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Chapter 1

Introduction

Dog is a tool to compute solutions to stability analysis and/or optimal transient growth problems
in steady or time-periodic incompressible viscous flows with moderate two-dimensional geometric
complexity in either Cartesian or cylindrical coordinates. Such stability analyses are sometimes
referred to of ‘global’ type in order to distinguish them from ‘local’ or sectional analyses which were
the previous norm. The name Dog is an acronym of ’direct optimal growth’. In effect Dog provides an
iterative eigensystem solution wrapper around routines which timestep the linearised Navier–Stokes
equations and their adjoint.

Dog is built on top of the author’s Semtex DNS application, and so employs quadrilateral nodal
spectral elements as the underlying spatial discretization. It is highly recommended that you have
some familiarity with setting up and running problems in Semtex before attempting to use Dog. If
you are planning to compile Dog you need to have a working Semtex installation first—please see
the setup instructions in the Semtex user guide. The default location for the Dog directory is at
the same level as where you put the Semtex directory, though it is also straightforward to install it
within the Semtex directory (edit dog/Makefile).

I would very much like to acknowledge the contributions made to this code, as well as to the
ideas in the present document, by Dwight Barkley (who originally wrote the flok program which
was the prototype for Dog and who, together with Spencer Sherwin, helped develop the optimal
growth tools in Dog), Ron Henderson (whose DNS code prism was the underlying basis for flok
and which was also the progenitor of Semtex), Spencer Sherwin and Xuerui Mao. I should add that
Laurette Tuckerman has also long been a champion of flow analysis methods based on integration
of the Navier–Stokes equations, which is the methodology used by Dog. It’s been a great experience
to work with all of you.

It seems worth remarking at the outset that global flow stability analysis, like most iterative solution
of large eigensystems, is somewhat of an art. Experience, judgement and determination seem to play
a greater role here than is the case for DNS. If you do succeed in obtaining converged solutions, it
pays not to trust them at first; examine convergence, find ways to check outcomes. If you do not
obtain converged eigenvalue estimates at first try, be prepared to make changes and persist.

1.1 Dog and its kin

These are the codes that can be built with the upper-level Makefile:

dog The central eigensystem code. Computes linear stability analysis or optimal
transient growth for a two-dimensional base flow.

lns Integrate the linearised Navier–Stokes equations and/or their adjoint
(e.g. to evolve an eigenmode or optimal initial condition).
This drives exactly the same routines that dog uses.

normalize Normalise an eigenmode or initial condition
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(e.g. so it has unit kinetic energy per unit mass).
combine Combine a base flow with an eigenmode/IC to produce an initial condition

in physical space (e.g. for subsequent evolution using dns, part of Semtex).
circulate ‘Rotate’ a sequence of base flows to generate a different starting phase

for Floquet or transient analysis. Made redundant by T_OFFSET token.
flipmap Generate a set of mapping indices for a ‘half-period flip’.
symmetrise Enforce a reflection symmetry (from flipmap) on a field file.

There are also a couple of more specialised executables that can be built: dog-H (for computing
stability with a half-period flip, see e.g. Blackburn et al.; 2005) and dog-AR which uses ARPACK

(Lehoucq et al.; 1998) as the Arnoldi eigensystem solver as opposed to the (default) ‘Barkley’ method
documented in Barkley et al. (2008). To make dog-AR after building dog use these commands:
rm drive.o; make ARPACK=1. While it is useful to be able to use the ARPACK version in some
situations (e.g. it can perform better at converging a significant number of eigenvalues), we generally
use the default eigensystem solver as it provides better diagnostic information. I suggest you only
try dog-AR on a problem once a converged solution can be obtained with the default solver.

1.1.1 Files

Just like Semtex, Dog needs a starting input file which describes the mesh, boundary conditions,
and sets up tokens used by the solver. We call this a session file and typically it has no root
extension. It is written in a format patterned on HTML, which we have called FEML (for Finite
Element Markup Language). An extra input file required by Dog is session.bse which contains
the base flow. There are a number of example session files in the semtex/mesh directory. Other
files have standard extensions:

session.bse Base flow on which analysis is performed. Same format as session.fld.
session.evl Eigenvalue (and convergence) information.
session.eig.X Eigenvector X. Same format as session.fld
session.fld Solution/field file. Binary format by default.
session.run Runtime information including PID, command line arguments, etc.
session.rst Restart file. Read in to initialize solution if present.
session.his History point data.
session.bhs (Reconstructed) base flow history point data if requested in BASE HIS section.
session.mdl Time series of kinetic energy of the perturbation.

(Underlined file names are specific to Dog.) The primary focus when running Dog is usually the
session.evl file. It is good practice to use tail -f session.evl in order to monitor progress of
convergence.

1.1.2 Usage

[mec-aquila]$ dog -h

dog(-H) [options] session

options:

-h ... print this message

-v ... set verbose

-a||g||s ... solve adjoint or optimal growth or optimal shrink, problem

-k <num> ... set dimension of subspace (maximum number of pairs) to num

-m <num> ... set maximum number of iterations (m >= k)

-n <num> ... compute num eigenvalue/eigenvector pairs (n <= k)

-t <num> ... set eigenvalue tolerance to num [Default 1e-6]

-p ... compute pressure from converged velocity eigenvector
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NB: the eigenvalue or growth tolerance (set using -t) is scaled by the corresponding MAGNITUDE.
So if the leading eigenvalue (or the last one requested) has magnitude 0.5 and the tolerance is
1× 10−6, convergence won’t be deemed to be achieved until the corresponding residual falls below
0.5× 1× 10−6 = 5× 10−7.

[mec-aquila]$ lns -h

Usage: lns [options] session-file

[options]:

-h ... print this message

-a ... use adjoint LNSE instead of primal LNSE

-i[i] ... use iterative solver for viscous [& pressure] steps

-v[v...] ... increase verbosity level

-chk ... checkpoint field dumps

[mec-aquila]$ normalize

ERROR: normalize: Usage: normalize [options] session [session.fld]

options:

-h ... print this message

-p ... mode normalization on pressure rather than velocity

-s scale ... multiplicative scale applied after normalization

[mec-aquila]$ combine -h

Usage: combine [options] base pert

options:

-h ... print this message.

-b <num> ... set beta, wavenumber of base flow to <num> (3D) [Default: 1.0]

-r <num> ... relative energy of perturbation is <num>. [Default: 1.0]

-s ... simple scaling: scaling is pointwise rather than energy-based

-m <num> ... mode number for perturbation is <num> (3D only) [Default: 1]

[mec-aquila]$ circulate -h

usage: circulate n file

[mec-aquila]$ flipmap -h

Usage: flipmap [-h] -x || -y || -d [-t <num>] [meshfile]

[mec-aquila]$ symmetrise

Usage: symmetrise [options] -m mapfile [file]

options:

-h ... print this message

In cases where you are unsure of the purpose of these utiities, we encourage you to read the
headers of their respective source files.

1.1.3 Dimensionality vs componentality

By ‘dimensionality’ we mean the number of dimensions required to describe a flow’s variation in space
whereas by ‘componentality’ we mean the number of velocity components required to represent it.
We can use a convenient set of acronyms such as 2D2C, 2D3C, 3D3C. A very typical combination is
that the base flow will be 2D2C while the linear stability modes are 3D3C. The combinations Dog can
accept (base/stability) are: 1D2C/2D2C, 1D2C/2D3C, 2D2C/2D2C, 2D2C/2D3C, 2D3C/2D3C, but
is presently not capable of dealing with 3D3C/3D3C. This means that all base flows are represented
by a single plane of two-dimensional data, but may have either two or three velocity components (the
2D2C and 2D3C cases); 1D2C base flows have to be represented as 2D2C fields that are invariant
in one spatial direction. If you present Dog with a three-dimensional base flow, it will only use the
first plane of data in the file. The coordinate systems available (as for Semtex) are Cartesian and
cylindrical. (One might anticipate that 1D2C/2D3C analyses are not very useful owing to Squire’s
theorem for stability of ‘parallel shear flows’, see e.g. Schmid and Henningson; 2001, but Squire’s
theorem does not hold in cylindrical coordinates.)
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1.1.4 Dog-specific TOKENS and session file sections

N BASE Number of velocity components in 2D base flow file. Either 2 or 3.
N SLICE Number of ‘time slices’ in base flow file. N_SLICE=1 for steady base flow.

For periodic base flow, a number with prime factors 2, 3, 5 for FFT.
BASE PERIOD Optional value to declare period of a periodic base flow;

otherwise this value is computed from session.bse.
T OFFSET Optional value to declare a time offset for reconstruction of base flow;

used to vary phase of Floquet analysis, or initiation time for transient growth.
LAGRANGE INT Set LAGRANGE_INT=1 for cubic Lagrange interpolation of base flow.

Leave unset/0 for default Fourier interpolation.
BIG RESIDS Set BIG_RESIDS=1 to force direct computation of eigenvector residuals.

An optional section of the session file is BASE_HIST, which may be used to check the temporal
regeneration of a base flow from a limited number of time slices. This is similar in concept and
structure to a HISTORY section in a standard Semtex session file. It calls up output of history point
data from the periodic/unsteady base flow reconstruction into file session.bhs, with contents
similar to those in session.his, but lacking pressure history. Output generated every IO_HIS

steps.

1.1.5 ‘Throw the first one away’

A feature you may notice when running dog is that with the default starting condition (no .rst

file), the first iteration of time-integration over interval τ seems to produce no result in the upper-
level monitor file session.evl. This is because the default starting condition is pseudo-random
white noise—which produces velocity files with non-zero divergence. If convergence occurs before
the Krylov sequence is filled, the resulting Ritz estimates of eigenvectors may be corrupt. A simple
work-around is to ignore the first iteration.
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Chapter 2

Theory

This chapter contains sufficient depth to be able to understand and use Dog, but is by no means a
full treatment of the theory on which flow stability analysis is based. It is assumed that the reader
has previously taken a course that deals with eigensystem analysis of linear systems. The standard
text in the general area of flow stability analysis is Schmid and Henningson (2001) although it tends
to concentrate on analysis of one-dimensional flows via the Orr–Sommerfeld equations. A good
introductory reference for the timestepper-based methods advanced in this chapter is Tuckerman
and Barkley (2000). For stability analysis of two-dimensional steady flow, Barkley et al. (2002) is
a good starting point; for stability analysis of time-periodic flow, Barkley and Henderson (1996)
is required reading; a good introduction to transient growth analysis is provided by Blackburn,
Barkley and Sherwin (2008), while Barkley et al. (2008) provides a more detailed explanation of the
underlying mathematics of transient growth analysis and includes a description of the eigensystem
solution method that is standard in Dog.

2.1 The linearized Navier–Stokes equations in operator form

We start with the incompressible Navier–Stokes equations

∂tu = −u · ∇u−∇p+ Re−1∇2u, with ∇ · u = 0, (2.1)

where p is the modified or kinematic pressure, u is the velocity vector, while the Reynolds number
Re = UD/ν where U and D are convenient velocity and length scales and ν is kinematic viscosity.
Decomposing the flow field as the sum of a base flow and a perturbation i.e. (u, p) = (U , P )+(u′, p′)
we first substitute

∂t(U + u′) = −(U + u′) · ∇(U + u′)−∇(P + p′) + Re−1∇2(U + u′), (2.2)

expand

∂t(U +u′) = −U ·∇U −U ·∇u′ −u′ ·∇U −u′ ·∇u′ −∇(P + p′) +Re−1∇2(U +u′), (2.3)

then collect into equations for evolution of the base flow

∂tU = −U · ∇U −∇P + Re−1∇2U , (2.4)

and perturbation

∂tu
′ = −U · ∇u′ − u′ · ∇U − u′ · ∇u′ −∇p′ + Re−1∇2u′, (2.5)

from which we omit interaction of perturbations (assuming those terms to be O(u′2)), to obtain the
linearized Navier–Stokes equations, which govern the evolution of infinitesimal perturbations, as

∂tu
′ = −[U · ∇+ (∇U)T ·]u′ −∇p′ + Re−1∇2u′. (2.6)
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We note that the base flow U does not have to be steady in time: it may also be time-periodic,
or have more general structure.

Considering that in incompressible flow the pressure may be considered a constraint field whose
gradient keeps the flow divergence-free and which is obtained from the advection terms as the solution
of a Poisson equation, we can symbolically state that

p′ ≡ ∇−2∇ ·
[
U · ∇+ (∇U)T·

]
u′ (2.7)

and so we can write the linearized Navier–Stokes symbolically without the pressure term as

∂tu
′ = −

[
I −∇∇−2∇·

] [
U · ∇+ (∇U)T·

]
u′ + Re−1∇2u′, (2.8)

or more compactly, since now the spatial terms are now just a linear operator applied to the pertur-
bation velocity, we write the linearized Navier–Stokes equations in operator form as

∂tu
′ − L(u′) = 0. (2.9)

The above notation is adopted largely for compactness/convenience and does not imply that the
pressure is not computed. However, it is typically only the velocity components which are considered
as part of the numerical eigensystem analysis of incompressible flows.

Before proceeding to consider stability analysis, it should be noted that since the base flow U is
required as input, one must pay considerable attention to obtaining a good estimate for it. In fact,
this precursor requirement often consumes a substantial part of the overall effort in performing a
stability analysis. Fortunately however, one can very often re-use the session files used for computing
the base flow as a starting point for those employed in stability analysis (typically one must change
the boundary conditions and a few other minor things).

As a side-note, Wilhelm and Kleiser (2001) showed that for the PN–PN−2 spectral element formu-
lation of the discretized incompressible Navier–Stokes equations, both the conservative (∇·uu) and
skew-symmetric ((∇·uu+u ·∇u)/2) forms of the nonlinear terms possess a linear instability, while
the non-conservative form u · ∇u does not. While it is standard/default for Semtex/dns (which is
PN–PN ) to employ the (alternating) skew-symmetric form of the nonlinear terms for robustness, we
have found that carrying this form over to the discretized linearized Navier–Stokes equations causes
spurious predictions of instability, in apparent agreement with Wilhelm and Kleiser’s finding. Hence
the implementation of the linearized advection terms used by dog and lns uses the non-conservative
form, just as written in (2.6).

2.2 Timestepping, the exponential mapping, and eigensystems

So now let us consider the effect of evolving (time-integrating, timestepping) a perturbation u′ from
an initial state at (let’s say) t = 0 over a time interval (period, horizon) τ .

u′
τ = M(τ)u′

0 (2.10)

where

M(τ) = exp

∫ t=τ

t=0
L(t) dt (2.11)

is the state transition operator of the linearized Navier–Stokes equations. We note that (2.10)
is symbolic shorthand for ‘apply the linearized Navier–Stokes equations to an initial condition by
time-integration over interval τ ’ and is what we approximate when running a simulation code that
evolves our numerical approximation to the linearized Navier–Stokes equations. Conceptually this
is a forwards-in-time mapping which we illustrate in figure 2.1. It is also important to note that in
carrying out this numerical integration the time interval τ is typically broken into a large number of
time steps ∆t.

If U is steady in time, then so is L, in which case M has a particularly simple written form

M(τ) = exp(Lτ). (2.12)
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Figure 2.1: Applying the timestepping operator M(τ) to evolve an initial condition to a later time.

2.2.1 Linear stability analysis of steady flows

We now turn to the problem of finding the eigensystem of L or equivalently of M(τ) in the case
where the base flow U is steady in time. Assuming a separation-of-variables form for the growth of
a linear perturbation, viz., u′(x, t) = exp(λjt)ũj(x), substitution into (2.9) produces

Lũj = λjũj , (2.13)

i.e. an eigenvalue problem for the the set of eigenvalues λj and eigenvectors (or ‘mode shapes’)
ũj(x) of the operator L. Collectively, the eigenvalues and eigenvectors are called the eigensystem
of L, and its properties govern the large-time or asymptotic behaviour of u′.1 The reconstruction of
u′ from the eigensystem is

u′(x, t) =

∞∑
j=0

exp(λjt)ũj(x) + c.c. (2.14)

where we will consider that the eigenvalues may be complex (λ = λr ± iλi) but the eigenvectors
are real. The set of all the eigenvalues of an operator is called its spectrum. We note that (as is
sometimes reversed in textbooks) λr is a growth rate and λi is a (circular) frequency. We also note
that (2.13) is generated directly by substituting the separation-of-variables form (2.14) into (2.9).
A linear stability analysis of a Navier–Stokes problem amounts to finding the leading (least stable)
eigenvalues of L and the corresponding mode shapes (perturbation flows).

Now, for simple flows (e.g. one-dimensional base flows), we may be able to afford to explicitly
construct a matrix approximation for the operator L and find its full eigensystem directly (see
e.g. appendix A of Schmid and Henningson; 2001). However, for more complicated flows a direct
solution may be very expensive computationally (in both time and memory) and we typically have
to resort to matrix-free iterative methods. Iterative eigensystem solvers of the Arnoldi type (Saad;
1992) rely on repeatedly applying an operator (matrix) to a vector, as in (2.10), without necessarily
explicitly constructing the operator itself. Such methods are typically best at converging those
eigenpairs which have eigenvalues of largest magnitude, i.e. the part of the spectrum furthest from
the origin in the complex plane. Also, for stability problems we are usually mostly concerned with
the eigenvalues λj with largest real part (i.e. the least stable eigenvalues) and do not much care
about more stable modes. By happy coincidence the exponential mapping (2.12) has precisely the
feature of transforming the spectrum in such a way that the least-stable eigenvalues of L become
the largest-magnitude eigenvalues of M, as indicated in figure 2.2. This means that timestepper-
based methods for evolving the linearized Navier–Stokes equations are very well matched to iterative
methods for finding (the leading part of) the eigensystem of an operator.

The eigensystems of L and M are connected. Since

expLτ = lim
N→∞

N∑
k=0

(Lτ)k

k!
(2.15)

we find that the eigenvectors of L are the same as those of M(τ): supposing ũj is an eigenvector
of L with corresponding eigenvalue λj . Then

Mũj = expLτ ũj = lim
N→∞

N∑
k=0

(Lτ)k

k!
ũj = lim

N→∞

N∑
k=0

(λjτ)
k

k!
ũj = exp(λjτ)ũj , (2.16)

1We will deal with the finite-time behaviour in § 2.3.
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Figure 2.2: The timestepper mapping. Left left-half plane of L is mapped to inside the unit circle of
M, and there is a one-to-one mapping of the spectrum of the two operators.

i.e. ũj is also an eigenvector of M(τ), with corresponding mapped eigenvalue µj = exp(λjτ). In
fact, since we will be finding the (complex) eigenvalues µj = σr,j ± iσi,j of M(τ), we note that their
polar magnitudes and angles in the complex plane are given by

|µj | = (σ2
r,j + σ2

i,j)
1/2, ∠µj = ± arctan(σi,j/σr,j) (2.17)

(using the ‘two-argument’ arctan function). From these values we can work back to find the real
and imaginary parts of the eigenvalues λj of L:

λr,j = ln(|µj |)/τ, λi,j = (∠µj)/τ. (2.18)

The base flow is (linearly) neutrally stable when the largest |uj | = 1 or equivalently when the least
stable mode has λr,j = 0. Finding the parameter(s) which results in neutral stability is usually the
primary focus of a flow stability analysis. This value is typically referred to as the ‘critical’ value, e.g.
critical Reynolds number Rec.

So far we have not touched on the spatial structure of the linear perturbations u′ or the eigenmodes
ũ′. Since the analysis is linear, we can apply other linear operators to the methodology without
breaking its validity. As the domains we can consider with Semtex are two-dimensional it is natural (if
both the geometry and base flow are two-dimensional) to use a one-dimensional Fourier transform in
the out-of-plane/spanwise/homogeneous (z) direction to be able to tackle three-dimensional analyses.
Owing to the linearity of both the Fourier transform and the linearized Navier–Stokes equations, we
can consider the stability of each three-dimensional Fourier mode individually. While the base flows
must be two-dimensional they can be either two-component or three-component.

The definition of the (one-dimensional) Fourier transform employed in Semtex and Dog is

ûk(x, y, t) = L−1
z

∫ Lz

0
u(x, y, z, t)e−i(2π/Lz)kz dz, (2.19)

u(x, y, z, t) =

∞∑
k=−∞

ûk(x, y, t)e
i(2π/Lz)kz, (2.20)

where k is an integer mode index and Lz is an assumed periodic length of the domain in the z
direction. Interchangeably we can take the spanwise wavenumber β = 2π/Lz (and this is the
meaning of the token BETA). Since for Dog we restrict the base flows to be two-dimensional we
can just consider the Fourier transform of the linearized Navier–Stokes equations to be taken, and
u′ to be a two-dimensional complex mode—and since we then deal with modes one at a time we
can assume k = 1 without loss of generality. The form of the linearized Navier–Stokes equations
in coordinate-free notation (as we have used above) is unaltered, but with the understanding that
U(x, y) is two-dimensional and real, while u′(x, y) is a two-dimensional complex mode when β ̸= 0.
Within Dog, any time where we would have a ∂( )/∂z operation in physical space it is replaced with
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an iβ( ) operation on a complex mode, while ∂2( )/∂2
z is replaced with −β2( ) (x and y derivatives

are unaltered since we only transformed in z).
As pointed out by Barkley and Henderson (1996) a very useful simplification in the structure of

the two-dimensional complex Fourier mode û occurs if U is 2D2C. In that case, a mode of the form

(u′, v′, w′) = (û cosβz, v̂ cosβz,−ŵ sinβz), (2.21)

p′ = p̂ cosβz (2.22)

will pass through the linearized Navier–Stokes equations with the same form, thus satisfying essential
conditions for an eigenmode. The form corresponds to a ‘half complex’ mode, where only the real
parts of û, v̂, p̂ and the imaginary part of ŵ need be populated. We can use N_Z=1 in the sesssion
file for stability analysis and time integration requires only half the computational work of a fully-
populated complex mode. The form embodies a fixed spatial phase relationship along the z axis, but
any arbitrary phase shift (rotation) is equally valid, too. If however, the base flow is 2D3C, then a
fully complex mode is required for û (and again any phase shift in the z direction is a valid mode
shape); in these cases we use N_Z=2 in our session file.

2.2.2 Boundary conditions for stability analysis

A key consideration in setting boundary conditions for stability analysis is that boundary conditions
may differ for computation of base flow and perturbation. If the base flow is driven by boundary
conditions (e.g. by an inflow boundary or a moving wall) then the relevant Dirichlet velocity boundary
condition is set in the base flow computation while the corresponding velocity boundary for the
perturbation would be u′ = 0. On a non-moving wall boundary, the velocity boundary condtions
for both base flow and perturbation are non-slip. On an outflow boundary, both the base flow and
pertubation will have the same approximation to a stress-free condition. On periodic boundaries,
both the base flow and perturbation will be set periodic. Thus the perturbed flow u = U + u′

satifies the same boundary conditions as for the underlying Navier–Stokes problem. See Barkley and
Henderson (1996) for more discussion. We will consider examples in chapter 3.

We note that consideration of boundary conditions for transient growth analysis is somewhat differ-
ent—generally, the velocity boundary condition on the perturbation is set to zero on all boundaries,
with the idea that for an open-domain problem the analyst ensures that the domain is large enough
that the perturbation is effectively contained within it for all time horizons considered. See § 2.3.2.

2.2.3 Linear stability analysis of time-periodic flows—Floquet analysis

If U is time-periodic, then so is the operator L and we carry out temporal Floquet stability analysis
(analysis of a linear system of ODE/PDE where the coefficients are time-periodic, see e.g. Iooss
and Joseph; 1990). In this case, we are typically interested in how much a disturbance grows from
one period of the base flow to the next. The method of analysis is in fact very similar to that
described above for steady base flows, but now the time integration period τ , essentially a choice of
the analyst in steady flows, is fixed to match the period of the base flow, while the eigenmodes are
also time-dependent (and time-periodic). In this case

u′(x, t+ τ) =
∞∑
j=0

µjũj(x, tmod τ) + c.c. (2.23)

Note the general similarity to (2.14), but that the eigenvectors (or Floquet modes) are now time-
periodic. The eigenvalues µj are referred to a Floquet multipliers. Since the analysis now has a
distinct ‘digital’ aspect (performed on a τ -periodic basis) it now only really makes much sense to
consider dealing directly with the timestepper mapping (2.10) and only be concerned with the right
side of figure 2.2. The Floquet multipliers say how much a mode grows or shrinks over a period:
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if they lie outside the unit circle, the mode grows; if inside, it shrinks. A good general reference
on global Floquet analysis is the classic paper by Barkley and Henderson (1996). If the multiplier
µ = −1, the instability is of period-doubling or subharmonic type; if it has non-zero imaginary part
(occurs in complex conjugate pairs) the instability is quasi-periodic (Blackburn and Lopez; 2003).

The base flow for Floquet analysis is provided as a set of time-slices equi-spaced over τ , and Fourier
reconstruction is the typical means of re-estimating the base flow at any point in its period. We note
that if the base flow has features which are very sharp in time (as observable in velocity time-history
plots), a considerable number of time-slices may be needed for accurate reconstruction, and then
Fourier reconstruction may become very costly; in this case a local cubic spline reconstruction may
be used instead, since the interpolation cost is lower (Mao et al.; 2011, set LAGRANGE INT=1 to
obtain this functionality). 2

As mentioned above, the Floquet modes are time-periodic, although the multiplier associated with
each mode is a fixed scalar. A single Floquet analysis generally only returns the mode (or modes,
if more than one is requested) at one particular phase, the starting phase of the base flow. If one
requires the modes at another phase point, one can either rotate the order of the base flows (using
Dog ’s circulate utility), or ask for a time-shift (use token T_OFFSET).

If the time-periodic base flow occurs as an autonomous limit-cycle oscillation, then a Floquet
analysis in the same subspace as the original flow (e.g. both base flow and Floquet modes are 2D2C)
should have a leading multiplier µ = 1. This corresponds to a neutrally stable mode that is ‘tangent’
to the limit cycle at each point in its orbit (Iooss and Joseph; 1990). At each point in the cycle,
the corresponding Floquet mode shape should appear the same as the local acceleration field of the
base flow, ∂U/∂t. This fact can sometimes be useful in checking numerical Floquet analysis (see
e.g. Barkley and Henderson; 1996, who approached 2D2C in the limit as β → 0 and found µ → 1
over a range of Re). Such a mode only exists if the base flow is an autonomous limit cycle; it should
not exist if the base flow is driven by time-periodic boundary conditions.

2.3 Optimal growth of perturbations

The motivation for understanding optimal non-normal growth of perturbations is that if linear non-
normal growth is large enough, non-linear mechanisms may take over and produce a transition to
turbulence even if the flow is linearly stable in the long term (see e.g. Saric et al.; 2002). The
standard introductory text of this area is Schmid and Henningson (2001). As far as the application
of the concepts to general flows is concerned, we recommend the article by Barkley et al. (2008).

Since the linearized Navier–Stokes equations are non-symmetric (the operator written in on a
component-by-component matrix form is non-symmetric about the leading diagonal), its eigenmodes
are in general ‘non-normal’, meaning that the energy inner products of distinct modes may be non-
zero (i.e. the modes are non-orthogonal or non-normal). This is different from, say, the eigenmodes
of a spring–mass system, which does have this property, leading to the ability to examine energetics
on a mode-by-mode basis which is a considerable simplification. In simple terms, non-normality of
the eigenmodes manifests as their being visually rather similar or having significant spatial overlap
(see e.g. Kim and Bewley; 2007).

In order to examine these issues and to consider the growth of perturbations, we need to introduce
energy-type integrals. Flow is considered within a spatial domain Ω which has a boundary surface
∂Ω and unit outward normal n, as indicated in figure 2.3. Flow is taken to evolve over the time
interval [0, τ ], so the space-time domain considered is Ω× [0, τ ].

The energy inner product of two real modes on domain Ω can be written as

E = (ũi, ũj) =

∫
Ω
ũi(x) · ũj(x) dV. (2.24)

2It is also possible to carry along computation of the base flow as a separate operation in parallel, an approach
sometimes adopted in other codes.
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Figure 2.3: Schematic representation of a spatial flow domain Ω, boundary ∂Ω and unit outward
normal vector n.

Figure 2.4: Initial transient growth followed by ultimate decay resulting from the sum (blue) of
two non-orthogonal eigenvectors (black), each of which decays monotonically. Adapted from fig-
ure 4.1, Schmid and Henningson (2001). The asymptotic state is decay dominated by the least
stable eigenvector.

If the modes are orthogonal (and suitably normalised) then (ũi, ũj) = δi,j where δi,j is the Kronecker
delta, in which case

(u′,u′)(t) =

∫
Ω

(
N∑
i=1

exp(λit)ũi

)
·

 N∑
j=1

exp(λ∗
j t)ũj

 dV

=
N∑
i=1

N∑
j=1

exp(λit) exp(λ
∗
j t)

∫
Ω
ũi · ũj dV

=
N∑
i=1

exp(2Re(λi) t),=
N∑
i=1

exp(2λr,it), (2.25)

leading to the result that if all modes are stable then the kinetic energy of a linear perturbation
has to decay exponentially in time. If the modes are non-normal, then this property is lost and
energy of a linear perturbation composed of stable modes may grow in the short term, perhaps
very considerably, before eventual decay. Schmid and Henningson (2001) give a particularly simple
geometric illustration of how this can occur in their figure 4.1, reproduced here as figure 2.4. While
the initial transient growth indicated in the figure is comparatively modest, it is not uncommon that
it may be many orders of magnitude or more (e.g. an energy growth factor of O(1025) was recorded
in Mao et al.; 2011, such large linear growths would make transition basically inevitable in reality).

Now consider energy growth G, i.e. the ratio of kinetic energies in a linear disturbance at time
t = τ to that in the initial condition at time t = 0.

G(τ) =
E(τ)

E(0)
=

(u′
τ ,u

′
τ )

(u′
0,u

′
0)

=
(M(τ)u′

0,M(τ)u′
0)

(u′
0,u

′
0)

, (2.26)

where the last equality exploits (2.10). Our goal is to find the ‘most dangerous’, or optimal, initial
disturbance u′

0; the one that generates the greatest amount of growth G for time interval τ . Various
routes exist for the computation of such an optimum (Blackburn et al.; 2012; Mao et al.; 2013);
here we will examine the ‘eigenvalue approach’. For now let us state without proof that an adjoint
operator, M∗(τ) exists for M(τ). This adjoint operator has the property of commuting with the
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inner product (2.24) such that

(M(τ)u,u) = (u,M∗(τ)u), (2.27)

which makes

G(τ) =
(u′

0,M∗(τ)M(τ)u′
0)

(u′
0,u

′
0)

, (2.28)

where the joint operator M∗(τ)M(τ) is symmetric. By re-arrangement we find the eigensystem

M∗(τ)M(τ)u′
0 = G(τ)u′

0, (2.29)

which implies that the optimal growth G(τ) is the largest eigenvalue of M∗(τ)M(τ) and u′
0,

the corresponding eigenvector, is the optimal (or ’most dangerous’) initial disturbance. We note
that the eigenvectors of the symmetric joint operator M∗(τ)M(τ) are (when normalised such that
(u′

0,u
′
0) = 1) precisely the same as the right singular vectors of the state transition operator M(τ),

and the growth G is the square of the corresponding singular value. The terminal outcome, u′
τ , is

the corresponding left singular vector (see § 1.2, Barkley et al.; 2008). We note that we can either
compute u′

τ by evolving u′
0 with the linearized Navier–Stokes equations over interval τ , or by finding

the corresponding eigenmode of the transposed joint operator M(τ)M∗(τ).

2.3.1 The adjoint Navier–Stokes equations

In the previous section we introduced the adjoint state transition operator for the Navier–Stokes
equations, M∗. To go into a full exposition on adjoints would take us very far afield; the interested
reader is advised to consult Luchini and Bottaro (2014), but the brief outline in Barkley et al. (2008)
is more in line with our present discussion. The basic idea is to use integration by parts in order to
find an operator which commutes with the original under an inner product. Typically in text books
the inner product is purely spatial, e.g. (2.24), but in our case the integrals concerned must be over
both space and time. If we define

⟨a, b⟩ =
∫ τ

0

∫
Ω
a(t) · b(t) dV dt, (2.30)

then the adjoint velocity variable u∗ commutes with the linearized Navier–Stokes operator so that

⟨u∗, ∂tu
′ − Lu′⟩ = ⟨u′, ∂tu

∗ + L∗u∗⟩ (2.31)

in which ∂tu
∗+L∗u∗ = 0 represents the adjoint Navier–Stokes equations. Note that we have skipped

over some details here: first, that the construction of the operator just requires the commutation
holds with compact support (so that boundary conditions need not be considered initially, whereas
more properly they do) and second that a full treatment requires consideration of the pressure and
incompressibility. Refer to Barkley et al. (2008) and Mao et al. (2013) for more explanation. For
now we quote the result that the incompressible adjoint Navier–Stokes equations may be written
(semi-symbolically)

∂tu
∗ = −

[
I −∇∇−2∇·

]
[−U · ∇+∇U ·]u∗ − Re−1∇2u∗. (2.32)

Owing to the negative sign on the viscous diffusion operator in the above, these equations must
be integrated backward in time. This means that timestepping the equations evolves a terminal
condition u∗(τ) backwards in time, as suggested in figure 2.5. Analogously to the forwards-in-time
state transition operator M we now have the backwards-in-time adjoint operator M∗ where

u∗(0) = M∗(τ)u∗(τ). (2.33)
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Figure 2.5: Applying the adjoint operator M∗(τ) to evolve a final condition backwards in time.

Figure 2.6: Applying the joint operator M(τ)M∗(τ) to evolve an initial condition.

In order to apply the joint operator M∗(τ)M(τ) we have to first evolve the initial condition u′
0

forwards over interval τ with M to arrive at u′
τ , then use the adjoint operator M∗ to evolve the

outcome backwards to t = 0, as sketched in figure 2.6. This amounts to the left-hand-side of (2.29).
Finally we note that more consideration is merited of the argument by which commutation un-

der the space-time inner product (2.31) also allows that in the purely spatial one of (2.27), and
that eigensystem approaches are not the only alternative for computing optimal initial conditions
using timestepping; optimisation-based approaches are also common. Please consult Schmid (2007),
Barkley et al. (2008) and Mao et al. (2013).

2.3.2 Boundary conditions for transient analysis

In simplifying the commutation (2.31), which involves integration by parts, we assume that the
perturbation velocity field (and its adjoint) are zero on all boundaries, and we will need to set this
requirement via wall-type boundary condition specifications on all domain boundaries in our session
files (see § 5.1.1). This is also convenient as we can use the same boundary condition set for both
the forwards and backwards integrations. However, for our analysis to be accurate in open flows, we
need to ensure that the domain is of large enough extent both upstream and downstream in order to
contain the perturbation field in both forwards and backwards integrations. In practice this means
checking that the optimal initial and terminal conditions u′

0 and u′
τ are well contained inside the

domain for all values of τ . See § 2.1 of Blackburn, Barkley and Sherwin (2008).

2.3.3 Base flows for transient analysis

For a transient analysis the base flow’s temporal behaviour is not restricted: it may be steady,
periodic, or take any form provided it can be adequately represented/reconstructed in the solver. If
the base flow is not steady then we also logically need to consider the temporal phase relative to the
base flow at which the disturbance is initiated (see e.g. Blackburn, Sherwin and Barkley; 2008).

2.3.4 Global optima, temporal evolution of disturbance energy

A point to note is that the time horizon τ is a parameter in a transient growth study. For each τ ,
there is a local optimum initial perturbation which gives rise to energy growth G(τ). If the base flow
is asymptotically stable there will be a particular time horizon τopt which produces the global optimal
growth Gmax. For any τ , evolution of each local optimal initial disturbance produces a trajectory of
flow kinetic energy which, when normalised by the initial energy, osculates the envelope G(τ) at time
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Figure 2.7: The concept of global optimal initial disturbance.

τ and lies below it at other times. These concepts are illustrated in figure 2.7. Naturally, attention
is typically focused on the global optimum Gmax.

At large times, evolution of energy is typically dominated by the least stable eigenpair of the
system, either decaying or growing expoenntially in time depending on whether the flow is stable or
unstable.

2.4 Eigensystem solution methods

Our timestepper approach to computing eigenmodes for asymptotic stability or optimal disturbances
for finite-time energy growth in the linearized Navier–Stokes system in both cases depend on iterative
Krylov-based methods which rely on being able to apply an operator repeatedly to an initial condition.
(The simplest algorithm of this kind is the standard ‘power method’ for finding eigenvalues and
eigenvectors.) The great advantage of these techniques is that we do not explicitly need to construct
a matrix which represents the operator— rather difficult in the case of unsteady base flows— instead,
we just have to be able to apply it repeatedly to an initial condition. So we can use a common
’outer loop’ iterative eigensystem solver, with the ’inner loop’ replaced by one of M(τ), M∗(τ),
M∗(τ)M(τ) or M(τ)M∗(τ) depending on the problem of interest.3

A diagram of the simple Arnoldi-type method described in Barkley et al. (2008) is presented in
figure 2.8; this represents the default outer-level operation of dog. Alternatively, one may use the
implicitly restarted Arnoldi method supplied in ARPACK (Lehoucq et al.; 1998) by compiling and
running dog-AR.

2.5 Pros and cons of time-stepper methods for eigensystems

Timestepper based methods are not the only answer for these eigensystem type problems. The other
main option would be to first explicitly construct a matrix representing the operator in question and
then find its eigensystem, something which is not always easy, or affordable. Please see Tuckerman
and Barkley (2000) for more background and other applications.

2.5.1 Strengths

(a) Naturally converges eigenvalues with largest real parts (the ‘most dangerous’ ones) first.
(b) Easy to develop codes starting from unsteady Navier–Stokes solvers.

3Respectively these inner loop operators are applied by issuing the following calls to Dog : M(τ) ⇐⇒ dog (default
mode of operation); M∗(τ) ⇐⇒ dog -a; M∗(τ)M(τ) ⇐⇒ dog -g; M(τ)M∗(τ) ⇐⇒ dog -s.
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Figure 2.8: Outer-level iteration for solving an eigenvalue problem via timestepping. See § 3.2 of
Barkley et al. (2008) for more detail.

(c) Not memory intensive.
(d) Works even when it is not conceptually simple to create a matrix representing the operator in

question (e.g. Floquet problems).

2.5.2 Weaknesses

(a) Typically can only solve for a comparatively limited number of modes.
(b) For optimal growth, each time horizon τ requires a new solution from scratch.
(c) Not simple to apply when shifting is required. See Gomez et al. (2015) for further discussion.
(d) No way to extract the operator L if it is required for other analyses.
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Chapter 3

Stability analysis of steady flows

It is assumed that you already have some familiarity with Semtex. The DNS tool from Semtex, dns,
is typically (though as you will find out in the first example, not always) used to generate the base
flows on which analysis is performed.

3.1 Two-dimensional stability of Poiseuille channel flow 1

The two-dimensional parabolic-profile flow in a parallel channel becomes linearly unstable to Tollmein–
Schlichting waves at Re = 5772 (Orszag; 1971). This is a 1D2C base flow that has 2D2C instability
modes. For Re = 7500 and at streamwise wavenumber α = 1 (i.e. a wavelength of 2π) based on
the centreline velocity and semi-channel width, Canuto et al. (1988, § 1.4) supply estimates of the
eigenvalue λ = 0.00223497 + i0.24989154 (the temporal growth rate is the first of these values
and the second is the temporal circular frequency). This is a rather simple problem because the
domain is rectangular, the base flow is analytic, and also the eigenmode is 2D2C—two-dimensional
and two-component. (While a global stability analysis is overkill for this problem, it certainly is
straightforward.)

First, we’ll make a session file. Since the domain is rectangular, we can use the Semtex rectmesh

utility, which makes a start-up session file that we can edit to create a workable session file for our
problem. Below is the rectmesh input file (made with a text editor) that we’ll call channel.rect.
The format is: list of x-locations; blank line; list of y-locations. Don’t worry that the length is
initially ∆x = 2 rather than 2π; we will fix that by editing the session file that we produce.

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-1

-0.8

-0.5

0

0.5

0.8

1

1Input files for this example are supplied in dog/testcases/Steady/channel.
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Next we create our session file:

[mec-aquila]$ rectmesh channel.rect > channel

Edit the resulting session file to produce:

<TOKENS>

X_SCALE = PI

N_SLICE = 1

N_BASE = 2

N_TIME = 2

N_P = 11

N_STEP = 200

D_T = 0.005

Re_D = 7500

KINVIS = 1/Re_D

IO_HIS = 20

IO_FLD = 1000

IO_CFL = 20

</TOKENS>

<FIELDS NUMBER=3>

u v p

</FIELDS>

<GROUPS NUMBER=1>

1 w wall

</GROUPS>

<BCS NUMBER=1>

1 w 3

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<H> p </H>

</BCS>

<USER>

u = 1-y*y

v = 0.

p = 0.

</USER>

<NODES NUMBER=63>

1 -1 -1 0

2 -0.75 -1 0

..

..

62 0.75 1 0

63 1 1 0

</NODES>

<ELEMENTS NUMBER=48>

1 <Q> 1 2 11 10 </Q>

2 <Q> 2 3 12 11 </Q>

..

..
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Figure 3.1: Spectral element mesh (with element numbers) for Poiseuille flow in a channel.

47 <Q> 52 53 62 61 </Q>

48 <Q> 53 54 63 62 </Q>

</ELEMENTS>

<SURFACES NUMBER=22>

1 1 1 <B> w </B>

..

..

8 8 1 <B> w </B>

9 41 3 <B> w </B>

..

..

16 48 3 <B> w </B>

17 8 2 <P> 1 4 </P>

..

..

22 48 2 <P> 41 4 </P>

</SURFACES>

(Note that various repetitious lines have been deleted from the above listing.) The spectral element
mesh (as obtained from the session file using the meshpr utility) is shown in figure 3.1.

3.1.1 TOKENS section

Let us first examine the TOKENS used. Setting X_SCALE=PI is used to expand the overall length of
the domain to 2π (this scaling is not specific to Dog, but is a normal part of Semtex). The next two
tokens are, however, specific to Dog : N_SLICE=1 says that there will be only a single time-slice in the
base flow file (the base flow is steady in time), while N_BASE=2 stipulates that the base flow should
only have two velocity components (x and y components u and v). Setting N_TIME=2 stipulates
2nd-order accurate time stepping (this could be omitted since it is the default value, but you may
occasionally want to use N_TIME=1 or N_TIME=3). N_P=11 will give 11 mesh points along the side
of each quadrilateral element so that the element shape functions will be tensor products of 10th-
order GLL-Lagrange interpolants. N_STEP=200 and D_T=0.005 together mean that the time-step is
∆t = 0.005 and 200 steps are taken for each integration of the linearised Navier–Stokes equations
over an interval τ = 1 between Arnoldi updates. Both these values (time step and interval between
updates) ultimately need to be chosen on the basis of trial and error—at least, that is the case for a
steady flow stability analysis: for a time-periodic base flow the interval is pre-determined and only the
time-step needs to be set. Re_D=7500 and KINVIS=1/Re_D are used to set the kinematic viscosity:
we could have directly set KINVIS=0.0001333333333 but here we see the built-in function parser
used to set the value (token Re_D is not otherwise significant to the solver).
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3.1.2 FIELDS section

This is used to tell the solver that 3 fields will be be used and they are two velocity components u and
v along with pressure p. NB: the pressure is not normally considered to be part of the eigensystem
and further that the pressure variable contained in the session.eigX file is normally unreliable
(BUT one can force it to be included using the -p command-line option to dog). Also note that
the NUMBER of fields must be specified in the section header (this is not required in normal Semtex
usage).

3.1.3 GROUPS and BCS sections

Standard Semtex usage. Read that user guide!

3.1.4 USER section

While again this is standard Semtex usage, we note that in the present case we will be using this
section along with the standard utility compare in order to generate our base flow. Again observe
the implied use of the built-in function parser to deal with the string u = 1-y*y and that coordinate
y (along with x and t) is known to the parser.

3.1.5 NODES, ELEMENTS and SURFACES sections

Standard Semtex. However, note the use of <P> in the SURFACES section to declare periodic edges.
This is typically appropriate for problems which have a homogeneous direction (and which could just
as well be tackled by a non-global approach).

3.1.6 Base flow generation

Normally we would have to use dns to generate a steady base flow (typically by integrating to
reach the asymptotically steady state, a task which might well require its own session file and time
stepping). In the present case, though, have an analytic base flow declared in our session file and
can use the compare utility to parse the strings in the USER section.

[mec-aquila]$ compare channel > channel.bse

This creates a base flow with u = 1− y2, v = 0 and p = 0 (the pressure is not used and could in
fact be omitted).

3.1.7 Running dog

Now we are ready. I’ll assume commands from Dog (like all the Semtex commands we’ve used to
this point) will be found in your PATH.

[mec-aquila]$ dog -k 16 -n 1 -m 500 -t 1e-6 channel > /dev/null &

The command line arguments above have the following significance: -k 16; set the Krylov di-
mension to 16, -n 1; stop after one eigenvalue is converged to the requested tolerance, -m 500;
iterate for a maximum of 500 iterations, -t 1e-6; carry on converging until the residual for the
highest-numbered eigenvalue requested (here just one) falls below this tolerance value (multiplied
by the growth magnitude).

The first time you run dog you might not want to suppress the standard output as we have done
here in order to ensure everything is running correctly. However, the usage above is generally standard
since it allows the user to monitor convergence of the eigensystem solver by running tail on the
session.evl file.

[mec-aquila]$ tail -f channel.evl
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This will show us updates to the end of the eigenvalue file. After a number of iterations the
solution terminates with

-- Iteration = 265, H(k+1, k) = 0.894358

EV Magnitude Angle Growth Frequency Residual

0 1.0022e+00 2.4989e-01 2.2358e-03 2.4989e-01 9.7943e-07

1 1.0022e+00 -2.4989e-01 2.2358e-03 -2.4989e-01 9.7943e-07

2 9.6002e-01 9.5902e-01 -4.0801e-02 9.5902e-01 1.6653e-03

3 9.6002e-01 -9.5902e-01 -4.0801e-02 -9.5902e-01 1.6653e-03

4 9.9859e-01 0.0000e+00 -1.4078e-03 0.0000e+00 5.2856e-03

5 9.9644e-01 0.0000e+00 -3.5696e-03 0.0000e+00 1.4456e-02

6 9.4387e-01 1.9403e+00 -5.7764e-02 1.9403e+00 3.7580e-02

7 9.4387e-01 -1.9403e+00 -5.7764e-02 -1.9403e+00 3.7580e-02

8 9.8493e-01 0.0000e+00 -1.5188e-02 0.0000e+00 4.1501e-02

9 9.2051e-01 2.9086e+00 -8.2826e-02 2.9086e+00 2.3085e-01

10 9.2051e-01 -2.9086e+00 -8.2826e-02 -2.9086e+00 2.3085e-01

11 8.9517e-01 1.6337e+00 -1.1075e-01 1.6337e+00 3.5807e-01

12 8.9517e-01 -1.6337e+00 -1.1075e-01 -1.6337e+00 3.5807e-01

13 7.6534e-01 2.2901e+00 -2.6743e-01 2.2901e+00 7.4006e-01

14 7.6534e-01 -2.2901e+00 -2.6743e-01 -2.2901e+00 7.4006e-01

15 2.8354e-01 3.1416e+00 -1.2604e+00 3.1416e+00 8.3424e-01

dog: converged, writing 1 eigenvectors.

3.1.8 Examining the outputs

You should find that file channel.eig.0 now exists: this is the leading eigenvector (not written out
unless convergence is obtained): we only get one because only one was requested (-n 1). In fact
since the leading eigenvalue is complex, we could have converged both the leading eigenvector and
its ‘complex conjugate’ which in this case will be real-valued, just like the leading eigenvector, but
phase-shifted a quarter-period in time, i.e. translated along the channel. We will return to that point
below.

Let us examine the significance of the listing above from channel.evl. The first point is that
265 iterations were required for convergence, largely reflecting the fact that there is not a great deal
of separation of the magnitudes of the leading eigenvalues, as an inspection of the less-converged
values indicates. The EV column refers to the eigenvalue index (starting at 0), of which there are
16 reported values corresponding to the Krylov dimension requested on the command line (-k 16).
The Magnitude and Angle columns are for the (estimated) eigenvalues µj of the state transition
operator M(τ) (see 2.12), while the Growth and Frequency columns are the real and imaginary
parts of the eigenvalues λj of L as derived from µj via (2.18). We note that (since τ = 1) the
Angle and Frequency values are identical, while the Growth and Magnitude values are related by
λr,j = ln(|µj |)/τ (in fact, owing to rounding, it is better here to confirm that |µj | = exp(τλr,j)).
Finally, the Residual column. The value reported is the Arnoldi-method residual value ε as described
on page 1449 of Barkley et al. (2008), but there is a slight change to the methodology: convergence
is deemed to have occurred when εjµj < tol. for all the eigenvalue estimates requested, where tol.
is the value specified on the command line via the -t argument (default value tol. = 1× 10−6). In
the present case that means convergence would have been obtained on the first eigenvalue estimate
once the residual was below 1.0022× 10−6.

Now we have explained the significance of these values, we may remark on the satisfactory
agreement between the leading eigenvalue reported in Canuto et al. (1988) (λ = 0.00223497 +
i0.24989154) and what we computed (λ = 0.0022358+i0.24989). Without some (advisable) further
checking on convergence of our results it is difficult to conclude which is more accurate, but we can
accept that the values are the same to ‘plotting’ accuracy, at least.

Before going on, let us re-run the previous analysis but ask for the two leading eigenvectors
(-n 2). Nothing much changes, except that at the end of channel.evl Dog will report ‘writing
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(a) (b)

Figure 3.2: Contour plots of (upper) u′ velocity component and (lower) v′ velocity component of
leading eigenmodes (a) 0 and (b) 1 of Poiseuille channel flow, Re = 7500.

2 eigenvectors’ and now we will have channel.eig.0 and channel.eig.1. The x- and y-
component velocities (u and v) of the two eigenmodes are shown in figure 3.2. Note their periodicity
in the streamwise (x) direction.

Generate a Tecplot input file (can also be read by Paraview) like this:

[mec-aquila]$ meshpr channel | sem2tec channel.eig.0

which should create channel.eig.0.plt.
The eigenmodes have a wavy structure which is appropriate since they represent a Tollmein–

Schlichting type instability; the mode shapes are representative of an array of counter-rotating rolls
which propagate streamwise. It is worth pointing out that, like all eigenmodes, the choice of sign
is arbitrary (the sign affects both velocity components at once), so one could swap red and blue
contours and still have valid eigenmodes. Also the scaling of the modes is arbitrary. We observe
that a definite spatial phase relationship exists between modes 0 and 1: the anti-nodes of mode 1
interleave those of mode 0, or equivalently there is a quarter-wavelength phase shift between them
(much like the relationship between sine and cosine functions). Since the corresponding eigenvalues
were a complex-conjugate pair, the (real) eigenmodes have to have this relationship in order to
ensure that the propagating wave corresponding to the mode could be reconstructed with an arbitrary
phase/spatial location.

We can say how fast the waves propagate down the channel. Since the wavelength is (the length of
the domain) 2π and the oscillation period at every point in the flow is T = 2π/0.22489 = 25.1438,
we conclude that the propagation speed of the waves is 0.22489. Hence if we take one of the
eigenmodes as an initial condition and evolve it using the linearized Navier–Stokes equations for T/2
we should find it has increased slightly in magnitude and travelled half the length of the domain. We
could check this using the lns utility. First we edit the TOKENS as follows:

<TOKENS>

..

..

N_STEP = 200

D_T = 0.005

omega = 0.24989

period = TWOPI/omega

tevolv = 0.5 * period

N_STEP = 2500

D_T = tevolv/N_STEP

Re_D = 7500

KINVIS = 1/Re_D

..
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..

</TOKENS>

(Note that the final definitions of tokens N_STEP and D_T over-ride earlier ones. We chose N_STEP
such that the value of D_T is quite similar to what we earlier used, 0.005.) Next we link the first
eigenmodes to serve as a restart file

[mec-aquila]$ ln -s channel.eig.0 channel.rst

run lns:

[mec-aquila]$ lns channel > /dev/null

and finally we can examine the output (channel.fld) to verify that it looks much the same as the
initial condition, but, as we expect, translated a length π in the x direction (same shapes, signs
inverted). We leave this as ‘an exercise for the reader’.

3.2 Steady two-dimensional flow past a circular cylinder 2

This section deals with the onset of two-dimensional vortex shedding in flow past a circular cylinder.
The base flow is 2D2C, as are the eigenmodes. Unlike the channel flow of the last section, this is
a case where a global stability analysis is effectively the only option, and now we have to compute
the base flow prior to stability analysis, since it is not available as an analytical function. We
will attempt to estimate the critical Reynolds and Strouhal numbers. The first credible numerical
study of the problem was by Jackson (1987); more recently, Kumar and Mittal (2006) detailed
blockage dependence of critical values. From those studies (and numerous experiments), we expect
Rec = UD/ν ≈ 46 and Stc = fD/U ≈ 0.125 where U is the background base-flow speed, D is
cylinder diameter, f = ω/2π is frequency, ν is kinematic viscosity.

Another new consideration is that, very typical of flow stability analyses, the instability breaks a
symmetry of the base flow, which here is a reflection symmetry in the x-axis:

(u, v)(x, y) = (u,−v)(x,−y). (3.1)

This gives us a problem, because we will be computing the base flow using time-integration of the
unsteady Navier–Stokes equations. Above Rec, the flow is unstable, and so unless we take special
action, the base flows computed on a full domain will become time-periodic. There are a few ways
to circumvent this problem: use a Newton (or other) method to solve the steady Navier–Stokes
equations (Tuckerman and Barkley; 2000; Blackburn; 2002), use selective frequency damping (SFD)
approach to force a steady state (Åkervik et al.; 2006); or control symmetry by using appropriate
boundary conditions with a semi-domain. All of these approaches will work and have been used
with Semtex (though Newton and SFD require non-standard code extensions), but the semi-domain
approach is simplest and arguably fastest. The spectral element mesh we will use for this study is
shown in figure 3.3; lengths are given in terms of the cylinder diameter D.

3.2.1 Base flow

A session file for computing the base flow is supplied as semicyl02-base. We will discuss the
following sections from that file:

<TOKENS>

Re = 50.0

KINVIS = 1.0/Re

U = 1.0

T_FINAL = 500

2Input files for this example are supplied in dog/testcases/Steady/cylinder.
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Figure 3.3: A semi-domain spectral element mesh for flow past a circular cylinder, with 268 elements.

D_T = 0.01

N_STEP = int(T_FINAL/D_T)

N_P = 6

</TOKENS>

<FIELDS NUMBER=3>

u v p

</FIELDS>

<GROUPS NUMBER=4>

1 v velocity

2 w wall

3 o exit

4 s symmetry

</GROUPS>

<BCS NUMBER=4>

1 v 3

<D> u = U </D>

<D> v = 0.0 </D>

<H> p </H>

2 w 3

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<H> p </H>

3 o 3

<N> u = 0.0 </N>

<N> v = 0.0 </N>

<D> p = 0.0 </D>

3 s 3

<N> u = 0.0 </N>

<D> v = 0.0 </D>

<N> p = 0.0 </N>

</BCS>

In the TOKENS section we set the kinematic viscosity to give a Reynolds number of 50 (we plan
to bracket the critical Reynolds number and will carry our analyses at both Re = 40 and Re = 50).
The base flow speed is set as U=1; this value will be used to set the inflow boundary velocity. We will
timestep the base flow for 50 time units from a zero IC (the default) and consider it to be steady, but
in a rigorous study we should be checking that it really is steady (e.g. by examining history point
data). We have set N_P=6; again, this is a reasonable guess but really demands a resolution check.

The selection of boundary conditions mostly follows standard Semtex usage; a prescribed far-field
velocity (u, v) = (U, 0) with a ‘high-order’ computed Neumann condition on pressure, a zero-slip
wall boundary, an ‘approximate zero stress’ outflow boundary with ∂u/∂n = ∂v/∂n = p = 0. The
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Figure 3.4: Base flow past a circular cylinder computed on a semi-domain. Contours of U at Re = 50.

‘symmetry’ (or free-slip/zero-penetration) boundary used on the x-axis has ∂u/∂n = v = ∂p/∂n = 0
to ensure that the base flows have reflection symmetry (U, V )(x, y) = (U,−V )(x,−y). Note that
we will later change this boundary condition in the session file for the stability analysis in order to
ensure that the eigenmodes do break symmetry (and are anti-symmetric).

We run dns to generate the base flow for Re = 50:

[mec-aquila]$ dns semicyl02-base > /dev/null

The resulting contours of U are shown in figure 3.4. While we will not go into detail, we also compute
the base flow for Re = 40 (make a copy of the base flow output .fld file, say to Re50.bse, edit
semicyl02-base to set Re=40; re-run, copy the new .fld file to Re40.bse). Now we are in a
position to carry out our stability analysis.

3.2.2 Stability analysis

First we will look at the section from the stability analysis session file that differ from the base flow
session file. That basically amounts to adding/changing some TOKENS and altering the BCs.

<TOKENS>

Re = 50.0

KINVIS = 1.0/Re

U = 0.0

N_BASE = 2

N_SLICE = 1

D_T = 0.01

T_FINAL = 2.0

N_STEP = int(T_FINAL/D_T)

N_P = 6

</TOKENS>

<FIELDS NUMBER=3>

u v p

</FIELDS>

<GROUPS NUMBER=4>

1 v velocity

2 w wall

3 o exit

4 s symmetry

</GROUPS>

<BCS NUMBER=4>

1 v 3

<D> u = U </D>
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<D> v = 0.0 </D>

<H> p </H>

2 w 3

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<H> p </H>

3 o 3

<N> u = 0.0 </N>

<N> v = 0.0 </N>

<D> p = 0.0 </D>

3 s 3

<D> u = 0.0 </D>

<N> v = 0.0 </N>

<D> p = 0.0 </D>

</BCS>

In the TOKENS section, note that the Reynolds number (or KINVIS) must be set to match the value
used to compute the base flow—this seems obvious but it is easy to overlook. Also note that the
far-field velocity is now set (via U = 0) to (u′, v′) = (0, 0), which is appropriate since we expect the
domain to be large enough to contain the perturbation at the far-field boundaries. Again it is easy
to overlook making this change, since the stability analysis session file is typically based on that for
the base flow. As for the channel flow example of § 3.1 we declare that the base flow is steady and
has two velocity components with N_BASE=2 and N_SLICE=1. It is typical (although not mandatory)
to use the same time step, D_T, for the stability analysis as was used for computing the base flow.
Choosing T_FINAL=2.0 effectively sets τ = 2, a value that is large enough to allow a reasonable
amount of evolution to occur between Arnoldi eigensystem estimates; very often for steady flows,
this seems to be a few hundred time steps (if a few hundred does not produce converged values,
this is one of the solution parameters you can try adjusting). Note that T_FINAL is not significant
to the solver: we use it here as a convenient intermediate value for computing N_STEP (which is).
Unsurprisingly, N_P=6 matches what was used for the base flow computation.

The only other significant modification is to the BCS section, where we have inverted the choice
of boundary conditions on the ‘symmetry’ axis: u′ = ∂v′/∂n = p′ = 0 (which is an anti-symmetry
boundary condition set—we have been lazy and re-used the string symmetry for the associated
GROUP; this name is not significant to the solver). This choice ensures that the eigenmodes will
break the symmetry of the base flow so that we would have (u′v′)(x, y) = (−u, v)(x,−y).

Now we are ready to run our analysis. We know that the leading eigenmode will be oscillatory in
time, so we will ask for a pair of eigenmodes to be converged:

[mec-aquila]$ ln -sf Re50.bse semicyl02.bse; \

dog -k 10 -n 2 -m 100 semicyl02 > /dev/null &

tail -f semicyl02.evl

which should terminate with

-- Iteration = 40, H(k+1, k) = 0.372848

EV Magnitude Angle Growth Frequency Residual

0 1.0363e+00 1.5723e+00 1.7829e-02 7.8615e-01 8.0960e-07

1 1.0363e+00 -1.5723e+00 1.7829e-02 -7.8615e-01 8.0960e-07

2 7.7719e-01 1.6160e+00 -1.2603e-01 8.0802e-01 2.8681e-03

3 7.7719e-01 -1.6160e+00 -1.2603e-01 -8.0802e-01 2.8681e-03

4 7.2392e-01 1.3032e+00 -1.6154e-01 6.5161e-01 4.4083e-03

5 7.2392e-01 -1.3032e+00 -1.6154e-01 -6.5161e-01 4.4083e-03

6 5.6536e-01 1.6974e+00 -2.8514e-01 8.4869e-01 1.7239e-02

7 5.6536e-01 -1.6974e+00 -2.8514e-01 -8.4869e-01 1.7239e-02

8 4.8698e-01 9.3618e-01 -3.5976e-01 4.6809e-01 5.0381e-02

9 4.8698e-01 -9.3618e-01 -3.5976e-01 -4.6809e-01 5.0381e-02

dog: converged, writing 2 eigenvectors.
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(a) (b)

Figure 3.5: Contour plots of (upper) u′ velocity component and (lower) v′ velocity component of
leading eigenmodes (a) 0 and (b) 1 of two-dimensional flow past a circular cylinder at Re = 50.

As we expected at Re = 50, the base flow is unstable since the growth rate of the leading eigenmode
is positive, and it occurs with a complex-conjugate pair eigenvalue and associated (real) eigenmode.
The velocity components of this pair of leading eigenmodes is shown in figure 3.5. Observe that
the velocity components satisfy the boundary conditions requested along the x-axis, and that (as
was the case for channel flow) these first two eigenmodes interleave one another in space, allowing
us to reconstruct a perturbation at any phase we require by linearly combining the two modes with
appropriate (sine/cosine) weighting.

We go ahead and re-run the analysis for Re = 40 (remembering to edit the session file appropri-
ately), resulting in

-- Iteration = 46, H(k+1, k) = 0.55706

EV Magnitude Angle Growth Frequency Residual

0 9.4477e-01 1.5391e+00 -2.8406e-02 7.6953e-01 6.5654e-07

1 9.4477e-01 -1.5391e+00 -2.8406e-02 -7.6953e-01 6.5654e-07

2 7.2675e-01 1.6334e+00 -1.5959e-01 8.1669e-01 2.9849e-03

3 7.2675e-01 -1.6334e+00 -1.5959e-01 -8.1669e-01 2.9849e-03

4 7.4011e-01 1.3563e+00 -1.5048e-01 6.7816e-01 4.0655e-03

5 7.4011e-01 -1.3563e+00 -1.5048e-01 -6.7816e-01 4.0655e-03

6 6.6511e-01 1.1237e+00 -2.0390e-01 5.6186e-01 1.6093e-02

7 6.6511e-01 -1.1237e+00 -2.0390e-01 -5.6186e-01 1.6093e-02

8 6.1827e-01 4.0307e-01 -2.4041e-01 2.0153e-01 3.0627e-01

9 6.1827e-01 -4.0307e-01 -2.4041e-01 -2.0153e-01 3.0627e-01

dog: converged, writing 2 eigenvectors.

We see that the flow at Re = 40 is stable, as expected.
By linear interpolation (which is probably less than adequate given the large spread in Re) we can

estimate Rec = 46.144, at which value the interpolated circular frequency is ω = 0.77974, so that
the critical Strouhal number estimate is Stc = (2π)−10.77974 = 0.12410. These values are in quite
good agreement with those provided by Jackson (1987) (Rec = 46.184, Stc = 0.1384) and Kumar
and Mittal (2006) (Rec = 47.786, Stc = 0.12441 at the present blockage ratio of 1/20). Possible
sources of discrepancy: effect of coarse linear interpolation for critical values (try another solution
closer to critical Re); comparatively large blockage ratio of our domain (see Kumar and Mittal; 2006,
regarding sensitivity); base flows not converged to steady state (run them longer); lack of resolution;
small errors in the cited studies.

3.3 Steady two-dimensional flow in a stenosed tube 3

A stenosis is a partial blockage or localised contraction in an otherwise parallel walled geometry.
The basic geometry is tubular and so we solve this problem using cylindrical coordinates. The base

3Input files for this example are supplied in dog/testcases/Steady/stenosis.
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Figure 3.6: Spectral element mesh of the meridional semiplane for flow in a stenosed tube.

flow is 2D2C, steady in time in this case, and the least stable eigenmodes are 3D3C, occurring in
aziumuthal wavenumber k = 1, see Sherwin and Blackburn (2005). This mode shape promotes
attachment of the jet which issues from the stenosis throat to the wall of the tube downstream.
With the contraction geometry we will consider, Rec = 722 (based on upstream pipe diameter D
and area-averaged flow speed ūm), but we will here study a stable case at Re = 500, for which
resolution and domain extent requirements are less, speeding up our analysis. According to the inset
of figure 5, Sherwin and Blackburn (2005), the leading eigenvalue is real and negative, λ ≈ 0.053.

3.3.1 Geometry and base flow

The solution domain geometry is shown in figure 3.6. As is standard for cylindrical coordinate system
solutions, the geometry is represented in the ‘meridional semiplane’ and in this case the lower bound
is the axis of the coordinate system.

The session file for the base flow, stenosis-base, is given below. Note that the outer boundary
near the stenosis is a smooth curve which is represented as a spline through points given in a separate
file, specified in the CURVES section (see § 3.2.1 of the Semtex user guide).

<TOKENS>

CYLINDRICAL = 1

KINVIS = 1/500

D_T = 0.001

T_MAX = 500

N_STEP = int(T_MAX/D_T)

N_P = 7

BETA = 1

</TOKENS>

<FIELDS NUMBER=3>

u v p

</FIELDS>

<GROUPS NUMBER=4>

1 w wall

2 v velocity

3 o exit

4 a axis

</GROUPS>

<BCS NUMBER=4>

1 w 3

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<H> p </H>

2 v 3

<D> u = 2*(1-4*y^2) </D>

<D> v = 0.0 </D>

<H> p </H>
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3 o 3

<N> u = 0.0 </N>

<N> v = 0.0 </N>

<D> p = 0.0 </D>

4 a 3

<A> u </A>

<A> v </A>

<A> p </A>

</BCS>

<HISTORY NUMBER=3>

1 6 0.45 0

2 10 0.45 0

3 19 0.45 0

</HISTORY>

<NODES NUMBER=184>

1 0.000000 0.000000 0.000000

2 1.000000 0.000000 0.000000

3 2.000000 0.000000 0.000000

..

..

184 20.000000 0.500000 0.000000

</NODES>

<ELEMENTS NUMBER=135>

1 <Q> 1 2 48 47 </Q>

2 <Q> 2 3 49 48 </Q>

3 <Q> 3 4 50 49 </Q>

..

..

135 <Q> 137 138 184 183 </Q>

</ELEMENTS>

<SURFACES NUMBER=96>

1 1 1 <B> a </B>

2 2 1 <B> a </B>

3 3 1 <B> a </B>

..

..

45 45 1 <B> a </B>

46 45 2 <B> o </B>

47 90 2 <B> o </B>

48 135 2 <B> o </B>

49 135 3 <B> w </B>

50 134 3 <B> w </B>

51 133 3 <B> w </B>

..

..

93 91 3 <B> w </B>

94 91 4 <B> v </B>

95 46 4 <B> v </B>

96 1 4 <B> v </B>

</SURFACES>
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Figure 3.7: Time series from three base flow history points in the simulation of the steady flow in
a stenotic geometry. We note that two of the points are within the recirculation zone, and one is
outside. There seem to be no significant dynamics after t ≈ 10 and we will accept the final flow as
being close to its steady state outcome.

<CURVES NUMBER=8>

1 96 3 <SPLINE> stenosis-upper.geom </SPLINE>

2 97 3 <SPLINE> stenosis-upper.geom </SPLINE>

3 98 3 <SPLINE> stenosis-upper.geom </SPLINE>

..

..

8 103 3 <SPLINE> stenosis-upper.geom </SPLINE>

</CURVES>

We have chosen to run the base flow for 500 time units, and have made a set of history points
located near the recirculation zone to check that the base flow is steady. The timeseries from these
points, available in stenosis-base.his after running dns, are shown in figure 3.7. While a finer-
scale examination is advisable, we’ll accept that the base flow is likely to be close to the asymptotic
steady state at the end of this simulation.

3.3.2 Stability analysis

Again we modify the base flow session file in order to produce one for stability analysis, which we
will call stenosis. The significant differences between this and the base flow session file are shown
below.

<TOKENS>

N_BASE = 2

N_SLICE = 1

CYLINDRICAL = 1

N_Z = 1

BETA = 1

KINVIS = 1/500

D_T = 0.001
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T_MAX = 0.5

N_STEP = int(T_MAX/D_T)

N_P = 7

</TOKENS>

<FIELDS NUMBER=4>

u v w p

</FIELDS>

<BCS NUMBER=4>

1 w 4

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<D> w = 0.0 </D>

<H> p </H>

2 v 4

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<D> w = 0.0 </D>

<H> p </H>

3 o 4

<N> u = 0.0 </N>

<N> v = 0.0 </N>

<N> w = 0.0 </N>

<D> p = 0.0 </D>

4 a 4

<A> u </A>

<A> v </A>

<A> w </A>

<A> p </A>

</BCS>

In the TOKENS section we have added N_BASE=2 and N_SLICE=1 as befits a steady, two-compo-
nent base flow. We are carrying out the analysis in azimuthal wavenumber k ≡ β = 1 and have
set this with BETA=1. The instability mode is of ‘half-complex’ type, with the restricted symmetry
u′ = û′ cos(kθ), v′ = v̂′ cos(kθ), w′ = −û′ sin(kθ), p′ = p̂′ cos(kθ), so that we only need N_Z=1. The
integration time τ = 0.5 is set with T_MAX=0.5 and N_STEP=int(T_MAX/D_T).

In the FIELDS section there are now a total of four fields (recall that there were only three for the
base flow), the first three of which are velocity components. Since we have set BETA=1 as well, we
will have 3D3C eigenmodes.

In the BCS section, first note that we have to add a condition to each subsection for the new
velocity component, w, that was not present in the base flow. Second, observe that at the inflow
(the second, v-tagged subsection, we have set the perturbation field to zero.

Now we are ready to run the stability analysis:

[mec-aquila]$ ln -sf stenosis-base.fld stenosis.bse; \

dog -k 8 -n 1 -m 100 -t 1e-8 stenosis > /dev/null &

tail -f stenosis.evl

which should terminate with

-- Iteration = 71, H(k+1, k) = 0.345441

EV Magnitude Angle Growth Frequency Residual

0 9.7370e-01 0.0000e+00 -5.3306e-02 0.0000e+00 8.6888e-09

1 7.6511e-01 1.6542e-01 -5.3546e-01 3.3083e-01 8.1313e-04

2 7.6511e-01 -1.6542e-01 -5.3546e-01 -3.3083e-01 8.1313e-04

3 5.3337e-01 7.0926e-01 -1.2571e+00 1.4185e+00 2.0783e-02
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Figure 3.8: DNS study of growth rate for an unstable steady stenotic flow at Re = 750, see Sherwin
and Blackburn (2005) and the discussion in § 3.4 of the present work.

4 5.3337e-01 -7.0926e-01 -1.2571e+00 -1.4185e+00 2.0783e-02

5 7.4996e-01 1.7543e+00 -5.7548e-01 3.5086e+00 6.7510e-02

6 7.4996e-01 -1.7543e+00 -5.7548e-01 -3.5086e+00 6.7510e-02

7 5.9257e-01 0.0000e+00 -1.0466e+00 0.0000e+00 1.3208e-01

dog: converged, writing 1 eigenvectors.

We see that the leading eigenvalue is real and stable; λ0 = −5.3306× 10−2, close the value we had
expected.

3.4 Cross-check: growth rates via DNS

A good test of stability analysis is that the weakly nonlinear evolution of a DNS study restarted
using a linear combination of the base flow and a small amount of the eigenmode exhibits the same
disturbance growth rate as predicted by linear stability analysis. The restart condition can be obtained
using Dog ’s combine utility, which produces a physical-space restart file from a base flow and an
eigenmode. The number of z-planes in the restart file outcome is the minimal number required to
contain both modes in physical space. Typically, for a three-dimensional disturbance, this number
of planes is four, and in order to produce something more suitable for use with dns you will need to
project out to a greater number using Semtex ’s project utility. For example:

$ combine -r 1-e7 stenosis.bse stenosis.eig.0 | project -z 64 > stenosis.rst

One can then check the growth of energy in the disturbance E′ as obtained using DNS. Since
energy is the square of velocity, this growth rate should be very close to twice the value of the leading
eigenmode. See for example the discussion in § 5.3 of Sherwin and Blackburn (2005), and a version
of figure 6 from that work, reproduced here as figure 3.8. The growth rate of the disturbance can be
related to the eigenvalue through

σest =
1

2
ln

dE′

dt
=

1

2E′
dE′

dt
≈ ∆ ln(E′)

2∆t
. (3.2)

At moderately early times (while the disturbance growth is still clearly exponential) the value ob-
tained via the finite difference estimate should be quite similar to the leading eigenvalue. In the
example shown in figure 3.8, where the disturbance is three-dimensional, the disturbance energy E′

is dominated by Ek=1 at early times.
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Chapter 4

Stability analysis of time-periodic flows

A few new issues arise in dealing with temporal Floquet analysis: (a) the base flow must be periodic
and (b) we must provide enough time-slices of it for an adequate reconstruction to be possible. In
order to check periodicity, one can examine phase-space plots of velocity components in order to
ensure they have closed to make limit cycles, but also it is advisable to check that the frequency of
oscillation has in fact converged to the same value at different history points. We note that DFT-
based Fourier analysis is generally NOT a good choice for checking the base flow frequency at different
points and that tools based in the time domain (e.g. zero-crossing analysis, see chapter 8 of Newland;
1993) are to be preferred. As to the number of time-slices required for accurate reconstruction, a
convergence analysis is really the only option. Also I suggest you read the caveats issued in § 4.1 of
Barkley et al. (2008).

4.1 Time-periodic flow past a circular cylinder 1

Here we deal with Floquet analysis of a two-dimensional time-periodic flow past a circular cylinder,
studied in detail by Barkley and Henderson (1996). We will examine near-critical behaviour for
Mode A, which Barkley and Henderson report has Rec = 188.5 at βc = 1.585. They used 32
time-slices per base flow period for their Fourier-based reconstruction of the base flow.

4.1.1 Geometry and base flow

The mesh developed for the problem is shown in figure 4.1. It has 218 elements, an inflow length
Li = 15D, outflow length Lo = 25D and semi-width Lh = 20, all of which are comparable to the
production geometry M2 used by Barkley and Henderson (1996), though their cross-flow blockage
was somewhat lower since they had Lh = 22D.

The session file (m32-base) used to compute the base flow is shown below. Some of the TOKENS
correspond to our initial guesses, a point we will return to below.

<TOKENS>

PERIOD = 5.0

STEP_PER = 1024

N_STEP = 200*STEP_PER

D_T = (PERIOD/STEP_PER)

IO_FLD = STEP_PER/32

CHKPOINT = 1

N_P = 8

Re = 188.5

1Input files for this example are supplied in dog/testcases/Floquet/cylinder.
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Figure 4.1: Spectral element mesh for Floquet analysis of flow past a circular cylinder.

KINVIS = 1/Re

</TOKENS>

<HISTORY NUMBER=3>

1 2.0 0.0 0.0

2 10.0 0.0 0.0

3 20.0 0.0 0.0

</HISTORY>

<FIELDS NUMBER=3>

u v p

</FIELDS>

<GROUPS NUMBER=3>

1 v velocity

2 w wall

3 o exit

</GROUPS>

<BCS NUMBER=3>

1 v 3

<D> u = 1.0 </D>

<D> v = 0.0 </D>

<H> p </H>

2 w 3

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<H> p </H>

3 o 3

<N> u = 0.0 </N>

<N> v = 0.0 </N>
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<D> p = 0.0 </D>

</BCS>

<NODES NUMBER=286>

1 0.5 0 0

2 0.44721 0.22361 0

3 0.32139 0.38302 0

..

..

286 25 -20 0

</NODES>

<ELEMENTS NUMBER=218>

1 <Q> 1 11 12 2 </Q>

2 <Q> 2 12 13 3 </Q>

3 <Q> 3 13 14 4 </Q>

..

..

218 <Q> 278 279 49 277 </Q>

</ELEMENTS>

<SURFACES NUMBER=44>

1 199 3 <B> v </B>

2 201 3 <B> v </B>

3 203 3 <B> v </B>

..

..

22 212 1 <B> v </B>

23 199 2 <B> o </B>

24 183 2 <B> o </B>

25 151 2 <B> o </B>

..

..

34 200 2 <B> o </B>

35 1 4 <B> w </B>

36 2 4 <B> w </B>

37 3 4 <B> w </B>

..

..

44 10 4 <B> w </B>

</SURFACES>

<CURVES NUMBER=50>

1 1 4 <ARC> -0.5 </ARC>

2 2 4 <ARC> -0.5 </ARC>

3 3 4 <ARC> -0.5 </ARC>

..

..

50 30 4 <ARC> -0.9 </ARC>

</CURVES>

Now we set about running and checking the base flow. In the TOKENS section we have guessed the
final oscillation period to be of order 5 time units (based on a Strouhal number of order 0.2, typical
for circular cylinders) and run for 200 periods (total time of 1000 units), hoping the base flow to
become established and periodic in this time span. Note that we have included three history points
at various locations inside the wake.
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(a) (b)

Figure 4.2: (a) History point time series for the first 1000 time units of simulation for circular cylinder
base flow. (b) phase-plane plot of U vs V for final few shedding cycles.

[mec-aquila]$ dns m32-base > /dev/null ; \

save m32-base

(save is a standard Semtex shell script.) Next we visually examine the base flow history time series
for (U, V, P ) and as a phase-plane plot, as shown in figure 4.2. Based on this inspection, it is
tempting to believe that the flow has reached an asymptotic limit-cycle state and is suitable for use
as a base flow. However, let us also check the periods associated with each of the history points (for
which we will use an up-crossing analysis tool, not supplied).

Analysis for V velocity component, history point 1:

[mec-aquila]$ chop -s 1 -S 3 m32-base.his | slit -c 2,4 | upxf -v | tail -4

9.8745e+02 1.9563e-01 1.8661e-01 -8.5490e-01 -7.6585e-01 8.5490e-01 7.6343e-01

9.9256e+02 1.9561e-01 1.8666e-01 -8.5491e-01 -7.6634e-01 8.5487e-01 7.6394e-01

9.9767e+02 1.9559e-01 1.8671e-01 -8.5488e-01 -7.6684e-01 8.5489e-01 7.6444e-01

averages: frequency 1.8671e-01, min -7.6684e-01, max 7.6444e-01

For history point 2:

[mec-aquila]$ chop -s 2 -S 3 m32-base.his | slit -c 2,4 | upxf -v | tail -4

9.8679e+02 1.9557e-01 1.8657e-01 -6.0652e-01 -5.5939e-01 6.0653e-01 5.5733e-01

9.9190e+02 1.9557e-01 1.8662e-01 -6.0653e-01 -5.5966e-01 6.0653e-01 5.5760e-01

9.9701e+02 1.9559e-01 1.8667e-01 -6.0653e-01 -5.5992e-01 6.0652e-01 5.5788e-01

averages: frequency 1.8667e-01, min -5.5992e-01, max 5.5788e-01

For history point 3:

[mec-aquila]$ chop -s 3 -S 3 m32-base.his | slit -c 2,4 | upxf -v | tail -4

9.8803e+02 1.9558e-01 1.9196e-01 -4.6848e-01 -4.2681e-01 4.6849e-01 4.2543e-01

9.9315e+02 1.9558e-01 1.9198e-01 -4.6849e-01 -4.2704e-01 4.6849e-01 4.2567e-01

9.9826e+02 1.9559e-01 1.9200e-01 -4.6849e-01 -4.2727e-01 4.6848e-01 4.2591e-01

averages: frequency 1.9200e-01, min -4.2727e-01, max 4.2591e-01

The relevant features in the above listings are the second columns, which give the frequency
(inverse period) for the final three cycles found at each history point. We can see that despite
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the fact that the phase-plane plots in figure 4.2 seem converged, the frequencies are still slowly
evolving—even though the final values happen to be the same (0.19559). So we will resubmit the
base flow for another 1000 time units.2

After re-running dns we re-make our crossing analysis and find (only reproducing data for the first
point, since the other two are identical):

[mec-aquila]$ dns m32-base > /dev/null; save m32-base

[mec-aquila]$ chop -s 1 -S 3 m32-base.his | slit -c 2,4 | upxf -v | tail -4

2.0099e+03 1.9560e-01 1.9560e-01 -8.5487e-01 -8.5487e-01 8.5487e-01 8.5487e-01

2.0151e+03 1.9560e-01 1.9560e-01 -8.5487e-01 -8.5487e-01 8.5487e-01 8.5487e-01

2.0202e+03 1.9560e-01 1.9560e-01 -8.5487e-01 -8.5487e-01 8.5487e-01 8.5487e-01

averages: frequency 1.9560e-01, min -8.5487e-01, max 8.5487e-01

We find that the frequency has now converged to a value of 0.19560, the same for all history points.
Now we are in a position to compute the time-slices required for the base flow and alter the TOKENS
section accordingly:

<TOKENS>

FREQ = 0.19560

BASE_PERIOD = 1.0/FREQ

STEP_PER = 1024

N_STEP = 1*STEP_PER

D_T = (BASE_PERIOD/STEP_PER)

IO_FLD = STEP_PER/32

CHKPOINT = 0

N_P = 8

Re = 188.5

KINVIS = 1/Re

IO_CFL = 32

IO_HIS = 8

</TOKENS>

The most significant modifications here are used to (a) set the total integration time to one base
flow period (b) ensure that all 32 field dumps are written to the output file (via CHKPOINT=0). Our
time step is very similar to what was chosen for the set-up phases. While we have used the token
BASE_PERIOD here, the name is not significant to dns. The same is true for these other tokens:
FREQ, STEP_PER, Re.

[mec-aquila]$ dns m32-base > /dev/null; ln -s m32-base.fld m32.bse

Here we have linked the outcome so that it will serve as a base flow file for Floquet analysis with
session file m32. We can easily (and should) check the number of field dumps in m32.bse:

[mec-aquila]$ convert m32.bse | grep -c Session

32

4.1.2 Floquet analysis

Below we see an extract from the listing for our Dog session file, m32, showing the parts that differ
from the base flow’s session file. Note that since the base flow is 2D2C and the Floquet modes are
3D3C, we need to add in boundary conditions for the w velocity component. And that since the
conditions are satisfied for a ‘half-complex’ mode, we only need to set N_Z=1.

2This might seem like overkill, but it turns out that a Floquet analysis employing the base flow at this stage of
evolution would be moderately in error. (Try it out for yourself.)
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<FIELDS NUMBER=4>

u v w p

</FIELDS>

<TOKENS>

FREQ = 0.19560

BASE_PERIOD = 1.0/FREQ

STEPS_P = 1024

N_STEP = STEPS_P

D_T = BASE_PERIOD/STEPS_P

N_P = 8

N_Z = 1

N_SLICE = 32

N_BASE = 2

IO_FLD = STEPS_P

IO_HIS = 16

IO_CFL = 20

BETA = 1.585

Re = 188.5

KINVIS = 1.0/Re

</TOKENS>

<BASE_HIST NUMBER=3>

1 2.0 0.0 0.0

2 10.0 0.0 0.0

3 20.0 0.0 0.0

</BASE_HIST>

<GROUPS NUMBER=3>

1 v velocity

2 w wall

3 o exit

</GROUPS>

<BCS NUMBER=3>

1 v 4

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<D> w = 0.0 </D>

<H> p </H>

2 w 4

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<D> w = 0.0 </D>

<H> p </H>

3 o 4

<N> u = 0.0 </N>

<N> v = 0.0 </N>

<N> w = 0.0 </N>

<D> p = 0.0 </D>

</BCS>

The only substantive difference to our usage for steady flows is setting N_SLICE=32, which should
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be the number of time slices present in the base flow (pre-declaring it allows us to allocate storage
prior to parsing the base flow file, but the correspondence is subsequently checked within the code).
Declaration of the base flow period using the token BASE_PERIOD is optional (since this would
otherwise be computed from the base flow file), but including it here enables us to set the time step
D_T such that an integer number of time steps occur each period.

Note the inclusion of (optional) BASE HIST section to monitor base flow reconstruction from time
slices, see § 1.1.4. (In the analysis below, we have not actually examined the m32.bhs file to check
this reconstruction, but it can be a useful diagnostic aid.)

So now we are ready to carry out the analysis.

[mec-aquila]$ dog -k 21 -n 1 -m 200 m32 > /dev/null &

tail -f m32.evl

producing

-- Iteration = 31, H(k+1, k) = 0.493569

EV Magnitude Angle Growth Frequency Residual

0 9.9525e-01 0.0000e+00 -9.3136e-04 0.0000e+00 5.4271e-07

1 6.7921e-01 1.5110e+00 -7.5663e-02 2.9555e-01 1.1243e-01

2 6.7921e-01 -1.5110e+00 -7.5663e-02 -2.9555e-01 1.1243e-01

3 6.5767e-01 2.6597e+00 -8.1967e-02 5.2025e-01 1.1926e-01

4 6.5767e-01 -2.6597e+00 -8.1967e-02 -5.2025e-01 1.1926e-01

..

..

19 5.1720e-01 2.6095e+00 -1.2896e-01 5.1043e-01 3.5197e-01

20 5.1720e-01 -2.6095e+00 -1.2896e-01 -5.1043e-01 3.5197e-01

dog: converged, writing 1 eigenvectors.

Our leading Floquet multiplier estimate is µ0 = 0.99525, slightly lower than µ = 1 predicted by
Barkley and Henderson (1996), but we have employed a slightly different cross-flow domain extent,
and our results may also change slightly as we increase resolution. As they also found, it seems the
next eigenvalue is of complex-conjugate type, giving rise to a quasi-periodic mode (Blackburn and
Lopez; 2003).

4.1.3 Getting a three-dimensional eigenmode into physical space

To get a three-dimensional eigenmode from Fourier space into physical space for viewing, use the
combine utility.3

[mec-aquila]$ combine -b 1.585 -r 0 m32.eig.0 m32.eig.0 | \

project -z 32 > m32_z32.eig.0

In the above, we have also used the Semtex project utility to project the mode out from the
minimum required number of z-planes (4) to 32 in order to get a smoother-looking representation.
Finally we could create a Tecplot input file, like this:

[mec-aquila]$ meshpr -z 32 m32 | sem2tec m32_z32.eig.0

which would produce m32_z32.eig.0.plt. We show an image of the Floquet mode (visualised with
sview) in figure 4.3.

3This utility will also serve to combine a perturbation with a base flow for subsequent evolution via dns. In that
case the first file argument to combine would be (one time slice of) the base flow. Here we just get the mode alone
into physical space for examination, in which case the eigenmode file is used as a dummy input and -r 0 specifies we
are just dealing with the mode.
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Figure 4.3: Leading Floquet mode of the circular cylinder wake at Re = 188.5, visualised as isosur-
faces of spanwise velocity component. (The tool used for visualisation was sview, a package also
distributed with Semtex.)

4.1.4 Cross-check: neutral stability of the autonomous limit cycle

A good cross-check in this case (where the base flow arises as an autonomous non-linear oscillation)
is that in the 2D2C limit, we also obtain a Floquet multiplier µ = 1, as discussed in § 2.2.3. We
could either remake the analysis above with a very small value of β, or make a new Dog session
file where the perturbation is 2D2C, like the base flow. Using the second approach (session file not
detailed), we get this outcome (again based on a Krylov dimension of 21):

-- Iteration = 33, H(k+1, k) = 0.713053

EV Magnitude Angle Growth Frequency Residual

0 9.9649e-01 0.0000e+00 -6.8832e-04 0.0000e+00 9.7717e-07

1 6.3821e-01 0.0000e+00 -8.7842e-02 0.0000e+00 4.2658e-02

..

..

20 1.4306e-01 0.0000e+00 -3.8035e-01 0.0000e+00 6.3940e-01

dog: converged, writing 1 eigenvectors.

Again, our estimate is slightly too low, but lies within 0.4% of the required value.

4.2 Cross-check: growth rates via DNS

More generally, similarly to the discussion in § 3.4, one can check that the predicted Floquet multipliers
match disturbance growth obtained via DNS. See e.g. figure 3 of Henderson and Barkley (1996).
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Chapter 5

Optimal growth analysis

5.1 Steady flow in a backward-facing step geometry 1

We will examine optimal transient growth for flow in a backward-facing step geometry. Our mesh
(shown in figure 5.1 is the same as the production mesh M1 used by Blackburn, Barkley and Sherwin
(2008). We will consider optimal transient growth of 2D2C perturbations at Re = Umaxh/ν = 500
and with time horizon τ = 60, see results in Table 2 of that reference. For polynomial order N = 6,
corresponding to N_P=7, they found optimal growth value G = 62 661.

The base flow file is supplied as bfs12-base. Below we see a partial listing.

# Backward-facing step

# Li = 10

# Lo = 50

# 563 elements

<FIELDS>

u v p

</FIELDS>

<TOKENS>

N_TIME = 2

N_P = 7

T_FINAL = 1450

D_T = 0.005

N_STEP = int(T_FINAL/D_T)

Re = 500

KINVIS = 1.0/Re

IO_CFL = 25

IO_HIS = 10

IO_FLD = 1000

</TOKENS>

1Input files for this example are supplied in dog/testcases/Transient/backstep.

Figure 5.1: Spectral element mesh for the backward-facing step.
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<HISTORY NUMBER=3>

1 5 -0.5 0

2 15 0 0

3 30 0 0

</HISTORY>

<GROUPS NUMBER=3>

1 v value

2 w wall

3 o exit

</GROUPS>

<BCS NUMBER=3>

1 v 3

<D> u = 4.0*y*(1-y) </D>

<D> v = 0.0 </D>

<H> p </H>

2 w 3

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<H> p </H>

3 o 3

<N> u = 0.0 </N>

<N> v = 0.0 </N>

<D> p = 0.0 </D>

</BCS>

We will run the base flow for 1450 time units, which is (we trust) sufficient.

5.1.1 Optimal initial condition

First, examine the parts of the base flow file that we modify for the transient growth analysis (this
is supplied as file bfs12).

<FIELDS NUMBER=3>

u v p

</FIELDS>

<TOKENS>

N_BASE = 2

N_SLICE = 1

N_TIME = 2

N_P = 7

T_FINAL = 60

D_T = 0.005

N_STEP = int(T_FINAL/D_T)

Re = 500

KINVIS = 1.0/Re

IO_CFL = 25

IO_HIS = 10

IO_FLD = 1000

</TOKENS>

<SURFACES NUMBER=228>

1 297 3 <B> w </B>

2 2 2 <B> w </B>

..

..
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228 563 2 <B> w </B>

</SURFACES>

Note that we have set the time horizon at τ = 60 (the optimal initial condition and growth value we
arrive at are dependent on this parameter). We have set the boundary conditions to be of wall type
on all SURFACES by the simple expedient of placing them all in the w (wall) group.

[mec-aquila]$ ln -s bfs12-base.fld bfs12.bse

[mec-aquila]$ dog -g -k 4 -n 2 -m 20 -t1e-5 bfs12 > /dev/null &

[mec-aquila]$ tail -f bfs12.evl

Note the use of a new command line flag: dog -g, requesting a ‘growth’ computation, and which
gives as output the spatial distribution of optimal initial disturbance. In fact, we have asked for two
initial disturbances, which are the optimal and first sub-optimal disturbance (see § 4.2.1 and table 5
of Blackburn, Barkley and Sherwin; 2008). If we want the optimal disturbances at the final time
t = τ = 60, we would use dog -s (s for ‘shrink’) instead. We would get the same results (same G
values) in the bfs12.evl file, but the spatial distributions would be quite different.

The iteration terminates with

-- Iteration = 6, H(k+1, k) = 1025.59

EV Magnitude Angle Growth Frequency Residual

0 6.2661e+04 0.0000e+00 1.8409e-01 0.0000e+00 1.4969e-02

1 4.7445e+04 0.0000e+00 1.7946e-01 0.0000e+00 2.1796e-02

2 5.7560e+03 0.0000e+00 1.4430e-01 0.0000e+00 5.1699e+02

3 5.0410e+03 0.0000e+00 1.4209e-01 0.0000e+00 8.3171e+02

dog: converged, writing 2 eigenvectors.

So our value for G = 62 661, exactly as expected. Note that G ≡ Magnitude (not Growth as you
might have expected), and that the eigenvalues should all be real (since M∗M is symmetric).

Since the time horizon for transient growth is a parameter of the problem, we need to re-run the
analysis over a range of τ values to find the envelope of growth G(τ).

44



Chapter 6

Troubleshooting

It is quite common not to be able converge an eigensystem estimate when first tackling a problem.
Here are some things to consider in this case:

1. Is your base flow up to the job? Is it (a) well enough resolved spatially (check vorticity contours)
(b) in an asymptotic state, either steady or periodic (try running it longer)? If the base flow is
meant to be unsteady (e.g. periodic) it can be worth making an animation to check behaviour
over a whole cycle, as mesh-related artifacts can sometimes introduce spurious dynamics (see
e.g. § 4.1 of Barkley et al.; 2008).

2. Have you used the correct boundary conditions for the base flow and stability analysis (they
are different)?

3. How many velocity components are present in your base flow? If there are three (i.e. there is
a w velocity component in the base flow), you need N_Z=2 in your stability analysis session
file— this allows eigenmodes to have the correct travelling wave structure in z. Otherwise use
N_Z=1 or leave it unset (since N_Z=1 is the default)— this forces eigemodes to be standing
waves in z. See the remarks at the end of § 2.2.1. If in doubt, it is safe to use N_Z=2.

4. Have you used the same Reynolds number (KINVIS) for the base flow and stability analysis?

5. If the base flow is time-periodic, do you have enough time-slices for adequate reconstruction?
Consider using the BASE_HIST section to output base flow reconstruction history, compare to
the equivalent values achieved in simulating the base flow with dns.

6. Do you have enough spatial resolution? It is easy to change interpolation order via N_P (p-
refinement), though often a better spectral element mesh (h-refinement) can provide a better
solution at lower computation cost.

7. Related: are you able to converge an eigenvalue for this problem/mesh but at a lower Reynolds
number?

8. In a steady stability analysis, the integration time τ is a choice made by the analyst. If it is
very different from the characteristic time (λ−1) of the problem you’re studying, convergence is
unlikely to be achieved. Consider changing N_STEP: typically it is of the order of a few tens to
a few hundred times D_T. It is worth noting that the same value of D_T is typically appropriate
to both the base flow simulation and the linear analysis.

9. Examine the convergence history in the session.evl file. Was convergence nearly achieved
(leading residual came down to of order say 1×10−4 times MAGNITUDE before rising again and
failing)? Consider relaxing the convergence tolerance to this minimum level so you can deliver
a converged outcome, and examine the flow structure in session.eig.0 to see if that gives
any clues (e.g. evidence of under-resolution in a particular location).
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10. So you have managed to obtain a converged eigenpair estimate? It is good practice to check
that when this is used as a restart (.rst) file for dog, the solver rapidly converges to the same
eigenvalue/vector.
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