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The loss of axisymmetry in a swirling flow that is generated inside an enclosed
cylindrical container by the steady rotation of one endwall is examined numerically.
The two dimensionless parameters that govern these flows are the cylinder aspect
ratio and a Reynolds number associated with the rotation of the endwall. This study
deals with a fixed aspect ratio, height/radius = 2.5. At low Reynolds numbers the
basic flow is steady and axisymmetric; as the Reynolds number increases the basic
state develops a double recirculation zone on the axis, so-called vortex breakdown
bubbles. On further increase in the Reynolds number the flow becomes unsteady
through a supercritical Hopf bifurcation but remains axisymmetric. After the onset
of unsteadiness, another two unsteady axisymmetric solution branches appear with
further increase in Reynolds number, each with its own temporal characteristic: one
is periodic and the other is quasi-periodic with a very low frequency modulation.
Solutions on these additional branches are unstable to three-dimensional pertur-
bations, leading to nonlinear modulated rotating wave states, but with the flow still
dominated by the corresponding underlying axisymmetric mode. A study of the flow
behaviour on and bifurcations between these solution branches is presented, both
for axisymmetric and for fully three-dimensional flows. The presence of modulated
rotating waves alters the structure of the bifurcation diagram and gives rise to its
own dynamics, such as a truncated cascade of period doublings of very-low-frequency
modulated states.

1. Introduction
The flow that is produced inside a stationary cylindrical cavity by the steady rotation

of one endwall has served as the basis of many investigations into the fundamentals
of swirling flows. When the flow is incompressible and the fluid Newtonian, the
two dimensionless groups that characterize the system are the cylinder aspect ratio
Λ = H/R, where H and R are respectively the height and radius of the cylinder, and
the Reynolds number Re = ΩR2/ν, where Ω is the rotational speed of the moving
endwall and ν is the kinematic viscosity of the fluid. A schematic of the flow is
presented in figure 1, with an inset showing contours of streamfunction for a typical
basic state, which is steady and axisymmetric. The flow is driven by the rotation of the
bottom endwall, setting up an Ekman layer that centrifuges fluid radially outwards.
The stationary sidewall of the cylinder diverts this flow into the axial (vertical)
direction, turning the Ekman layer into a shear layer that is inclined slightly in from
the sidewall and that has jet-like velocity profiles in both the azimuthal and axial
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Figure 1. Schematic of the flow configuration with inset contours of streamfunction.

directions. This flow is then turned radially inwards by the top stationary endwall and
swirls back down the axis. Hence the bottom endwall drives a swirling overturning
flow. An interesting characteristic of these base flows is that for Re sufficiently large,
regions of reversed axial flow can occur in the central vortex core; these features
are known as vortex breakdowns. Vogel (1968) identified a steady vortex breakdown
in his experiments, and Escudier (1984) experimentally mapped out the envelope of
cylinder aspect ratios and flow Reynolds numbers within which vortex breakdowns –
sometimes as many as three on an axial traverse – are observed.

Much of the past work on these enclosed swirling flows has the study of steady
vortex breakdown behaviour as a central theme. In essence, those studies explored the
features of the basic state, i.e. the steady axisymmetric flow. More recently, attention
has turned to the stability of the basic state. Escudier’s experiments showed that
if the flow reaches a steady state, it is axisymmetric. Experimental and numerical
studies have examined the flow topology of the basic states (Escudier 1984; Lugt &
Abboud 1987; Lopez 1990). Studies of the onset of unsteadiness when the governing
equations are restricted to an axisymmetric subspace have shown that the basic state
loses stability via a supercritical Hopf bifurcation (Lopez & Perry 1992; Tsitverblit
1993; Sørensen & Christensen 1995; Gelfgat, Bar-Yoseph & Solan 1996). In both
experimental and numerical investigations of the bifurcation behaviour, the cylinder
aspect ratio is generally held fixed, and the Reynolds number is used as the bifurcation
parameter.

It is clear that in this flow symmetries play an important dynamical role and a
central issue that needs further attention is the question of symmetry breaking. The
system, i.e. the governing equations and the boundary conditions, are invariant to
arbitrary rotations about the axis, the SO(2) symmetry, and arbitrary translations in
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time. The implication for the basic state is that it too possesses these symmetries and
so is steady and axisymmetric. The symmetries also determine how the basic state may
lose stability (Iooss & Adelmeyer 1998; Chossat & Lauterbach 2000). Rotating waves
and modulated rotating waves are generic features of flows with SO(2) symmetry (see
e.g. Rand 1982); however most studies on rotating waves in fluids have dealt with flows
such as Taylor–Couette, where Reynolds number transitions to rotating waves (which
appear steady in an appropriate rotating reference frame) precede other unsteady
behaviour, such as axisymmetric modulation, and the bifurcation diagrams are further
complicated by other symmetries related to reflections and/or translations in the axial
direction. In the present case, unsteadiness first sets in as axisymmetric limit-cycle flows
at Reynolds numbers below those for which SO(2) symmetry is broken. Symmetry
breaking then results directly in modulated rotating waves (without an intermediate
pure rotating wave state), the modulation being axisymmetric in nature and strongly
coupled to the underlying axisymmetric unsteadiness.

For cylindrical lid-driven cavities with aspect ratios in the range 1 < Λ < 4, Hopf
bifurcations are the only codimension-1 bifurcations that have been observed ex-
perimentally and numerically, and predicted from linear stability analysis. For this
SO(2)-equivariant system, the Hopf bifurcation can have two types: either it breaks
symmetry and the bifurcated state is a rotating wave (RW), or the symmetry is
preserved beyond the bifurcation and the result is a time-periodic SO(2)-symmetric
state. The linear stability analysis of Gelfgat, Bar-Yoseph & Solan (2001) considered
general three-dimensional perturbations to the basic state. For low aspect ratios,
1 < Λ < 1.63, their analysis predicts a symmetry-breaking Hopf bifurcation to a
RW state with azimuthal wavenumber k = 2. This has recently been confirmed via
three-dimensional direct numerical simulation (DNS) (Marques, Lopez & Shen 2002),
where in addition the dynamics associated with the codimension-2 double Hopf bi-
furcation have been explored where the two types of Hopf bifurcation coincide near
Λ = 1.6. For Λ > 2.76 the stability analysis again predicts a symmetry-breaking
Hopf bifurcation to a RW with k = 4, and this has also been recently investigated
via three-dimensional DNS (Marques & Lopez 2001). At intermediate aspect ratios
(1.63 < Λ < 2.76) however, the predicted bifurcated state is axisymmetric. This is
consistent with experiments (Escudier 1984; Stevens, Lopez & Cantwell 1999) and
three-dimensional DNS (Blackburn & Lopez 2000). Thus the nature of the first in-
stability of the basic state that presents itself with increasing Re is now clear. The
subsequent instability phenomena of the unsteady flow regimes are largely unknown.
In this range of intermediate aspect ratios, the Λ = 2.5 case is the most extensively
studied, and we now briefly review what past investigations have revealed about it.

For Λ = 2.5 the flow is steady and axisymmetric for Re . 2700, with a double vortex
breakdown; for comparisons of experimental dyelines and computed streamlines, see
Lopez (1990) and Blackburn & Graham (2000). According to the analysis of Gelfgat
et al. (2001), the system bifurcates to a time-periodic axisymmetric state at Re ≈ 2706.

A recent experimental study (Stevens et al. 1999) identified three solution branches
in the Reynolds number range 2700–4000. From analysis of the temporal behaviour
of dye sheets near the axis of the cylinder, it was observed that each solution branch
has an associated distinct dominant frequency. Flows of the first branch are axisym-
metric and periodic from the onset of unsteadiness at Re ≈ 2700, having associated
non-dimensional period τ1 = ΩT1 ≈ 36; the branch extends to Re ≈ 3500. Flows
of the second branch also produce periodic on-axis motion of the dye sheet, with
τ2 = ΩT2 ≈ 28, Re > 3500, but appear to be non-axisymmetric. A third branch,
overlapping the other two for 3200 < Re < 3700, has quasi-periodic flows that
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also appear to be non-axisymmetric, with fundamental period τ3 = ΩT3 ≈ 57, and
with an additional very-low-frequency (VLF) modulation. In the same study, axi-
symmetric numerical simulations also produced three solution branches with associ-
ated fundamental periods of oscillation that were very similar to those observed
experimentally.

Inspired by this ability to capture many of the temporal characteristics on the three
experimentally observed branches with axisymmetric computations, Lopez, Marques
& Sanchez (2001) studied the linear stability of the basic state to axisymmetric
perturbations, considering not only the first bifurcation, to which linear stability
studies are typically restricted, but also subsequent bifurcations of the basic state as
Re is increased. As was expected, the first branch of periodic solutions observed by
Stevens et al. (1999) corresponded to the first Hopf bifurcation mode of the basic
state, which was predicted to occur at Re ≈ 2707 (cf. 2706 predicted by Gelfgat et al.
2001). Lopez et al. were also able to identify the other periodic branch observed in
the experiments with the third Hopf mode of the basic state. The branch with quasi-
periodic solutions possessing a VLF modulation could not be conclusively linked to
the Hopf modes of the basic state, but it was noted that the second and third Hopf
modes bifurcated from the basic state at very proximate values of Re, suggesting that
this VLF branch may possess mixed-mode solutions.

The computational studies for Λ = 2.5 outlined above were axisymmetric, whereas
the experiments of Stevens et al. clearly demonstrated that flows on at least two of
the three solution branches had broken axisymmetry. Neither the precise nature nor
dynamics of this symmetry breaking received detailed study there.

In a brief Letter, Blackburn & Lopez (2000) made a first attempt at addressing
these issues using three-dimensional DNS. This present paper is a full account of
our subsequent investigation, in which a number of new results are established. We
have determined that the solutions of the first branch that is observed to bifurcate
from the basic state at Re ≈ 2700 are stable to three-dimensional perturbations over
the entire range of Re for which it exists (up to ≈ 3500), and the frequency of
oscillation varies only very slightly with Re, staying close to the first Hopf frequency
of the basic state. We refer to this branch of axisymmetric periodic solutions as
branch A. The other branch which in the axisymmetric restriction has periodic
solutions, and which exists for Re > 3500, has solutions that are unstable to three-
dimensional perturbation. In fact, we have found two corresponding branches of
three-dimensional solutions, one with azimuthal wavenumber 5 and the other with
wavenumber 6. These two co-existing modulated rotating wave (MRW) states each
have two incommensurate frequencies associated with them, one being the precession
frequency of the azimuthal wave structure, and the other being the frequency for the
underlying axisymmetric oscillation, which is very close to the third Hopf frequency
of the basic state. These MRW states are referred to as M5 and M6 respectively;
when restricted to an axisymmetric subspace, we refer to M0 states; collectively this
set is called the M solution branch. The quasi-periodic VLF-modulated solutions of
the remaining branch are found here to be stable to three-dimensional perturbations
over the middle range in Re for which it exists. However, the associated solutions are
unstable to azimuthal wavenumber 5 at the high- and low-Re ranges of the branch,
leading to MRW states with quasi-periodic modulation via Hopf-like bifurcations
from the quasi-periodic axisymmetric state. These states are referred to as V0 when
axisymmetric and V5 when possessing a MRW; collectively the V solution branch.

The balance of the paper is organized as follows: § 2 describes the computational
technique used to solve the three-dimensional Navier–Stokes equations, along with
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convergence tests. In § 3, details of computations restricted to an axisymmetric in-
variant subspace are presented and compared with previous experimental and com-
putational results. Section 4 considers symmetry breaking of the results in § 3 and
details the temporal and spatial characteristics of the resulting modulated rotating
waves. Section 5 summarizes and discusses the results, and considers remaining open
questions.

2. Computational methods
2.1. Continuum evolution equations

Our starting point is the incompressible Navier–Stokes equations

∂tu+N (u) = −1

ρ
∇p+ ν∇2u, (2.1)

∇ · u = 0, (2.2)

where u = u(z, r, θ, t) = (u, v, w)(t) is the velocity field, and N (u) represents nonlinear
advection terms. The variables z, r, θ and t are respectively the axial, radial, azimuthal
and time coordinates and u, v, w the velocity components in the axial, radial and
azimuthal directions. The nonlinear terms can be assembled in a variety of ways; we
employ the ‘skew-symmetric’ form N (u) = (u · ∇u+ ∇ · uu)/2.

As a consequence of rotation symmetry, the velocity must be 2π-periodic in θ and
the velocity field can be projected exactly onto a set of two-dimensional complex
Fourier modes ûk by

ûk(z, r, t) =
1

2π

∫ 2π

0

u(z, r, θ, t) exp(−ikθ) dθ (2.3)

where k is an integer wavenumber. The velocity field has the associated Fourier series
reconstruction

u(z, r, θ, t) =

∞∑
k=−∞

ûk(z, r, t) exp(ikθ). (2.4)

We introduce the following notation for the gradient and Laplacian of a (complex)
scalar, as applied to mode k of a Fourier decomposition:

∇k =

(
∂z, ∂r,

ik

r

)
, ∇2

k = ∂2
z +

1

r
∂r(r∂r)− k2

r2
= ∇2

rz − k2

r2
. (2.5)

The cylindrical components of the transformed momentum equations read

∂tûk + N̂ (u)zk = −1

ρ
∂zp̂k + ν

(
∇2
rz − k2

r2

)
ûk, (2.6)

∂tv̂k + N̂ (u)rk = −1

ρ
∂rp̂k + ν

(
∇2
rz − k2 + 1

r2

)
v̂k − ν 2ik

r2
ŵk, (2.7)

∂tŵk + N̂ (u)θk = − ik

ρr
p̂k + ν

(
∇2
rz − k2 + 1

r2

)
ŵk + ν

2ik

r2
v̂k, (2.8)

where N̂ (u)zk etc. represent mode-k components of the transformed nonlinear terms.
The change of variables ṽk = v̂k + iŵk , w̃k = v̂k − iŵk is introduced to decouple the
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linear terms in the equations (Orszag 1974), giving

∂tûk + N̂ (u)zk = −1

ρ
∂zp̂k + ν

(
∇2
rz − k2

r2

)
ûk, (2.9)

∂tṽk + Ñ (u)rk = −1

ρ

(
∂r − k

r

)
p̂k + ν

(
∇2
rz − [k + 1]2

r2

)
ṽk, (2.10)

∂tw̃k + Ñ (u)θk = −1

ρ

(
∂r +

k

r

)
p̂k + ν

(
∇2
rz − [k − 1]2

r2

)
w̃k, (2.11)

where also Ñ (u)rk = N̂ (u)rk + iN̂ (u)θk and Ñ (u)θk = N̂ (u)rk − iN̂ (u)θk .

2.2. Boundary conditions

The appropriate boundary conditions to be applied at the axis are derived from
solvability requirements and kinematic constraints on scalar and velocity fields at
the origin, as described by Batchelor & Gill (1962), Shen (1997) and Tomboulides &
Orszag (2000). While, in principle, regularity conditions at the axis impose constraints
on successively higher radial derivatives of modal variables with increasing mode
number (Tuckerman 1969), in practice we only apply the essential boundary conditions
needed to solve variational equations for modal pressures and velocities, augmented
by a minimal subset of radial parity requirements (Lopez, Marques & Shen 2002), and
the required smoothness is achieved asymptotically as spatial resolution is increased.
These considerations lead to the following modal dependence of boundary conditions
at the axis (r = 0):

k = 0: ∂rû0 = ṽ0 = w̃0 = ∂rp̂0 = 0;
k = 1: û1 = ṽ1 = ∂rw̃1 = p̂1 = 0;
k > 1: ûk = ṽk = w̃k = p̂k = 0.

 (2.12)

At solid or moving walls, the fluid velocities are set to match the prescribed wall
velocities, and a boundary condition for the pressure can be derived by taking the
dot product of the domain unit outward normal n with the momentum equations to
produce

∂np̂k = ρn · (−N̂ (u)k − ν∇× ∇× ûk − ∂tûk), (2.13)

where the rotational form of the viscous term exploits the solenoidality of the velocity,
and for the present application ∂tu = 0 at all solid boundaries.

2.3. Discrete evolution equations

For time evolution a mixed implicit–explicit time-split scheme based on backwards
differentiation is employed (Karniadakis, Israeli & Orszag 1991); all the work pre-
sented here used a second-order-time variant of the method. The rotational form of
the viscous term in (2.13) reduces splitting errors at prescribed-velocity boundaries to
the same order as the time stepping.

The spatial discretization employs Fourier expansions in the azimuth and spectral
elements in the meridional semiplane. The infinite set of Fourier modes (2.4) is
truncated at some finite wavenumber N:

u(z, r, θ, t) =

N−1∑
k=−N

ûk(z, r, t) exp(ikθ), (2.14)
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and as the modes possess the symmetry û−k = û∗k , in practice we need keep only the
positive-wavenumber half of the spectrum (k > 0).

Spatial discretisation in the meridional (z, r)-semiplane employs spectral elements,
with some similarities to the techniques used by Ghidersa & Dǔsek (2000) and
Tomboulides & Orszag (2000). The approach we have adopted uses the standard
Gauss–Lobatto–Legendre (GLL) basis for all elements, and sets singular terms equal
to zero at the axis. As pointed out by Tomboulides & Orszag (2000), one type of
fully consistent approach would employ, on elements that touch the axis, expansion
functions with special Jacobi polynomials in the radial direction and use l’Hopital’s
rule to evaluate the 1/r and 1/r2 terms in (2.9)–(2.11). For modal variables other
than û0, w̃1 and p̂0, our method amounts to assuming that values go towards zero
(as required by (2.12)) faster than r2 as r → 0. In practice, this method preserves
spectral convergence for typical axisymmetric problems (Rønquist 1988; Gerritsma &
Phillips 2000), and our experience is that while asymptotic convergence rates of third
order may be observed for non-axisymmetric problems, initial convergence remains
spectral. In addition, the method retains the numerical efficiency of standard spectral
element approaches.

The planar/Fourier representation of three spatial dimensions leads naturally to
parallel implementations in which for most of the time step each process carries a
subset of two-dimensional complex modes. The nonlinear terms in the Navier–Stokes
equations are formed pseudospectrally with the aid of interprocess memory exchanges.
We have used this approach for most of our full DNS studies, but in the parallel
implementation, nonlinear product terms are not dealiased in the azimuth. In order
to assess the effect of aliasing we employed a non-parallel code variant that performs
dealiasing in the azimuth using the 3/2 rule. This code variant was also used for all
the computations restricted to an invariant subspace with P -fold symmetry in the
azimuth (see § 2.5).

The spectral element outlines of the mesh used in the (z, r)-semiplane are shown
in figure 2. The same 60-element layout was used for all testing and simulations.
No special treatment, other than mesh refinement, is used to deal with the boundary
condition discontinuity encountered at (z/H = 0, r/R = 1), where the rotating endwall
meets the stationary part of the cylinder.

2.4. Convergence tests

In order to demonstrate the spatial and temporal convergence of the simulation
method, time series data extracted at (z/H = 0.8, r/R = 0.7) have been analysed at
varying GLL basis order, Np, for a single Reynolds number, Re = 4000, near the upper
extent of the range in Re investigated. These tests are for computations restricted
to an axisymmetric subspace, as this is sufficient to test for grid independence in
(z, r). At this Reynolds number, the flow is periodic, and experimental results and
axisymmetric simulations presented in Stevens et al. (1999) both give the oscillation
period as ΩT ' 28. In table 1, we show the oscillation period and the minimum and
maximum radial velocity at the point (z/H = 0.8, r/R = 0.7) as a function of GLL
polynomial order Np at a fixed time step Ω∆t = 0.0125. Results are converged to
three significant figures or better with Np > 7. In table 2, we show the corresponding
information at a fixed GLL polynomial order Np = 9 as a function of the time
step Ω∆t; over the range 0.005 < Ω∆t < 0.015 the results are almost invariant. All
remaining results reported here are for a fixed GLL polynomial order Np = 7, and
time steps Ω∆t in the range 0.0125–0.015.
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Np Ntot ΩT min v/RΩ max v/RΩ meanw/RΩ
4 1025 28.285 −4.6160× 10−3 3.2943× 10−3 97.562× 10−3

5 1581 28.260 −7.3226× 10−3 2.5324× 10−3 98.154× 10−3

6 2257 28.281 −7.1975× 10−3 2.6199× 10−3 98.180× 10−3

7 3053 28.282 −7.2067× 10−3 2.6349× 10−3 98.184× 10−3

8 3969 28.281 −7.1809× 10−3 2.6309× 10−3 98.189× 10−3

9 5005 28.281 −7.1827× 10−3 2.6332× 10−3 98.185× 10−3

Table 1. Results of spatial convergence tests for an axisymmetric simulation at Re = 4000 and
Ω∆t = 0.0125, showing period of oscillation ΩT , minimum and maximum radial velocities, and
mean azimuthal velocity at (z/H = 0.8, r/R = 0.7) as a function of GLL polynomial order Np (Ntot

is the number of independent mesh points in the semiplane for each value of Np).

0

0 0.5 1.0

r/R

1.0

0.8

0.6

0.4

0.2

z/H

Figure 2. Spectral element mesh used to discretize the meridional semiplane. Cylinder axis to left,
rotating endwall at bottom. The cross at (z/H = 0.8, r/R = 0.7) shows the location at which
axisymmetric convergence test data are extracted.

2.5. Three-dimensional computations

As noted in § 2.1, the minimum required periodic module in the azimuth is θ = 2π.
The RW solutions that evolve with breakage of axisymmetry often retain more than
the minimum degree of symmetry, typically a P -fold symmetry with P = 5 or 6
for the current problem (Blackburn & Lopez 2000). Such solutions are invariant
to rotations about the axis by angles 2πn/P , n = 0, 1, . . . ,∞. Energies in modes
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Ω∆t ΩT min v/RΩ max v/RΩ meanw/RΩ
0.015 28.281 −7.1828× 10−3 2.6332× 10−3 98.185× 10−3

0.0125 28.281 −7.1827× 10−3 2.6332× 10−3 98.185× 10−3

0.010 28.281 −7.1826× 10−3 2.6332× 10−3 98.185× 10−3

0.005 28.281 −7.1824× 10−3 2.6332× 10−3 98.185× 10−3

Table 2. Results of temporal convergence tests for an axisymmetric simulation at Re = 4000 and
Np = 9, showing period of oscillation ΩT , minimum and maximum radial velocities, and mean
azimuthal velocity at (z/H = 0.8, r/R = 0.7) as a function of time step Ω∆t.

that do not correspond to nP decay to machine noise levels in the absence of
azimuthal aliasing. This allows considerable computational savings over a full three-
dimensional computation retaining all Fourier modes up to N. By setting k = nP , we
only integrate using the Fourier modes that do not decay to zero. We refer to this
approach as computations restricted to an invariant subspace with P -fold symmetry.
These subspaces are preserved by the Navier–Stokes equations.

Typically we have used all Fourier modes, up to a cut-off N, to establish the
behaviour on each solution branch, checked the effect of azimuthal aliasing, then
used the restriction to a subspace with P -fold symmetry to examine dynamical
behaviour on each solution branch, backed up by spot-checks with all the Fourier
modes to ensure that the branch is not unstable to other azimuthal modes. We have
also performed spot-checks of azimuthal resolution, to check that sufficient harmonics
have been used.

In addition, we have used completely axisymmetric simulations (k = 0, only) in
order to establish behaviour in the axisymmetric subspace; this material is dealt with
first, in § 3.

2.6. Diagnostic information

Evolution of the computed solutions is monitored through a variety of runtime
diagnostics. Central to the current investigation is the (dimensionless) amount of flow
kinetic energy contained in each Fourier mode k:

Ek =
1

2AΩ2R2

∫
A

ûk · û∗k r dA, (2.15)

where A is the area of the two-dimensional meridional semiplane and û∗k denotes
the complex conjugate of the velocity data in the kth Fourier mode. The energy of
the axisymmetric component of the flow is represented by E0. As a consequence of
Parseval’s theorem, the (normalized) total kinetic energy of the solution integrated
over the volume V is

E =
1

2VΩ2R2

∫
V

u · u dV = 2π

N−1∑
k=−N

Ek. (2.16)

3. Dynamics restricted to an axisymmetric subspace
For Λ = 2.5 and Re ∈ [2700, 4000], the solutions to the axisymmetric Navier–

Stokes equations possess many of the temporal characteristics that are observed in
physical experiments. As discussed in § 1, comparisons presented by Stevens et al.
(1999) demonstrate this to be true even when the axisymmetric states are unstable to
azimuthal modes. The close relationship between the behaviour of these axisymmetric
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Figure 3. Fundamental oscillation periods for axisymmetric simulations (◦), as a function of
Reynolds number, with transitions between different solution branches indicated. Solutions on the
V branch are quasi-periodic, with additional very-low-frequency modulations, while the A and M
branches have periodic solutions. The dashed line at Re = 2707 indicates the Reynolds number for
onset of unsteadiness at Λ = 2.5. Also shown are the experimentally measured values (�) obtained
by Stevens et al. (1999).

states and that of the three-dimensional flows that occur is underlined by the fact
that the axisymmetric mode typically retains more than 99% of the total flow kinetic
energy (Blackburn & Lopez 2000). Thus, we begin the present study with a more
detailed examination of the behaviour of axisymmetric flows in this parameter regime.
In § 4 we will consider how these lose stability to azimuthal modes.

As outlined in § 1, for Λ = 2.5 the flow is steady and axisymmetric for Re . 2700.
Stability analyses of Gelfgat et al. (2001) and Lopez et al. (2001) predict bifurcations to
time-periodic axisymmetric states at Re ≈ 2706 and 2707 respectively, and our present
simulations place it in the Reynolds number range 2705–2710, as a supercritical Hopf
bifurcation. The oscillatory behaviour appears as a periodic fluctuation of the vortex
breakdown zone on the axis, a pulsation mode (Lopez & Perry 1992; Lopez et al.
2001). The characteristic period of the flow remains approximately constant near
ΩT1 ≈ 36 over the Reynolds number range for which it is observed, 2707–3500.
For Re & 3500, a second periodic branch is observed, with both the experimental
and axisymmetric simulation results of Stevens et al. (1989) placing the fundamental
period near ΩT2 ≈ 28. In this case, the axisymmetric component of the oscillatory
behaviour has the characteristic of a recirculation zone that periodically forms on
the axis near the stationary wall and travels down the axis towards the rotating
wall; a travelling mode. Overlapping these two branches in Reynolds number is a
third solution branch; the experimental results of Stevens et al. (1999) give its extent
as 3200 . Re . 3700, with a characteristic fundamental frequency ΩT3 ≈ 57. This
branch has solutions characterized in addition by VLF modulations.

In figure 3 we present our computed fundamental periods of the axisymmetric
solutions on the three branches for Re ∈ [2710, 4000] (open circles). Beginning at
Re = 2710 and extending to Re ≈ 3500 is a branch on which solutions are time-
periodic, with a characteristic period τ1 = ΩT1 ≈ 36. This is the A branch. As Re is
increased, there is a jump to a second periodic solution branch with τ2 = ΩT2 ≈ 28.3
near Re = 3500, and this branch extends beyond Re = 4000. This is the M branch.
Traversing to progressively lower Re on this branch, another jump occurs to a
third solution branch where solutions are quasi-periodic, with a VLF modulation;
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Figure 4. VLF modulation periods on the V solution branch for axisymmetric simulations,
shown as a function of Reynolds number.
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Figure 5. Time series of the energy, E0, on the V0 branch: (a) Re = 3300; (b) Re = 3500;
(c) Re = 3560.

the V branch. Spectral analysis of solutions on this branch reveals, besides VLF,
two dominant periods, one near τ3 = ΩT = 57, the other near ΩT = 28. Also
included in the figure are the experimentally determined periods (filled squares)
from Stevens et al. (1999), which are in very good agreement with the axisymmetric
computations even though the flows on the M and V branches were both observed
to be non-axisymmetric. Further, the VLF modulation on the V branch was also
observed in the experiments (see figure 5a, Stevens et al. 1999. The associated long
modulation periods, from the present axisymmetric calculations, are shown in figure 4.
At the upper end of the Reynolds number range for the V axisymmetric branch, the
modulation period appears to grow without bound as the jump to the M branch is
approached. Another interesting feature of figure 4 is the cusp near Re = 3308, where
again the modulation period becomes infinite.

Figure 5 shows time series of the energy, E0, of the solutions on the modulated
branch V at Re = 3300, 3500 and 3560. The long-period modulation is clearly seen
in these – the behaviour is suggestive of a pair of weakly coupled oscillators near
resonance.
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Figure 6. Spectra of the time series in figure 5: (a) Re = 3300; (b) Re = 3500; (c) Re = 3560.
Spectral densities are given relative to peak values.

The power spectral densities of the time series of figure 5, S(E0), are shown in
figure 6; the spectral resolution is ∆f/Ω = 6.67× 10−6. All spectra consist of a main
peak at f1/Ω ≈ 1.76× 10−2 (period ≈ 57) and another at f2/Ω ≈ 3.51× 10−2 (period
≈ 28), together with their harmonics. The main peaks are surrounded by a multitude
of finely spaced and exponentially decaying sidebands, which result from the VLF
modulation: the sideband spacing is the VLF, which also supplies the lowest-frequency
spectral peak at fVLF/Ω.

Examining the Reynolds numbers for the three spectra (3300, 3500 and 3560) we see
that the first lies on the low-Reynolds-number side of the Tmod cusp seen in figure 4,
the second and third above it. Detailed analysis of the spectral peak frequencies leads
to the conclusion that for Re = 3500 and 3560, fVLF = 2f1 − f2, while for Re = 3300,
2f1 − f2 = 0 to within the spectral resolution. In figure 7, fVLF − (2f1 − f2)/Ω and
f1/f2 are plotted over the entire Re extent of the V branch. To the left of the cusp at
Re ≈ 3308 (see figure 4), 2f1 = f2 but fVLF is independent and varies with Re, while
to the right of the cusp fVLF = 2f1 − f2 (i.e. fVLF is a frequency of beating between
2f1 and f2), and f1/f2 varies with Re. The implication is that only two of the three
frequencies are ever independent, and the flows on the V branch correspond to 2-tori
orbits when restricted to an axisymmetric subspace. The upper-Re limit of the V0

solution branch occurs when f1 becomes a subharmonic of f2, which corresponds to
the frequency for the M0 branch, and at this point these branches join.
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Figure 7. Variation of (a) fVLF − (2f1 − f2)/Ω and (b) f1/f2 with Re for the V0 branch.
Shaded bands indicate the level of uncertainty associated with spectral resolution.

As outlined in § 1, the work of Lopez et al. (2001) provides clear evidence that the
A and M solution branches are associated with the first and third Hopf modes to
bifurcate from the basic state above Re = 2700. Our conjecture is that the genesis of
the V branch is as a mixed-mode between pairs of the first three Hopf modes.

4. Symmetry breaking to modulated rotating waves
The stability of the three solution branches obtained with axisymmetric simulations

to non-axisymmetric perturbations was examined by lifting the axisymmetric solution
onto a three-dimensional representation with P = 1 (i.e. with the minimum required
symmetry: 2π-periodic in θ), perturbing the velocity field by the addition of Gaussian
noise in the first Fourier mode, and evolving the system to a near-asymptotic state.
The initial perturbation is distributed rapidly via convolution to drive all modes, after
which the solution may evolve to select an unstable mode. The standard deviation of
the initial perturbation was typically 1 × 10−12RΩ, although a level of 1 × 10−8RΩ
has also been used. The outcomes on each of the three solution branches have been
checked using 32, 40 and 64 Fourier modes.

The evolution of a solution on the M branch at Re = 4000 is illustrated in figure 8.
Soon after initiation, the k = 5 mode starts to gain energy, growing exponentially with
time until it saturates at Ωt ≈ 3000. As the asymptotic state is approached, the k = 5
mode is the dominant non-axisymmetric mode, followed by its harmonics at k = 10,
15, etc. (i.e. k = 5n). Energies in other modes eventually decay to machine noise levels,
in the absence of azimuthal aliasing (Blackburn & Lopez 2000), i.e. the solution
evolves to an invariant subspace with a 5-fold azimuthal symmetry. The energy in
the axisymmetric component of the flow, and its temporal behaviour, remain nearly
unchanged by the transition to three-dimensionality. This is illustrated in figure 9 –
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Figure 8. Growth of three-dimensional MRW instability on the M branch at Re = 4000, starting
from an axisymmetric solution perturbed in the k = 1 Fourier mode. At the end of the integration
period, the k = 5 mode and its harmonics are the dominant non-axisymmetric modes. The inset
shows the temporal modulation of the k = 0 mode (ordinate scale greatly magnified).
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Figure 9. The small variation of energy in the axisymmetric mode during the transition
shown in figure 8.

during transition the energy falls by less than 0.5% and the oscillation period rises
slightly, to ΩT = 28.50 (cf. table 2).

Similar perturbations were carried out at various Reynolds numbers on each of
the A, M and V branches. The A branch was found to retain axisymmetry at all
Reynolds numbers investigated (up to Re = 3400); after perturbation in the k = 1
mode, the energy in all modes k 6= 0 eventually decayed towards machine zero. On
the V branch, only solutions with P = 5 azimuthal structure were observed; attempts
to drive the solution by initializing with different modal states returned, after some
time, to a P = 5 MRW. On the M branch, solutions with either P = 5 or P = 6 were
observed, the choice being dependent on initial conditions. Once either state had been
achieved, these solutions were stable to small perturbations (order 1 × 10−12RΩ) in
the alternative leading mode.

In what follows, numeric subscripts are used to label the azimuthal periodicity
of the asymptotic state under discussion, according to the leading non-axisymmetric
mode; thus the non-axisymmetric solutions on the V branch correspond to V5, while
on the M branch we have observed both M5 and M6. We also use V0 and M0 to denote
the corresponding axisymmetric states. The characteristics of example solutions on
each of the A, M and V branches are described in § 4.1, followed by examination of
the dynamical behaviour on the M branch (§ 4.2) and the V branch (§ 4.3).
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Figure 10. Time series of modal kinetic energies for the axisymmetric mode (E0) and, if appropriate,
for the leading non-axisymmetric mode at (a) Re = 3000, A branch; (b, c) Re = 3500, V5 branch;
(d, e) Re = 4000, M6 branch.

4.1. Three specimen solutions

The three specimen solutions examined here correspond to Reynolds numbers of
3000, 3500 and 4000, producing asymptotic results on the A, V5 and M6 branches,
respectively.

Figure 10 shows the time series of kinetic energy in the axisymmetric mode, and
in the leading non-axisymmetric mode, if appropriate. The time interval represented,
Ωt = 2650, is sufficient to encompass two VLF modulation cycles of the V5 solution at
Re = 3500. The time series of E0 are virtually indistinguishable, both in magnitude and
frequency content, from their counterparts obtained with axisymmetric computations,
described in § 3. The energies in the leading non-axisymmetric modes are at least two
orders-of-magnitude smaller than those in the axisymmetric modes. Note also the
approximate two orders-of-magnitude variation in E5 over a VLF modulation cycle for
the V5 branch. The energies in the respective harmonics decay exponentially. The decay
rates of the non-axisymmetric modes are approximated by d(log〈Ek〉)/dk = −0.4 for
the V5 solution and d(log〈Ek〉)/dk = −0.25 for the M6 solution.

The spatial structures of the rotating waves are illustrated in figure 11, which
shows isosurfaces of the azimuthal velocity and its perturbation for the V5 and M6

solutions. The V5 solution is represented near a time where E5 is maximum. The 5-
and 6-fold azimuthal symmetry of the MRWs are clearly evident in the isosurfaces.
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(a) w on V5 (c) w on M6(b) wpert on V5 (d) wpert on M6

Figure 11. Perspective views of the rotating modulated waves of (a, b) the V5 solution at Re = 3500
and (c, d ) the M6 solution at Re = 4000, showing isosurfaces of the azimuthal velocity component
w and its perturbation wpert (i.e. w minus the k = 0 contribution). The spinning endwall is at the
bottom and rotates clockwise when viewed from above.
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z/H = 0.8 z/H = 0.6 z/H = 0.4 z/H = 0.2

Figure 12. Contours of the instantaneous (a) axial, u, (b) radial, v, and (c) azimuthal, w, components
of velocity at heights z/H as indicated, for the V5 solution at Re = 3500. As observed looking from
the stationary to spinning cylinder endwall.

These plots also suggest that the departure from axisymmetry is greatest towards the
top stationary endwall.

Figures 12 and 13 show contours in (r, θ) of the three velocity components at
various heights for the two solutions shown in figure 11. These further show that
the azimuthal waves are concentrated near where the average azimuthal velocity
is greatest (r/R ≈ 0.67, z/H ≈ 0.8) and that the flow near the axis remains nearly
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Figure 13. Contours of the instantaneous (a) axial, u, (b) radial, v, and (c) azimuthal, w,
components of velocity at heights z/H as indicated, for the M6 solution at Re = 4000.

(3000, 0) (3500, 0) (3500, 5) (4000, 0) (4000, 6)

Figure 14. Contours of averaged flow kinetic energy 〈ûk · û∗k〉/2R2Ω2 in the meridional semi-plane
for (Re, k) as indicated. In each plot the cylinder axis is to the left and the rotating endwall is at
the bottom.

axisymmetric. Note again the very regular P -fold azimuthal structure; the modulation
of the rotating waves is induced by the underlying axisymmetric behaviour.

The contour plots of time-averaged kinetic energy in the axisymmetric mode and
the leading non-axisymmetric mode for the A, V and M solutions shown in figure 14
further illustrate the point that for the V5 and M6 solutions, the departure from
axisymmetry is greatest near z/H = 0.8, r/R = 0.67, well away from the axis. The
kinetic energy of the symmetry-breaking modes is concentrated near the tip of an
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Figure 15. Frequency analysis for MRW precession rate of the M6 solution at Re = 4000.

azimuthal wall jet that originates where the rotating endwall meets the stationary
sidewall – this feature can be clearly identified in the k = 0 contours.

The azimuthal wave structures are modulated in time by the underlying axisymmet-
ric behaviour of the flow. In addition, they possess another characteristic period, that
associated with the rotation speed of the waves. Computation of this speed is compli-
cated by the axisymmetric temporal modulation. A straightforward, but approximate,
method is to view animations of isosurfaces such as those shown in figure 11, and
count the frames required for one wave rotation. When using this method, it is readily
apparent that the waves precess with the same sense as the endwall rotation (prograde
precession). The observed precession speeds are close to those which correspond to the
mean azimuthal flow velocities (〈wp〉) at locations where the mean non-axisymmetric
energies reach maxima (zp, rp) in figure 14, producing ΩT = 2πΩr2

p/R
2〈wp〉 = 44.2

for both the V5 and M6 states.

A more precise method to estimate precession speeds can be based in Fourier
analysis of modal energies. Steps in the process are illustrated in figure 15. In
figure 15(a), the time series of energy in the k = 6 Fourier mode (E6) for the
M6 solution at Re = 4000 is shown; the characteristic period for the solution is
ΩT = 28.50, which derives from the axisymmetric fluctuation of energy. This time
series does not reveal information about the rotating wave speed, just fluctuations in
the total energy of the leading non-axisymmetric mode. The precession of the wave
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corresponds to an oscillatory exchange of energy between the real (r) and imaginary
(i) components of the Fourier mode, where E6 = E6,r + E6,i.

Figure 15(b) shows time series of the component of energy that lies in the real
part of the k = 6 mode, E6,r, with half the total energy, E6/2, subtracted from it.
The outcome resembles a high-frequency signal (caused by the precession) modu-
lated by a lower-frequency one (the axisymmetric component, ΩT = 28.50). Since
the high-frequency signal derives from squared quantities (like u2

r ), we expect that
the corresponding fluctuation in the modal data oscillates with half that frequency.
The power spectrum of the time series of figure 15(b) is shown in figure 15(c).
The main peak, at fo/Ω = 0.2526, corresponds to the high frequency evident in (b),
and the spacing of the sidebands to 1/(28.5Ω) = 0.03509. Thus the real and imaginary
components of the modal data oscillate at f/Ω = 0.2526/2 = 0.1263, and the time
taken for the wave to travel an angular displacement of 2π/6 is Ωt = Ω/f = 7.918.
The period for a full revolution is ΩT = 6 × 7.918 = 47.50, giving a precession rate
ω/Ω = 0.1322.

The analysis for precession speed at Re = 3500 is similar but the time series and
spectral density plots have additional detail as a consequence of the additional VLF
modulation. The outcome of the analysis is a total precession period for the P = 5
MRW of ΩT = 47.69, giving ω/Ω = 0.1318.

4.2. Characteristics of the M solution branch

Two asymptotic solutions evolved at Re= 4000, one with the leading non-axisymmetric
mode k = 5, the other with k = 6, the outcome being dependent on the initial
conditions. The behaviours were checked using both 32 and 64 Fourier modes in
the azimuth, and the results were nearly identical. It appears then that there are at
least two M solution branches: the investigation here is confined to the M5 and M6

cases.

Following the establishment of M5 and M6 states at Re = 4000, branch tracking
was carried out using the three-dimensional code restricted to invariant subspaces
with 5-fold and 6-fold azimuthal symmetry (see § 2.5), using eight Fourier modes,
equivalent to employing 40 and 48 modes respectively in an unrestricted code. For
both branches, the period of fluctuation of energy in the axisymmetric component of
the flow remained very close to τ2 = 28.50. The upper Reynolds number limit of the
branch tracking carried out was Re = 4300 – while the branches appear to continue
to be stable at these and higher Reynolds numbers, this has not been established
using the unrestricted code. The lower limits of Reynolds number for both branches
lies a little below Re = 3600: for lower Reynolds numbers, solutions jump to the V5

VLF-MRW branch. This conclusion has been checked with the unrestricted code,
and is also very similar to the behaviour observed with axisymmetric simulations
(see figure 3). When M6 solutions jump to the V branch, P = 6 MRWs die and are
replaced by P = 5 MRWs.

The M states (branches M0, M5 and M6) are observable (i.e. M0 is linearly stable
in an axisymmetric subspace, and M5 and M6 are linearly stable to small three-
dimensional perturbations) at Re ≈ 3600, their amplitudes (E0, E5 and E6) are
all non-zero and all frequencies associated with these are finite. We are unable to
definitively distinguish between the various possible bifurcation scenarios that lead to
a stable M branch. The advent of numerical continuation techniques for limit cycles
and 2-tori would assist in identifying the correct scenario.
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Figure 16. VLF modulation periods on the V branch. •, V5; ◦, V0 (reproduced from figure 4).
Note period-doubled and quadrupled values near Re = 3300.

4.3. The V solution branch

The behaviour on the V solution branch, by comparison with that on the M branch,
is more complex, and there are more significant differences between the axisymmetric
and non-axisymmetric behaviours. Owing to the VLF modulation, much longer
integration times are required to obtain asymptotic results on the V branch than
on the M branches, hence our branch-tracking computations are restricted to an
invariant subspace with 5-fold azimuthal symmetry. We have employed four Fourier
modes (corresponding to an equivalent 20 modes in an unrestricted code), as opposed
to the eight used for the investigation of § 4.2. Quantitatively and qualitatively similar
results for the whole of the V branch have also been obtained with two-mode
computations (using wavenumbers 0 and 5), and for spot checks with unrestricted
computations employing 32 modes and above.

All the time series results for the V branches have features comparable to those
shown in figures 5 and 6: a VLF modulation, then two distinct, slightly incommensu-
rate frequencies, f1/Ω ≈ 1/57 and f2/Ω ≈ 1/28. For the V5 solutions, the energy in
the non-axisymmetric modes has very similar frequency content to the axisymmetric
mode, but shows very substantial amplitude variations during a VLF modulation
cycle (figure 10c). Again owing to the combined expense of three-dimensional com-
putations and the extremely long integration times required, we have not here carried
through the kind of detailed frequency analysis that was used to produce figures 6
and 7 in § 3.

The VLF modulation periods for the V5 branch are shown in figure 16, where
they are compared with the V0 results, reproduced from figure 4. The V0 branch
loses axisymmetry to a P = 5 MRW over two Reynolds number ranges: 3282–3362
and 3454–3683. It is seen that V5 can be continued to higher Re than V0 (3683
cf. 3567). The VLF period approaches infinity at two Reynolds numbers on the
upper V5 branch: near Re = 3618, and at the end of the branch, near Re = 3683.
As Reynolds numbers were increased past 3683, the flow solution lost modulation
and evolved to the M5 branch. On the lower-Re V5 branch, it can be seen that
the cusp present near Re = 3308 on the V0 branch disappears. At approximately
the same Reynolds number on the V5 branch, the VLF modulation undergoes a
period doubling as Reynolds number is decreased, resulting in modulation periods



Modulated rotating waves 53

0 5000 10000 15000
Ωt

0.0063
0.0062
0.0061
0.0060

10–6

10–7

10–8

10–6

10–7

10–8

10–6

10–7

10–8

0.0063
0.0062
0.0061
0.0060

0.0063
0.0062
0.0061
0.0060

(a)

(b)

(c)

(d)

(e)

( f )

E5

E0

E0

E5

E5

E0

Figure 17. Time series of energies in the axisymmetric mode and the leading non-axisymmetric
mode on the V5 branch: (a, b) Re = 3300 – note period doubling; (b, c) Re = 3500;

(e, f ) Re = 3650.

ΩTmod ≈ 4500. As Reynolds numbers decrease further, another period doubling
occurs (ΩTmod ≈ 9000), and finally, near Re = 3283, energies in non-axisymmetric
modes die and the solution regains axisymmetry, with modulation periods returning
to those of the V0 branch.

Time series that illustrate the VLF modulation behaviour for the V5 branch are
presented in figure 17, which shows energy in the axisymmetric component of the
flow, E0, and the leading non-axisymmetric mode, E5, for Re = 3300, 3500 and
3650. The period-doubling of the VLF modulation can be seen for the Re = 3300
case (figure 17a, b). The values for Re = 3500 (c, d ) constitute an extended-time
presentation of those in figure 10(b, c), while those in (e, f ) are for Re = 3650, located
between the two upper-Re cusps in figure 16. For all three cases, the energy in
the leading non-axisymmetric mode is greatest when the axisymmetric component
is lowest. Typically this occurs at times when the ΩT ≈ 28 behaviour appears to
dominate the axisymmetric component. This again supports the idea that this branch is
produced by mixed-mode behaviour – two modes are present, but only one supports
symmetry-breaking RWs. The presence of the period-doubled behaviour does not
result from the restriction to a subspace with 5-fold symmetry; the same behaviour
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Figure 18. Peak energy in the leading non-axisymmetric mode, E5, and MRW precession speed,
ω/Ω, for the supercritical symmetry-breaking Hopf-type bifurcations on the V solution branch.

is observed in unrestricted computations, and is stable to small perturbations in
non-leading modes.

As Re → 3362− and Re → 3454+, modulation periods on the lower and upper
V5 segments asymptote to those for the V0 branch. In figure 18 we show the peak
energies in the k = 5 mode, max(E5), and the MRW precession speeds near these
two bifurcations from axisymmetry. In both cases max(E5) rises linearly with changes
in Reynolds number. The linear relationships indicate that the amplitude of the
MRW varies with |Re−Rec|1/2, identifying these bifurcations from the quasi-periodic
axisymmetric V0 state as being of supercritical Hopf type. The MRW precession speeds
stay constant at ω/Ω = 0.1318 for each bifurcation. As these are SO(2) equivariant
bifurcations, it is expected that the RW speeds have the form ω/Ω = C1−C2|Re−Rec|
(Knobloch 1994); here C2 ≈ 0 and C1 = 0.1318 for each case, presumably owing to a
high degree of similarity between the V0 states from which each V5 MRW bifurcates
at Re = 3362 and 3454. Note that to three significant figures the phase speeds of
RWs on the V and M branches are the same at ω/Ω = 0.132.

The maximum energy in the fifth azimuthal mode for the V5 branch is shown as a
function of Reynolds number in figure 19. Representations of Reynolds numbers for
the V0 branch are included, to emphasize the fact that the total range for the V branch
predicted by our study is 3260–3683. Peak energies in the leading non-axisymmetric
modes for the M5 and M6 branches are also presented; it is interesting that the
peak energies for the V5 and M5 branches are nearly identical where they overlap in
Reynolds number. This, in conjunction with figure 17(e, f ) suggests that M5 is one
of the modes participating in a V5 mixed-mode solution. The good match between
the peak energies of the V5 and M5 solutions over a range of Reynolds numbers
(3580 < Re < 3683) suggests the possibility that a V6 solution branch might exist
as well; however we have been unable to obtain one, even with selectively perturbed
initial conditions, suggesting that if it does exist it is unstable. The ranges for the
experimental observations in Stevens et al. (1999) are also presented in figure 19 (see
figure 3 for point values). Overall, the agreement in extents of branches is good, and
the slight overlap in the Re range for the V and M branches found in the experiments
is also present in the computations. Note that the overlap region obtained from the
three-dimensional computations is in much better quantitative agreement with the
experiments than are the axisymmetric computations.
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Figure 19. Peak value of energy in leading non-axisymmetric mode, max(E5), on the V5 branch,
with corresponding values for the M5 and M6 branches indicated by dashed lines. The experimental
observations of branch extents from Stevens et al. (1999) are also shown, hatched.

5. Discussion and conclusions
It is apparent from the work presented here that this very simple flow, which has

just two governing parameters, Λ and Re, and two symmetries, invariance to time
translations and fixed rotations about an axis, possesses a rich dynamic. As there
are two control parameters, both codimension-1 and codimension-2 bifurcations
are accessible in the system; by varying a single parameter (Re), we observe a
codimension-1 projection of possible bifurcations.

Gelfgat et al. (2001) have recently analysed the first bifurcations from the steady,
axisymmetric basic state for this flow, and in this paper we have examined in
some detail a small portion of the regime where secondary bifurcations lead to
multiple states, some of which are stable and co-exist. We have drawn on recent
computational and experimental results to help fill in the picture, but even with the use
of linear stability analysis, experiment and evolution of the three-dimensional Navier–
Stokes equations, we are left with open questions. Some of these can potentially be
resolved with the use of available numerical techniques, such as Floquet analysis.
Comprehensive bifurcation analysis in the style of Mamun & Tuckerman (1995) will
require development of efficient and robust analytical tools to enable continuation of
unstable limit cycles and 2-tori. In addition, treatment of global phenomena associated
with possible 1 : 2 resonant double Hopf bifurcations are yet to receive the detailed
theoretical treatment necessary for unambiguous identification of such behaviour
(Kuznetsov 1998).

We have established that for Λ = 2.5 and in the Reynolds number range above
2707, where the flow changes from axisymmetric and steady to axisymmetric and
periodic via a supercritical Hopf bifurcation, up to Re = 4300, the upper limit of
our work, three branches of stable orbits can be observed, and each possesses a
characteristic temporal behaviour by which it can be readily identified. Limit cycle
flows of the A branch remain periodic and axisymmetric over the range that they
can be followed numerically and experimentally, 2707 < Re . 3500, and have a
characteristic period close to τ1 = ΩT = 36 for this entire range. Flows of the M
branch, which is stable for Reynolds number greater than approximately 3580, have
a characteristic underlying period τ3 = ΩT = 28.5, and are unstable to azimuthal
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perturbations with either P = 5 or P = 6 wavenumbers. These rotating waves are
modulated by the underlying axisymmetric behaviour, and have a prograde precession
with angular speed ω/Ω = 0.132. The energy of the MRWs is concentrated in a region
remote from the axis, and closer to the stationary endwall. The M branch is the third
branch to bifurcate from the basic state as Re is increased with fixed Λ = 2.5: this is
clear from the related work of Lopez et al. (2001). Floquet techniques may be used to
study the stability of the M0 branch to rotating waves, but these can only currently be
employed where the axisymmetric state is stable. As solutions on the M0 branch are
unstable at its inception, techniques that allow continuation of unstable limit cycles
are required before the Floquet analysis can be carried out. Continuation of the M
branch solutions to lower Re (by using a stable solution as initial condition at lower
Re) results in an evolution to the V branch. The hysteresis between the M and V
branches was also observed in the experiments of Stevens et al. (1989).

The V solution branch, which is stable for the Reynolds number range 3250–3683,
possesses the most interesting dynamical behaviour of the three identified branches.
While the A and M branches can be readily associated with the first and third
modes to bifurcate from the basic state as Reynolds number is increased (Lopez et al.
2001), the V branch is not so easily categorized. Its most likely genesis is as a mixed
mode between the second and third modes to bifurcate from the basic state, since
it always possesses some characteristics of the M branch, and appears to terminate
with a bifurcation to the M branch at the upper Reynolds number limit. There may
be similarities here with the mixed-mode behaviour that occurs near the onset of
three-dimensional vortex shedding in a circular cylinder wake (Barkley, Tuckerman
& Golubitsky 2000).

The distinguishing feature of the V branch is the very-low-frequency modulation;
this is present for both the axisymmetric and non-axisymmetric cases, and has been
observed experimentally (Stevens et al. 1999, figure 5). In the axisymmetric restriction,
there appear to be three fundamental periods, only two of which are independent.
Apart from the VLF, there are two periods which are close to a 1 : 2 resonance,
near ΩT1 = 28 and ΩT2 = 57. The T1 component appears to be related to the M
branch (which has ΩT = 28.3 in the axisymmetric restriction), and from Lopez et al.
(2001) 2π/T1 is very close to the imaginary part of the eigenvalues for the third Hopf
bifurcation from the basic state. In addition, 2π/T2 is also close to the imaginary part
of the eigenvalues of the second Hopf bifurcation from the basic state.

Flows of the V branch are axisymmetric near the middle of its Reynolds number
range and lose stability to P = 5 azimuthal modes via supercritical Hopf-type
bifurcations from the axisymmetric quasi-periodic state, again leading to MRWs,
modulated at a VLF in addition to the higher frequencies. The precession rate of the
MRWs remains constant near these bifurcations, with ω/Ω = 0.132, the same as for
the M branch, and in addition the (z, r) location of the peak energy in the MRW has
a very similar location and distribution as for the M branch solutions. The V5 branch
terminates at the upper Reynolds number of 3683, with Tmod → ∞ as it merges with
the M5 branch.

Modulated rotating waves with a VLF have previously been observed in the
Taylor–Couette experiments of von Stamm et al. (1996). In addition, the quasi-
periodic behaviour of the VLF MRWs became chaotic though a period doubling
cascade (cascaded ‘period-doubling-on-a-torus’) with increasing Reynolds number. In
the present work, we also appear to have observed the first two period doublings of
such a cascade, on the lower Re limit of the V5 branch, but in this case the period
doublings occur as Reynolds number is reduced, and the ‘cascade’ terminates with a
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return to the axisymmetric behaviour of the V0 branch near Re = 3283 (or possibly,
our initial value approach was not able to observe more period doublings, as the
co-existing A branch may have a larger basin of attraction at these Re). It is curious
that the first period doubling appears near the same Reynolds number as the Tmod

cusp in the V0 branch.
Rotating waves and modulated rotating waves are a common feature of bifur-

cations for flows with SO(2) symmetry, and have received substantial attention
through theoretical and experimental studies (Gorman & Swinney 1982; Rand 1982;
Coughlin & Marcus 1992; von Stamm et al. 1996; Lamb & Melbourne 1999). Most
of the past works have focused on flows in the Taylor–Couette system; in that
system, the first unsteady behaviour as Reynolds numbers are increased is typically
through an equivariant bifurcation to rotating waves, in which the flow is steady
when viewed in an appropriate steadily rotating frame. It is only subsequent to
this bifurcation that true unsteady behaviour appears through modulation of the
RWs, or the appearance of a VLF, either of which are the precursor to chaotic
behaviour. When modulations occur, these in general break the P -fold symmetry of
the waves, although axisymmetric kinds can also occur (Gorman & Swinney 1982;
Rand 1982). In the present study, we have outlined another scenario, whereby the time
periodicity appears first in the axisymmetric mode, and then the axisymmetric limit
cycle undergoes symmetry breaking directly to a modulated rotating wave, without
an intermediate pure rotating wave state. The modulated rotating waves are never
steady in any rotating reference frame. Hence, MRW states on the M branch can be
regarded as 2-tori, while MRW on the V branch, where the axisymmetric state already
has two independent frequencies, can be regarded as 3-tori. The V5 state provides one
of the very few examples of stable 3-tori solutions in laminar non-chaotic flow that
have been observed experimentally (Stevens et al. 1999) and investigated in detail by
computations of the three-dimensional Navier–Stokes equations, over an extensive
range in Reynolds number.

We thank the staff of the Australian Partnership for Advanced Computing (APAC)
National Facility, and the CSIRO–Bureau of Meteorology Joint High Performance
Computing and Communications Centre (HPCCC) for their continued support and
assistance. HMB acknowledges the support of the APAC Merit Allocation Scheme.
JML acknowledges the support of the National Science Foundation (NSF), under
grant CTS-9908599.

REFERENCES

Barkley, D., Tuckerman, L. S. & Golubitsky, M. S. 2000 Bifurcation theory for three-dimensional
flow in the wake of a circular cylinder. Phys. Rev. E 61, 5247–5252.

Batchelor, G. K. & Gill, A. E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid Mech.
14, 529–551.

Blackburn, H. M. & Graham, L. J. W. 2000 Vortex breakdown – theory and experiment. Album
of Visualization 17, 13–14.

Blackburn, H. M. & Lopez, J. M. 2000 Symmetry breaking of the flow in a cylinder driven by a
rotating endwall. Phys. Fluids 12, 2698–2701.

Chossat, P. & Lauterbach, R. 2000 Methods in Equivariant Bifurcations and Dynamical Systems.
World Scientific.

Coughlin, K. T. & Marcus, P. S. 1992 Modulated waves in Taylor–Couette flow. Part 1. Analysis.
J. Fluid Mech. 234, 1–18.

Escudier, M. P. 1984 Observations of the flow produced in a cylindrical container by a rotating
endwall. Exps. Fluids 2, 189–196.



58 H. M. Blackburn and J. M. Lopez

Gelfgat, A. Y., Bar-Yoseph, P. Z. & Solan, A. 1996 Stability of confined swirling flow with and
without vortex breakdown. J. Fluid Mech. 311, 1–36.

Gelfgat, A. Y., Bar-Yoseph, P. Z. & Solan, A. 2001 Three-dimensional instability of axisymmetric
flow in a rotating lid–cylinder enclosure. J. Fluid Mech. 438, 363–377.

Gerritsma, M. I. & Phillips, T. N. 2000 Spectral element methods for axisymmetric Stokes
problems. J. Comput. Phys. 164, 81–103.
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