not been
grouped. Hence, for m3i to be grouped with the parameters of the platform, then the energy
function em3i = κP 1eP 1 + · · · + κPreP r . As shown in Appendix C, the masses m3i can be
grouped with the inertial parameters of the platform, forming the following groupings:

XXRP = XXP + d2
32c

2
2m32 + d2

33c
2
3m33,

XYRP = XYP + d2
32s2c2m32 − d2

33s3c3m33,

YYRP = YYP + d2
31m31 + d2

32s
2
2m32 + d2

33s
2
3m33,

ZZRP = ZZP + d2
31m31 + d2

32m32 + d2
33m33,

MXRP = MXP + d31m31 − d32s2m32 − d33s3m33,

MYRP = MYP + +d32c2m32 − d33c3m33,

mRP = mP + m31 + m32 + m33

with the parameters XZP , YZP and MZP being unchanged.
By grouping the m3i parameters with the parameters of the platform, the parameter vec-

tor χ is independent of the inertial parameters of the third links of the serial chains which
correspond to the passive joints of MEPaM. Hence, the dynamic model of MEPaM is inde-
pendent of these parameters and thus the passive joint rates. This is significant as it means
that there is no need to calculate these rates via Eqs. (16) and (17). Further, the model has
been reduced from 100 inertial parameters to 28 inertial parameters, reducing the number
of computations required. When using the base inertial parameters, the wrenches (written in
terms of the base parameters) and twists of the links 3i can be omitted in the NOC method.
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Table 2 Inertial Parameters of
MEPaM (i = 1,2,3) j j Ij × 10−6 [kg m2] j msj [kg m] mj [kg]

1i

⎡

⎢
⎣

2.851 0 −0.7160

0 196.5 0

−0.7160 0 199.0

⎤

⎥
⎦

⎡

⎢
⎣

0.0021

0

−5.913 × 10−6

⎤

⎥
⎦ 0.0415

2i

⎡

⎢
⎣

25.28 2.961 15.32

2.961 266.6 −0.0150

15.32 −0.0150 243.6

⎤

⎥
⎦

⎡

⎢
⎣

0.0023

3.906 × 10−5

−4.576 × 10−4

⎤

⎥
⎦ 0.0544

3i

⎡

⎢
⎣

524.9 0 0

0 524.9 0

0 0 0.1970

⎤

⎥
⎦

⎡

⎢
⎣

0

0

−3.94 × 10−3

⎤

⎥
⎦ 0.0394

P

⎡

⎢
⎣

34.16 −0.0500 −0.0070

−0.0500 34.10 0.0160

−0.0070 0.0160 63.13

⎤

⎥
⎦

⎡

⎢
⎣

3.723

−6.101

33.97

⎤

⎥
⎦ × 10−6 0.0809

This reduces the maximum dimension of the matrices from 60 to 42. For the Khalil–Ibrahim
method, Eq. (40) is altered to

λ = ha + BJT
M

BwP . (48)

6 Simulation

Simulations were conducted to verify that the NOC and Khalil–Ibrahim methods are equiv-
alent. To do so, a trajectory profile was simulated and the torque profile computed using
the two methods. These profiles were compared with a Sim Mechanics model to verify that
they produce the correct output. The legs of MEPaM were modelled as RRCU mechanisms
in Sim Mechanics to validate the assumption used in the modelling procedure, i.e. that the
legs can be modelled as RRPS mechanisms. Further, a different trajectory profile was used
to verify if the inverse dynamics models computed using the base inertial parameter set pro-
duced the correct output, with comparison made with the Sim Mechanics model which used
the full inertial parameter set.

6.1 Geometric and inertial parameters

The architecture of MEPaM under study has the three legs attached to frames that form an
equilateral triangle, i.e. ri = 0.167 m, γ1 = π/2, γ2 = 7π/6 and γ3 = 11π/6 in Table 1.
The origin of Lever Arm A in F1i is given by wxi = 0 m and wzi = 0.11 m. Further, it is
assumed that the lengths of Lever Arm A and Lever Arm B are equivalent for the three legs,
i.e. d1i = 0.137 m and d2i = 0.1375 m. As the legs have the same geometric parameters, the
inertial parameters are also the same. The platform is assumed to be an equilateral triangle
with d3i = 0.052 m and ψ2 = ψ3 = π/6. The location of the three platform vertices in FP

are given by Eq. (5). The inertial parameters of MEPaM are given in Table 2.
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Fig. 5 Trajectory for validation of inverse dynamic models using complete inertial parameter set (nx = 6,
ny = 4, nz = 4, n1 = 4, n2 = 2, n3 = 6, Td = 10)

6.2 Trajectory and torque profiles

The workspace trajectory for the simulations was given by

px = 0.05 sin

(
nxπt

Td

)
, py = 0.04 sin

(
nyπt

Td

)
, pz = 0.26 + 0.07 sin

(
nzπt

Td

+ 3π

2

)
,

φ1 = π

4
sin

(
n1πt

Td

)
, φ2 = π

6
sin

(
n2πt

Td

)
, φ3 = π

5
sin

(
n3πt

Td

)

where φ1, φ2 and φ3 are ZYX Euler angles used to describe the orientation of the platform,
nx , ny , nz, n1, n2 and n3 are integers that control the frequency of the trajectory, and Td is
the duration of the trajectory.

The trajectory used to verify the inverse dynamic models when calculated using the com-
plete inertial parameter set is shown in Fig. 5. The required joint space trajectory was cal-
culated using the inverse geometric model, with the result used to calculate the required
torques through the inverse dynamics. The computed torques using the two models and Sim
Mechanics are shown in Fig. 6. A different trajectory was used to verify the inverse dynamic
models in terms of the base parameters, with the computed torques shown in Fig. 7. Note
that the torque profile produce by Sim Mechanics used the complete inertial parameter set.

From Figs. 6 and 7, it is evident that the NOC and Khalil–Ibrahim methods produce
the same computed torque outputs when using the complete and base inertial parameter
sets. Further, the simulations show that the torque profiles are the same as the Sim Me-
chanics model, indicating correctness of the models and validating the assumption made in
modelling that the legs can be treated as RRPS mechanisms. Using the complete inertial
parameter set, the Khalil–Ibrahim method involved 546 multiplications and 357 additions
whilst the NOC method involved 80 172 multiplications and 79 194 additions. Using the
base inertial parameters, the Khalil–Ibrahim method was reduced to 237 multiplications and
162 additions whilst the NOC method was reduced to 40 266 multiplications and 39 558
additions, i.e. it is advantageous to use the base inertial parameters when considering com-
putation cost. The vast amount of operations in the NOC method is to be expected as it
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Fig. 6 Computed torques using complete inertial parameter set (KI—Khalil–Ibrahim, NOC—Natural Or-
thogonal Complement, SM—Sim Mechanics)

Fig. 7 Computed torques using base inertial parameter set (nx = 4, ny = 6, nz = 6, n1 = 2, n2 = 6, n3 = 4,
Td = 10)

involves large matrices—the largest being 60 × 60—while the largest matrix involved in the
Khalil–Ibrahim method has dimension 6 × 6. Hence, the Khalil–Ibrahim method is more
efficient, benefiting from the use of the closed form inverse dynamic models of the serial
legs.

Author's personal copy



Inverse dynamic modelling of a three-legged six-degree-of-freedom. . .

7 Conclusion

The inverse dynamic model of a novel six-degree-of-freedom three-legged parallel mech-
anism was derived using the NOC and Khalil–Ibrahim methods. These methods yielded
closed form expressions which can be expressed wholly in terms of the active joint vari-
ables. Simulations and comparisons with a Sim Mechanics model showed these models to
be equivalent and correct, with the Khalil–Ibrahim method being more computationally effi-
cient. Further, the models were reduced to 28 base inertial parameters—completely indepen-
dent of the inertial parameters related to the passive joints—which reduced the computation
cost of both methods by approximately 50 %.

Appendix A: Recursive energy relations

Letting the transformation matrix BTj = [
i j k B pj

0 0 0 1

]
with i, j and k being 3×1 vectors which

describe the orientation of link j with respect to the base frame, the angular velocity of link j

be ωj = [ωxj ωyj ωzj ]T and the linear velocity of link j be vj = [vxj vyj vzj ]T , the recursive
energy relations associated with the link’s inertial parameter vector χ j are [19, 20]

eXXj
= 1

2
ω2

xj , eXYj
= ωxjωyj ,

eXZj
= ωxjωzj , eYYj

= 1

2
ω2

yj ,

eYZj
= ωyjωzj , eZZj

= 1

2
ω2

zj ,

eMXj
= ωxjvyj − ωyjvzj − BgT i, eMYj

= ωxjvzj − ωzjvxj − BgT j,

eMZj
= ωzjvxj − ωxjvzj − BgT k, emj

= 1

2
vT

j vj − BgT Bpj .

(49)

Appendix B: Grouping relations for serial legs

A complete derivation and overview of the grouping relations for serial and tree robots
can be found in [13, 18, 19]. The rules and expressions used to determine the base inertial
parameters of the serial legs of MEPaM are considered below. Using the rules developed in
[13, 18, 19], where possible, the parameters of link 3i were grouped with the parameters of
link 2i which were subsequently grouped with the parameters of link 1i. With reference to
Table 1, γj = 0 and bj = 0 for j = 2 and 3, hence the rules which pertain to serial robots
suffice. These are (in terms of the Khalil–Kleinfinger parameters):

– If joint j is revolute, the parameters YYj , MZj and mj can be grouped with the parame-
ters of link j and link j − 1. The resulting parameters are:

XXRj = XXj − YYj ,

XXRj−1 = XXj−1 + YYj + 2djMZj + dj
2mj,

XYRj−1 = XYj−1 + aj sαj
MZj + ajdj sαj

mj ,

XZRj−1 = XZj−1 − aj cαj
MZj − ajdj cαj

mj ,
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YYRj−1 = YYj−1 + c2
αj

YYj + 2dj c
2
αj

MZj + (
a2

j + d2
j cαj

2
)
mj,

YZRj−1 = YZj−1 + cαj
sαj

YYj + 2djcαj
sαj

MZj + dj
2cαj

sαj
mj ,

ZZRj−1 = ZZj−1 + s2
αj

YYj + 2dj s
2
αj

MZj + (
a2

j + d2
j sαj

2
)
mj,

MXRj−1 = MXj−1 + ajMj ,

MYRj−1 = MYj−1 − sαj
MZj − dj sαj

mj ,

MZRj−1 = MZj−1 + cαj
MZj + dj cαj

mj .

mRj−1 = mj−1 + mj .

– If joint j is prismatic, the parameters of the inertia tensor of link j (XXj,XYj ,XZj ,YYj ,

YZj ,ZZj ) can be grouped with those of link j − 1. The resulting parameters are:

XXRj−1 = XXj−1 + cθj

2XXj − 2cθj
sθj

XYj + sθj

2YYj ,

XYRj−1 = XYj−1 + cθj
sθj

cαj
XXj + (

c2
θj

− s2
θj

)
cαj

XYj − cθj
sαj

XZj

− cθj
sθj

cαj
YYj + sθj

sαj
YZj ,

XZRj−1 = XZj−1 + cθj
sθj

sαj
XXj + (

c2
θj

− s2
θj

)
sαj

XYj + cθj
cαj

XZj

− cθj
sθj

sαj
YYj − sθj

cαj
YZj ,

YYRj−1 = YYj−1 + s2
θj

c2
αj

XXj + 2cθj
sθj

c2
αj

XYj − 2sθj
cαj

sαj
XZj + c2

θj
c2
αj

YYj

− 2cθj
cαj

sαj
YZj + s2

αj
ZZj ,

YZRj−1 = YZj−1 + s2
θj

cαj
sαj

XXj + 2cθj
sθj

cαj
sαj

XYj + sθj

(
c2
αj

− s2
αj

)
XZj

+ c2
θj

cαj
sαj

YYj + 2cθj

(
c2
αj

− s2
αj

)
YZj − cαj

sαj
ZZj ,

ZZRj−1 = ZZj−1 + s2
θj

s2
αj

XXj + 2cθj
sθj

s2
αj

XYj + 2sθj
cαj

sαj
XZj + c2

θj
s2
αj

YYj

+ 2cθj
cαj

sαj
YZj + c2

αj
ZZj .

– If the axis of the prismatic joint j is parallel to the nearest revolute joint axis i (i is not
necessarily j − 1), then MZj has no effect on the dynamic model and the parameters
MXj and MYj can be grouped as follows:

MXRj−1 = MXj−1 + cθj
MXj − sθj

MYj ,

MYRj−1 = MYj−1 + sθj
cαj

MXj + cθj
cαj

MYj ,

MZRj−1 = MZj−1 + sθj
sαj

MXj + cθj
sαj

MYj ,

ZZRi = ZZi + 2aj cθj
MXj − 2aj sθj

MYj .

– If joint j is revolute and articulated on the base, the parameters XXj , XYj , XZj , YYj ,
YZj , MZj and mj have no effect on the dynamic model and can be eliminated.
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Appendix C: Grouping leg parameters with platform

For the parameters m3i to be grouped with the parameters of the platform, the energy func-
tion em3i

needs to be in a form that is a linear combination of the platform energy functions,
i.e.

em3i
= κ1eXXP

+ κ2eXYP
+ · · · + κ10emP

. (50)

This is possible by use of the velocity of the connection point of the legs to the platform,
i.e.

P v3i = P vP + P ωP × P ρi (51)

where P vP = [P vxP
P vyP

P vzP ]T , P ωP = [P ωxP
P ωyP

P ωzP ]T and P ρi = [P bxi
P byi

P bzi]T .
Let the transformation of the platform frame to the base frame be

BTP =
[

i j k BpP

0 0 0 1

]
(52)

where i, j and k are 3×1 vectors which describe the orientation of the platform with respect
to the base frame and BpP is the translation between the origin of the two frames. Then the
co-ordinates of the connection points in the base frame are

Bbi =
[

i j k BpP

0 0 0 1

][
P bi

1

]

= BpP + P bxi i + P byij + P bizk. (53)

Therefore, the energy function for the masses m3i can be determined using Eq. (49)
for emj

, Eq. (51) for the velocity of link 3i and Eq. (53) for the connection point expressed
in FB , i.e.

em3i
= 1

2
P vT

3i
P v3i − BgT Bbi

= 1

2

(
P byi

2 + P bzi
2)P ωxP

2 − P bxi
P byi

P ωxP
P ωyP − P bxi

P bzi
P ωxP

P ωzP

+ 1

2

(
P bxi

2 + P bzi
2)P ωyP

2 − P byi
P bzi

P ωyP
P ωzP + 1

2

(
P bxi

2 + P byi
2)P ωzP

2

+ P bxi

(
P ωzP

P vyP − P ωyP
P vzP − BgT i

) + P byi

(
P ωxP

P vzP − P ωzP
P vxP − BgT j

)

+ P bzi

(
P ωyP

P vxP − P ωxP
P vyP − BgT k

) + 1

2
P vT

P
P vP − BgT BpP . (54)

With aid of Eq. (49), Eq. (54) is rearranged to

em3i
= (

P byi
2 + P bzi

2)
eXXP

− P bxi
P byieXYP

− P bxi
P bzieXZP

+ (
P bxi

2 + P bzi
2)

eYYP

− P byi
P bzieYZP

+ (
P bxi

2 + P byi
2)

eZZP
+ P bxieMXP

+ P byieMYP
+ P bzieMZP

+ emP
. (55)

As a result of Eq. (55), it is possible to group the m3i parameters with the inertial parameters
of the platform. Due to the assignment of the platform frame, FP , the co-ordinates of the
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platform vertices in FP are:

P b1 =
⎡

⎣
d31

0
0

⎤

⎦ , P b2 =
⎡

⎣
−d32s2

d32c2

0

⎤

⎦ , P b3 =
⎡

⎣
−d33s3

−d33c3

0

⎤

⎦ .

Hence, the grouping relations are

XXRP = XXP +
3∑

i=1

(
P byi

2 + P bzi
2)

m3i = XXP + d2
32c

2
2m32 + d2

33c
2
3m33,

XYRP = XYP −
3∑

i=1

P bxi
P byim3i = XYP + d2

32s2c2m32 − d2
33s3c3m33,

XZRP = XZP −
3∑

i=1

P bxi
P bzim3i = XZP ,

YYRP = YYP +
3∑

i=1

(
P bxi

2 + P bzi
2)

m3i = YYP + d2
31m31 + d2

32s
2
2m32 + d2

33s
2
3m33,

YZRP = YZP −
3∑

i=1

P byi
P bzim3i = YZP ,

ZZRP = ZZP +
3∑

i=1

(
P bxi

2 + P byi
2)

m3i = ZZP + d2
31m31 + d2

32m32 + d2
33m33,

MXRP = MXP +
3∑

i=1

P bxim3i = MXP + d31m31 − d32s2m32 − d33s3m33,

MYRP = MYP +
3∑

i=1

P byim3i = MYP + d32c2m32 − d33c3m33,

MZRP = MZP +
3∑

i=1

P bzim3i = MZP ,

mRP = mP +
3∑

i=1

m3i = mP + m31 + m32 + m33.
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