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Symmetry breaking of the flow in a cylinder driven by a rotating end wall
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The flow driven by a rotating end wall in a cylindrical container with aspect tafie= 2.5 is time
dependent for Reynolds numbers -R@R?/»>2700. For Reynolds numbers up to 4000 three
solution branches have been identified, and we examine a solution on each one= 220k the

flow is axisymmetric and time periodic. At Re3500, the flow is quasiperiodic with a
low-frequency modulation and supports a modulated rotating wave with azimuthal wave number
k=5. At Re=4000, the flow is time periodic with a qualitatively different mode of oscillation to
that at Re=3500. It also supports a modulated rotating wave, \kith6. The peak kinetic energy

of the nonaxisymmetric modes is associated with the jet-like azimuthal flow in the interior.
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Flow in a cylinder driven by steady end wall rotation hasthese appeared to be nonaxisymmetric. A third branch, over-
attracted attention since Vogebentified a steady axisym- lapping the other two for 3260Re< 3700, has quasiperi-
metric breakdown of the central vortex. Since then, the flowodic flows that also appear to be honaxisymmetric, with fun-
configuration has been regarded as particularly suited to defamental periodr3=QT;~57. Three solution branches
tailed study of vortex breakdown phenomena, in part becauseere also obtained in a set of associated axisymmetric nu-
the flow is completely enclosed and the boundary conditionsnerical simulations? and it was found that the fundamental
well defined. The two dimensionless groups that characterizperiods of oscillation were very close to the experimental
the problem are the aspect rakdR and the Reynolds num- observations.
ber Re= OR?/v, whereH andR are respectively the height It is not easy to conclusively determine if these flows
and radius of the cylindef) is the angular speed of one end remain axisymmetric through laboratory experiments. Any
wall, and » the kinematic viscosity of the fluid. small unsteady perturbation, even if axisymmetric, coupled

The experiments of Escudfedemonstrated that if the with slightly nonaxisymmetric release of dye or other flow
flow reaches a steady state, it is axisymmetric. Subsequentsualization tracer, can produce a readily observed lack of
investigations have mapped out the flow topology of theaxisymmetry in streaklines or particle paffis!>The experi-
steady axisymmetric statés? and examined the onset of mental method employed in Ref. 10 only delivers informa-
unsteady flow when the governing equations are restricted tton about the temporal behavior of the axisymmetric com-
an axisymmetric subspace® ponent of flow, even if the flow is nonaxisymmetric,

A study of the stability of the steady axisymmetric flow provided the flow approaches axisymmetry in the near-axis
to general three-dimensional time-dependent perturbation®gion.
has been carried out by GelfghEor cylinder aspect ratios Previous results leave open significant questions con-
nearH/R=2.5, the onset of time dependence was found tacerning the loss of axisymmetry in this flow, and there are a
occur via a supercritical Hopf bifurcation near R2700, number of recent experimental and numerical results in this
with the axisymmetric mode being the most unstable. Tcand related flows that offer differing views about the sym-
date, the stability of the subsequent time-periodic state hametry breaking®~® Here we address the issue for geom-
not been studied theoretically. etries withH/R=2.5 via direct numerical simulation of the

A recent experimental stufjof flow in a cylinder with  unsteady three-dimensional Navier—Stokes equations.
H/R=2.5 identified three solution branches in the Reynolds In the cylindrical geometry, the equations and boundary
number range 2700-4000. By studying the temporal behawonditions are invariant to arbitrary azimuthal rotations; in a
ior of dye sheets near the axis of the cylinder, it was discovhumerical study of symmetry breaking the equivalent dis-
ered that each solution branch has a distinct dominant fresrete system of equations should preserve the invariance.
guency. The first branch, with7;=QT;~36, has The most natural and efficient way to ensure this property is
axisymmetric periodic flows from the onset of unsteadines$o employ a Fourier basis in the azimuthal coordinate. In our
at Re~2700, and extends to Re8500. The second branch, numerical method, the velocity(z,r, 6) is projected by Fou-
with 7,=QT,~28, Re>3500, also has periodic flows, but rier transformation in the azimuth onto a set of two-
dimensional complex modes,(z,r). The radial and azi-
3Electronic mail: hugh.blackburn@dbce.csiro.au muthal velocity components are combined into two new
YElectronic mail: lopez@math.la.asu.edu variables in such a way as to regularize the cylindrical
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Navier—Stokes equations at the origin, and to decouple the 00063 ™~ T~ " T T T T

viscous terms in the corresponding evolution equatiéns. o 300es

This Fourier basis in the azimuth is coupled with aspec-  00060FE., ., . . 1. v 1o vl e 1oy (a)
tral element discretization in the meridional pldieTime
integration is carried out with a second-order semi-implicit 00063 T T T T T T T
scheme. Nonlinear terms are computed in skew-symmetric & 0.0062 BVttt A AAAAVANV VS ottngt hh to 7

.. . . . . . 0.0061 E =

form, but not explicitly dealiased in the azimuthal direction 00060 By v v v 1w v v v 1y v v 1 (D)
in the multiprocessor version of the code used for most of the 1078 g Ty
computations. The computational domain inz) was dis- & 1823 W
cretized into 60 spectral elements with Gauss—Lobatto— }8:: T e ©

Legendre interpolants, typically of order 7. Most of the com-
putations used 64 planes of data in the azimuthal direction
(resolving modes up to azimuthal wave numhker32) and . 30085
some cases were recomputed with 80 and 128 planes to 0.0081

J . . 00060 F, \ v v 1\ v v 1y iy w1y
check the effects of aliasing and influence of higher harmon- Lo : : : L= (d)
ics. Dealiased calculations were also used to check the ef- o 10
fects of aliasing, which was always found to be insignificant 13:: 3
; P I by b1 3 ()
for the mo.st energetic modes. . . 1% - 500 000 1500 2000 2500
Evolution of the solution was monitored through time 0t

series of energies in each Fourier mdge ' ) o . . .
9 dd FIG. 1. Time series of the modal kinetic energies for the axisymmetric

mode E,) and, as appropriate, for the leading nonaxisymmetric mo¢a at

1 J’ l':lk'ﬂf:r dA Re=3000; (b), (c) Re=3500; (d), (¢) Re=4000.
A

Ex=54P
whereA is the area of the two-dimensional meridional Semi'symmetric components of the flow. For the R8500 case
plane,p is fluid density,r is distance from the axis, ang this also extends to the long-period modulation, where there
denotes the complex conjugate of the velocity data irkthe is an oscillatory exchange of energies betweenkth® and
Fourier mode. Energy of the axisymmetric component of thek=5 modes.
flow is represented bi,. In order to facilitate comparison with previous experi-
Starting from initial conditions that were a rest state tomental results we present in Fig. 2 the frequency spectra of
which was added a random perturbation of order®l the  the axisymmetric modal energies; as pointed out previously,
k=1 mode, we have obtained outcomes on each of the threte experimental technique employed in Ref. 10 provides
solutions branches observed in experiméftdere we detail ~ frequency information about the axisymmetric component of
one solution on each branch and leave a more complete exae flow. The fundamental period for each case is: Re
ploration of the dynamics on these branches for a more ex=3000, O T=36.1; Re=3500, O T=56.8; Re=4000, QT
tensive report. =28.5. These are in excellent agreement with the measured
As the flow spun up at Re3000, perturbations in all values presented in Ref. 10, clearly identifying the respective
nonaxisymmetric modes decayed until their energls,  numerical solutions as members of thg 73, and 7, solu-
reached machine-zero level Qt~4800, resulting in a
time-periodic and axisymmetric flow. The R&500 and
Re=4000 cases remained nearly axisymmetric until the flow 100

in the whole cylinder had spun up &t~600. After that _ 18-;
time thek=5 (Re=3500) ork=6 (Re=4000) mode began 5:; o
to grow exponentially, and remained the dominant mode af- 10-8
ter saturation. The elapsed time to saturation wias 10
~15000 at Re=3500, and much lesH)t~3200, at Re 100 1
=4000. Following saturation, the Re3500 case further 181 3
evolved (2t>20000) to a state with a very low frequency & 107 r 3
modulation, while the Re 4000 case remained periodic. For 18_5 . i
brevity, we will present results only from the asymptotic e I RN B ()|
states. 10°

Figure 1 shows time series of energy in the axisymmet- ig:;
ric mode E, for the three Reynolds numbers, and, for Re & 102

n

=3500 and 4000, the leading three-dimensional mode in the ® 1973

asymptotic states. The length of the time series encompasses 10 g , | | | ., 1, . H(e)
two cycles of the long-period modulation for the R8500 0 0.05 01 0.15 2
case, wheré) T~1325. An interesting feature of the time r/a

series for the nonaxisymmetric cases is the strong couplingig, 2. spectral density of, time series for(a Re=3000; (b) Re
evident between the energy in the axisymmetric and nonaxi= 3500, and(c) Re=4000.
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FIG. 3. Azimuthal energy spectra féa) Re=3500 and(b) Re=4000. The
plot for Re=3500 shows some evidence of azimuthal aliasing, while that for
Re=4000 is from a dealiased calculation.

tion branches described there. The long-perio@T(
=1325) modulation for Re 3500 results in the peak near
the frequency origin in Fig. ®).

Regarding the spatial structure of the nonaxisymmetric
solutions, the azimuthal three-dimensionality of the flow can
be represented byrbharmonics in ther; case, and 6 har-
monics in ther, case, as all other modes decay to zero, bar

Re = 3000

H. M. Blackburn and J. M. Lopez

Re = 3500 Re = 4000

FIG. 4. Rotating modulated waves of ti@ Re=3500 and(b) Re=4000
solutions, as manifest in the azimuthal velocity component. Above, instan
taneous isosurfaces; below, instantaneous contours at elewzakion0.8.

(c)k=5

(e) k=6

FIG. 5. Contours of averaged flow kinetic enerdy5p0y- G ) in the me-
ridional semiplane for(a) Re=3000; (b), (c) Re=3500; (d), (e) Re
=4000. Upper panel, axisymmetric component; lower panel, energy in the
leading nonaxisymmetric mode. In each plot the cylinder axis is to the left
and the rotating end wall is at the bottom.

aliasing. Figure 3 illustrates the associated azimuthal energy
spectra.

Figure 4 shows isosurfaces and contours of the azi-
muthal velocity for thers and 7, solutions, which further
serve to illustrate the spatial structure of the azimuthal wave
in each case. It is apparent that the departure from axisym-
metry is greatest in the region near the top stationary end
wall. The contours az=0.8H show that the azimuthal
waves are concentrated in the region where the mean azi-
muthal velocity is a maximunrt,/R~0.67, and that the re-
gion nearest the axis remains nearly axisymmetric.

Figure 5 is a contour plot of the time-averaged kinetic
energy in mode&=0 for Re=3000, 3500, and 4000, and in
modes 5 and 6 for Re3500 and 4000, respectively. The
kinetic energy of mode 0 varies only slightly between the
various solutions, the main result to be noted here is that the

Grid outlines illustrate the extent of the cylinder and spectral elememk_inetiC energy of the moc_les 5and _6 _is concentrated near the
boundaries; the bottom wall rotates clockwise when viewed from above. tip of an azimuthal wall jet that originates from the corner
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