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Abstract A direct analysis method is applied to compute optimal transient growth initial conditions for physi-
ologically relevant pulsatile flows in a smooth axisymmetric stenosis with 75% occlusion. The flow waveform
employed represents phase-average measurements obtainedin the human common carotid artery. Floquet
analysis shows that the periodic flow is stable to infinitesimal eigenmodal-type perturbations that would grow
from one cycle to the next at the Reynolds numbers considered. However, the same flows display explosive
transient growth of optimal disturbances, with our analysis predicting disturbance energy growths of order
1025 within half a pulse period at a mean bulk flow Reynolds numberRe = 300, which is significantly lower
than the physiological value ofRe = 450 at this location. Direct numerical simulation atRe = 300 shows that
when the base flow is perturbed a small amount with the optimalgrowth initial condition, the disturbance
grows rapidly in time in agreement with the linear analysis,and saturates to provide a locally turbulent state
within half a pulse period. This transition resulting from non-normal growth mechanisms shows the flow ex-
hibits bypass transition to turbulence. Our analysis suggests that this route to localised turbulent states could
be relatively common in human arterial flows.
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1 Introduction

Laboratory and numerical studies of both steady and pulsatile flows in idealized stenotic constrictions (fig
1(a)) and bifurcations over the past four decades have been motivated by the desire to understand flow char-
acteristics in the human physiology and their linkage to diseases of the arterial system. Flows in stenotic
vessels are of particular interest owing to their association with atherosclerosis and thrombogenesis. With
recent expansions in computational capacity and methods, particularly for flows in complex geometries, stud-
ies employing direct numerical simulation have begun to make a contribution to this area [4,12–14]. As had
originally been suggested by the in vitro experiments [7,8], transition to turbulence has emerged as a common
theme in studies of flows at Reynolds numbers relevant to the larger arteries of the human physiology.

With the desire to understand factors underlying transition to turbulence, especially in idealized axisym-
metric geometries, we have previously employed numerical asymptotic global stability analysis of both steady
and pulsatile flows in an axisymmetric rigid tube with a smooth axisymmetric stenosis of 75% area occlusion
[4,12]. In this work it was observed that the key features of the base flows in an asymmetric geometries are
axisymmetric shear layers that separate from the wall just downstream of the stenosis throat, and vortex rings
formed from roll-up of these shear layers when the flow is pulsatile. As would be expected, all the observed
dynamics and instabilities are associated with these flow features. Asymptotic/long-time global stability anal-
ysis of pulsatile flows amounts to Floquet analysis, since base flows are time-periodic. Such analysis makes
the assumption that instabilities grow by a constant multiplicative factor between successive pulses while re-
taining a mode shape specific to the phase point within the pulse cycle that is being studied. Our initial studies
[4,12] involved idealised flow waveforms with at most two temporal Fourier harmonics and these suggested
that as dimensionless pulse periods become longer (which ismore relevant to the in-vivo conditions in larger
arteries), flows become relatively more stable to Floquet-type instabilities.

More recently we have examined optimal transient growth initial conditions for both steady and pulsatile
stenotic flows [5]. This analysis has highlighted that even if pulsatile flows are stable to Floquet-type global
instabilities, extremely large (O(1010) in study [5]) transient energy growth is possible for suitable initial
disturbances within the time-span of a single pulse. The purpose of the present work is to examine the effect
of using a more complex and physiologically realistic flow waveform on both long-time asymptotic/Floquet
instabilities as well as transient growth analysis.
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Fig. 1 (a) Stenosis geometry and (b) Phase-averaged common carotid artery flow waveform, with velocity profiles forRe = 400.
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n An Bn n An Bn n An Bn
0 1 0 6 -0.1041 0.1149 12 -0.02045 0.03278
1 -0.2264 0.591 7 -0.03886 0.01257 13 -0.01162 0.002044
2 -0.6183 0.07234 8 -0.06137 -0.04677 14 -0.01869 -0.001022
3 0.04647 -0.4058 9 0.05177 -0.03975 15 0.0009446 -0.01793
4 0.1555 -0.1639 10 0.0136 0.0109 16 0.009188 0.001358
5 0.2239 0.1471 11 0.03434 0.02011

Table 1 Harmonic coefficients for phase-averaged pulsatile waveform ū(t)/ūm shown in figure 1(b). Ratio of peak bulk flow
rate to mean flow rate ¯upeak/ūm = 3.17.

The outline of this paper is as follows: In§ 1.1 we define the geometric problem and flow conditions, in§ 2
we outline the numerical methods adopted in the analysis. In§ 3 we present the results of our direct stability
analysis and direct numerical simulations. Finally in§ 4 we provide a brief discussion and summarize the
findings of our study.

1.1 Problem description

We consider pulsatile flows of Newtonian fluid with kinematicviscosityν in a rigid straight tube, diameter
D, with a smooth axisymmetric constriction of co-sinusoidalshape as illustrated in figure 1 (a). The relative
occlusion isS = 1−D2

min/D2. In our case,Dmin/D = 0.5, i.e.S = 0.75, and the total length of the constriction
considered isL = 2D. The same geometry has been chosen in a number of previous investigations, both in
vitro and numerical.

When considering a pulsatile and time periodic inflow, the space-time structure of the radial profile is
described analytically as a sum of Bessel–Fourier components [11]. As in our previous work [12,4,5], these
analytical solutions are used to supply inflow boundary conditions to the base flows. In summarizing the
inflows, we employ the instantaneous area-average speed ¯u and its time average ¯um:

ū(t) =
8

D2

∫ D/2

0
u(r, t)rdr, ūm =

1
T

∫ T

0
ū(t)dt,

whereu(r, t) is the (axial) velocity and whereT is the pulse period. We will useD as a length scale and ¯um as
a velocity scale, hence the time scale isD/ūm. In addition to the pulsatile wave form to be defined shortly,the
key dimensionless parameters of any bulk-flow waveform are its time-average Reynolds numberRe = ūmD/ν
and the reduced velocityUred = ūT/D. The reduced velocity provides the number of tube diametersthe mean
flow travels in a pulse period, but alternatively may be considered as a dimensionless pulse period. In the
following work we consider a pulsatile waveform shown in figure 1(b) which was obtained from ultrasound
analysis of flow in a human carotid artery. The cross-sectionally averaged data has been phase-averaged and
is represented by a Fourier expansion containing a mean and sixteen harmonics such that

ū(t)
ūm

=
n=16

∑
n=0

An cos(2nπt/T )+Bn sin(2nπt/T ) (1)

whereT = 27.7 and the harmonic energy is provided in table 1. The radiallyvarying inlet flows are computed
from Sexl–Womersley’s solution [11,15] for fully developed periodic pulsatile laminar flow in a circular tube.

The relevant physiological parameters for the data shown infigure 1(b) and table 1 were: pulse period
T = 0.862s, mean lumen diameterD = 7.48mm; mean velocity ¯um = 0.24m/s. With an assumed Newtonian
kinematic viscosity for blood ofν = 4×10−6m2/s, the Reynolds numberRe = 450 while the reduced velocity
Ured = 27.7. In the analysis to follow, we have kept the reduced velocity and bulk-flow waveform constant
and used the Reynolds number as a variable parameter. In reality one would expect the Reynolds number,
reduced velocity and waveform all to be functions of physiological state. Note that with the peak/mean ratio
of bulk flow rates of 3.17 for the chosen waveform (see figure 1b, table 1), the effective peak systolic Reynolds
number is 3.17 times larger than the mean value we use as a parameter.
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2 Methodology

Assuming the fluid to be Newtonian and the flow incompressible, the relevant equations of motion for the
primitive (velocity, pressure) variables are the incompressible Navier–Stokes equations

∂tuuu = −uuu ···∇∇∇uuu−∇∇∇p+ν∇2uuu, with ∇∇∇ ···uuu = 0, (2)

whereuuu = uuu(z,r,θ , t) = (u,v,w)(t) is the velocity field,P = p/ρ is the modified pressure andν is the fluid’s
kinematic viscosity. The variablesz, r, θ andt are respectively the axial, radial, azimuthal and time coordinates
andu, v, w the velocity components in the axial, radial and azimuthal directions.

The methods employed to examine linear asymptotic stability or transient growth of disturbances are
based on time-integration of the linearized Navier–Stokesequations, which for a perturbation flowuuu′ and
kinematic pressurep′ in spatial domainΩ are

∂tuuu
′ = −(UUU ···∇∇∇)uuu′− (uuu′ ···∇∇∇)UUU −∇∇∇p′ +Re−1∇2uuu′, with ∇∇∇ ···uuu′ = 0 in Ω . (3)

Their action on an initial perturbationuuu′(0) over time intervalτ may be stated asuuu′(τ) = A (τ)uuu′(0); the
asymptotic/large-time behaviour of linear perturbationsis exponential and governed by the leading eigen-
modes ofA (τ). We note that in the present case the base flow is aT -periodic function of time, i.e.UUU(t +T ) =
UUU(t).

2.1 Linear asymptotic stability analysis

Through the eigensystem decomposition of this forward evolution operatorA (τ) we may determine the
asymptotic stability of the base flowUUU . In this case the solution is proposed to be the sum of eigenmodes,
uuu′(xxx, t) = ∑ j exp(λ jt)ũuu j(xxx)+c.c., and we examine the eigenvalue problem

A (τ)ũuu j = µ j ũuu j, µ j ≡ exp(λ jτ). (4)

If UUU is steady, then the largest eigenvaluesµ j of A (τ) map to the eigenvaluesλ j of largest real part for linear
system (3), while the eigenmodes ofA (τ) and those of (3) are the same. IfUUU is T -periodic then we set
τ = T and consider this as a temporal Floquet problem, in which case theµi are Floquet multipliers and the
eigenmodes ofA (τ) are theT -periodic Floquet modes̃uuu j(xxx, t +T ) = ũuu j(xxx, t) evaluated at a specific temporal
phase. Asymptotic instability of both steady and simple pulsatile stenotic flows (corresponding to|µ j|> 1) in
the present problem was dealt with by [4] and [12]. In the following we address transient growth over finite
times.

2.2 Optimal transient growth analysis

Where asymptotic instability is concerned with energy growth of perturbations in the long-time-limit, optimal
transient growth is concerned with the maximum energy growth for all possible initial perturbations over a
finite time interval. We take a direct approach to computing initial conditions that lead to optimal transient
growth, as described in [1,2,5]. As is typical [10] we define transient growth with respect to the energy norm
of the perturbation flow, derived from theL2 inner product

2E(uuu′) = (uuu′,uuu′) ≡
∫

Ω
uuu′ ···uuu′ dV,

whereE is the kinetic energy per unit mass of a perturbation, integrated over the full domain. If the initial
perturbationuuu′(0) is taken to have unit norm, then the transient energy growth over intervalτ is

E(τ)/E(0) =
(

uuu′(τ),uuu′(τ)
)

=
(

A (τ)uuu′(0),A (τ)uuu′(0)
)

=
(

uuu′(0),A ∗(τ)A (τ)uuu′(0)
)

,

where we introduceA ∗(τ), the adjoint of the forward evolution operatorA (τ). The action ofA ∗(τ) is
obtained by integrating the adjoint linearized Navier–Stokes equations

−∂tuuu
∗ = −(UUU ···∇∇∇)uuu∗ +(∇∇∇UUU)T ···uuu∗−∇∇∇p∗ +Re−1∇2uuu∗, with ∇∇∇ ···uuu∗ = 0 in Ω (5)
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Fig. 2 Computational mesh in the meridional semi-plane for a cylindrical-coordinate discretization of the geometry, with 1336
spectral elements. Overall domain length 105D.

backwards over intervalτ. A (τ) evolves the initial perturbations forwards asuuu′(τ) = A (τ)uuu′(0) while the
adjoint operatorA ∗(τ) evolves the perturbation backwards asuuu′(0) = A ∗(τ)uuu′(τ). Comparing systems (3)
and (5) we observe that in the adjoint system the∂t and(UUU ···∇∇∇)uuu∗ terms negated. The sign on the∂t term
implies that the adjoint system is only well-posed in the negative time direction. The action of the symmetric
operatorA ∗(τ)A (τ) onuuu′ is obtained by sequential time integration ofA (τ) andA

∗(τ), i.e. first useuuu′(0)
to initialize the integration of (3) forwards in time over interval τ, then use the outcome to initialize the
integration of (5) backwards in time over the same interval.

The optimal perturbation (leading to largest energy growthover τ) is the eigenfunction ofA ∗(τ)A (τ)
corresponding to the joint operator’s dominant eigenvalue, and so we seek the dominant eigenvaluesλ j and
eigenmodesvvv j of the problem

A
∗(τ)A (τ)vvv j = λ jvvv j.

Typically G(τ) = max(λ j) is used to denote the maximum energy growth obtainable at time τ, while the
global maximum is denoted byGmax = maxτ G(τ). On the other hand,vvv j corresponding toG(τ) denotes the
optimal initial perturbation that lead to the optimal growth. An Arnoldi method is adopted to calculate the
maximum eigenvalues and corresponding eigenvectors of thejoint matrixA

∗(τ)A (τ).
We note that the eigenfunctionsvvv j correspond to right singular vectors of operatorA (τ), while their

(L2-normalized) outcomesuuu j under the action ofA (τ) are the left singular vectors, i.e.

A (τ)vvv j = σ juuu j, (6)

where the sets of vectorsuuu j, vvv j are each orthonormal, and whereσ2
j = λ j. The singular values ofA (τ) are

σ j = λ1/2
j , where bothσ j andλ j are real and non-negative.

While long-time asymptotic growth is determined from the eigensystem ofA (τ), optimal transient growth
is described in terms of the singular value decomposition (6): the optimal initial condition and its (normal-
ized) outcome after evolution over timeτ are respectively the right and left singular vectors of the forward
operatorA (τ) corresponding to the largest singular value, whose square (the largest eigenvalue ofA ∗

A ) is
the optimal energy growthG(τ).

When a base flow is non-steady, an additional parameter enters into transient growth analysis, which
is the time at which a perturbation is initiated relative to the base flow time-base. When the base flow is
T -periodic, this parameter can be described by the phase-point t0/T , and is readily incorporated into the
analysis by time-shifting the base flow byt0. For an open flow, the most straightforward perturbation velocity
boundary condition to apply on both the inflow and outflow (andat solid walls) are homogeneous Dirichlet,
i.e. uuu′ = 000 over the whole boundary for both the forward and adjoint linearized Navier–Stokes equations.
Further discussion of our choice of boundary conditions, methodology and implementation of transient growth
analysis for non-parallel shear flows both steady andT -periodic is provided in references [1,2,5].

2.3 Discretization

Spectral elements are used for spatial discretization of the axisymmetric geometry in the meridional semi-
plane, coupled with a Fourier decomposition in azimuth. Details of the discretization and its convergence
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Polynomial ordern 4 5 6 7
Maximum energy growthG 1.03×1025 1.13×1025 1.13×1025 1.13×1025

% difference 8.8 0.0 0.0 –

Table 2 Convergence data fort0/T = 0, τ/T = 0.5, Re = 300,k = 1, wheren is the polynomial order used to provide tensor-
product shape functions in each spectral element andG is the energy growth attained by the computed initial condition at
τ/T = 0.5.

properties are given in [3]. Time integration is carried outusing a second-order velocity-correction scheme.
The same numerics are used to compute base flows and the actions of the forward and adjoint linearized
Navier–Stokes operators, with the same time-step being retained for all three integrations. As discussed in
[4], long domains are required for the numerical linear stability analysis of these flows; the same is true for
transient growth analysis, especially when the flow is pulsatile and the reduced velocity is large. Figure 2
shows the computational mesh used for the present analysis,where it can be seen that the inflow and outflow
lengths relative to the throat of the stenosis are respectively 20 and 85D. Mesh structure near the throat is
similar to that in [4]. In the present problem, a high peak velocity, fine mesh structure where velocity is at its
largest, and comparatively large Reynolds numbers have meant that CFL-type stability restrictions demanded
a comparatively small time-step: we have used 204 800 time steps per pulse period for computing all results.

The T -periodic base flows are pre-computed as axisymmetric solutions of the Navier–Stokes equations
(2) and stored as data for the transient growth analysis. At any phase point in the pulse cycle, the base flow is
then reconstructed from these stored time-slices. Owing tothe non-trivial structure of the bulk flow waveform
and the resulting jet downstream of the stenosis in the present problem, very rapid temporal variation of base
flow velocity can occur at some spatial locations, requiringa comparatively large number of time-slices of the
base flow to be retained for this reconstruction. The time-scale of these temporal fluctuations reduces with in-
creasing Reynolds number, requiring a greater number of time-slices to be retained at high Reynolds numbers.
For the computations reported here, 512 time-slices were used as this was shown adequate for Reynolds num-
bers up toRe = 400, the maximum value considered. We note that the need for this reconstruction is partly
forced by the nature of the transient growth iteration, which requires backward time integration to compute
the action ofA ∗. For the forward integration required to compute the actionof A , the base flow could be
integrated forwards (concurrently if desired) so that reconstruction could be avoided if required. However, the
Navier–Stokes equations used to compute the base flow cannotbe stably integrated backward in time owing
to the influence of viscous diffusion.

With such a large number of time-slices, reconstruction of the base flow becomes the dominant work
component in time-stepping if Fourier reconstruction is used, which has been our practise in past work. In
order to overcome this difficulty we investigated both cubicspline reconstruction based on all time slices
and local four-point-Lagrange (i.e. local cubic) reconstruction. The work involved in global cubic spline
interpolation is similar to that for Fourier reconstruction, but local cubic interpolation is much cheaper while
delivering formally the same order of accuracy. With 512 time-slices, the three methods deliver similar results
in terms of base flow reconstruction, Floquet multipliersµ and optimal growthG up toRe = 400, hence four-
point Lagrange interpolation was adopted. For convenienceand speed all the base flow data were retained in
core memory but only four slices are actually needed in core to compute the interpolant at any instant so the
majority could be kept in slower memory if required.

Since the flows are necessarily periodic in the azimuthal direction, Fourier projections are used for the
azimuthal discretization. For stability and transient growth analysis, linearity ensures that each Fourier mode
can be considered independently. The modal structure of thevelocity and pressure perturbation fields is then
(with z, r andθ respectively the axial, radial and azimuthal coordinates,andk as the azimuthal wavenumber)

uz(z,r,θ) = ûk
z(z,r)coskθ , ur(z,r,θ) = ûk

r(z,r)coskθ ,

uθ (z,r,θ ) = ûk
θ (z,r)sinkθ , p(z,r,θ) = p̂k(z,r)coskθ ,

(or theirθ -conjugates) since these shapes are invariant under the actions of (3) and (5).
A study of spatial convergence of optimum growth values approximating the global optimum forRe = 300

is presented in table 2. This shows that to three significant figures there is no effect of increasing tensor-product
polynomial order aboven = 5. We have usedn = 6 for the results reported in the following sections.
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t = 6T/8
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Fig. 3 Contours of azimuthal vorticity in base flow forRe = 300, projected to a meridional plane over a range−3D ≤ z ≤ 18D
centred on the stenosis throat. Note that the computationaldomain has a much greater axial extent than shown here (see figure 2).

3 Results

Linear stability analysis and transient growth results aresupplied in§§3.2 and 3.3 for azimuthal wavenumber
k = 1, which exploratory analysis has shown to host greatest amplification in both cases. The largest transient
growth is also found to occur for ak = 1 azimuthal wavenumber for Poiseuille pipe flow [9] and for both
steady and simple pulsatile flow at the lower reduced velocity of Ured = 10 in the present geometry [5].
Prior to presenting these results we briefly examine base flowvorticity in § 3.1, and subsequently in§ 3.4
we present nonlinear (direct numerical simulation) results which demonstrate that transient growth leads to
bypass transition forRe = 300.

3.1 Base flows

The nature of the pulsatile axisymmetric base flows is illustrated forRe = 300 by contours of azimuthal
vorticity at eight phase points in figure 3. These phase points are consistent with the inflow profiles shown
in figure 1(b) where the bulk flow profile in time is also shown. There are effectively two ejections per pulse
cycle. Each ejection leads to the formation of a vortex ring followed by long shear layers. The primary ejection
with a leading vortex ring is evident in figure 3 att = T/8 while the secondary pulse and its associated vortex
ring is evident att = 4T/8 andt = 5T/8.

3.2 Floquet analysis: Asymptotic stability

Floquet analysis was carried out over a range of Reynolds number up toRe = 400, and for this range the flow
is observed to be linearly asymptotically stable. The leading Floquet multipliers are shown in table 3 where
we recall that a magnitude less than one indicates stability. The negative values of the Floquet multiplier
indicate that they would lead to a period-doubling instability, just as we found at moderate Reynolds numbers
in earlier work [4,12] — the period doubling is associated with alternate tilting of the vortex ring structures
from one pulse period to the next. Therefore the conclusion that can be drawn from this analysis is that the
flow is linearly asymptotically stable forRe 6 400. Possibly the flow is linearly stable for Reynolds numbers
somewhat above the physiological value ofRe = 450. However our subsequent transient growth analysis is
for Re 6 300, when the flow definitely possesses asymptotic stability.
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Re 100 200 300 400
µ −2.87×10−9 −5.27×10−7 −3.71×10−3 −2.44×10−1

Table 3 Asymptotic stability analysis: Floquet multipliers for azimuthal wavenumberk = 1.

Fig. 4 Optimal growth envelopes for disturbances in azimuthal wavenumbersk = 0–3, computed atRe = 300, perturbation
initiation phaset0/T = 0 relative to the base flow.

3.3 Linear optimal growth

The maximum Reynolds number we have considered for transient growth analysis isRe = 300. First, we
confirm that as for the related flows previously studied, the largest growth again occurs in thek = 1 azimuthal
wavenumber, as shown in figure 4. Axisymmetric disturbances(k = 0) are only marginally amplified at early
times, while at most times they are strongly attenuated. Oursubsequent linear analyses are confined tok = 1.

Figure 5 shows the envelopes of optimal growth for time intervals within a single pulse period and for four
starting phasest0/T = 0,0.25,0.5 and 0.75 (recall thatt0/T = 0.25 corresponds to initiation approximately
in phase with peak flow, see figure 1b). As can be seen from this figure the largest observed growth in energy
G = 1.13×1025 occurs atτ/T = 0.5 and fort0/T = 0.

For this flow the optimal transient growth values are, like the Floquet multipliers (table 3), very sensitive
to changes in Reynolds number. To illustrate this we show in figure 6 the envelopes of maximum transient
growth atRe = 200 and 300, both fort0/T = 0. Peak growth values increase by approximately 17 orders of
magnitude as a result of increasing Reynolds number by factor of 1.5, however, the shapes of the transient
growth envelopes is qualitatively similar atRe = 200 and 300, implying similar dynamics at both Reynolds
numbers. ForRe = 100, there is only small growth at early times: for most values of t/T represented in
figure 6, there is substantial decay in energy. While we have not here examined in detail the dependence of
peak energy growth on Reynolds number, we note that in a number of related (albeit steady) separated flows
[2,5,6], peak energy growth is observed to increase exponentially with Reynolds number, as opposed to the
Re2 dependence typical of parallel shear flows.

Figure 7 shows the structure of the base flow and perturbationfor the most-amplified case examined
(Re = 300, t0/T = 0, τ/T = 0.5, k = 1) at initiation,t/T = 0, and at end of the time interval for maximum
growth, t/T = 0.5. The base flow at initial timet/T = 0.0 and at timet/T = 0.5 correspond to the views
shown in figure 3 fort = 0T andt = 4T/8 but we note that the leading edge of the first front (nearz = 38) in
figure 7 (c) lies outside the field of view in figure 3.

The initial perturbation shown in figure 7 (b) has two sets of features with similarities to those that we have
previously observed (see figure 7c, e in [5]). First, upstream of the stenosis, there is a set of chevron-shaped
contours which corresponds to a sinuous disturbance to the flow about to be ejected through the throat. Second,
there is a concentrated disturbance lying at the separationzone in the throat (nearz = 0) — this latter feature,
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Fig. 5 Optimal growth envelopes for disturbances in azimuthal wavenumberk = 1, computed atRe = 300, with different per-
turbation initiation phasest0/T relative to the base flow. Initiation att0/T = 0.25 corresponds approximately to perturbation in
phase with systolic/peak flow (refer Fig. 1).

Fig. 6 Optimal growth envelopes for disturbances in azimuthal wavenumberk = 1, computed atRe = 200 and 300, and initiated
in phase with the (arbitrary) base flow phase reference point, i.e. t0 = 0. Data forRe = 100 are also represented, but result in
only small growth at short evolution intervals (t/T ∼ 0.05), and decay at larger intervals.

while superficially similar to the most-amplified initial disturbance shown in figure 7 (c) of [5], differs in that
it lacks a streamwise waviness since it involves only a perturbation of single sign in either the top or bottom
half of the pipe. The perturbation at time for maximum growth, figure 7 (f ) has a simple structure that resides
within the vortex ring that leads the pulsatile flow, nearz = 38. The perturbation flow would lead to a counter-
clockwise tilting of the vortex ring and we note that this mechanism and indeed the shape of the perturbation
is very similar to what we have previously observed as a period-doubling Floquet mode in figure 16 (d, e),
[12]. At an intermediate time point,t/T = 0.390625, between the initial and final state we observe the axial
perturbation shown in figure 7 (d). In this figure we observe that both the chevron pattern associated with
the initial perturbation upstream of the throat as well as the more concentrated structure initially arising at
the throat are present. Interestingly, at this time point the chevron pattern has overtaken the concentrated
perturbation. We have examined the progression of the perturbation at intermediate times, and see these two
mechanisms at work throughout the growth period. It appearsthat the chevron/sinuous disturbance in the
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(a)

(b)

(c)

(d)

(e)

(f )

Fig. 7 Initial condition and outcome for the most-amplified case atRe = 300,t0/T = 0, τ/T = 0.5,k = 1. (a, b), contours of base
flow vorticity and perturbation axial velocity (white, positive; black, negative) for the initial condition; (c, d) during evolution,
at t/T = 0.390625; (e, f ) outcome att/T = 0.5.

extended shear layer of the base flow travels faster than the concentrated pattern as highlighted in figure 7 (d).
However it is the concentrated pattern which creates an overturning-type perturbation to the leading base flow
vortex ring that ultimately dominates, as shown in figure 7 (f ).

3.4 Nonlinear analysis: Bypass transition

Finally we turn to an examination of nonlinear behaviour atRe = 300, which is computed with 32 azimuthal
Fourier modes (i.e. 64 planes of data in azimuth). The initial condition is a linear combination of the limit-
cycle base flow and the optimal initial perturbation in azimuthal wavenumberk = 1, at a relative energy
level of 10−12, so that the relative velocity scale of the perturbation is approximately six orders of magnitude
smaller than that of the base flow, a relative size that would be undetectable in a physical experiment. We note
that with a predicted linear transient growth of 1.13×1025, the perturbation would reach an energy level well
above that of the base flow for this ratio of initial energies.The initial state is then evolved over three pulse
cycles via direct numerical simulation (DNS).

Figure 8 shows time series of energy in the Fourier modes contained in the simulation. The axisymmetric
component corresponds tok = 0; the initial perturbation resides ink = 1, but rapidly spreads to all modes
via nonlinearity. The low-level energy plateau at energiesof order 10−38 corresponds to machine noise level.
Perturbation energy grows comparatively slowly at first, until shortly beforet/T = 0.25, when it commences
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Fig. 8 Time series of energiesEk in azimuthal Fourier modes from a direct numerical simulation study atRe = 300 where the
initial condition was seeded with the optimal disturbance at a relative energy level of 10−12

rapid exponential growth, reaching saturation soon aftert/T = 0.25. The higher Fourier modes also grow
rapidly, reaching a spread of approximately three orders ofmagnitude at saturation. We note that the qualita-
tive form of thek = 1 mode in these non-linear simulations is similar to the linear transient growth mode in
figure 5.

The nature of the flow near the time of initial saturation is illustrated in figure 9. At the pulse front there
is initially (at t/T = 0.281) a strongly three-dimensional breakdown of the leadingvortex ring, leading to
a turbulent burst at the three later times. The flow between the breakdown and the stenosis is much closer
to being axisymmetric. It is interesting to note that the axial location of the breakdown is approximately 15
diameters downstream of the throat, i.e. well upstream of the location of the linear perturbation at the phase
for maximum growth, which, as shown in figure 7 (d), is close to 38 diameters downstream of the throat. This
difference is a consequence of the fact that the nonlinear growth saturates much earlier than the linear growth
reaches a maximum. This evolution clearly demonstrates that transition to turbulence can be induced within a
single pulse cycle when a trace amount of the optimal growth initial condition is added to the base flow. Since
the transition does not occur through the standard eigenmodal mechanism (here, Floquet instability) but is
driven by non-normal growth we may describe this as bypass transition [10].

Now returning to consideration of figure 8, we see that following the initial saturation, energy in all
non-axisymmetric modes decreases, and for timest/T > 0.75 the decay of all these modes is approximately
exponential. The energy in modek = 1 decays to a level of order 10−7 and the spatial location of the majority
of the associated energy will be well downstream of the throat. However, att/T ∼ 1.25, energy in all the
non-axisymmetric modes again commences rapid exponentialgrowth as the base flow pulse downstream of
the stenosis reaches high velocity, and all the higher modesagain follows this growth to another saturation
shortly following this time. The behaviour subsequently issuperficially similar to that following the initial
cycle, and the same pattern is repeated in the third cycle. Onmore detailed examination, we note that the
peak energy associated with the turbulent burst declines slightly from cycle to cycle, while the phase at which
transition occurs increases. These two effects are associated with the transition location moving downstream
(of order 5 diameters) from one pulse to the next. Thus it appears that in the absence of further disturbance, the
turbulence will eventually disappear at this Reynolds number. However, since the initial disturbance required
to produce transition is vanishingly small, we would anticipate that in any physical experiment, where some
degree of noise is always present, turbulence resulting from non-normal growth would be sustained.
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t/T = 0.281

t/T = 0.313

t/T = 0.344

t/T = 0.375

Fig. 9 Perspective views of DNS results at four instants in the firstpulse cycle after initiation in Fig. 8, using isosurfaces of
(light grey) axial velocity and (mid/dark grey) radial velocity. The axial location of the pulse front and associated turbulent burst
is approximately 15–20 pipe diameters downstream of the stenosis throat during this breakdown event.

4 Discussion and conclusions

As we have already noted some of the instability characteristics of this pulsatile flow in a 75% stenosis have
been observed in our previous work. There are however also some notable differences.

First we note that in [4,12] a vortex ring tilting mechanism due to ak = 1 azimuthal perturbation was
identified as an asymptotic Floquet instability at much lower reduced velocities (2.5 < Ured). The low re-
duced velocity vortex tilting mechanism was a period-doubling type mode associated with the vortices tilted
from different pulses having opposite directions. Howeveras the reduced velocity increases, a Floquet-type
period-doubling instability becomes increasingly difficult to excite owing to increasing separation of pulse
fronts, as we alluded to in [4]. Nevertheless, in place of this in the present flow, we have explosive transient
growth involving a vortex-ring-tilting mechanism initiated by a combination of a shear layer instability and a
concentrated perturbation at the throat of the stenosis. This instability is also most energetic when considering
a k = 1 azimuthal mode.

At a reduced velocity ofUred ≈ 10 in [5] it was observed that significant growthO(1010) was possible,
owing to linear transient growth corresponding to a Kelvin–Helmholtz instability in the shear layer behind the
vortex ring. The current study of a physiological pulsatilewaveform highlights that a combination of the two
previous types of instabilities, i.e. vortex tilting instability and a transient shear layer instability, can lead to a
transient instability mechanism with a growth of even larger magnitude.

Third, and possibly most significantly, through direct numerical simulation we have also observed a new
feature of bypass transition associated with extremely large linear transient growth. Out of all the types of
instability that we have considered, both asymptotic and transient, the transient growth vortex-ring-tilting
mode initiated by a shear layer instability would appear to be the most likely to arise in vivo. This is because
this transient instability has significant amplification ata realistic value of the non-dimensional pulse period
(i.e. 4T ū/D ≈ 27.7) and arises at physiologically relevant Reynolds numbers(200≤ Re ≤ 400).

Clearly, anatomically accurate geometry is another feature which is likely to play a role in a specific in
vivo problem. In relation to this, we would highlight that inthe present idealized geometry, the most unstable
perturbations are energized in thek = 1 azimuthal mode. This mode is likely to receive excitation in the
presence of curvature, as shown by the Dean flow solutions of steady flow in a toroidal pipe. At present
we are unable to offer definitive comment on the role of stenosis morphology but believe that shear layer
instabilities and vortex tilting are likely to arise even ifthe stenosis is eccentric, providing the stenosis shape
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is such that it generates a vortex ring at its throat. It is also likely that a higher stenosis degree will make
the flow more sensitive to this type of instability, and therefore bypass transition, as if all other conditions
are kept the same and the stenosis degree is increased, the shear layer intensity will be enhanced, through
increase in the throat Reynolds number. We would finally notethat the transient growth analysis is applicable
to any three-dimensional geometry providing a base flow can be identified, since any noise-free base state,
symmetric or otherwise, provides an appropriate starting point.
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