Chapter 1

Review

1.1 Introduction

One of the most fundamental problems of Wind Engineering is the estimation of cross
flow vibration response amplitudes of slender structures with circular cross sections.
Examples of the structures concerned are chimney stacks, flare towers and oil-rig jacket
members. Typically the flows involved are characterized by high Reynolds numbers
{Re > 10°) and moderate turbulence intensities (I, < 20%). Vibration response am-
plitudes usually must He below 5% of diameter, to prevent the possibility of large
amplitudes and stresses caused by lock-in effects.

Despite the fundamental nature of the problem, estimates of cross flow response of
full scale structures are still relatively inaccurate. Estimates of response of chimney
stacks published by Vickery and Basu (1984) show a coefficient of variation between
measured and estimated responses of 25%, while data presented in ESDU 85038 (1985)
reveal a similar level of variation. Part of the variation can be attributed to difficul-
ties with the observed responses, but the lack of relevant aecrodynamic data is a large
contributing factor. The data required are the co-spectra of cross flow forces acting on
different sections of the structure, and description of motion-dependent forces, which
are observed even at low amplitudes of motion. Very few wind tunnel measurements
of cross flow forces in turbulent flows and at the required Reynolds numbers have been
published. Only one study (Jones, Cincotta & Walker 1969) has dealt with motion-
dependent forces on smooth cylinders at these Reynolds numbers, and that was carried
out in srmooth flow.

1.1.1 Research Aims

The research described in this thesis is concerned with measuring cross flow (lift) forces
which act on smooth circular cylinders in turbulent flows. As implied above, the overall
goal of the work is to provide data relevant to the prediction of cross flow response am-
plitudes of slender circular cylindrical structures (such as chimney stacks) in turbulent
flows of high Reynolds number. Emphasis is placed on responses of comparatively low
amplitudes (less than 5% of diameter), which are relevant to many civil engineering
structures.
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In particular, the role of turbulence in changing lift forces which act on motionless
cylinders in the supercritical and transcritical Reynolds number regimes is examined.
The first aim in this section of work is to discover if high Reynolds number, highly
turbulent flows exhibit Reynolds number independence at lower Reynolds numbers than
is the case in smooth flows. The second is to establish if the forces measured in wind
tunnel turbulence of comparatively small integral scale to diameter ratios are similar
to those which act on full scale structures in natural flows, where the integral scale of
turbulence is comparatively much larger.

The influence of forced, low amplitude cylinder oscillation on lift forces in smooth
and turbulent flows is then examined. The aim is to measure the magnitude of motion-
induced forces in turbulent flows, and to establish the extent to which eylinder motion
is able to influence the vortex shedding processes. In addition, the forces which act
on a cylinder in smooth subcritical flow are studied with the aim of understanding the
mechanism of motion-induced forces at low eylinder oscillation amplitudes.

1.1.2 Outline of Thesis

The thesis describes an experimental programme which was designed to answer ques-
tions raised in relation to the aims discussed above.

This chapter is a review of material relevant to the study of cross flow forces and
prediction of response amplitudes.

Chapters 2, 3 and 4 describe the experimental equipment, wind tunnel flows and
data processing methods respectively.

The results obtained with a fixed cylinder in smooth and turbulent flows for the
Reynolds number range 1 x 10° < Re < 6 x 10° are discussed in chapter 5.

In chapter 6, the results for a cylinder which was forced to oscillate cross flow at
amplitudes up to 3% of diameter are presented and discussed.

Finally, in chapter 7, the overall conclusions for the experimental programme are
drawn, and recommendations for future research are made.

1.1.3 Review Qutline

In this chapter, space is given in § 1.2 to a description of the vortex shedding process, the
fundamental cause of both along and cross flow forces. Then, because of its importance
in the study of flows past circular cylinders, the topic of Reynolds number transitions
is dealt with in §1.3. This is followed in §1.4 by a discussion of the characteristics of
the interaction which occurs between vortex shedding and cylinder motion.

After the general nature of the discussion in those sections, more direct emphasis is
placed on cross flow forces in §§1.5 and 1.6 which deal with forces on stationary and
oscillating cylinders. Finally the problem of cross flow response prediction is addressed,
and various different models for this task are surveyed in §1.7.

The chapter ends with §1.8, a summary of the various specific issues which were
addressed in the experimental programme.
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In general, the thesis nomenclature has been adhered to, except in cases where data
have been reproduced from other works, in which case their nomenclature may have
been used and defined.

1.1.4 Dimensionless Groups

Before tackling the properties of vortex-structure interaction, it is useful to consider the -
relevant dimensionless groups. In smooth flows past fixed cylinders of given geometry,
the Reynolds number Re = UUD/v is the most important parameter; in the simplest
case of turbulent flow (isotropic turbulence), the turbulence length scale ratio (LSR)
LE/D and the intensity I, = o,/U are also important. The geometry of the cylinder
1s described by the aspect ratio (AR = L/D). The surface roughness of the cylinder
can have a pronounced effect on the flow; the roughness is described by a characteristic
length €, or non-dimensionally by ¢/ D.

For an oscillating cylinder free o move, the dimensionless amplitude o = y/D and
the reduced velocity V. = U/fD describe the amplitude and frequency of oscillation.
The reduced velocity may be interpreted in a number of ways; perhaps the most useful
is to consider it as the number of cylinder diameters the mean flow moves in one cylinder
oscillation period.

For the simplest case of a freely-vibrating cylinder, the cylinder translates uniformly,
and mode shapes do not need to be considered. For a cylinder with distributed prop-
erties mass per unit length (m), damping coeflicient per unit length (¢} and stiffness
per unit length (k) {or equivalently m, ¢ and f,), the critical damping ratio ¢ and the
mass ratio m/pD? appear as additional dimensionless variables.

If the structure is at resonance, the mass and stiffness forces are in balance and
the structural damping and mass ratio may be combined into one parameter, the so-
called mass-damping parameter K, = {m/pD? As Vandiver (1985) points out, this
parameter helps to characterize the ratio of the forces produced by the fluid flow per
unit length to the structural damping forces per unit length, which is more obvious
when K is rearranged to give K, = ¢/4n f,pD?. The mass of the structure serves to
influence the frequency of oscillation.

1.2 The Vortex Shedding Process

Vortex shedding is caused by interaction between oppositely signed vorticity which
18 convected away from the two sides of the cylinder by the mean flow. Despite the
seeming simplicity of the boundary conditions, the flow which results is complex and
not fully understood, even though considerable research effort has been expended on
1t. The detailed character of the flow is sensitive to Reynolds number, cylinder surface
roughness and turbulence in the oncoming flow, as well as the aspect ratio of the
cylinder. The flow is also influenced by motion of the cylinder, but in this section
attention is restricted to vortex shedding for fixed cylinders.

'This is related to the Scruton number 26m/pD? = 4xK,. Here § is the log-decrement of the
structural damping.
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At very low Reynolds numbers, convection and diffusion of vorticity compete for
dominance of the flow around the cylinder. At Reynolds numbers near 6, convection
of vorticity to the downstream side of the cylinder produces a pair of closed, counter-
rotating standing vortices, known as Foppl vortices. Similar vortices are produced
by impulsively starting a cylinder from rest (see e.g. Batchelor 1967, pl. 10). The
remainder of the fluid flows past this separated region and converges downstream to
form a laminar wake. At low Reynolds numbers (< 30), the vorticity in the wake is able
to cross-annihilate to form a stable flow. The transition of flows at these low Reynolds
numbers has been described by Batchelor.

Starting at Re = 40, instability is observed as a waviness in the wake, progressing
to laminar vortex shedding by Re = 70. This progression, visualized by dye streaklines,
is illustrated by Tritton (1988, fig. 3.5). Many flow visualization studies of the laminar
regime have been carried out; Van Dyke (1982) gives a representative selection.

The streaklines of vortex shedding reveal a characteristic array of interlaced vortices
of opposite sign. This array is known as a Kdrman vortex street, since the mathematical
analysis which shows that only a regular staggered array of linear vortices is stable was
first published by von Karman in 1912%. Birkhoff (1953) showed that the fixed ratio
of transverse to longitudinal spacing of the vortices deduced by von Kdrman does not
generally hold true, as examination of experimental results such as those in Van Dyke’s
book reveals. The vortices of each sign are produced by the rolling up of vorticity-
bearing fluid produced on each side of the cylinder, alternately from one side and the
other. Tt is this rolling up behind the cylinder which constitutes the vortex shedding
process.

Although there are many transitions in the boundary and shear layers produced by
progression of Reynolds number, as discussed by Zdravkovich {1990, see table 1.3.4)
and in § 1.3 below, it seems likely that the basic mechanism of vortex shedding remains
unchanged from Reynolds numbers of around 100 up to the highest observed (~10%).
This hypothesis is supported by the fact that vortex shedding has been observed for
a wide range of Reynolds numbers and for a variety of bluff shapes, from flat plates
to mountains. The fact that the Strouhal number for a circular cylinder remains rela-
tively constant near the value of 0.2 over a very wide range of Reynolds numbers also
indicates that the basic mechanism remains the same. Despite this, no simple physical
explanation for the mechanism of vortex shedding has achieved widespread acceptance.

Recent work (see Huerre & Monkewitz 1990, Oertel 1990) shows that the cause
of vortex shedding 1s a region ol absolute instability immediately downstream of the
cylinder. This is shown by applying the Orr-Sommerfeld equation to the steady-state
solution of the Navier-Stokes equations for the flow around the cylinder. These expla-
nations for the source of the instability are not yet able to describe the mechanics of
the “saturation state” which results—vortex shedding.

Vortex shedding may be suppressed by the introduction of objects such as “splitter
plates” into the wake, thus preventing the interaction of shear layers (Roshko 1954).
Other passive means, such as the “control cylinder” used by Strykowski and Sreeni-
vasan (1990), have been shown to suppress vortex shedding, while helical strakes act to
disrupt vortex shedding by reducing the spanwise coherence of vortices. Programmed

“The analysis is also presented by Lamb (1945).
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(open loop) control by means of spinning the cylinder about its longitudinal axis near
the vortex shedding frequency has been shown capable of producing large reduction or
increase in the strength of shed vortices (Tokumaru & Dimotakis 1991). The mechanism
here is a timed introduction of boundary-layer vorticity into the wake. Active (closed
loop} control of vortex shedding by introduction of free-stream velocity perturbations
which are phase-locked to a wake velocity signal is also possible (Ffowcs-Williams &
Zhao 1989), but not yet well understood.

Various review papers which deal with the vortex shedding process in a general
manner have been published, for example those by Morkovin {1964) and Berger and
Wille (1972). While some of their material is now out of date, they still provide useful
discussion and background. More recently, a paper by Perry, Chong and Lim (1982)
has addressed some of the fundamental aspects of the description of the vortex shedding
process, dealing in particular with instantaneous streamline patterns and their relation-
ship with streakline patterns. These points are taken up in more detail in the rest of
the current section, which deals with observations of vortex shedding downstream of
circular cylinders.

1.2.1 Flow Visualization

This section is a review of work related to physical understanding of the vortex shedding
process and concentrates on flow visualization results. While many flow visualization
experiments have been carried out on the wake flow of cylinders, few have concentrated
on the region closest to the cylinder where vortex shedding occurs. In addition, most
flow visualization experiments have been carried out at the low end of the Reynolds
number range, since they are much easier to conduct at low Reynolds numbers. For this
reason, they can only serve as a guide to what happens at higher Reynolds numbers.

Instantaneous Streamlines Instantaneous streamlines of unsteady flows are of in-
terest because they can illustrate indirectly where the low pressure regions in the flow
lie, and so give indication of how the forces which act on the body producing the vor-
tices change with time. A complication is that the instantaneous streamlines are not
unique: their shape depends on the relative velocity of the observer. The instantaneous
streamlines of the vortex shedding process have only begun to be studied quite recently,
due in part to the difficulties of measuring them. The measurement methods may be
grouped into two sets; those which rely on an instantaneous photographic record of one
plane in the fiow, and those which give an average picture of the flow at one phase
of the vortex shedding process by averaging numerous point measurements of velocity,
obtained for example by hotwire or laser-doppler velocimetry.

Of the first set of methods, the simplest to implement is that described by Perry,
Chong and Lim {1982), in which a few successive frames of a cine-film of particles moving
with the fluid are exposed on one piece of film. If the length of time over which the
total exposure is made is short, the streaklines approximate the instantaneous isoclines
of the flow field which can be joined up by hand to show the instantaneous streamlines.
A related method, which relies on photographic recording of particles carried by the
flow, is Particle Image Velocimetry (Pickering & Halliwell 1985). Here, two images of
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fluid-bourne particles are captured on one exposure, using rapidly pulsed laser light.
Particle velocities may be deduced using Fourier transformation of the captured image.

The methods which rely on many point measurements of velocity made at different
times suffer from the lack of simultaneity, since the measurements must be related to
a particular phase of the vortex shedding process. This is usually done by using a
reference signal which is related to the vortex shedding process, for example a hotwire
probe placed near the cylinder but not in the wake. Since the vortex shedding is usually
at least slightly random, in that one cycle is never quite the same as the next, the results
at each point and at each phase of the process must be averaged to produce the average
instantaneous streamlines. This averaging can also be done for the single-image methods
discussed above, and is useful in both cases for revealing the “coherent structures” of
turbulent flows, including the turbulent wake of cylinders at high Reynolds numbers.
Examples of the point measurement method, in which “flying hotwires” were used, are
given by Cantwell and Coles (1983), and by Perry and Steiner {1987).

As an alternative to experimental determination of streamlines, computer simulation
can be used to examine the streamlines of low Reynolds number flows. Difficulties of
measurement do not exist on the computer, although the degree to which local flow
details can be resolved depends of course on the accuracy and resolution of the numerical
method used. The simulations performed so far have assumed two dimensional flow,
so no possibility of three dimensional effects exists, however, to the degree that the
vortex shedding process may be considered locally two-dimensional, these simulations
provide a useful adjunct to experimental measurements. Eaton (1987) gives details of
the computed flow about a circular cylinder at a Reynolds number of 110, including
the instantancous streamlines. A sketch of the instantaneous streamlines computed
by Eaton are presented here in figures 1.1 and 1.2. To simplify the sketch, only the
separatrices (separators) of the instantaneous flow for an observer fixed to the cylinder
are shown in figures 1.1 and 1.2. Separatrices join the saddle points of the flow, which
are one of the two kinds of critical points which can occur in two-dimensional flows.
The closed loops formed by separatrices in the sketch contain pressure minima of the
flow which produce fluctuating lift and drag forces on the cylinder. For an extended
discussion of critical point terminology, the reader is referred to Perry and Fairlie (1974),
Perry and Chong (1987) and Chong, Perry and Cantwell (1990).

The instantaneous streamlines presented by Eaton (1987) compare well with those
shown for the free surface of a flow around a cylinder by Perry, Chong and Lim (1982).
They also show a striking similarity to those measured by Perry and Steiner (1987) in
the (three-dimensional) turbulent wake behind a flat plate; see figure 1.3. This kind of
similarity between three different results lends weight to the argument that one vortex
shedding mechanism exists for all nominally two-dimensional bluff bodies, over a range
of Reynolds numbers.



1.2. THE VORTEX SHEDDING PROCESS 1-7

(b) (£)

(h)

M
ol

FIGuRrE 1.1: Separatrix (streamline) pattern showing the vortex shedding cycle behind
a circular cylinder (one-eighth period phases). After Eaton (1987).
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FIGURE 1.2: Showing in detail the process connecting frames H & A of fig. 1.1. After
Eaton (1987).
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FIGURE 1.3: Eight phases of the vortex shedding process behind a flat plate. After
Perry & Steiner (1987). Re = 2 x 10*.
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Streaklines Due to the greater ease with which streaklines of unsteady flows can be
observed, most of the flow visualization results presented in the literature for bluff-bedy
flows have been of streaklines. In most of these cases, the emphasis has been on the
wake flow, rather than on the detail of what occurs close to the cylinder where the
processes which dominate the forces on the cylinder occur. Streaklines show the locus
of fluid particles which have passed through points fixed in the flow; usually some kind
of marker that travels with the fluid (e.g. dye or hydrogen bubbles) is injected into the
flow to be carried with it. Because vorticity also has the property in incompressible
flows that it travels with the fluid (Helmholtz’s theorem), streaklines which originate
at points of high vorticity indicate® the distribution of vorticity in the flow.

Perry, Chong and Lim (1982} presented colour photographs of the streaklines origi-
nating from the upstream faces of a circular cylinder in a steady flow at Re = 80. The
use of red and blue dyes on the opposite sides of the cylinder provided clear indication
of where the vorticity of opposite signs resided in the flow. Incidentally, the apparently
planar array formed by the streaklines indicates that the vortex shedding process and
wake flow is quite two-dimensional at this Reynolds number, something that does not
appear to be true at higher Reynolds numbers (Hama 1957, Gerrard 1978, Williamson
1988 a, 1988b, 1989). Close-ups of the region just downstream of the cylinder show
that during each cycle of vortex shedding, unmarked fluid which originates outside the
separation points is pumped into the “cavity” region behind the cyiinder: the small
amount entrained each time is shed some cycles later in the core of the vortices which
separate and move downstream. This pumping action produces an intricate folding of
the dye-bearing material lines in the cavity region which become difficult to resolve after
more than a few vortex shedding cycles, due to diffusion of dye. A schematic diagram
of this folding process is shown in figure 1.4. The computer-aided flow visualization
of Eaton (1987) shows in detail the progress of material lines from cycle to cycle: the
agreement with the process described by Perry, Chong and Lim (1982) is good. It is
in this region of folding that the “attached vortices” shown by the streamline plots of
figures 1.1 and 1.2 form. No recognizable vortex is shown by the material lines in the
region closest to the cylinder, however the presence could be deduced from the large

3Due to the different diffusion rates of dye and vorticity, the correspondence is not always exact,
especially for low Reynolds number flows. This is well illustrated by the results of Cimbala, Nagib
& Roshko (1988).

(e

To ‘starting vortices’

—

- FIGURE 1.4: Diagram of the folding process for the streaklines in the vortex formation
region and at the start of the wake. After Perry, Chong & Lim (1982).
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FIGURE 1.5: Interpretation given by Perry, Chong & Lim (1982} to a simultaneous pho-
tograph of streak & streamlines. Cross-hatching indicates an “instantaneous alleyway”
formed between the top surface of the cylinder and the free separatrix above it.

amount of vorticity associated with the closely folded lines. These vortices closest to
the cylinder produce the localized regions of low pressure nearest to the cylinder and
hence are responsible for a large proportion of the fluctuating forces on the cylinder.

The fact that the eddy formation region is difficult to visualize using streaklines
shows by contrast the importance of the instantaneous streamline pictures discussed
above. The relationship between the two types of line is complex in unsteady flows:
figure 1.5 shows the interpretation given by Perry, Chong and Lim to a simultaneous
photograph of streak and streamlines.

Far downstream from the cylinder, when the wake structure becomes stable, the
streamline and streakline patterns will be almost the same for an observer travelling at
the speed of the vortices.

Pressure Field Visualization of the pressure field of the flow around a circular cylin-
der is uncommon, despite the close correspondence between the pressure field and the
forces on the cylinder. Nakagawa (1986) produced interferograms of the unsteady pres-
sure field for a Reynolds number of 1.4 x 10°. His results clearly show that at this
Reynolds number at least, vortices initially form directly downstream of the separation
points, in agreement with the instantaneous streamline sketches of figures 1.1 and 1.2.

A point to note in passing is that there need not be any direct correspondence
between the magnitude of the pressure fluctuations and the size of “vortices” in the
near-wake, since the flow is unsteady. This implies that it may be difficult to identify
regions of low pressure in the near-wake merely by inspection of streakline or streamline
patterns.
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1.3 Reynolds Number Transitions

The description of the vortex shedding process given above was based mainly on work
carried out at low Reynolds numbers, but as discussed, it seerns that the vortex shedding
process is basically similar for a wide range of bluff shapes, and over a wide range of
Reynolds numbers. Some qualification to this statement is needed because of the many
transitions undergone by the process as the Reynolds number changes. Once the vortex
shedding process is established, at Reynolds number below 100, the transitions which
occur result from instabilities in the shear flows of the attached and separated boundary
layers.

The discussion here centres around observations made in smooth flow; the effects
of surface roughness and turbulence will be dealt with later. The nomenclature for
different flow regimes as Reynolds number rises is that of Roshko (1961): subcritical is
followed by critical, supercritical and transeritical regimes.

1.3.1 Subcritical Wake Transitions

The transitions which occur in so-called subcritical flows all take place in the wake
downstream of the cylinder. The main defining characteristic of subcritical flows is that
the boundary layers remain laminar up to separation. At higher Reynolds numbers,
the transitions take place either in the boundary layer while it is still attached to the
cylinder, or immediately after separation. For completeness, a briefl description of wake
transitions in smooth subcritical flow will be given here, although later emphasis will
be on high Reynolds number flows.

From the onset of recognizable vortex shedding at Re & 70 to Re = 150, the vortex
street wake is entirely laminar and periodic, as reported by Roshko (1953). The fre-
quency of oscillation of the wake is described in dimensionless terms by the Strouhal
number 5t = fD/U. Due to diffusion of vorticity, the vortex street gradunally disap-
pears downstream of the cylinder, until at a few hundred diameters downstream, no
periodicity can be observed (Cimbala, Nagib & Roshko 1988). In fully two-dimensional
flow, the shed vortices lie parallel to the cylinder when viewed from above the street,
but slantwise shedding, where the vortices are regular and parallel to one another but
lie oblique to the cylinder, can also occur. Williamson (1988 a, 1989) showed that this
effect can be controlled by adjusting conditions at the cylinder ends, and he proposed
it as the explanation for a discontinuity observed in the Strouhal/Reynolds number
relationship by Tritton (1959} at Reynolds numbers near 70.

At Re > 150, the wake becomes irregular downstream of the vortex formation
region as a result of three-dimensional disturbances. Roshko (1953) found that the
disturbances are characterized by the appearance of irregular bursts of velocity in the
wake, becoming more {requent as the Reynolds number is increased. Similar events are
shown in the hotwire traces presented by Tritton (1988, fig. 3.10). Williamson (1988b)
showed that there are two three-dimensional transitions to irregular and eventually
turbulent flow in the wake, one at Reynolds numbers near 170, the other near Re = 230.
Both are associated with production and stretching of streamwise vorticity in the regions
between the primary or Strouhal vortices.
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At higher Reynolds numbers, the transition to turbulence in the wake seems to
be assoctated with shear layer instabilities which are primarily two-dimensional at in-
ception, but become three-dimensional in the vortex formation region. At Reynolds
numbers above 1 x 10°, Bloor (1964) found that hotwire traces from the shear layers
showed rapid oscillations superimposed on those at the primary vortex shedding fre-
quency. These transition waves, as she called them, have become accepted as signs
of Tollmien-Schlichting instability in the shear layers. Flow visualization results of
Gerrard (1978) indicate that the transition waves may be evident at lower Reynolds
numbers, down to He = 500. His results show that at Re = 1 x 10°, the transition
waves have progressed to become recognizable as Kelvin-Helmholtz vortices, of higher
frequency than the vortex street, visible in the separated shear layers before primary
vortex roll-up.

More recent results such as those of Wei and Smith (1986) and Kourta et al. (1987)
also show these “secondary vortices”, with frequencies initially comparable to the Strou-
hal frequency at Re = 1.2 x 10°, increasing to about 20 times the Strouhal frequency
at Re = 1.6 x 10*. Wei and Smith concentrated on the three-dimensional aspects of
the secondary vortices, showing with flow visualization that the secondary vortices,
initially evident with a spanwise orientation, undergo three-dimensional instability in
the stretching of the shear layers induced by vortex roll-up to produce pairs of counter-
rotating streamwise vortices superimposed on the primary Strouhal vortices. They
speculated that the additional mixing of fluid inside and outside the wake produced by
these vortices contributes to the transition to turbulence in the wake.

The degree to which the secondary vortices interact with the Strouhal vortices has
been the subject of debate. At the lower end of the Reynolds number range in which
they are observed (1 x 10° < Re < 2 x 10%), the frequency of secondary vortices is com-
parable with that of the Strouhal vortices. Over the same range of Reynolds numbers,
flow visualizations and base pressure measurements made by Unal and Rockwell (1988)
show that the main vortices form much further downstream than they do at Reynolds
numbers above and below this range (see fig. 1.6). Consequently, the base pressure in
this range rises, and it may be expected that the fluctuating forces which act on the
cylinder drop. The drop in base pressure and rise in forces which occur as Re increases
above the range is a result of vortex formation again moving closer to the rear of the
cylinder. In Unal and Rockwell’s flow visualization, the upstream movement of vortex
formation was accompanied by the appearance of clearly visible secondary instabilities
in the shear layers.

As the Reynolds number rises, the ratio between the frequencies of the secondary
and Strouhal vortices increases, and the relative scale of the secondary vortices drops.
As this occurs in the Reynolds number range 2 x 10% to 1.6 x 10%, Kourta et al. found
that the distance downstream from the cylinder at which roll-up of the Strouhal vortices
was seen to occur decreased, in agreement with the findings of Unal and Rockwell.
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FIGURE 1.6: Variation of base pressure and fluctuating shear layer velocities with Rey-
nolds number, from Unal & Rockwell (1988). Velocity fluctuations at edge (i./U,) and
at maximum amplitude location within shear layer (i,,/U.). Also shown are visualiza-

tions of the near-wake structure from dye injections into wake region. Base pressure
line is from Roshko & Fiszdon (1969).

Kourta et al. reported that at Reynolds numbers above 1.6 x 10% the spectra of shear
layer velocities exhibited no recognizable frequency peak which could be associated
with secondary vortices; the only peaks found were at the Strouhal frequency and its
harmonics, superimposed on a smooth distribution attributed to random small-scale
motions. Correspondingly it may be assumed that the shear layers progress to fine-
scale turbulence shortly after their separation from the cylinder and before their roll-
up into primary vortices at these and higher Reynolds numbers. It is found however
that the Strouhal vortices which form from them, while turbulent to an extent, still
exhibit a strongly dominant frequency, and on average are well organized. All the
force coeflicients reach a maximum in the upper subcritical range of Reynolds numbers
(1.6 x10* < Re < 2x10°). Probability densities of wake velocities and forces exerted on
the cylinder in this regime show a near-Gaussian distribution (Schewe 1983), indicating
that the vortex shedding is narrow-band random, rather than periodic.

The next transition which occurs has a very dramatic effect on the vortex shedding
process in smooth flow, and occurs when the transition to turbulence in the separating
boundary layers takes place very close to separation.
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1.3.2 The Critical Regime

In a narrow range of Reynolds numbers (3 x 10° < Re < 4 x 10° in smooth flow), an
abrupt change occurs in the flow around the cylinder: as Re increases through this
range the mean drag force drops, mean lift forces may appear, the magnitude of the
flactuating forces drop, and the frequency of vortex shedding roughly doubles. As a
result of these changes, this has come to be called the critical transition.

[t needs to be pointed out that the details of the transition behaviour are sensitive
to disturbances in the forms of variations in cylinder surface roughness, free-stream
turbulence, Mach number, blockage and end-effects. This is true for all Reynolds num-
ber transitions in the flow around a circular cylinder, but partly because of the large
changes in the forces on the cylinder, it is the effect of disturbances on this transition
which have received the most attention. In particular increasing surface roughness and
turbulence can reduce the Reynolds numbers at which transition begins, although the
effects are not the same as a step increase in Re. It has been observed that the Rey-
nolds number at which transition to the critical regime begins in turbulent flows can
be correlated in terms of the Taylor parameter Ta = I,(LZ/D)~'/%. On the basis of
the Reynolds number at which the mean coeflicient of drag first drops to 0.8, Kiya et
al. {1982} produced the correlation

Rel3%Ta = 1.98 x 10° . (1.1)

"The origin of the changes is in the behaviour of the shear layers, close to the sepa-
ration points. For a wide range of Reynolds numbers below critical, separation occurs
near 80° downstream of the front generator of the cylinder. The boundary layers are
laminar at separation, but soon undergo transition to turbulence when the Reynolds
number is close to the end of the sub-critical regime. In their turbulent state, the shear
layers are able to entrain external fluid more rapidly than before, and it is thought
to be due to this that they are then able to become reattached to the surface of the
cylinder, subsequently separating again further downstream. An explanation, accord-
ing to Tani (1964), is that the slow backflow in the separated region of the wake just
downstream of separation is unable to supply fluid at a sufficient rate to satisfy the
entrainment of the shear layers, which consume the available fluid and then re-attach
to the cylinder. The occurrence of this laminar-turbulent separation bubble influences
the whole flow around the cylinder, and the final separation can take place as far as
140° degrees from the front of the cylinder (Farell & Blessmann 1983). The progressive
appearance of separation bubbles, first on one and then on both sides of the cylin-
der, accounts for the critical transition. The progression of boundary layer separation
through the sub-, super- and transcritical regimes is well illustrated by figure 1.7, taken
from Basu (1982).
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The main experimental results covering the transition have been published by Bear-
man (1968a, 1969a), Achenbach and Heinecke (1981), Schewe (1983), and Farell and
Blessmann (1983).

Bearman made observations of the mean pressure distribution around and along a
12:1 aspect ratio cylinder through the critical transition, also studying the wake velocity
spectra. The turbulence intensity was 0.2%, with a tunnel blockage of 6.5%. He found
a sharp change in the Strouhal number between Reynolds numbers of 3 x 10° and
4 x 10°, with a discontinuity in the transition occurring at Re &~ 3.4 x 10°. Over this
transition range the Strouhal number rose from around 0.2 to 0.46, with the value at
the discontinuity being 0.32. Corresponding to this, the pressure drag coefficient, Cy,
dropped from 1.14 to 0.23, with an intermediate plateau of 0.45. From observations of
the pressure distributions, he concluded that at the high end of this Reynolds number
range two separation bubbles existed, while in the transition discontinuity there was
one, stretching the whole span of the cylinder. The single bubble produced asymmetry
in the pressure distribution, resulting in a mean coefficient of lift of 1.3. The fact that
the single separation bubble was found to recur on the same side of the cylinder during
successive trials left open the possibility that it was peculiar to Bearman’s experimental
equipment, but Achenbach and Heinecke’s later (1981) work showed similar variation
in wake Strouhal numbers.

The investigation of Schewe (1983) covered measurements of mean and fluctuating
forces acting on a cylinder of 10:1 aspect ratio over the Reynolds number range 2.3 x
10* < Re < 7.1x10°. The nominally smooth flow had a turbulence intensity I, = 0.4%,
while the blockage was 10%. Schewe’s measurements of the critical transition confirm
Bearman’s observations, although the numerical values are slightly different, partly due
to the fact that Bearman, unlike Schewe, applied a blockage correction to his results.
Figure 1.8 shows Schewe’s measurements of RMS coefficient of lift, Strouhal number,
and coefficient of drag. Reynolds number ranges for the sub-, super- and transcritical
regimes are indicated on the figure.

In the asymmetrical, single bubble state, Schewe also found a mean coefficient of lift
of 1.3, while spectra of lift and drag had the same dominant frequency, indicating that
vortices shed from one side of the cylinder dominated the fluctuating forces. A simplified
sketch of the asymmetric flow state provided by Schewe is presented as figure 1.9.

It was found that the asymmetric state was bi-stable, in that once established it
remained as long as the Reynolds number was kept constant, and that, in contrast
to Bearman’s experiment, it showed no preference for one orientation or the other,
changing sides at random from one run to the next. In a later paper, Schewe (1986)
demonstrated that this orientation could be selected by introducing a small perturbation
of the boundary layer on either side of the cylinder. A slight hysteresis effect was found
by Schewe in the critical transition range, so that the Reynolds numbers at which the
changes between the subcritical, single-bubble and two-bubble states took place varied
depending on whether the Reynolds number was being increased or decreased.

Typical spectra of lift forces found by Schewe in the various Reynolds number ranges
are presented in figure 1.10. The spectra have been normalized so that with reduced
frequency f, = fD/U on the abscissa scale, the areas under the graphs are the variances
of the coefficients of lift force. The spectra will be discussed in more detail below but the
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\

FIGURE 1.9: Simplified sketch of the asymmetric flow state in the critical regime.
After Schewe (1983). Simplified sketch of the asymmetric flow state in the critical
regime (L = lift, D = drag, S; = turbulent separation, S = laminar separation). After
Schewe (1983).

narrow-band nature of the forces in the fully-established (a) subcritical, (b) supercritical
(two-bubble), and {f} transcritical regimes is immediately apparent.

The data presented in figure 1.8 indicate that before the critical transition the
RMS coefficient of lift and the drag coefficient both decline, while the Strouhal number
remains more or less constant near 0.19. This behaviour might be taken to indicate signs
of impending transition, but the force spectra in this region with declining coefficients
are narrow-banded, indicating that the flow structure is stable. The fine structure of
the critical transition is illustrated in figure 1.11.

Very near the step changes in Strouhal number, Schewe found that the onset of
transition was indicated by the appearance of broad-band low frequency fluctuations.
At the end of the subcritical range, the onset of low-frequency fluctuations coincided
with the point in the drag force curve of figure 1.11(c’) at which the drag force started to
drop. The lift force spectra of figure 1.12 show the low-frequency fluctuations, and again
show that vortex-shedding peaks in the various stable states are sharp and distinct.

Mean pressure distributions around a cylinder for the critical regime were published
by Farell and Blessmann {1983). Their cylinder had an aspect ratio of 6.14:1, 12%
blockage, and the flow had a turbulence intensity I, = 0.4%. The surface of the
cylinder was left in the “as machined” condition. Although they saw asymmetrical
distributions in the critical transition, these were unstable, with the flow fluctuating
between symmetrical and asymmetrical states for a fixed Reynolds number. What
caused the lack of stability of the asymmetric state is unclear; the main differentiating
factors from the other investigators were the machined surface of the cylinder and
lower aspect ratio. The asymmetrical distributions also displayed a lack of spanwise
uniformity, unlike the symmetrical distributions. A sample of the pressure distributions
obtained in the critical transition at Re = 3.4 x 10° is shown in figure 1.13. Since
there was no one stable state, Farell and Blessmann showed three different pressure
distributions on the same figure. A point of note is that in the asymmetric state (Sample
1), the most negative pressure coefficients C, are obtained on the side of the cylinder
where final separation occurs furthest towards the base generator of the cylinder, in
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agreement with figure 1.9.

In the work of Bearman (1969 a) and Schewe (1983} it was observed that prior to
the critical transition, the magnitude of force and pressure coefficients for the cylin-
der begin to drop, while the Strouhal number remains relatively constant right up to
transition. This is the regime which was called precritical by Zdravkovich (1982, 1990).
Zdravkovich maintains that in the precritical state, three-dimensional disturbances in
the near wake result in the vortex formation region moving downstream of the cylinder,
with reduced spanwise coherence of shedding, but without reduction in wake width.
This would produce a drop in force coefficients, with the Strouhal number remaining
constant.

Three-dimensional flow phenomena in the critical regime have not been directly
discussed above, The three-dimensional behaviour which occurs in subcritical flow
seems to be associated with instabilities which appear in the separated shear layers,
as described in §1.3.1. While these effects can lead to lack of spanwise correlation in
the unsteady forces which act on the cylinder, flow separation usually occurs along a
generator of the cylinder. In the critical regime, additional three-dimensional effects
can be assoclated with the formation of separation bubbles, in which case the angular
position of separation may vary along the span, and from one side of the cylinder to
the other. The details of the three-dimensional behaviour associated with the critical
transition vary slightly from one set of published results to the next, which is not
surprising given the well-known sensitivity of the flow in this Reynolds number range.

The “precritical” regime is associated with the gradual drop in Cy which can be
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observed in Schewe’s results (fig. 1.8) over the range 1 x10° < Re < 2.2x10°. According
to the results of Higuchi, Kim and Farell (1989), this drop is linked to the intermittent
appearance of cell-like structures in the wake, of the order of 1-2 cylinder diameters in
spanwise extent. These structures are caused by short separation bubbles, in which the
initial separation, reattachment and subsequent separation are probably all laminar.
In their experiment, initial separation took place about = 87° from the front of the
cylinder, with intermittent reattachment indicated at about # = 92°. Formation takes
place symmetrically on both sides of the cylinder. These short separation bubbles have
a less profound effect on vortex shedding and the coefficient of drag than do the longer
laminar-turbulent separation bubbles previously described. Measurements of pressure
made at 6§ = 65° indicate that the formation of the short separation bubbles was
associated with a decrease in fluctuations at the Strouhal frequency, and an increase
in low-frequency energy. It does not hold that these changes are necessarily reflected
in substantial changes in the spectra of overall lift force, and indeed Schewe’s results
indicate that the spectra of lift force remain sharply peaked near St = 0.2 right up to
the onset of the critical transition, at Re = 2.8 x 10° in his experiment.

Cell-like spanwise structures were also indicated in the results of Humphreys (1960).
These cell-like structures, unlike those found by Higuchi, Kim and Farell, are associated
with the asymmetric formation of laminar-turbulent separation bubbles and presumably
are precursors to the bi-stable single bubble state observed by Schewe and Bearman.
The spanwise structure of the cells was visualized using silk threads attached to the
leading generator of the cylinder; observations were made over the Reynolds number
range 1 x 10° < Re < 3 x 10%. Their spanwise extent was in the range 1.4 to 1.7
diameters. The presence of the threads stabilized the location of the structures and
promoted their formation at lower Reynolds numbers,

Silk thread flow visualization was also used by Korotkin (1976), over the Reynolds
number range 6.7x10* < Re < 1x10°. He observed cell-like structures in the separation
zone over this whole range, in disagreement with the results both of Humphreys and
Higuchi, Kim and Farell. The reason for the lack of agreement is unknown, however it
is apparent from photographs that Korotkin used many more threads per unit length of
cylinder than did Humphreys; these may have interfered with the boundary-layer flow.

1.3.3 Supercritical and Transcritical Regimes

As Reynolds numbers are increased, the supercritical and transcritical flow regimes
are observed after the critical transition. For smooth high aspect ratio cylinders in
smooth flow, the supercritical regime (4 x 10° < Re < I x 10°) is associated with twin
faminar-turbulent separation bubbles. The resulting narrow wake gives high frequency
vortex shedding (St ~ 0.48) and the mean drag and fluctuating forces are comparatively
low. The defining characteristic of the transcritical regime is the presence of turbulent
boundary layers with turbulent separation on both sides of the cylinder, at about § =
110° from the front of the cylinder (see fig. 1.7). In this regime (Re > 4 x 10%),
the Strouhal number drops to around 0.28 (the figure varies between experiments),
accompanied by a rise in mean drag and fluctuating forces, although the coeflicients do
not reach the levels found in subcritical flow. Comparatively few wind tunnel studies of
the flow in these regimes have been carried out despite their significance in engineering



1.3. REYNOLDS NUMBER TRANSITIONS 1-25

1z

N
L /
\\\ e /h?i;c?lslr?:n )
) e
N =
IR
\\_/
S w ’I’otcij] flow
IS

0 20 40 60 80 100 120 140 160 180
f (degrees)

o]

Ty

‘v-—._.__‘___h

11 % 103
{Fage & Falkner)

FIGURE 1.14: Mean pressure coefficient distributions in subcritical, critical, supercriti-
cal, and transcritical flows. (Roshko 1961.)

applications; the underlying reason is the high cost of such studies.

As discussed above, low turbulence supercritical flow about smooth, high aspect
ratio cylinders produces twin laminar-turbulent separation bubbles with final turbulent
separation. The mean pressure distribution recorded by Flachsbart (1929) shows the
effect of the two separation bubbles, and has final separation taking place at about
130° from the front of the cylinder (see fig. 1.14). Vortex shedding takes place with
a well defined frequency, to which the investigations of Delany and Sorensen (1953),
Bearman (1969 a), Achenbach and Heinecke (1981) and Schewe (1983) assign a Strouhal
number of about 0.48. The measurements of Schewe most clearly define the extent of
the supercritical regime and the magnitude and frequency of the forces on the cylinder.

The range of Reynolds numbers between the super and transcritical regimes (1 x
10° < Re < 4 x 10°%) was called the upper critical transition by Roshko (1961) and
Schewe (1983). In this range the coeflicient of drag rises and the Strouhal number
drops. At the end of the transition, the twin laminar separation bubbles no longer
appear, and the boundary layer is turbulent at separation. In contrast to the sudden
discontinuity in behaviour found at the critical transition, the upper critical transition
extends over a larger range of Reynolds numbers and the flow seems to be fundamentally
unsteady. Schewe’s Strouhal number data (fig. 1.8(b)) show two sets of values here,
and his drag coefficients show scatter. In addition, the spectrum of figure 1.10{c),
taken at Re = 1.9 x 10° shows a very broadly-peaked maximum at St = 0.1, with
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significant low frequency energy. At Re = 3.7x 10°, near the end of the upper transition,
figure 1.10{(d) shows a similar spectrum, but with a greater RMS coefficient of lift and
a more distinct maximum near St = 0.2. The low-frequency fluctuations indicate that
basically asymmetric states may exist over a few vortex shedding cycles, corresponding
to intermittent destruction of the twin separation bubbles. This kind of behaviour,
with short-time mean lift forces, can be seen in the time-traces presented by Schewe
(his fig. 13 (c)) for this regime. In the earlier investigation of Roshko (1961), no vortex
shedding maximum was observed in wake velocity spectra taken 7.3 D downstream from
the cylinder centreline, over the range of Reynolds numbers 0.9 x 10% to 3.5 x 108, This
could be taken to agree with the observations of Schewe (although the measurements
are of two different things), when it is considered that the peak of figure 1.10(c) is very
broad, with values at zero frequency, and that Roshko’s velocity spectra were recorded
downstream of the cylinder. Roshko’s coefficient of drag measurements in this range
also have the upward trend with Reynolds number found by Schewe.

The highest Reynolds number regime yet found is the transcritical regime (Re >
4 x 10°). There is good reason to suppose that no further regimes exist, and that all
dimensionless coeflicients become independent of Reynolds number as it approaches
infinity. This is because all the major transitions thus far described have been due to
nstability phenomena and transitions to turbulence in the wake, shear and boundary
layers, and the defining characteristic of the transcritical regime is that the boundary
layers undergo transition to turbulence while still attached to the cylinder, and are
turbulent at separation. If is expected that when the transcritical regime is fully estab-
lished, boundary layer transition occurs very close to the upstream stagnation point, so
that no change will occur with further increase in Reynolds number.

Few laboratory observations of the transcritical regime in smooth flow with smooth
cylinders are available. The ones in which nominally two-dimensional flows were used
are those of Roshko (1961, Remax = 8.4 x 10°), Jones, Cincotta and Walker (1969,
Remax = 1.24 x 107), van Nunen (1974, Regmay = 7.6 x 10%), James, Paris and Mal-
colm (1979, Remay = 1.09 x 107), Schewe (1983, Remay = 7.1 x 10%). The general indi-
cation from these tests is that the flow becomes independent of Reynolds number in the
transcritical regime, however different asymptotic values of coefficients were approached
in each experiment. For example, the range of reported C; values at Re = 5 x 108 is 0.4
to 8.75. It is likely that the cylinder surface roughness makes an important contribution
to this variation, since as boundary layers are turbulent in transcritical flow, increased
surface roughness produces greater boundary layer momentum deficits and promotes
earlier separation.

1.3.4 Summary

The transitions discussed above have recently been classified according to the mech-
anism involved by Zdravkovich (1990). These classifications are reproduced here in
table 1.3.4 and figure 1.15. His nomenclature differs a little from that used in the dis-
cussion above, for example the regimes TrBL4, T1 and T2 together comprise what is
referred to in this thesis as the transcritical regime.

As a part of his conception of the flow having a succession of regimes which are
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TaBLE 1.1: Classification of transition regimes due to Zdravkovich (1990).

Name Description Reynolds number range
L1 “creeping” flow—no separation 0 <Re< 4-5
L2 steady separated region-—closed near-wake 4-5 < Re< 30-48
L3 periodic laminar wake 30-40 < Re < 150-200
TrW1l  transition to laminar vortices in the wake 150-200 < Re < 200-250
TrW2  transition of vortices during formation 200-250 < Re < 350-500
TrSL1  transition waves in free shear layers 350-500 < Re< 1-2x108
TrSL2  transition vortices in shear layers 1-2x 10 < Re< 2-4x10*
TrSL3  fully turbulent shear layers 2-4x10* < Re< 1-2x10°
TS0 onset of transition on separation 1-2x10° < Re< 3.2-34x10°
Te51 single separation bubble regime 32-34x10° < Re< 3.8-4x10°
TrS2  two-bubble regime 3.8-4x10° < Re< 5x10%-1x10°
TrS3  supercritical regime 5x10%1x 105 < Re< 3.5-6x 108
TrBL4  transcritical regime 3.5-6x10° < Re< 6-8x 10°
T1 posteritical regime Re > 8 x 10°
T2 ultimate regime Re — oo
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[riction drag, Cp,~pressure drag, Cp—fluctuating drag, Cr-mean lift, C} —fluctuating lift
(After Zdravkovich 1990). The figure will appear in the forthcoming book Flow Around
Circular Cylinders, and the copyright of the figure is retained by M.M. Zdravkovich.

sensitive to Reynolds number and disturbances, Zdravkovich maintains that the vari-
ous transitions are initiated at a lower Re (or may be obliterated) by disturbances such
as free stream turbulence and surface roughness. This is not taken to imply that an
increased disturbance level is equivalent to an increase in Re, since the disturbances
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themselves become the controlling parameters of the flow. The effect of these distur-
bances on the flow is discussed below in §§1.5.4 and 1.5.5.

1.4 Effect of Cylinder Motion on Vortex Shedding

As discussed in the preceding sections, flows of fluid past rigid circular cylinders typi-
cally produce well-developed vortex street wakes with characteristic dimensionless fre-
quencies, now known as Strouhal numbers after the experiments of Strouhal (1878).
Strouhal also found that if one of the natural frequencies of the wires used in his exper-
unent fell near the vortex shedding frequency, that frequency could be altered by the
vibration of the wire, and that the intensity of the sound produced increased. Rayleigh
(1879) showed that in that case, the vibrations of the wires took place in a plane per-
pendicular to the flow. It is now known (see e.g. King 1977) that it is also possible for
comparatively large oscillations {~ 0.5 D) to arise in a plane parallel to the flow, if the
cylinder in question is very lightly damped. For most structures in flows of air, these
along-flow (in-line) vibrations due to vortex-structure interaction are unlikely to occur,
and so this phenomenon will only be addressed in passing.

While it would be expected that resonance, i.e. coincidence of a vortex shedding
frequency with a structural natural frequency, could produce comparatively large vi-
bration amplitudes, the amplitudes which actually arise for lightly damped structures
are larger than expected from forced vibration theory. This fact, taken together with
the observation that the vortex shedding frequency can be altered to match that of the
structure, indicates that vortex-induced vibration is to some extent a non-linear, self-
excited type. The degree to which the response changes in kind from forced vibration
to sell-excited oscillation is influenced by the reduced velocity and the mass-damping
parameter K. For reduced velocities in the appropriate range (5 < V, < 6), progres-
sively lower values of mass-damping (K, < 4, say) increase the extent to which the
response has a self-excited nature.

In studies of the interaction of cylinder oscillation and vortex shedding, two kinds
of experimental approach can be adopted: to force the cylinder to oscillate at various
fixed amplitudes and frequencies, or to allow a flexibly-mounted cylinder to vibrate
freely in the flow. Each method has its advantages and disadvantages: in the first, ease
of control of experimental parameters is important, while the chief advantage of the
second is that it can correctly simulate full-scale conditions. The linkage between the
two has often been assumed (see e.g. Bearman 1984); experiments and computations
conducted by Staubli (1983) have strengthened the connection.

In the sections which follow, the observed properties of the interaction of cylinder
oscillation and vortex shedding are discussed first, after which the characteristics of the
vortex-induced forces which act on oscillating cylinders are dealt with. Finally, since
all the available measurements have been made in smooth flows, the possible influence
of turbulence on so-called motion induced forces is considered.
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Ficurg 1.16: Results of free vibration experiments using a lightly-damped cylinder
in a wind tunnel. Smooth flow, 1 x 10* < Re < 5 x 10%. U = U/2xf.D; f, =
cylinder oscillation frequency “in vacuo”; f, = vortex shedding frequency; f. = cylinder
oscillation frequency; ¢ = phase angle by which pressure measured at cylinder shoulder
leads displacement; K, = §/2n = 0.28. From Parkinson, Feng & Ferguson (1968).

1.4.1 Frequency Entrainment or Lock-In

When fluid flows past a cylinder of low mass-damping parameter (typically K, < 1
in smooth subcritical flows) and the frequencies of structural vibration and vortex
shedding are sufficiently close, it is observed that the frequency of vortex shedding
will jump to match the frequency of structural oscillation over some range of reduced
velocity. Within this range, the amplitudes of cylinder oscillation can jump to reach
some value near one diameter. The results presented by Parkinson, Feng and Ferguson
(1968), shown here in figure 1.16, illustrate this general pattern.
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The experiments were conducted using a lightly-damped aluminium cylinder in a
wind tunnel; K, = 0.28. On the abscissa U = U/2r f, D = V. /27, while the left-hand
ordinate f/f, shows frequencies normalized by the frequency of the test rig when the
cylinder was replaced by a streamlined bar of the same mass and length. The right-
hand ordinate shows the phase angle, ¢, measured between cylinder displacement and
suction at a pressure tapping located at the shoulder of the cylinder (90° from the
front), and also the normalized motion amplitude Y = yqa/D. The cylinder frequency
f: is seen to remain relatively constant over the range of U at f, &~ 0.97. The vortex
shedding frequency (actually the frequency of pressure fluctuations), f,, while varying
roughly linearly with U over the ends of its range {as expected with a constant Strouhal
number St = 0.198), is seen to coincide with the cylinder frequency over the range
0.8 < U < 1.15. Over this range of lock-in, the amplitude of the cylinder oscillation is
seen to rise substantially. Another interesting feature is the evidence of hysteresis effects
in both the oscillation amplitude and the phase lead of the surface pressure with respect
to cylinder displacement. When the velocity of the flow was stowly increased between
on reading and the next, higher oscillation amplitudes of motion were obtained than if
the velocity was gradually decreased from above lock-in. One further point of note is
that in this free-vibration experiment, lock-in occurred only at reduced velocities above
that required for coincidence of frequencies {at U ~ 0.83). This corresponds to the case
of the cylinder oscillating more slowly than the Strouhal frequency for the stationary
cylinder.

For freely vibrating cylinders with very low mass-damping parameters, such as for
lightly damped cylinders in water, the situation at cross flow lock-in is a little different,
in that the cylinder oscillation frequency tends to be “attracted” to the fixed cylinder
Strouhal frequency. This can be seen in the results of Angrilli, Di Silvio and Zanardo
(1972), shown here in figure 1.17. In their experiment, a light P.V.C. tube was mounted
on a sprung yoke and subjected to flow in a water channel. Using an estimated in
vacuo value for ¢ of 0.01, and with the information they supplied concerning cylinder
~ diameter, spring rates and frequencies, K, = 0.015. In this situation, where the cylinder
can be forced to vibrate at frequencies away from the in vacuo natural frequency, it can
no longer be assumed that the response amplitude is a function of the mass-damping
parameter. That is, the response amplitude may become a function of both ¢ and
m/pD* separately, rather than their product in K.

As mentioned at the start of this section, freely-vibrating cylinders of low K, (e.g.
King 1974, 1977) also exhibit the phenomenon of “in-line” lock-in, which occurs at
reduced velocities which are rational submultiples of the reduced velocity for cross flow
lock-in (V, = 2.5 = 5/2 and 1£ = 5/3). These ratios are sometimes found to produce
lock-in for forced cross flow oscillation, as discussed below, but are not known to be
associated with cross flow vibration for freely-vibrating cylinders.

Experiments carried out with cylinders which are forced to oscillate show frequency
entrainment behaviour which is slightly different to that which occurs for freely-vibrating
cylinders. Only experiments in which the cylinder oscillation was forced in the cross
flow direction will be discussed here, since that is most relevant for structures in flows
of air (medium to high values of K,).

Koopman (1967}, in wind tunnel experiments conducted at low Reynolds numbers
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FiGcure 1.17: Results of tests of an elastically-mounted cylinder in a flow of water.
Different springs were used to produce four different natural frequencies f,,,~f,,. V is
the flow speed and f the frequency of cylinder oscillation. 2.5 x 10° < Re < 7 x 103,
K, =~ 0.015. From Angrilli, Di Silvio & Zanardo {1972).

{100 < Re < 300), demonstrated a number of important features of forced oscillation
lock-in. The first was that the wake frequency became the same as the cylinder osciila-
- tion frequency for frequencies both above and below? the fixed cylinder vortex shedding
frequency. In addition, the range of frequencies over which lock-in occurred increased
with the amplitude of oscillation. Both these features can be seen in figure 1.18, which
also illustrates that Koopman found a threshold amplitude for lock-in.

These two features were also observed by Stansby (1976), at higher Reynolds num-
bers (3600 < Re < 9200). In his experiments, Stansby also noted secondary and
tertiary lock-in, when the cylinder oscillated at twice and three times the fixed cylin-
der Strouhal frequency (the evidence for secondary lock-in was much weaker than for
tertiary lock-in). His results are shown in diagrammatic form in figure 1.19, replotted
to match the format used above in figures 1.16 and 1.17, with reduced velocity on the
abscissa.

Stansby also observed the phase of wake velocity fluctuations with respect to cylinder
motion, and found a sudden jump of about 180° in the phase relationship in the middle
of the lock-in regime, as shown in figure 1.20. A sudden change of phase was observed
at similar Reynolds numbers by Bishop and Hassan (1964b), and is also evident in
the free-vibration results of figure 1.16. The jump seems to be related to a change in
wake topology, as will be discussed below. The lock-in boundaries observed by Stansby,
together with the reduced velocity at which the sudden jump in phase was found, are
shown in figure 1.21.

4For freely-vibrating cylinders, lock-in tends to occur only when the cylinder oscillation frequency
is below that of the fixed-cylinder vortex shedding frequency.



1-32 ' CHAPTER 1. REVIEW

70 -C\
60 \-p\
s b\
PN IR
= 30 N\ \ \ ‘Locked-in’ g
% Y region /
ANN /
cHE U N \ /
2 WA\ S 5
; i
2301 W\ ./
2 AN //
4 20t \\ / f
: \ g
. Threshold % ;7; 4
& b  Gsplcememt S .
0 1 i { ! i l | | i | i
—20 =10 0 +10  +20
—25 —~15 —5 45 +15 +25

Percentage change in frequency

FIGURE 1.18: Lock-in boundaries found by Koopman (1967}, 100 < Re < 300.



1.4. EFFECT OF CYLINDER MOTION ON VORTEX SHEDDING

1-33

.. E
Frequency Range extends as .
amplitude increases .
j‘ \\“\ts___ E
mech : “
Primary Lock-in
fmech /2 Se-d-— Secondary
f mech/ 3 Tertiary
0 1.67 25 5
r

FIGURE 1.19: Diagram illustrating the primary, secondary and tertiary lock-in regimes
observed by Stansby {1976).

180
140
100

60

20

\\ |

20 P

—60

F1GURE 1.20: Variation

0 12 14 16 18

Sc/SO

20 22 24 26 28 30 32

of phase, ¢, of hotwire signal with respect to cylinder motion

as a function of the ratio of cylinder oscillation frequency to Strouhal frequency S,/ So.

After Stansby (1976).



1-34 CHAPTER 1. REVIEW

0.4
03
o
0.2 g
Phase change
boundary
01F =
0 1 i ! i i ! !
0 i 2z
V. St
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sudden phase change was observed. After Stansby (1976).

Stansby found that the oscillation amplitude required for lock-in to be observed was
not fixed, but varied with Reynolds number: for instance, lock-in was not observed at 3%
amplitude for Re == 9200, but was found at 1% amplitude when Re = 3600. Since the
range of V; required for lock-in decreases with amplitude, lock-in becomes increasingly
hard to detect at lower amplitudes in any case, due to the limited frequency resolution
of most spectral analysis techniques.

Above and below the lock-in boundaries, Stansbhy’s results indicated that the wake
frequency was “forced away” from the fixed cylinder Strouhal frequency, in a direction
opposite to that of the impending lock-in. This characteristic was also found by Bear-
man and Davies (1975) for forced oscillation of a D-section cylinder, and also by Woo,
Cermak and Peterka (1983) for forced oscillation of a cylinder in a shear flow. The
cause of this characteristic is unclear, although the discussion given by Bearman and
Davies indicates that the effect may be due to some peculiarity of the spectral analy-
sis. Stansby stated that near the boundaries of lock-in, an oscilloscope trace of a wake
hotwire signal showed that the shedding changed intermittently from being locked-in
to not being locked-in, while Woo, Cermak and Peterka’s flow visualization showed the
same behaviour. Wake spectra produced by Bearman and Davies for conditions out-
side lock-in show spectral peaks at the fixed-cylinder Strouhal frequencies and at the
cylinder oscillation frequencies, reflecting the non-stationary nature of the flow.

A final point relevant to the discussion of this section is that experimental results
have suggested that cylinder motion can influence the nature of vortex shedding which
would otherwise be determined by Reynolds number. Wootton (1968, 1969) carried out
a series of tests on freely-vibrating models of chimney stacks in the NPL compresssed-
air tunnel (discussed below in relation to K-« envelopes). For models with roughened
surfaces, he found that the Strouhal numbers remained relatively constant in the range
0.15 to 0.21 over the entire range of Reynolds numbers available in his experiment
(8 x 10* <« Re < 2.1 x 10°). By contrast, no definite Strouhal numbers could be
inferred in the supercritical range of Reynolds numbers (4 x 10° < Re < 1.5 x 10%) for
models with smooth surfaces, except in the few cases discussed below. Presumably, free
end effects disturbed formation of the twin laminar-turbulent separation bubbles which
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normally accompany high frequency vortex shedding for smooth circular cylinders of
high aspect ratio in the supercritical range. For smooth models with low mass-damping,
response peaks were noticed at reduced velocities near 5 in this supercritical range of
Reynolds number (Re = 8 x 10°), implying that vortex shedding was re-established
with a Strouhal number near 0.2. The response amplitudes which accompanied this
return to “normal” vortex shedding were of the order 0.1 D.

1.4.2 Spanwise Correlation of Vortices

A feature of vortex shedding from stationary cylinders at most Reynolds numbers is
that the vortices display a limited spanwise organization, with phases and strengths of
the vortices varying from point to point along the span of the cylinder. During lock-in,
vortices tend to be shed in phase along the span, a point well illustrated by Koopman’s
flow visualization?.

Quantitative measures of the degree of spanwise organization are given by the cor-
relation coeflicients of the wake velocities or pressures on the cylinder surface measured
at different spanwise locations. Typically the correlation between variables at different
spanwise locations increases as the amplitude of oscillation increases, as shown for exam-
ple by the results of Toebes (1969), figure 1.22, and those of Novak and Tanaka (1975),
figure 1.23.

Whether these increases are brought about by events which are always present
and for which the magnitude increases with oscillation amplitude, or are due to well-
organized events for which the intermittency decreases with increased amplitude is
unknown. Time-average measurements such as correlation coefficient cannot distinguish
between the two.

1.4.3 Mode Jumping and Phase Change

The phase change referred to here is the change in phase of vortex shedding with respect
to cylinder motion during lock-in. The fact that the frequencies of vortex shedding and
cylinder motion coincide during lock-in implies that a definite phase relationship exists
between the two. It is observed that the phase varies with reduced velocity. As pointed
out above (see fig. 1.21), some experimenters have observed rapid changes in phase
angle with changes in reduced velocity (e.g. Bishop & Hassan 1964 b, Stansby 1976,
Parkinson, Feng & Ferguson 1968). Others (e.g. Protos, Goldschmidt & Toebes 1968)
have observed a more gradual change. It now seems that one of the causes of rapid
phase change is a change in wake topology (Williamson & Roshko 1988). This is what
was referred to above as “mode jumping”.

Before continuing, it will prove useful to briefly discuss the phase of wake forces
with respect to cylinder motion before the topic is taken up in more detail below. The
phase of force with respect to displacement-can be shown using the familiar “rotating
vector” format as in figure 1.24. The convention adopted is the usual one for mechanical

For the fixed cylinder, Koopman’s flow visualization showed slantwise vortex shedding, producing
a linear variation of phase along the span. This reflects the very low Reynolds number, as at higher
Reynolds number the phase variation along the span tends to be more random.
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Frcure 1.22: Variation of correlation coeflicient R..., between wake velocities at differ-
ent points along the span as functions of oscillation amplitude. Here, f, is the ratio of
fixed cylinder Strouhal and forced cylinder oscillation frequencies (equal in this case).
After Toebes (1969).
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F1GURE 1.24: Phasor diagram showing phase of vortex shedding forces with respect to

cylinder motion, with indication of signs of motion-correlated force coefficients C, &
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systems in harmonic motion; velocity leads displacement by 90°, acceleration by 180°.
Shown in the four quadrants are the sign of coefficients of motion-correlated forces C,
and K, (it can be deduced that C, describes forces out of phase with acceleration, K,
forces in phase with velocity). It should be evident that for freely-vibrating cylinders,
only forces with phases in the range 0° to 180° will be observed, since forces with phases
in the range 0° to —180° will tend to damp out oscillation. Inspection of Feng’s results
(fig. 1.16), which show the phase of suction at a tapping 90° from the front of the
- cylinder bears this out. No such restriction applies to forces during forced oscillation.

Figure 1.16 illustrates that there was a step change in phase from less than 50° to
more than 100° near U = 1.0. This corresponds to a rapid change from some component
of wake force being out of phase with cylinder acceleration to being in phase. Indeed
there was a corresponding small increase in cylinder oscillation frequency at the same
point, as would be expected {although it is a little peculiar that the frequency remained
below f,, the figure measured “in vacuo”). The forced oscillation results of Bishop and
Hassan (1964) show a similar sharp jump in phase (Re = 8900, a = 0.2). By contrast,
the results of Protos, Goldschmidt and Toebes (1968) at Re = 4.6 x 10, « < 0.14, while
they show variations in phase, do not exhibit a step change near ¢ = 90°, as shown in
figure 1.25.

Williamson and Roshko (1988) presented results from an interesting set of experi-
ments conducted using a water tank and a computer controlled carriage with cylinder
which projected into the water, together with a camera. Flow visualization was carried
out using aluminium particles which were distributed on the surface of the water. Us-
ing this apparatus, they were able to observe the flows which occurred for 0 < a < 5,
0 < V. < 15 in the Reynolds number range 300 < Re < 1000. A number of differ-
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FI1GURE 1.25: Phase of vortex shedding forces with respect to cylinder displacement

{¢s) as a function of the ratio of frequency of cylinder osciilation to frequency of vortex
shedding for the fixed cylinder (fs/f;) at Re = 4.6 x 10*, o = 0.07. After Protos,
(Goldschmidt & Toebes (1968).

ent modes of vortex shedding were observed in which 2, 3, 4 or more distinct vortices
were formed per cycle of cylinder oscillation. A subset of their results is shown in
diagrammatic form in figure 1.26.

From the point of view of vortex-induced vibration, only the values of amplitude
o < 1.0 are significant. It can be seen that the lower amplitude section of the 2S and
2P regions, taken together, form the primary lock-in region. Note the similarity in form
to Stansby’s results (fig. 1.21), including the line he found for a sudden change in phase
of wake velocity with respect to cylinder motion. It seems that this sudden change in
phase, also reflected in the results of Bishop and Hassan (1964 b} and Parkinson, Feng
and Ferguson (1968), corresponds to a mode jump from two vortices shed per cycle of
cylinder motion (2S5 mode) to four per cycle (2P mode). The sudden jump in phase
is produced by a change in wake topology. The lack of such a jump in the results of
Protos, Goldschmidt and Toebes (fig. 1.25), for example, might be explained by the
fact that the amplitudes of vibration in their experiment were below those required
for complete lock-in, and the values of phase that they found reflect average values as
vortex shedding jumped in and out of synchronization with cylinder motion.

Another important finding contained in Williamson and Roshko’s results is that,
at the extremes of the primary lock-in region, four vortices are created per cycle of
cylinder acceleration, two at each acceleration maximum, like a new set of starting or
Foppl vortices. The 25 mode is a result of coalesence in the near wake region of vortices
of like sign, which occurs at the low-V, end of the lock-in range. The 2P mode is the
result of vortex pairing, but non-coalesence, which occurs at the high-V; end of the
lock-in range. Whether the 25 or 2P mode occurs seems to depend on the relationship
between the timescale of vortex convection in the wake and the period of cylinder
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FiGure 1.26: Vortex shedding modes for forced cylinder oscillations observed by
Williamson & Roshko {1988).

motion. In between these two extremes, at the range of V, around 5 where the maxima
in vortex-induced forces are observed, only two vortices are formed per cycle of cylinder
motion. This suggests that the increased spanwise correlation of vortices in the lock-in
regime is a result of the fact that the vortices are formed as new sets of starting vortices,
with a fixed phase relationship along the span.

There is another phase change in the wake, which may or may not be associated
with change of wake topology. This is the change from positive to negative values
of ¢, which, as pointed out above, is only likely to be observed in forced oscillation
experiments. This change in phase, reflected in the change of sign of energy transfer in
figure 1.25, should be reflected in a switch of timing of vortex formation, or at least in
the phasing of the dominant regions of low pressure in the near-wake. Just such a change
can be seen in figure 1.27, which shows the results of flow visualization carried out by
Ongoren and Rockwell (1988), performed at similar Reynolds numbers to those used
by Williamson and Roshko, but using timeline rather than streakline flow visualization.
Also apparent is the shortening of the vortex formation region as V; (proportional to
f5/fe) was decreased. Zdravkovich (1982} provides further discussion on this topic.
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FiGURE 1.27: Flow visualization by Ongoren & Rockwell (1988) which shows the change
of phase of vortex shedding with respect to cylinder motion. The ratio £,/ f; shown with
each photograph is the ratio frequency of forced cross-flow oscillation (f.) to frequency
of vortex shedding from the stationary cylinder (f7). All photos taken at maximum
negative displacement of cylinder. Oscillation amplitude a = 0.13, Re ~ 885.
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1.4.4 Response Amplitudes and Stability Boundaries

For structures with small mass-damping (but sufficient that they oscillate near their in
vacuo natural frequency}, the response amplitude at any Reynolds number is a function
of ¥, and K. One way of characterizing this is to draw contours of response amplitude
on a graph with ¥, and K, as the axes; figure 1.28 () shows such a plot for a = 0.01,
taken from the results of Parkinson, Feng and Ferguson (1968). Two points which can
be made here are that the range of V; for significant response increases as K, is reduced,
and that it extends predominantly in the range of V. > 5. To the left of the contour,
the “unstable” region, it might be assumed that lock-in occurs, although it is likely
that this in fact happens at amplitudes somewhat greater than a = 0.01, on the basis
of figure 1.21.

If one were to draw contours of greater amplitude, then a diagram such as that
of figure 1.28 (b) would be obtained. A section through such a plot at some particular
value of V. would then show how amplitude varies with K, as for example in figure 1.29,
taken from results measured on a linear mode-shape model stack by Wootton (1968,
1969). This shows that a increases rather slowly as K, is reduced from high values,
until near K, = 0.5 the amplitude of oscillation increases rapidly with decreases in K.
Finally, in the limit K, — 0, a maximum value of « is approached, cms_ ., = 0.16 in
this case.

At the smaller response amplitudes, when the amplitude increased slowly with de-
crease in K,, Wootton’s results showed that the RMS amplitude varied with K1/2.
This is significant because it is similar to that of a lightly-damped linear system subject
to (comparatively) wide-band random forcing (Newland 1984, ch. 14). In other words,
at low response amplitudes the vibration is forced, rather than self-excited.

As the amplitude of response increases, the nature of the response as characterized
by its probability density function changes, reflecting the increased wake organization
produced by the structural oscillation. This effect is illustrated by the results obtained
by Kwok (1977), presented in figure 1.30. This shows how the normalized upcrossing
frequency of a lightly-damped circular tower model changed from that appropriate to a
Gaussian-(normally)-distributed process towards that for a sinusoidal process and back
again as the reduced velocity was traversed from below to above the lock-in range.
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1.4.5 Effect of Turbulence on Interaction between Cylinder
Motion and Vortex Shedding

Very little information is available concerning the effect of turbulence on the interaction
between vortex shedding and cylinder motion. Indirect evidence, such as observations
of the response of circular stacks, suggests that the presence of turbulence is able to
disrupt the interaction, since large amplitude responses are almost invariably observed
in flows of low turbulence intensity. However, experiments conducted by Novak and
Tanaka (1975) in which spanwise correlations of pressures were measured in subcritical
flows showed that the spanwise correlation increased with cylinder oscillation amplitude
in both smooth and turbulent flows.

An attempt has been made to incorporate the effects of turbulence into the re-
sponse prediction scheme produced by Vickery and Basu (1983 a, to be discussed in
§1.7.5). This was done by allowing for a quasi-steady variation in mean flow speed in
the description of motion-correlated forces used in the model, leading to a reduction in
motion-correlated forces near lock-in. So far, no direct experimental evidence has come
to light which supports this hypothesis.

1.5 Lift Forces on Stationary Cylinders

Now that the general aspects of vortex shedding downstream of fixed and oscillating
circular cylinders have been discussed, the emphasis changes to examination of exper-
imental measurements of lift forces. This section deals with lift forces on stationary
cylinders, while lift forces on oscillating cylinders will be dealt with in the next.

Cross flow (lift) forces form the centre of attention, with limited reference being
made to along flow (drag) forces. The distinction between along and cross flow force
is based on the assumption that separate mechanisms produce the forces in the two
directions. This assumption is most valid in turbulent flows, and at small amplitudes
of structural vibration. In this case it has been observed that the fluctuating drag
forces are dominated by effects due to the streamwise components of turbulence. In
smooth flows, and at high response amplitudes, the distinction does not hold, since
the fluctuating forces in both directions are produced by the same mechanism (see
Vandiver & Jong 1987).

Some preliminary aspects are discussed in §§1.5.1 and 1.5.2 below. The relationship
between lift force per unit length of cylinder measured at a section of the cylinder and
average lift force per unit length measured on a finite length of cylinder is addressed
in §1.5.1. The two quantities are not the same as a result of the lack of spanwise
correlation of vortex shedding. The influence of wind tunnel walls and cylinder end
conditions on measurements of lift force is examined in §1.5.2.

1.5.1 Spanwise Correlation of Forces

When comparing coefficients of lift from one experiment to another, the means by
which the lift forces were measured must be considered. Since it is observed that the
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correlation of lift forces reduces with axial displacement of the measurement stations,
localized lift forces are best measured on short lengths of cylinder, or by measurements
of fluctuating pressures at one axial location. In many experiments, fluctuating forces
have been measured on the entire length of the cylinder spanning the tunnel working
section. I the local forces and their axial relationship are spanwise homogeneous, and
if the distribution of spanwise correlation of lift forces is known, then it is possible to
estimate local RMS lift forces given the RMS force per unit length acting on the whole
cylinder, or wvice versa. This provides a means of comparison of measurements made
on short sections of cylinder with those made on a whole cylinder. A method by which
this may be done is set out below.

Conversion of o,  to o,
sosal local

With the provisos given above concerning spanwise homogeneity, it is possible to con-
vert values of og, computed using measurements of forces acting on a whole or some
finite length of cylinder (o, ) to values for a section of cylinder (zc,,,, ) if the form
of the spanwise correlation function py is known. The correlation function describes
the spanwise distribution of the correlation coefficient, or normalized covariance. By
definition, it has a value of unity when the spanwise separation between two measure-
ment stations is zero. Often, the information contained in the correlation function is
condensed into the correlation length A:

A= 2
A /0 prdA (1.2)

where A is a dimensionless spanwise displacement, A = z/D. The correlation length
‘gives an indication of the spanwise extent of forces which act on the cylinder at any
instant.

The spectrum of total lift force

Sl(f) = 'LL/[}LSII(Z1,ZZ,f)dZId22

L/D ;L/D
- D2/0 /G Su(Ar g, f) dAy g (1.3)

where L is the span of the cylinder. With the assumption of homogeneity,

, [LID L/D
SUS) = Sioea £ D [ [ Rulhs, o, £ dhy s (1.4)

where Ry(A1, Az, f) is a narrow-band correlation function (normalized cross-spectrum).
If the narrow-band correlation is not a function of frequency, as is usually the case, it
may be replaced by the correlation function py = p(JA; — X3}, to give

LiD pL/D
SUF) = Sue VD [T prdhs drg

5 LD pxg
= Siu(N20* [ [T prdx s (1.5)

To make further progress, the shape of the correlation function must be known. Here,
a function used in chapter 5 for extrapolation of results is introduced;
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to span Ay, for a correlation function py =1/ (1 + (2—7;\-)2 (A — /\2)2> .

l (1.6)
£y = 3 . .
1+ (&) (n = A
With the use of this function, it can be verified that
8D?A? ( «L L 1 L \?*
S = Staea () =05 {QDA arctan gy ~ 3o [1 * (55/1“) }} ‘ (17)

Introducing Ar, = DA/L, which describes the correlation length as a proportion of
span, rather than diameter, equation (1.7) can be written

4L°A A T \?
S}(f) = Srloca](f) = L {a,rcta,n Q—ZL' —_ —;réhl {l + ("éx-g) ]} , (18)

and since Sy, (f} = Si(f)/L*, where S) (f) is the spectrum of lift force per unit
length,

/2
o, [4AgL T Ag ( x )2 '
fotal — t _.............._.._..} —-— . .
= ( - {a,rc an2AL = nil+ A, (1 9)

Hocat

This ratio is plotted in figure 1.31 as a function of Ayz. The shape of the curve is not
sensitive to the form of correlation function assumed: the relationship given by Howell
and Novak (1979) for an exponential correlation function py = exp(—{A; — A|/A) gives
similar results.
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Figure 1.32: Compilation of correlation lengths for pressure fluctuations at 90° from
the leading generator of the cylinder (after Bruun & Davies 1975). +, A, O, O, x:
L. < 0.5%, ©; I, = 4%, @; I, = 10-14%.

Correlation Lengths

A compilation of measurements of the spanwise correlation lengths of fluctuating pres-
sures on circular cylinders at the # = 90° position from the leading generator of
the cylinder in subcritical smooth and turbulent flows was presented by Bruun and
Davies (1975). This is reproduced here as figure 1.32. Note that no measurements of
correlation lengths for transcritical flows past smooth cylinders have yet been published.

1.5.2 Wind Tunnel Measurements and Wall Effects

The relative advantages and disadvantages of wind tunnel measurements compared to
measurements made in the field on full scale structures have been discussed by Vickery
and Daly (1984). In brief, wind tunnel measurements have the advantages of ease of
control and measurement of experimental parameters, and low cost. The main disad-
vantage of wind tunnel measurements, related to cost, is that measurements at high
Reynolds numbers are difficult to make, particularly when combined with levels of tur-
bulence intensity and scale appropriate to full scale structures. In field measurements,
it may be difficult to measure the parameters such as turbulence properties, and it
is rarely the case that the wind blows with the same mean speed and direction for a
significant period of time. This makes it difficult to obtain repeated readings with the
same set of parameters.

Experiments conducted for fixed cylinders in air generally suffer from a restriction
in Mach number which means that large Reynolds numbers require large cylinder diam-
eters and hence wind tunnels. If the cylinder is intended to oscillate, another restriction
is imposed by limitations on the permissible fluctuating stresses in the materials from
which the model is constructed. Dimensional analysis shows that an equipment design
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which is operating on the limits of permissible stress at one Reynolds number can only
be made to operate successfully at a higher Reynolds number by changing the scale
of the model {diameter}, rather than flow velocity, due to the constraint on frequency
imposed by a fixed reduced velocity. Both these limitations are reflected in the fact that
all wind tunnel tests which have so far been conducted on circular cylinders at Rey-
nolds numbers greater than 1 x 10° (e.g. Roshko 1961; Jones, Cincotta & Walker 1969;
Wootton 1969; van Nunen 1972; Szechenyi (1974, 1975); Schewe 1983) have all used

compressed air or Freon as a fluid.

Wall Effects

In all wind tunnel measurements of aerodynamic coefficients, notice must be taken of the
effects on the measured coefficients brought about by the presence of wind tunnel walls.
Wall corrections for measurements made on streamlined bodies based on theoretical
considerations have been proposed and are often used in wind tunnel measurements of
forces on model aircraft and components (Pope & Harper 1966). In bluff body flows,
the situation is more difficult since there is no convincing theory on which to base
corrections. The effects can be placed into three main classes:

1. Tunnel Blockage
2. Aspect Ratio
3. End Effects

Unfortunately, there are insufficient experimental data to fully quantify the effects,
particularly in turbulent transcritical flows. Most of the available experimental data
relate to subcritical flows. To make things less clear, it has often not been recognized
that these three classes may produce separate effects on the measured force coeflicients.
For instance, cylinder aspect ratio and tunnel blockage have been varied simultaneously
in many experiments. West and Apelt (1982) studied the variation in base pressures
and drag coefficients of cylinders caused by changes in aspect ratioc and blockage for
smooth subcritical flows. They showed that independently decreasing the aspect ratio

or increasing tunnel blockage each had the effect of increasing the coefficient of drag
(fig. 1.33).

Blockage Tunnel blockage is caused by the fact that wind tunnel walls constrain the
flow past any object, so that streamlines of the flow are distorted from what they would
be if the object were placed in an infinite uniform flow. The tunnel blockage is usually
described by the blockage ratio, which 1s the ratio of the model projected area to the
tunnel working section area. The effects of tunnel blockage on circular cylinders are
complex, mainly as a result of the fact that the separation point is free to take up any
position on the cylinder. Blockage can be thought of as having two interlinked effects.
The first is that by constraining the wake, blockage influences the separation point by
changing the pressure gradients on the body. The second is that the increase of local
velocity on the boundary of the cylinder brought about by constraint has the effect of
raising the Reynolds number, which also influences the type of separation that occurs.
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It is very difficult to account for these effects, particularly near the critical range of
Reynolds number, where the flow regimes are sensitive to disturbances.

Semi-empirical corrections for wind tunnel blockage of bluff-body flows were pro-
posed by Glauert (1933), Allen and Vincenti (1944) and Maskell (1965). All methods
presume that the effects of blockage can be accounted for by an increase in free-stream
dynamic pressure, with no change in the shape of the pressure distribution. Maskell
argued that the pressure distribution around the bluff body is “invariant under con-
straint”, i.e. that the shape of the pressure distribution does not change with blockage,
and that effects can be accounted for by a change in the free stream velocity. The re-
sulting corrections for coefficient of drag have been shown to produce reasonable results
on sharp-edged bluff bodies, but in fact the assumption of invariance is not needed to
arrive at that correction. Melbourne (1982) showed that for sharp edged circular plates
held normal to the flow, Maskell’s correction for drag coefficient was satisfactory, but
that the pressure distribution was not invariant under constraint (most of the effect
being confined to base pressure). '

In the absence of satisfactory theoretical or semi-empirical methods of correcting
pressure distributions or fluctuating lift on circular cylinders, the experimental evidence
must be examined. The only systematic investigation of lift forces in which the end
cffects and aspect ratio were held constant while the blockage varied is that of Richter
and Naudascher (1976). They measured forces on a 6.8 D long section of an 8.6:1
aspect ratio cylinder in smooth flows in the Reynolds number range (based on upstream
velocity) 2 x 10* < Re < 4 x 10°, with blockages of 1/6, 1/4, 1/3 and 1/2. They found
substantial blockage effects, the most pronounced being on the RMS coefficient of lift,
as shown here in figure 1.34. The results of Keefe (1962), shown in the figure, are not
strictly comparable, since they were obtained on a 1 D long section of a high aspect
ratio cylinder {with a blockage of 2.3%), and so would be lower if corrected to a 6.8 D
long active section of cylinder, because of the lack of spanwise coherence of lift force.
Similarly, the results presented by Richter and Naudascher cannot be manipulated to
give sectional coefficients of lift, since no measurements of spanwise correlation are
presented. It may well be that part of the observed increase in coefficients of lift with
blockage ratio are due to increased spanwise coherence of vortex shedding. All the
same, the implication is that increasing blockage from zero to 1/6 (16.7%) produces
roughly double the lift force in subcritical flow. The effect in critical flow is less easy
to discern from their results, which do not show what occurs at this lowest blockage.

Cheung (1983) carried out tests in the Reynolds number range 6 x 10% to 1 x 108,
with substantial effort given to blockage correction of results. Unfortunately, both as-
pect ratio and tunnel blockage varied in his experiments. Despite this, his results are sig-
nificant here, since he examined lower ranges of blockage than Richter and Naudascher,
and provided results at higher Reynolds numbers and in turbulent flows. Specifically,
two cylinders, one of aspect ratio 6.7:1 and a blockage of 8%, the other with aspect
ratio 3.6:1 and blockage of 15%, were used for the examination of lift forces. Of the
two uncorrected measurements of RMS coefficient of lift which he presented (his fig.
5.1), the one at 8% blockage may be compared with the measurements of Richter and
Naudascher, since it is made in subcritical flow (Re = 1 x 10%), and at an aspect ratio of
6.7:1, which is similar to the 8.6:1 ratio used by Richter and Naudascher. The result is
shown in figure 1.35, where the maximum RMS coefficient of lift in smooth subcritical
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ratios on a 6.6 D section of an 8.6:1 aspect ratio cylinder in smooth flow (after Richter &
Naudascher 1976).
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FIGURE 1.35: Maximum RMS coeflicient of lift found in smooth subcritical flow as
a function of tunnel blockage. Results of Richter & Naudascher (1976) and Che-
ung (1983).

flow is shown as a function of tunnel blockage. The inference from figure 1.35 is that the
blockage correction to RMS lift coefficients in smooth subcritical flows is approximately
a quadratic function of tunnel blockage.

For comparatively low blockage ratios (less than 0.15) in smooth subcritical flows
(Re < 1 x 10°), Cheung suggested that a linear correction to fluctuating lift could be
applied:

Ci, = C,, — 2.7 - (blockage ratio) , (1.10)

where the subscripts ¢ and m refer to corrected and measured quantities respectively.

Cheung found that in smooth flow, 1 x 10° < Re < 2 x 10°, the blockage correction
was about ten times smaller than that suggested above. In turbulent flow (7, = 9.1%),
and at Reynolds numbers larger than 1 x 10°, he found no blockage correction was
required. Presumably this was due to the wake being narrower than at subcritical
Reynolds numbers.

In general, it can be concluded that while there is not enough experimental evidence
available to enable blockage corrections to be reliably applied to fluctuating lift coefi-
cients, the amount of correction which is needed drops with the width of the wake. In
subcritical flows, with comparatively high coefficients of lift and large wake widths, the
fluctuating lift force is sensitive to tunnel blockage. In supercritical flows, with small
lift coeflicients, the amount of correction required is probably small. The situation is
less clear in transcritical flows, where the lift coefficients and wake widths become larger
again (although still smaller than in subcritical flow).

Aspect Ratio There is some difficulty in considering the influence of aspect ratio
and end effects separately, since a decrease in aspect ratio obviously brings the ends of
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F1gURE 1.36: Distribution of base pressure on cylinders of varying aspect ratios mea-
sured at a Reynolds number of 4.4x10° and tunnel blockage of 4% by Fox & West (1990).
A is aspect ratio, Cp is RMS coefficient of drag and y/D is distance from tunnel centre-
line. The lower line in each part of the figure is for results obtained without end-plates.

the cylinder closer together.

It may be the case that the only effect of decreasing the aspect ratio is to increase the
proportion of the cylinder over which end effects are felt. This is the implication of work
reported by Fox and West (1990), who measured spanwise distributions of base pressure
and RMS coeflicient of lift at the centre section of a cylinder in smooth subcritical flow.
In their experiment, the cylinder end plates {to Stansby’s specifications, see §1.5.2)
could be moved in the spanwise direction, thus varying the aspect ratio of the cylinder
while the tunnel blockage remained constant. Examining their results for base pressure
coefficient (fig. 1.36), it can be seen that for all aspect ratios down to 7:1, there is a drop
in base pressure (at most about 6%) near the end-plates which extends a length of about
three cylinder diameters towards the centreline. The implication is that once aspect
ratios fall below T:1, the disturbance to the flow will extend over the whole length of the
cylinder. Their measurements of coeflicient of lift on the cylinder centreline {fig. 1.37)
support this conclusion: the measured coefficients of lift at the centre of a 5:1 aspect
ratio cylinder were about 7% higher than at the cenire of 10:1, 15:1 and 25:1 aspect
ratio cylinders.

By contrast, in earlier work by West & Apelt (1982}, it was stated that the pressure
was constant along the length of the cylinder, implying that end effects are felt over the
entire length of cylinder. Their results (e.g. fig. 1.33) also show that the base pressure
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FIGURE 1.37: Measurements of RMS sectional coefficient of lift C; made at the cen-
treline of cylinders of aspect ratios (A) 5:1, 10:1, 15:1 & 25:1 shown as functions of
Reynolds number. Tunnel blockage 6%. After Fox & West (1990).
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F1GURE 1.38: Variation in RMS coefficient of lift at the centreline of a cylinder brought
about by varying cylinder aspect ratio in smooth subcritical flow (after Keefe 1962).

at the cylinder centreline was a function of aspect ratio, in contrast to the results of
Fox & West (1990).

The influence of varying aspect ratio seen in the results of Keefe (1962) is similar
to that found by Fox and West. Keefe measured fluctuating lift on a 1-diameter long
central section of cylinder in smooth subcritical flow. Large circular end plates (4.9 D
diameter) could be moved along the cylinder axis to give varying aspect ratios between
the end plates, while maintaining the tunnel blockage at 2.3%. The variation in RMS
coefficient of lift as a function of end-plate spacing is shown in figure 1.38. Again the
conclusion which can be made is that the minimum aspect ratio for which there is no
influence on lift at the centreline of the cylinder is about 7:1 in smooth subcritical flow.
It was not clear from this experiment if the variation at low aspect ratios was due to
the encroachment of end-effects, or spanwise-uniform changes.

As for the influence of aspect ratio in flows at higher Reynolds numbers, there is



1.5. LIFT FORCES ON STATIONARY CYLINDERS 1-57

very little experimental data. In part this reflects the fact that compromises must
be made in the design of wind tunnel experiments: in the battle for high Reynolds
numbers, large cylinder diameters tend to win out over high aspect and low blockage
ratios. While some evidence of spanwise variation of pressures and forces has been
reported at post-critical Reynolds numbers, no experiments to date directly examine
the effect of varying aspect ratio.

The work of Higuchi, Kim and Farell (1989) was previously discussed (§1.3) in con-
nection with low-frequency three-dimensional flow fluctuations in the precritical Rey-
nolds number regime. They also presented plots of mean pressure distribution on their
two cylinders (aspect ratios 8:1 and 5:1), which are reproduced here as figure 1.39. The
blockage ratio was 11.8% for the AR = 5 cylinder and 13.9% for the AR = 8 cylinder.
End plates to Stansby’s specification (see below) were used in their experiments. While
there is clear evidence of spanwise non-uniformity, it is not concentrated towards the
ends of the cylinder.

Evidence of spanwise variation of base pressure coefficients in smooth critical flow
was presented by Bearman (1969a, see fig. 1.40). Some caution should be applied in
interpreting the results, since the cylinder spanned between the floor and ceiling of
the working section without end-plates, and so the influence of wall boundary layers is
unclear (see below). The experiments were carried out on a 12:1 aspect ratio cylinder
with a tunnel blockage of 6.5%. In critical flow, the end effect on C,; extends along
the span for a distance of three to four diameters, with a section in the centre where
the pressure is relatively uniform (in agreement with the results of Fox & West for
subcritical flow).

End Effects There are substantial end effects associated with free ends of cylinders
in a flow, due to the entrainment of fluid around the end of the cylinder into the low-
pressure wake region. In order to diminish this effect, studies of flow around cylindrical
shapes are usually conducted with the cylinder terminating at the tunnel wall or at
large end plates. There is no geometric difference between the two, provided the size
of the end plates are sufficiently large in relation to cylinder diameter. The reason why
there is any difference between terminating the cylinder at end plates rather than at
the tunnel wall has to do with the formation of “horseshoe” or “necklace” vortices at
the junction of the cylinder and the wall (see e.g. Morton & Evans-Lopez 1986 and
Lugt 1984).

For geometrically-similar boundary layer profiles, the size and characteristics of the
horseshoe vortices can only be a function of the cylinder Reynolds number and the
ratio of the cylinder diameter to boundary layer depth. In other words, the deeper the
boundary layer, the bigger the horseshoe vortices as a proportion of cylinder diameter.
The point of using end plates is to get rid of the wind tunnel wall boundary layer (by
placing it between the end plate and the tunnel wall), while starting a new, thinner
end plate boundary layer a short distance upstream of the cylinder. This will produce
smaller horseshoe vortices. If the end plates extend too far upstreamn, their effectiveness
will diminish. (Presumably end plates are not needed if the cylinder is placed not far
downstream of a high area-ratio tunnel contraction.) On the other hand, unsteady
effects in the wake of the cylinder were reported by Stansby (1974) when the upstream
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FigURE 1.39: Constant pressure contours at (a) Re = 1.95 x 105, AR = 8; (b) Re =
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Bearman (1969).

projection of the plates from the cylinder centreline was reduced below 2.5 D.

If the end plates are too small in cross flow and downstream extent, they will not
be able to prevent flow around the ends of the plates from interfering with the wake
of the cylinder. This can be clearly seen in the flow visualizations presented by Kubo,
Miyazaki and Kato (1989). Stansby’s results also showed that plates of 7.0 cross flow
dimension and projecting 4.5 D downstream from the cylinder centreline reduced the
end effects on the wakes of his cylinders (AR = 20:1 and AR = 10:1) in subecritical flow.
End plates to Stansby’s design (2.5 D upstream, 4.5 D downstream and 7D cross flow)
have by now almost become standard in tests on circular cylinders.

1.5.3 Measurements made in Smooth Flows

A selection of published measurements of o, for nominally smooth flows (I, < 0.6%)
is presented in figure 1.41. The experimental details pertaining to the measurements
are presented in table 1.2.

Suberitical Flow

The general characteristics of subcritical flow were discussed in §1.3; the defining cri-
terion is that the boundary layers are laminar at separation, leading to comparatively
well-defined and strong vortices. As pointed out above, lift forces in nominally two-
dimensional wind tunnel flows are sensitive to both cylinder aspect ratio and tunnel
blockage, with low aspect ratio and high blockage both producing higher 1ift forces in
subcritical flow.
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TaBLE 1.2: Experimental details for published measurements of 1ift made in nominally

smooth Aows.

Experiment Measured Lacive/D AR Blockage% Iy%
Keefe 1962 Force 1 18:1 2.3 0.3
Bishop & Hassan 1964a Force 3 6:1 841 ?

Jones et al. 1969  Force 2.33 5.3:1 186 ¢ 0.17
van Nunen 1972 Force 7 ? ? ?

So & Savkar 1981  Force 3 8:1 16 0.5
Schewe 1983  Force 10 10:1 10 % 0.4
Cheung 1983 Force 6.7 (max)  3.6:1 (min) § 15 (max) 1 0.4
Gerrard 1961  Pressure e 6.7:1 (min) § 15 (max) § 0.3
Batham 1973 Pressure — 6.7:1 5 8.5
Fox & West 1990  Pressure — 10, 15, 25:1 5,4 0.2

1Slotted tunnel walls

iBlockage corrected

YA number of different cylinders

1 .2 T 1 I i1 11 Ii 1 I T [ ] 111 I ] | T FTT
n @ Keefe _

& * Bishop
1.0 o ¢ & ® O Jones et oH
" + van Nunen |
* & So & Savker
0.8 * * * 1 Schewe —

M * A Cheung

& * Gerrard
F @ Bathan  _|
O-O[ 0.6 * N A A, A Fox & West
0.4 & m% G’A@& ia & —

. Etﬁg@m
o i Ehmg ]
* i3]
0.2 -, i TN ~
O +
r ® + 4t o+ ) % |
OO i Lol | %mﬂﬁﬁﬁmfh@%ﬂﬁﬁmu E!ml Ii%
10.0E3 100E3 1.00EB
Re

10.0E6

FIGURE 1.41: Published measurements of o¢, for nominally smooth flows.
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The sets of results judged most reliable from the point of view of providing direct
estimates of sectional o¢, appropriate to high aspect ratio cylinders in unconfined sub-
critical flows are those of Keefe {1962) and Fox and West (1990}, both made on high
aspect ratio cylinders with low tunnel blockage. Keefe's results, made using direct mea-
surements of force on a 1 D long section of cylinder, are somewhat lower than those of
Fox and West {1990}, produced from pressure measurements, as would be expected.

The resulis of Gerrard (1961} were recorded using a number of cylinders of differ-
ent blockage and aspect ratios, with the maximum blockages (15%) and lowest aspect
ratios (6.7:1) coinciding with the highest Reynolds numbers. Gerrard estimated the
value of o¢, using measurements of fluctuating pressures and the phase relationship
of pressures around the cylinder (rather than the cross-correlation of pressures). The
values of o¢, are seen to fall away very rapidly at low Reynolds number, faster than
those of Keefe (1962) and Bishop and Hassan (1964 a). It may be that this is related to
the lengthening of the vortex formation region (with consequently reduced lift forces),
observed in the range of Reynolds numbers approximately 1 x 10% < Re < 1 x 10* (see
fig. 1.6). The limits on the range of Reynolds numbers over which this phenomenon
occurs have not yet been precisely established, and it may be that Gerrard’s values
show influence of the effect, while those of Keefe and of Bishop and Hassan do not.
Gerrard’s maximum values of o¢, (0.85-0.9) are higher than the values of Keefe and of
Fox and West (0.5-0.55 at Re = 1 x 10°). This is probably related to the high tunnel
blockage of 15%. It is unclear from Gerrard’s paper what, if any, blockage correction
he used.

The results of Bishop and Hassan (1964a) are at the low end of the Reynolds
number range in figure 1.41 where it can be seen that their values of o, are rather
high. Consideration of the flow configuration does not provide a explanation for this,
since neither the tunnel blockage nor cylinder aspect ratio were extreme. Their results
were corrected for blockage, using an empirical modification to the method of Allen and
Vincenti (1944). This yielded a substantial correction, with an equivalent blockage ratio
of 0.23 used to correct the dynamic pressure: the correction would have lowered the
values of o¢, by a factor of ~1.3, placing their uncorrected results still higher. Bishop
and Hassan reported a number of difficulties with their experimental apparatus.

Batharm (1973) provided two measurements of o¢,,,, for asmooth cylinder in a low
turbulence intensity flow. It can be seen that both are rather low when compared to
the values of Keefe and of Fox and West in the subcritical regime and of Schewe in
the precritical regime. This may indicate the early onset of the critical regime in his
experiment; his “smooth” cylinder was in the “as machined” condition.

So and Savkar {1981) measured forces on sections of cylinders of various diameters
which spanned a water tunnel of fixed diameter. The results for the lowest blockage
ratio (16%) are presented here. Since the values presented are for a 3 D long section
of cylinder, 1t is expected that values of o¢,  would be higher than those presented
in figure 1.41. It is thought that their results are high due to large blockage and the
circular working section of the water tunnel.

Cheung (1983, see also Cheung & Melbourne 1983) corrected his results for blockage,
using an empirical method. On the basis that the results for subcritical flow (Re <
1 % 10%) were measured using the cylinder with the smaller diameter of the two cylinders
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used for force measurements (8% blockage, 6.7:1 aspect ratio), the blockage correction
applied amounts to ~ 45% of the measured values. This means that the uncorrected
subcritical values of o¢, w would have been about 0.65. If the spanwise correlation
length of vortex shedding were about 3.5 D (as estimated from fig. 1.32), or about half
the length of the cylinder, then the value read from figure 1.31 (0.73), provides an
additional correction of factor, so that o¢, = 0.65/0.75 = 0.87.

The results produced by Schewe (1983) cover a wide range of Reynolds number and
are thought to be of good quality, on the basis of his observations of the bi-stable single-
bubble critical regime, and the very wide range of supercritical Reynolds numbers. His
values of ¢, for the subcritical regime are lower than both those of Keefe and Fox and
West, as expected from the fact that Schewe’s measurements of lift force were made on
the whole cylinder, 10 D long. Using the compilation of spanwise correlation lengths
published by Bruun and Davies (1975) (see fig. 1.32) and the correction factors of
figure 1.31, Schewe’s subcritical results become similar to those of Keefe and of Fox and
West. It would be expected perhaps that his corrected results would be a little higher,
since tunnel blockage would have raised the fluctuating forces, however the tunnel walls
were slotted, which may have relieved the blockage to an extent.

Supercritical Flow

No details of the geometry of van Nunen’s experiment are available, other than the
cylinder diameter: 0.3 m. The measurements were obtained using the variable pressure
NLR wind tunnel. In the range of Reynolds number under discussion, no periodicity
was observed in the measurements of fluctuating force or surface pressures. Since no
details of the equipment geometry are known, no comment can be made as to the
relative correction between oo, and oe,, which would be involved.

The values of o¢, mea,sured by So and Savkar would be larger if corrected to
sectional values. In addition, the comparatively high blockage in their experiment,
which was conducted using a circular working section, probably contributed to high
values of RMS lift.

In this regime of Reynolds number, Cheung (1983) found that no blockage correction
of results was required. This may have been due to the effectively lower blockage of
the wake, since it is narrower in supercritical than in subcritical flows. The values of
o¢, are lower than those presented here by a factor of about three, which is not easily
accounted for by corrections based on figure 1.31. While Cheung presented values
of Strouhal number for this regime in smooth and turbulent flows, the spectra from
which the Strouhal numbers were obtained were normalized in the form fS¢,(f)/0?,
(Cheung 1990, private communication). This means that the Strouhal numbers may
not have represented dominant spectral peaks if the spectra were normalized in the
manner Sc,(f;)/o8, -

Schewe’s results for the supercritical regime have values of ¢, lower than for the
other sets of results presented. Also, Schewe’s results indicate well- orgamzed flow, with
a very distinct spectral peak at St = 0.48 observed at Reynolds numbers of 4 x 10° and
above.
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FIGURE 1.42: RMS coefficients of lift for the transcritical regime: results of Jones,
Cincotta & Walker (1969) and Schewe (1983).

Transcritical Flow

Measurements of RMS coefficients of lift for smooth cylinders in the transcritical regime
have been published by Jones, Cincotta and Walker (1969) and by Schewe (1983). Their
results are presented for comparison in figure 1.42. In both experiments, forces were
measured on finite lengths of cylinder, as described in table 1.41. Schewe measured force
on a greater length of cylinder than did Jones, Cincotta and Walker, so his values of
o, should be lower, other things equal. In the absence of measurements of correlation
lengths in transcritical flow, reliable estimates of o¢,  cannot be derived from these
results.

Probability Density of Lift Force

Probability distributions of lift force were presented by Schewe (1983) for both subcrit-
ical (Re = 5.5 x 10*) and transcritical (Re = 7.1 x 10°) flows. He also presented the
third and fourth central moments of the probability distributions of lift force for ali
four flow regimes. In all cases, the values were similar to those for a Gaussian process,
with slightly lower values of flatness (tending towards a distribution appropriate to e.g.
a sinusoidal process) in the sub-, super- and transcritical regimes. Jones, Cincotta and
Walker (1969) also presented results for the probability density of lift forces on a cir-
cular cylinder in the transcritical regime of Reynolds number. They found a greater
deviation from a Gaussian distribution in the transcritical regime than did Schewe.
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1.5.4 Influence of Surface Roughness

Cylinder surface roughness can have a profound effect on the flow past the cylinder.
Since the scope of the present investigation does not extend to the effects of cylinder
surface roughness, the discussion here will be brief. More detail is available in the review
by Basu (1982), which provides references to the important experimental results in this
area up to that date. Zdravkovich (1990) provides a discussion of the mechanisms by
which surface roughness affects Reynolds number transitions.

It is observed that relative roughnesses €¢/D greater than about 1 x 107° have the
effect of triggering the critical transition at progressively lower Reynolds numbers, and
of shortening the supercritical range. Sufficiently high relative roughnesses may be able
to suppress the supercritical range entirely, with an immediate progression from subcrit-
ical flow (laminar boundary layer separation) to transcritical (turbulent). Roughness
has this effect because it initiates boundary layer transition at lower cylinder Reynolds
numbers.

At transcritical Reynolds numbers, for which the boundary layers are fully turbulent
at separation, increasing the relative roughness tends to promote earlier separation and
increase the coefficient of drag. The reason for this behaviour is not yet fully clear, but
it is thought that increased surface roughnesses produce thicker boundary layers with
larger momentum deficits, and that this means they are less able to remain attached to
the cylinder in adverse pressure gradients (see Giiven, Patel & Farell 1977 and Giiven,
Farell and Patel 1980). It is expected that fluctuating lift coefficients also increase with
relative roughness in the transcritical range, again as the result of earlier separation.
For example, the values of RMS lift coeflicient measured at a section of roughened
cylinders in transcritical flow by Szechenyi (1974, 1975) are approximately 0.27, which
is much greater than the values for smooth cylinders shown in figure 1.42 (= 0.06), even
accounting for the fact that spanwise correlation effects would have lowered the smooth
cylinder values, since the measurements were conducted on finite lengths of cylinder.

Experimental results suggest that at each value of relative roughness, the flow past
the cylinder becomes independent of Reynolds number at sufficiently high Re, as is the
case for pipe flows. Szechenyi suggested that at sufficiently high values of relative rough-
ness (¢/D > 1.5 x 10™*), transcritical flow characteristics were dependent on the size
of roughness and consequently on the roughness Reynolds number Uc/v alone, rather
than the cylinder Reynolds number UD/v in conjunction with the relative roughness

¢/D. This hypothesis is not supported by later experimental results, for instance those
of James, Paris and Malcolm (1980}, Alemdaroglu, Rebillat and Goethals (1980), and
Buresti {1981).

The effect of relative roughness on correlation lengths in the sub-, super- and trans-
critical flow regimes on spanwise correlation is unclear, but it seems likely that surface
roughness has the effect of increasing spanwise correlation lengths in the transcritical
regime. As previously mentioned, measurements of spanwise correlation of flows in the
supercritical and transcritical regimes are rare, partly as a consequence of generally low
aspect ratios in wind tunnel studies for these regimes. Buresti (1981} measured correla-
tion between signals from two hotwire anemometers located outside the wake flows past
roughened cylinders and concluded that the spanwise correlation lengths varied from
3 D in the subcritical regimes to 2 D in the supercritical regimes through to 4 D in the
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transcritical regimes. No dependence on relative roughness was noted. The results of
Szechenyi suggested that the spanwise correlation lengths in his experiment were more
of the order of 9.D for two independent (but unidentified) relative roughnesses.

1.5.5 Influence of Turbulence

Turbulence always originates from instabilities which exist in regions of sheared flow.
Only the aspects which are most relevant to flows around bluff bodies and circular
cylinders in particular are dealt with here.

From a wind engineering perspective, the flows in which real structures are usually
situated are boundary layer flows, with significant shear which produces non-uniformity
of mean and turbulent flow properties over the length of the structure. In boundary
layer wind tunnels one of the primary modelling tasks is to correctly represent a scaled
model of the full size flow, but in tests on nominally two-dimensional bluff bodies it is
more convenient and usual to use grid-generated turbulence. Grid-generated turbulence
can be nearly homogeneous and isotropic over the scale of the cross-section of the two-
dimensional model under test. The extent to which bluff body flows in grid-generated
turbulence approximate those in correctly scaled shear flows is not clear, partly because
both are poorly understood. For slender structures, there is some justification for the
use of homogeneous turbulence at least, on the basis that in full scale the turbulence
properties do not vary rapidly on the scale of the typical vortex-shedding flow structures
involved (of the order of a few diameters).

Turbulence Intensity and Scale

At high enough Reynolds numbers {based on the RMS magnitude of the velocity fluc-
tuations and turbulence integral scale), the energy containing portion of grid-generated
turbulence is assumed self-similar over a range of flow speeds (Tennekes & Lumley 1972,
ch. 8). This means that the spectra of turbulent fluctuations, excluding the dissipation
range, can be represented by a common dimensionless form for all Reynolds numbers.
The theoretical form of the spectrum for grid-generated turbulence (or even homoge-
neous isotropic turbulence) is unknown, but a representation often used is that due to
von Karmén (1948), which can be put into frequency-dependent form using Taylor’s
hypothesis (Simiu and Scanlan 1986)

£$.6) _ o
ic [1 +70.8 (444) 2]

5 - (1.11)

It follows that grid-generated turbulence can be characterized by the length scale LZ
and by its intensity I, = o,/U.

There is not yet enough experimental or theoretical evidence to fully explain the
effects of the two variables, L7 and I, on flows around blufl bodies. The complications
are greater in the case of flows around circular cylinders than for sharp-edged shapes,
because various instability phenomena result in many transitions in the flow as Reynolds
number changes. Turbulence often affects these transition phenomena, bringing them
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about at lower Reynolds numbers (although the addition of turbulence does not in
general have the same effect as an increase in Reynolds number). Consequently it
is often difficult to differentiate effects caused by the transition-promoting effects of
turbulence from those which might be produced in otherwise Reynolds-independent
flow regimes.

In an attempt to relate the transition point in flat plate boundary layers to the
turbulence properties of the external flow Taylor (1936)° proposed that the transition
point is some function of the parameter Ta = I,(LZ/D)~'/5. This parameter (the Tay-
lor parameter) has become the model for various forms of turbulence parameters which
try to characterize the effects of turbulence and scale in one variable, typically of the
form I,(LZ/D)". As Bearman and Morel (1983} point out, there is no theoretical basis
for the use of the Taylor parameter in separated lows. While the use of the param-
eter has been extended to correlate the effects of turbulence on the critical transition
in flows around spheres and circular cylinders (Taylor 1936, Bearman 1968 a Kiya et
al. 1982—see equation (1.1)), Bearman and Morel conclude that the correlating effect
is merely coincidental. They argue that the ability of the parameter to correlate the
critical transition just reflects the fact that the negative exponent in the parameter
emphasizes the importance of small scale turbulence in triggering the transition phe-
nomenon. The critical transition on spheres and cylinders is brought about by turbulent
reattachment of separated shear layers, in turn due to the increased entrainment rate
of turbulent shear layers. Increasing the Reynolds number in smooth flow moves the
turbulent transition point in the free shear layers closer and closer to the separation
point; eventually the turbulent shear layers, unable to entrain sufficient fluid from the
slow backflow region near separation, reattach to the cylinder before final turbulent
separation. The addition of fine scale turbulence either brings about earlier transition
in the free shear layers or increases their entrainment rate, thus promoting the critical
transition at lower Reynolds numbers.

According to Bearman and Morel, there are three main ways in which turbulence
interacts with the mean flow around bluff bodies. They are:

1. Transition effects, for example the earlier transition of laminar shear layers to
turbulence produced by turbulent fluctuations in the upstream flow.

2. Mixing effects, for example enhanced entrainment into turbulent shear layers pro-
duced by the addition of turbulence to the upstream flow.

3. Distortion effects caused by the interaction of the mean flow around the body with
turbulence, bringing about attenuation or amplification of different components
depending on their scales.

The interaction with fluctuating flow is less easily categorized (partly because the fluc-
tuating flow is less well understood than the mean), but an immediate addition to the
list above is

4. Quasi-steady effects, where slowly fluctuating loads are produced by low frequency
fluctuations in the flow which do not affect the short-time-average force coeffi-
cients.

®See also Goldstein 1965, pp. 327-329.
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At a slightly more complicated level, another addition could be made:

5. Correlation effects, where (for instance) the correlation length of load is reduced
by the influence of turbulence scales of a similar size.

The mixing effect of additional turbulence produces an increase in turbulent bound-
ary layer local skin friction coefficients (Bearman & Morel 1983), due to an increase in
turbulent momentum transfer. The effect on already turbulent boundary layers should
be to thicken them, giving greater momentum deficits at any given Reynolds number.
In this respect the addition of turbulence could be thought of as being similar to an
increase in surface roughness, but the comparison is not straightforward. This is be-
cause rough surfaces on objects immersed in the fluid can become hydrodynamically
smooth once the depth of the linear sublayer becomes greater than the roughness height
(Schlichting 1979 p. 652); such an effect probably does not occur for additional turbu-
lent momentum transfer caused by free stream turbulence. In addition, homogeneous
isotropic turbulence is described by two parameters, integral length scale and intensity,
while the effects of surface roughness are more nearly a function of one parameter, the
relative size of the roughness elements ¢/ D.

The relationship between turbulence scale and vortex shedding frequencies can be
illustrated by plotting turbulence spectra in terms of reduced frequency f,, with the
ald of equation 1.11. This enables a comparison of the frequency contents of turbulence
and vortex shedding forces. Von Karman’s spectral function can be written in terms of
the reduced frequency variable f,

Su (fr) Cl
S = . (1.12)
g, [1 1708 (%)zﬁ]sm

Spectra of this form are plotted in figure 1.43 for various values of the length scale ratio
LSR = LZ/D. The plots are normalized such that the area under each curve is the
same {corresponding to a constant turbulence intensity). For comparative purposes, a
representative lift force spectrum is also plotted on the figure. This is of the form

fr - St :
( 53 . (1.13)
For this plot, representative values of the Bandwidth parameter B = 0.07 and the

Strouhal number St = 0.2 were used, which correspond to subcritical narrow-band
vortex shedding (Vickery & Clark 1972).

It is likely that only frequencies of the order of the vortex shedding frequency and
higher by perhaps a few orders of magnitude have any significant direct effect on vortex
shedding forces (in effect, this amounts to a judgement as to where the division between
direct and quasi-steady effects lies}). On the basis of the figure it might be expected that
for length scale ratios of perhaps 20:1 or greater, turbulence will produce mainly quasi-
steady loads on the structure, while the fine-scale turbulence at the high wavenumber
end of the spectrum may still affect Reynolds number transitions.

Si{fy) = Crexp
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Arbitrary Units

DU

FIGURE 1.43: Spectra of turbulence and lift due to vortex shedding, plotted on a
common frequency axis, showing the influence of turbulence integral scale. The vertical
units of measure are arbitrary, but the turbulence spectra are normalized to the same
variance,

Typical length scale ratios in full scale are of the order of 10:1 and greater, while
those in wind tunnel experiments using grid-generated turbulence are typically of the
order of 5:1 and less.

Effects of turbulence on flows past sharp-edged bodies Before moving on to
discuss flows around circular cylinders in more detail, it will be interesting to exam-
ine some results for flows around sharp edged bodies, where the transition effect of
turbulence should be less significant.

Bearman’s (1971) finding that free-stream turbulence with intensities up to 10%
had little or no effect on the base pressure or drag of two-dimensional thin flat plates
suggests that turbulence does not substantially affect the mean processes in wakes,
since the separation points in this case are fixed and there is no possibility of flow
reattachment having influenced the results.

Vickery’s (1966) results for a two-dimensional square section prism at different an-
gles of attack suggest the same thing, since near an angle of attack a = 45° addition
of flow turbulence (I, = 10%, LSR = 1.3) produced almost no change in base pressure
coefficient (fig. 1.44). At the 45° angle of attack, there is little possibility of reattach-
ment, hence the separation points again were known to be at the shoulders of the shape
(at lower « the higher base pressures in turbulence are due to reattachment).

These results are supported by measurements of luctuating sectional forces obtained
by Vickery and by Lee (1975). Both results for normal force coefficients are shown in
figure 1.45. Lee’s measurements become effectively independent of turbulence intensity
at o = 45°, although the more turbulent flows have slightly greater fluctuating forces.
The same effects are seen in Vickery’s results. At the 45° angle of attack, slightly higher
fluctuating forces are to be expected in more turbulent flows due to the body-coordinate
measuring system used in each experiment, which has the effect that along flow (drag)
buffeting contributes to the total fluctuating forces. (The differences in level between
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Vickery’s and Lee’s experiments are unexplained, but may be due to the amount of
tunnel blockage and blockage correction which differed between the two.)

Effects of Turbulence on Reynolds Number Transitions

Zdravkovich (1990), in his review of transition regimes in the flow past a circular cylin-
der, takes the view that it is mainly the turbulence intensity, rather than scale, which
influences the transition states (table 1.3.4), with the different states being differently
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affected.

The “precritical” state TrS0 is brought on at lower Reynolds number, but the mech-
anism is not clear. If the precritical state is indeed due to creation of laminar separation
bubbles, as suggested by the work of Higuchi, Kim and Farell (1989), then it is possible
that they are directly affected by interaction with turbulence structures of about the
same scale. This may mean that turbulence of either very large or very small scales
may not affect the phenomenon.

Turbulence has great effect on the various critical regimes TrS1-TrS3. These regimes,
with their associated laminar-turbulent separation bubbles, are very sensitive to distur-
bances in smooth flow, partly on the evidence that a wide variety of flow parameters
such as Strouhal number and coeflicient of drag have been published for this regime.
In some flows, for example those of Bearman (1969) and Schewe (1983), evidence of
stable separation bubbles was.found over a range of Reynolds numbers, with associated
high frequency vortex shedding, however in many experimental results no clear Strou-
hal number is found in the supercritical regime. In most of the experiments with high
intensity turbulence and with Reynolds numbers in the range 1 x 10% < Re < 1 x 108,
no evidence of coherent vortex shedding and an associated Strouhal number has been
found. Only in the work of Cheung (1983} were Strouhal numbers presented, but no
spectra of fluctuating pressures and forces were provided, as discussed in §1.5.3. Spec-
tra of lift forces in turbulent flow were presented by So and Savkar (1981); these show
no evidence of spectral peaks.

Zdravkovich conjectures that at high levels of turbulence intensity, no regimes of
flow for which separation bubbles exist will occur, and that transition will be made
directly from subcritical flow (with laminar boundary layer separation) to transcritical
flow (turbulent):

At still higher 7,, the fragmented separation bubbles are also destroyed. It
is expected that the extent of the supercritical regime will gradually shrink
until it eventually disappears. The latter has not yet been corroborated by
experiments. If this happens then vortex shedding does not cease at all and
the precritical regime is succeeded by the transcritical regime TrBL4.

Quasi-steady Effects

For a cylinder in a flow with LSR, the turbulent fluctuations will appear to the cylinder
like a slow variation in the speed and direction of the mean flow. This because, as
pointed out above, there will be little turbulent energy at the frequencies comparable
to the vortex shedding frequency. In this case the loads can be thought of as quasi-
steady, meaning that the local force coeflicients, averaged over a short time interval, are
the same as in a steady smooth flow of the same Reynolds number. By “a short time”
is meant some small number of vortex shedding periods.

Quasi-steady variations are thought to have two effects on the cross flow forces
on stationary cylinders: (i) broadening of the spectra of sectional lift forces, due to
fluctuations in the speed of the flow, and (ii) producing low-frequency buffeting (drag)
loads in the average cross flow direction due to fluctuations in direction of the flow.



1.5. LIFT FORCES ON STATIONARY CYLINDERS 1-71

These effects have been discussed by Vickery and Clark (1972), Davenport (1979), and
Basu 1982).

Spectral Bandwidth It has been found that the spectra of vortex shedding forces

in subcritical flow can be represented reasonably well by the formula (Vickery & Clark
1972)

fSC[(f) _ f
of, VT B f,

(=4

exp

(1.14)

Here, f, is the vortex shedding frequency and B is an empirical bandwidth parameter,
of order 0.06 in smooth flow (Vickery & Clark 1972). An equivalent form is

fr — 5t :
( T . (1.15)
If the lift were sinusoidal in smooth flow, and turbulence had only a quasi-steady effect,

then B = /21, in turbulence (Davenport 1979, Basu 1982). To account for this, while
allowing a finite bandwidth By in smooth flow, Basu suggested that B? ~ B2 + 212,
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The action of the quasi-steady variation of flow speed is thus to broaden the spectra
of vortex shedding forces while preserving their variance.

Buffeting Forces Buffeting forces are associated with the lateral component of tur-
. bulence. To the extent that they can be isolated by quasi-steady assumptions, they may
be considered a separate component of cross flow force to that created by vortex shed-
ding. In turbulent flows, the cross flow response of slender cylindrical structures may
be dominated by response to buffeting forces, particularly at high reduced velocities,
where the wind speeds exceed the critical speeds of the first few vibration modes.

Cross flow buffeting is due to the cross flow component of turbulent velocity fluctu-

ations (v). The quasi-steady fluctuating force per unit length o, is given by (Davenport
1979)

1 ac,
m=§MW(3ﬁ+Q)D- (1.16)

In general, for a circular cylinder 0C;/0a = 0, so the induced lift coefficient Cj; is
Cy=ILCy, (1.17)

where [, is the lateral turbulence intensity o, /U.

Cross flow buffeting will produce cross flow forces at frequencies (by quasi-steady
assumption) well below the vortex shedding frequency. Their magnitude will increase
with turbulence intensity, and with wind speed, to the point that cross-flow response
may be dominated by buffeting once the critical wind speed has been exceeded. Under
the assumptions that 1ift force may be decomposed into uncorrelated components due
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to vortex shedding and cross-flow buffeting and that buffeting lift force spectral density
is linearly related to the spectral density of cross-flow turbulent velocity fluctuations
over the frequency range (as implied by equation (1.17)), one finds that

SC’ (fr)D
Crun = TSR (1.18)
where S¢,(f,)o is the zero-frequency value of the spectral density of lift coefficient when
the frequency scale f, is dimensionless’. Evidence of cross flow buffeting may be seen
in the full-scale results discussed at the end of this section.

1.5.6 Measurements made in Turbulent Flows

As pointed out above, the study of turbulence effects on the flow around circular cylin-
ders is complicated by the fact that instability effects associated with Reynolds number
changes are in general promoted by the addition of turbulence to the flow. This com-
plication is evident in the following discussion of experimental results obtained in wind
tunnels.

‘Wind Tunnel Results

Surry (1972) presented results for the influence of turbulence on the flow around a
circular cylinder (AR = 39:1, Blockage 4%) at subcritical Reynolds numbers. Two
turbulence LSRs (4.0 & 0.36) and two turbulence intensities (I, &~ 10% & 14.5%) were
used, besides a nominally smooth (I, = 2.5%) flow.

Surry states that ordering the effect of turbulence on the mean flow in terms of the
Taylor parameter seemed logical in the sense that higher Ta flows had later separation.
However, none of the flows can be judged post-critical, because well-defined vortex
shedding with 5t = 0.2 was always present. The highest intensity, smallest scale flow
is critical, according to equation (1.1).

Fluctuating lift and drag values were presented only for the largest intensity large
scale flow but information about fluctuating pressures was given for all the flows. The
main effect of the larger scale flows on the spectra of pressure fluctuations at ¢ = 150°
was to slightly broaden and lower the spectral peak at the Strouhal frequency, while
low frequency energy increased. In the smaller scale (highest Ta) flow, the sharpness of
the spectral peak was little affected, but the magnitude was lowered and the frequency
shifted to a larger value; these facts reflect the delayed separation in that case.

The azimuthal distribution of RMS pressures showed that near the stagnation re-
gion, the magnitude of the fluctuations directly reflected I, with little effect of scale.
The delayed separation for the small scale case was reflected in the fluctuating pressure

"This result stems from the fact that
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distributions. Fluctuating pressures in the wake region showed reasonable similarity to
the nominally smooth flow case, reflecting the overall similarity in the mean distribu-
tions, while the fluctuations upstream of separation became increasingly dominated by
turbulent fluctuations as [, increased.

Surry’s RMS lift and drag forces were presented for the largest scale and intensity
combination, and compared with the smooth flow results of Keefe (1962). The fluctuat-
ing lift coefficient was much the same as Keefe’s, while the fluctuating drag was higher
(although as Farell 1981 noted, Keefe's o¢, value was too low by a factor of about
three-—which still leaves Surry’s result about twice as large as the corrected result of
Keefe). The second harmonic of the Strouhal frequency was not discernible in Surry’s
cross-spectra of drag force, indicating that the fluctuating drag loads were dominated
by turbulent buffeting. Cross-spectra of lift force displayed most of their energy at the
Strouhal frequency, with substantial axial correlation of lift.

Surry’s results for narrow-band correlations of pressure fluctuations near the Strou-
hal frequency showed that the addition of turbulence of LSR=4.0 produced a greater
drop in correlation length (A ~ 6 —~ 4.5) than did the smaller scale (A ~ 6 —~ 5),
which possibly indicates that the smaller scale turbulence was less disruptive of the
spanwise coherence of vortex shedding.

Bruun and Davies (1975) carried out experiments on a smooth circular cylinder in
the subcritical-supercritical range of Reynolds numbers (8 x 10* < Re < 4.8 x 10?)
with the aim of studying the relationship between the parameters of turbulence in the
approaching air and the fluctuating pressures on the cylinder. No measurements of
fluctuating lift and drag were presented.

For three of the four of their turbulent flow cases, turbulence of I, ~ 11% was used,
at two length scale ratios LSR = 0.55 and 0.19. The other turbulent flow case had
smaller intensity ([, = 3.8%), LSR = 0.35, and with Re = 8 x 10%, was just suberitical
on the basis of the correlation of Kiya et al. (equation 1.1).

Bruun and Davies found that the addition of turbulence in supercritical flows pro-
duced pressure fluctuations over the front (0°-30°) part of the cylinder which were
nearly linearly related to the turbulence intensity, while fluctuating pressures in the
wake region were little affected by turbulence.

The spectra of pressure fluctuations at different angular positions around the cylin-
der were presented only for sub- and supercritical smooth flows. In the subcritical flow,
energy at the Strouhal frequency dominated the spectra from the front part of the
cylinder, while second and third harmonics started to appear at the 90° position. In
supercritical flow, low frequency energy dominated the spectra, with a small spike at
5t = 0.33 over the rear of the cylinder. No spectral peaks were observed in turbulent
supercritical flow.

Spanwise correlation in the supercritical turbulent flows was found to vary with the
scale of turbulence over the front part of the cylinder, but over the rear of the cylinder
the length scales were little influenced by the turbulence, indicating that the scales of
the wake flow structures were more or less independent of the turbulence.

Norberg (1986) investigated the fluctuating pressure field of a smooth circular cylin-
der for turbulent flows with low intensities (7, < 4.1%) and small scales (LZ/D < 0.3).
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The Reynolds numbers Re < 6 x 10%, were subcritical on the basis of equation (1.1).
An interesting and seemingly anomalous feature was that although the mean and fiuc-
tuating pressure fields showed evidence of separation bubbles, the Strouhal number
remained near 0.2, and the coefficients of lift and drag were little affected, compared
with the smooth flow case. Presumably this behaviour is evidence of the precritical
transition regime, where laminar separation bubbles have were observed by Higuchi,

Kim and Farell {1989), as discussed in §1.3.

Batham {1973) conducted experiments with cylinders that had smooth (“as ma-
chined”} and rough (¢/D = 2.2 x 1073) surfaces at two Reynolds numbers (Re; =
111 x 10°> & Re, = 2.37 x 10°) and for two turbulence conditions (I, = 0.5% &
I, = 12.9%, LSR = 0.5). The results are significant for the study of the effects of
turbulence on high Reynolds number flows because for the rough cylinder, boundary
layer separation was turbulent, as it is for transcritical flows on smooth cylinders. Mea-
surements presented were of mean and fluctuating pressures, and of fluctuating lift and
drag at a section of the cylinder.

In smooth flow, the smooth cylinder exhibited vortex shedding at both Reynolds
numbers, on the evidence of the spectra obtained from pressure transducer signals.
When turbulence was added to the flow, vortex shedding was suppressed for the smooth
cylinder, with separation occurring at about 120° from the front of the cylinder. The
fluctuating pressures on the front of the cylinders appear to have been dominated by
the incident turbulence, since the level of fluctuating pressures were very similar at the
front generator of the cylinder for both the smooth and the rough cylinder. Also, the
axial correlation lengths of the pressure fluctuations along the front of the cylinder were
similar to that of the turbulence in the turbulent, but not the smooth flows. For the
smooth cylinder, the axial correlation lengths were relatively constant at about 0.5D
(the same as the LSR) for all angular positions in the turbulent flows.

The rough cylinder exhibited vortex shedding in smooth flow at both Reynolds
numbers, but with more strength at Re,. Strouhal numbers were 0.18 and 0.23. Axial
length scales of pressure fluctuations (taken as averages over the range § = 60°-150°)
were also higher at Rep, ~3.2 D as opposed to ~1.5 D at Re;.

At Re,, addition of turbulence to the flow past the rough cylinder did not appear
to broaden the spectral peak of pressure fluctuations at the # = 120° position. The
magnitude of pressure fluctuations at the peak increased with the addition of turbulence,
and the sectional coefficient of lift rose too, from 0.15 to 0.27. Axial length scales of
pressure fluctuations (over the angular range above) dropped a little at Re, with the
addition of turbulence, from ~3.2D to ~2.3D. At Re; vortex shedding was not as
well established as at Rep, as indicated by the smaller coefficient of lift and the smaller
axial correlation of the pressure fluctuations.

The addition of turbulence to the flow about the rough cylinder at Re; moved the
separation point forward from about 92° to 86°. This gives an indication that the
addition of turbulence with integral scales of the order of the cylinder diameter to
a transcritical flow (with turbulent boundary layer separation) may promote earlier
separation, however some caution is required since Reynolds number independence was
not reached in smooth flow.

So and Savkar (1981) conducted measurements of fluctuating lift in turbulent flow,
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Ficurg 1.46: Measurements of RMS lift made by So & Savkar (1981) in turbulent flow
with T, =9.5%, LSR = 0.8.

in addition to measurements in smooth flow discussed in § 1.5.3. The results presented
here {fig. 1.46) are for the same cylinder configuration detailed in table 1.41. The grid-
generated turbulence had intensity I, = 9.5% and integral scale LSR = 0.8. So and
Savkar found no evidence of a distinct spectral peak at Reynolds numbers greater than
1.4 x 10° (their spectra were normalized in the form Si(f,)/c?).

Turbulent flow measurements of o¢,  for a range of turbulence intensities were
published by Cheung (1983, Cheung & Melbourne 1983); again, the main experimental
parameters are presented in table 1.41. The measurements of fluctuating l1ift (fig. 1.47)
were corrected for the effects of tunnel blockage, giving reductions in values of og,,
with greater reductions in low turbulence, low Reynolds number flows. No correction
was applied to the highest turbulence intensity flow (I, = 9.1%) for Reynolds numbers
greater than 2 x 10°. The LSR for all turbulence intensities greater than 0.4% was
about 0.5. While Cheung’s results cover a greater range of turbulence intensities and
Reynolds numbers than previous work, no spectra of lift forces were presented. Strouhal
numbers were given, but the manner in which the lift force spectra were normalized
leaves some doubt as to whether these values represent true spectral peaks, as discussed
in §1.5.3.

Because of the uncertainty associated with conversion of oe,,,, to values of ac,
in the supercritical regime and in turbulent flow, no attempt will be made to provide
estimates of o¢, _ from the results of So and Savkar and Cheung. However, it can

be assumed that the numerical values of their results would be higher if converted to

values of Ty, -
afa
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FIGURE 1.47: Measurements of RMS lift obtained by Cheung (1983) in turbulent flows
{with blockage correction).

Full Scale Results

Full scale measurements of fluctuating lift in high Reynolds number (Re > 108) flows
are naturally of prime importance to the designer. All wind tunnel tests to date in this
Reynolds number range have been made in smooth flow, while the full scale data have
all been obtained in turbulent flow. The ratios of turbulence scale to cylinder diame-
ter, although often not measured, are at least of the order of magnitude appropriate
to other similar structures. The effects of the three-dimensionality of the flow (due to
wind shear, taper, free ends of the structures and irregularities of shape)} are usually
unknown and hard to assess. This is of some importance for the direct incorporation
of such measurements into design methods, since the starting point of the methods are
measurements made in nominally two-dimensional conditions, with correction subse-
quently made for such effects. Finally, the surface roughness of the particular structure
involved must be bourne in mind, since this has an effect on the characteristics of the
flow in the transcritical regime.

Measurements made on full scale structures for which spectra of lift were obtained
are the focus of attention here. Three published sets of results are those of Ruscheweyh
and Hirsch (1975), Hansen (1980) and Sanada and Nakamura (1983), all carried out on

concrete structures which are shown here in figure 1.48.

Ruscheweyh and Hirsch’s measurements were carried out on the lower shaft of the
Hamburg television tower, which was surrounded by city terrain with an average build-
ing height of 20m. At the level of the measurements, this would provide a typical
integral scale of turbulence of about 100 m, giving LZ/D ~ 10. The turbulence inten-
sity was 15.1%. The surface roughness of the structure was ¢/D == 3.7 x 107%; the
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FIGURE 1.49: Spectrum of lift force, replotted from data of Ruscheweyh &
Hirsch (1975). The inset shows a curve fitted to the spectral peak (B = 0.38).

range of Reynolds numbers obtained was 6 x 10° < Re < 1.44 x 107, The Reynolds
number for the results discussed below was 6.7 x 10°. The distribution of mean pressure
around the structure showed that boundary layer separation took place at § =~ 105°, in
agreement with figure 1.7. The mean drag coefficient was 0.49 and the value of sectional
RMS coefficient of lift was 0.18. The structure was tapered, which generally leads to a
reduction in fluctuating cross flow loads, due to disruption of coherent vortex shedding,
- while the television and restaurant sections at 150 m and 127 m would probably act to
reduce the influence of effects normally associated with free ends.

A spectrum of lift force was obtained; this is presented here in figure 1.49. The
spectrum is normalized such that [5° S¢,(f;) df, = 02,. The spectrum of lift force is
broad, with substantial low frequency energy. A curve of the form (1.15) has been
fitted to the spectral peak from Ruscheweyh and Hirsch’s data, as shown in the insei
of figure 1.49. This gives a Strouhal number of 0.20, a2 Bandwidth parameter B = 0.38,
and C; = 0.16. Basu’s suggestion for quasi-steady broadening of the spectral peak gives
B = (B} +2I2)"? = 0.22, substantially lower. The energy at low frequency, reaching a
finite value at zero frequency, is indicative of cross flow buffeting by turbulence, since
the vortex shedding peak is quite distinct.

Hansen (1980) published results taken from the Stigsnaes 130m chimney stack,
which included coefficients of lift and a lift force spectrum. The concrete chimney is
situated next to a boiler house of 57m height; in the other direction, the sea is 100m
away. Reynolds numbers in the range 6 x 10° < Re < 1 x 107 were recorded. The
pressure measurement station from which coefficients of lift and lift force spectra were
produced was 14m (2.4 D) from the top of the chimney, with the result that free end
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effects will have influenced the results. The presented spectrum of lift force is similar
to that of Ruscheweyh and Hirsch, with an Strouhal number of 0.2 and Bandwidth
parameter B ranging between 0.15 and 0.37. Coeflicient of lift varied between 0.033
and 0.125; the wide range may reflect the influence of the free end on the results.

The final set of full scale data to be discussed here is that published by Sanada and
Nakamura {1983} {also reviewed by Vickery & Basu 1984, Vickery & Daly 1984). The
results are interesting partly because they give an indication of the separate effects of
buffeting and vortex shedding cross flow forces. The Reynolds number range for the
data is 1 x 107 < Re < 4 x 107. The structure on which the pressures were measured
was a concrete chimney stack, 200m high and with a uniform diameter of 15m over
most of its height (fig. 1.48). The measurement station was 140 m from the ground, or
4 D below the tip of the stack. Values of Strouhal number, lift and drag as functions
of Reynolds number, together with velocity, drag and lift spectra are presented in
figure 1.50, reproduced from Vickery and Basu (1984).

The values of fluctuating lift and drag coeflicients in figure 1.50 seem to display a
strong dependence on Reynolds number. However, on the basis that the turbulence
and drag force spectra were very similar in shape, Vickery and Basu (1984) argued
using quasi-steady assumption that %ocd/Cd = f,, and that the apparent variation
of og, and o, is in fact a dependence on turbulence intensity. As a result, they
were able to re-plot fluctuating lift and drag coefficients as functions of turbulence
intensity, as shown in figure 1.51. Also shown in the figure are values of C); due to
turbulence, computed using equation (1.17). Vickery and Daly (1984), suggesting that
part of the increase in fluctuating coeflicients of lift was due to the influence of fine-scale
turbulence on vortex shedding forces, produced an alternative parameter for the effect of
turbulence on vortex-induced, rather than quasi-steady, components of fluctuating lift.
This parameter, I, - LSR™Y/2_ is shown as an alternative scale at the top of figure 1.51.

The spectral information of figure 1.50, presented in two sets, C1-C3 and C4-
C6, is very interesting. C1-C3 were recorded for wind coming from the land, with
U(140m) = 17m/s (Re = 1.7 x 107), I, & 14%, for which o¢, ~ 0.19 and o, ~ 0.18.
(4-C6 were recorded for wind coming from the sea, with U/(140m) = 37m/s (Re =
3.7 % 107), I, = 7%, for which o¢, = 0.07 and og, = 0.07. The turbulence integral
scale would probably have been a little larger with the wind coming from the sea.
Firstly, the spectra of fluctuating drag are similar in shape to those of the turbulence,
with no distinct spectral spike at the second harmonic of the Strouhal frequency. This
implies that buffeting due to the alongwind component of turbulence dominated the
fluctuating drag loads. Secondly, the lift force spectra both indicate vortex shedding
with a Strouhal numbers 0.20-0.23, combined with buffeting caused by the lateral
component of turbulence which produced the low frequency energy. As mentioned, the
coefficient of lift for C3 is ¢, = 0.19 (I, = 14%), while for C6 o¢, = 0.07 (I, = T%) In
Vickery and Basu’s paper, the lift force spectra were “partitioned” into background and
vortex shedding components, as indicated in figure 1.50, giving Bandwidth parameters
B =0.36 for C3 and B = 0.24 for C6. They assessed that in both cases, about one-half
of the RMS lift was due to vortex shedding forces, the remainder produced by buffeting.
This would give an sectional value of o¢, due to vortex shedding of about 0.10.
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Figure 1.50: Data measured by Sanada & Nakamura (1983), reproduced from Vick-

ery & Basu (1984).



1.5. LIFT FORCES ON STATIONARY CYLINDERS

015

e (5.0 m DIAMETER

TIMEASURING POSITION

10,

Tt - g = = i 102
/ CL. [QUASI STEADY WITH. CD 0.80 , I O.Slujl |

€,/C, = iu} %

20

Ficure 1.51: Coeflicients of fluctuating lift and drag as functions of turbulence inten-
sity; data from Sanada & Nakamura (1983), as re-plotted by Vickery & Daly (1984).
Nomenclature as shown on fig. 1.50.



1-82 CHAPTER 1. REVIEW

1.6 Lift Forces on Oscillating Cylinders

This section is concerned with measurements of lift force made on oscillating cylinders,
In the experimental results to be discussed below, emphasis has usually been placed
on measuring that portion of lift force which is correlated with motion of the cylinder.
This does not, of course, imply that only forces correlated with motion acted on the
cylinders in the various experiments; the influence of motion on the portions of lift
uncorrelated with cylinder motion has rarely been addressed. Note that the partitioning
of lift into portions correlated and uncorrelated with motion does not imply that this
decomposition is an adequate representation of lift force for the purpose of cross flow
response prediction.

1.6.1 Means of Measurement

The fluid forces which act on oscillating cylinders may be measured or estimated in vari-
ous ways. The two which are perhaps the most obvious are also used for fixed cylinders:
measurement of force acting on some length of cylinder, or simultaneous measurement
of pressures at a large number of pressure tappings distributed around a diameter. The
first of these two methods (by far the most popular of the various approaches) usually
entails some correction of the results to account for the force required to accelerate the
mass of the measurement section. The second may require a similar correction to allow
for pressure fluctuations caused by acceleration of fluid in pressure-tapping lines.

Historically, 1t has almost always been the case that forces were measured directly
on cylinders which were forced to oscillate, although there is no fundamental reason
why this should be so. Recently, Reid and Hinwood (1987} described an experimental
rig which enabled the measurement of cross and along-flow force on a freely-vibrating
cylinder. The relationship between forces which act on freely-vibrating cylinders and
cylinders forced to oscillate cross-flow is unclear. As mentioned in §1.4, experiments
~ and computations by Staubli (1983) have increased confidence that the two sets of forces
are closely related.

An indirect means of measurement of motion-correlated forces is to measure the
frequency and logarithmic decrement {or increment) of a spring-supported cylinder
given an initial displacement, from which aerodynamic forces related to cylinder motion
may be inferred.

1.6.2 Estimation of Forces Correlated with Motion

There are a number of ways of estimating forces correlated® with motion, which are all
essentially equivalent. Different experimenters used the methods which best suited the
equipment at their disposal. If the cylinder motion is close to being simple harmonic,
the motion-correlated forces can be described by forces correlated with velocity and
acceleration, with velocity and displacement, or equivalently by a magnitude and phase
with respect to one of the three motion variables.

8The implication is that the correlation is performed over many cycles of cylinder motion, or until
the statistically steady values are reached.
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Given a signal proportional to cylinder acceleration, say cos2r ft, and velocity,
sin 27 ft, the formulee for estimating forces related to acceleration and velocity from a
record of force F'(¢) over some averaging period T are

IT F(t)cos2mftdt
o cos? 2r fi dt

[ F(t)sin2xftdt
fu sin® 2x f£dt

F(f) = %[ F(t)cos2rftdt
(1.19)
F(f) = Z[TF(t)sin2xftdt =

where F,(f) and F,(f) are respectively the acceleration- and velocity correlated force
- coefficients at the frequency f. A block diagram for the analogue signal processing re-
quired to compute F, and F, is shown in figure 1.52. Jones, Cincotta and Walker (1969)
used this method to compute the magnitude of forces related to cylinder displacement
and velocity.

The eqnivalent discrete method, given the timeseries F(k), (k) and §(k) of force,
acceleration and velocity, IV records long, is to compute

F, = Z]\il () {1.20)
E, Zil}\?(jZ(g(z) ) (1.21)

This corresponds to least-squares fitting a linear relationship between force and accel-
eration on the one hand, and force and velocity on the other.

An alternative procedure is to use cross-spectral estimates. If S,;(f) is the {one-
sided) cross-spectrum between force and acceleration and S.(f) the autospectrum of
acceleration,

Jo© R[Sa; ()] df
Jo° Sa(f)df

Joo S84 ()] df
o Sa(f)df 7

Fa(f)
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where R and 3 denote real (in-phase) and imaginary (out-of-phase) components.

Since the acceleration and velocity are orthogonal functions for simple harmonic
motion, the forces F,(f) and F,(f) are uncorrelated. Likewise, the residual force F.

F.=F(t)— F,cos2rn ft — F,sin2x ft, (1.24)
is uncorrelated with both F,(f) and with F,{f). Accordingly,

0h =08 +0h + 0% . (1.23)

1.6.3 Spectral Characteristics of Cross Flow Force

Lock-in is characterized by frequency capture of vortex shedding, so that it matches the
cylinder oscillation frequency. When this occurs, cross flow forces exist at the cylinder
frequency and to a lesser extent at its harmonics.

Outside the boundaries of lock-in, wake velocity spectra of cylinders forced to os-
cillate (e.g. Bearman & Davies 1975 for a D-section cylinder) show peaks at or near
the fixed-cylinder Strouhal frequency and at the cylinder frequency. A few studies have
shown evidence of forces acting on the cylinder at the two frequencies, as illustrated by
figure 1.53, taken from the results of Szechenyi and Loiseau (1973) for flow around a
roughened cylinder.

No evidence has yet been published which shows this twin-frequency behaviour for
cylinders which are free to vibrate, but there is no reason why it should not occur; the
lack is perhaps due to the paucity of measurements.

1.6.4 Degree of Correlation with Motion

Forces which act on stationary cylinders usually exhibit narrow-band random character-
istics, with near-Gaussian PDFs. Likewise the response traces of vibrating cylinders at
low amplitudes of motion are typically narrow-band random with Gaussian PDFs. On
the other hand, lightly-damped cylinders at high response amplitudes (order 1 cylinder
diameter) exhibit response PDFs which tend to be nearer in form to those of a sinu-
soldal process (see fig. 1.30); the response has the appearance of a sinewave with small
amplitude modulation superimposed, as shown in Wootton (1969). By inference the
forces in that case are likely to be of a similar nature, and well-correlated with cylinder
motion.

At intermediate amplitudes some proportion of cross flow force is correlated with mo-
tion, and some 1s not. This was shown in the results of Toebes and Ramamurthy (1967),
where energy uncorrelated with cylinder motion was shown to exist along with forces
correlated with motion. At values of reduced velocity outside the lock-in regime, when
motion-correlated forces are still observed, this might be accounted for by the vortex
shedding jumping between a locked-in state and a random state similar to that observed
for a stationary cylinder. Inside the locked-in range, at large amplitudes of motion, it
has not yet been established whether motion-correlated forces account for all the cross
flow force, but it is likely that they account for the bulk of it.
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FIGURE 1.53: Frequency characteristics of cross flow force as reduced velocity traverses
lock-in range, after Szechenyi & Loiseau (1973). Ger is spectral density of lift force, f.
is vortex shedding frequency for fixed cylinder, f,, is cylinder oscillation frequency.
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As to the nature of motion-correlated forces for intermediate amplitudes of cylinder
motion, it is not yet clear if they are due to forces which act in deterministic fashion,
at every cycle of cylinder motion, in addition to random forces, or if they are due to
occasional deterministic events (duration of the order of one motion cycle) set in a
background of random vortex shedding. The very nature of correlation itself, which is
concerned with integrals of products of variables over long periods, does not allow these
two possibilities to be distinguished. On a physical basis, it seems more likely that the
second scenario is correct, since the forces are caused by discrete events—the formation
and shedding of vortices.

1.6.5 Alternative Descriptions of Motion-Correlated Forces

Various ways of describing motion-correlated forces have been used in the literature, but
they all describe the same phenomena, so relationships between the different coefficients
can be derived.

Presuming that the motion is simple harmonic, with amplitude oD, at frequency
f, the cylinder acceleration, velocity and displacement may be represented by

j(t) = (27f)*aD cos 2r ft (1.26)
3(t) = (2nf)aDsin2nft (1.27)
y(t) = —aDcos2rft. (1.28)

If 1ift forces per unit length are decomposed into components correlated with cylinder
acceleration and velocity, as per equation 1.24

{(t) = locos2n ft + I, sin 2 ft + 1.(t), (1.29)

where [, describes the residual lift force, uncorrelated with cylinder motion. Coefficients
of lift are produced by dividing these forces per unit length by pU/?D/2 to give

Ci(t) = Cig cos 2m ft + Chy sin 27 ft + Cr(t) . (1.30)

In this thesis, the approach taken is to describe the acceleration-correlated lift force
per unit length in terms of the acceleration of an equivalent mass of fluid

D*
L{t) = =Ca-p™— (!
2
I, = —Ca~p—7—r—i—)—-(27rf)2-aD. (1.31)

(', can be interpreted as a coeflicient of added mass (Sarpkaya & Isaacson 1981).

The velocity-correlated force per unit length is described in terms of an aerodynamic
damping parameter

L(t) = K, 4mpD2f - ()

D2
I, = Ka-lsf-p”T-zarf-aD. (1.32)
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This is convenient because it may be directly compared with the structural mass-
damping parameter K, or an equivalent aerodynamic damping ratio can be computed;
for a uniform cylinder moving as a rigid body

D2
gaero = ""[{ap . (133)
m :

This shows that a positive value of K, corresponds to negative damping, that is, the
structure extracts power from the flow. The correspondence between K, and K, arises
because velocity-correlated aerodynamic forces per unit length are made dimensionless
in K, in the same way that structural damping forces per unit length are in K.

The relationships between the motion-correlated coefficients of lift and the coeffi-
clents C, and K, are

Ciav;-g

C. = ~ oy {1.34)
Clvv;-z

K, = T6ria (1.35)

Relationships between the coefficients ', and K, and those used by other workers
may be derived with the aid of the definitions given by equations 1.31 and 1.32.

1.6.6 Asymptotic Values of Coeflicients

The coefficients C; and K, have some asymptotic values which can be derived from
theoretical fluid mechanics and quasi-steady experimental values.

Low V. limit In the low V, limit (f — oo, or U — 0), the situation becomes
equivalent to a cylinder oscillating in a still fluid. If the motion amplitude is low (say
o < 10%) and the flow does not separate from the body, potential flow theory gives a
value for C,, while boundary-layer theory gives a value for K.

The appropriate theory for the computation of the coefficient of added (or virtual)
mass 1s derived for a circular cylinder in Milne-Thompson (1960, §9.221) and in Sarp-
kaya and Iscaacson (1981, §2.8). The added mass was given a physical interpretation
by Darwin (1953), who showed that it was the mass of fluid displaced from its ini-
tial position by the passage of a solid body in potential flow. For an infinite circular
cylinder, the coeflicient of added mass has a particularly simple form:

C,=1,

which shows that the volume of fluid displaced from its rest position is equal to the
volume of the cylinder. Experimental results (e.g. Lundgren et al. 1979, Sarpkaya 1978)
confirm that the experimental value of C, in the low V, limit is unity.

The fact that C, = 1 in still fluid has some consequences for experimental mea-
surements of acceleration-correlated forces. If the experimental method used relies on
measuring force acting on some length of oscillating cylinder, it is usually the case that
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the transducers measure both the fluid-dynamic force which acts on the cylinder and the
force required to accelerate the mass of the cylinder segment. The inertial component
must be cancelled out of the total signal so that the component due to fluid loading can
be considered separately. Usually the calibration for this cancellation is performed by
making adjustments so that the residual transducer output is zeroed when the cylinder
oscillates. Ideally such an adjustment is made with the cylinder oscillating in vacuo or
with the cylinder shielded from the surrounding fluid. However, if this calibration is
carried out with the cylinder oscillating in the fluid used in the experiment, the forces
required to accelerate the added mass of fluid will be cancelled out as well.

In addition to the added mass forces, which act out-of-phase with cylinder acceler-
ation, damping forces caused by boundary layer shear stresses also act on a cylinder
oscillating in a still fluid. These are usually a few orders of magnitude smaller than the
forces required to accelerate the added mass. For theoretical values to be established, it
is again required that the amplitude of oscillation be small so that flow separation does
not occur. In that case, theories developed for the description of oscillatory bound-
ary layers can be applied to estimate the damping forces which act on the cylinder.
Batchelor {1967, §5.13) gives, for a circular cylinder

l, :w—p(‘??rfaD) D272 (1.36)

szﬁ’

from which it may be established that

K, = \/4_#\/]:); \/_ (1.37)

where the Reynolds number is based on the maximum cylinder velocity and its diameter.

High V; limit In the limit as V; — oo, a value of K, may be computed using quasi-
steady assumptions {the asymptotic quasi-steady value of C, being zero).

The quasi-steady lift force per unit length on a (slowly oscillating) cylinder is
(Simiu & Scanlan 1986, §6.2)

1 ac
I = —5pUD (a_ + cd) (1.38)

(here, a is the angle of attack). For a circular cylinder, 3C;/8a = 0 and the following
value for i; may be derived

CaVi,
Ko=-—22. (1.39)

Experimental Results

In this section, a number of experimentally-derived values of the parameters C, and
K, are examined. The values come from experiments conducted in smooth flows with
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TABLE 1.3: Summary of experiments conducted to determine motion-correlated forces
in smooth flows.

Experiment Kopee Relg, AR  Blockage
Protos, Goldschmidt & Toebes 1968 5.4 4.6 x 10¢ 1.1 9.7%
Férsching 1968 3.0 1.3 x 108 10:1  Open jet
Jones, Cincotta & Walker 1969 0.84 6.2x10°  5.3:1  18.8% f
Nakamura, Kaku & Mizota 1971 1.1 1 x10% 8.81 5%t
Yano & Takahara 1971 1.8 7 x 10* 6.7:1 11.5%
Tanida, Okajima & Watanabe 1973 0.79 4 x 103 10.7:1  4.3%
Sarpkaya 1978 028 1.5x10* ~10:1 ~5% ¢
Middlin & Simmons 1983  0.83 4x10° 1181 3.7%

tSlotted tunnel walls jFree oscillation, log decrement A number of different cylinders

smooth cylinders; no measurements have yet been made in turbulent flows, and mea-
surements made on roughened cylinders (e.g. Szechenyi & Loiseau 1975) have been
excluded. In some cases, only the values of K, have been presented, since values for C,
are less easy to measure accurately, and interest has tended to focus on K, since it has
a primary role in determining aerodynamic instability. The survey is not exhaustive;
some results (e.g. Bishop & Hassan 1964 b) have been left out because of doubts about
the accuracy of the measurements (see Bearman & Currie 1979).

The survey is arranged in chronological order, and the main parameters of each
experiment are shown in table 1.3. As can be seen from the table, there is a wide
“variation in the magnitude of the aerodynamic damping parameter K, from experiment
to experiment. It will be shown below that the variation of K, with V. is similar from
experiment to experiment, as noted by Vickery (1978). A graphical summary of the
values of K,,,, with their Reynolds numbers is given in figure 1.54, using the chart of
Zdravkovich (1990) as a backdrop. This shows that there is a good deal of scatter in
the values of K,, but that there is some sign of variation in K, with Re similar to that
observed for the coefficient of fluctuating lift.

Protos, Goldschmidt and Toebes (1968) carried out a series of experiments in a water
tunnel, using circular and triangular section cylinders. Their information concerning
forces in phase with cylinder velocity was presented in the form of average work done
by the fluid on the cylinder per cycle of motion, E {see fig. 1.25).

T
E= ] F(O)§(t) dt . (1.40)
0
Using
y(t) =2rf - aD -sin2x ft
and

F(t)=1L 4rpD*f - K, -4(t),
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Figure 1.55: Values of K, derived from the results of Protos, Goldschmidt &
Toebes (1968). Amplitude a = 4.24%.

where L is the cylinder length

E

S A
* T §ripLfrDic?

(1.41)

Values of K, for the lowest amplitude of cylinder motion, o = 4.24%, are presented in
figure 1.55. The values for the other amplitudes they used (qmax = 14.3%) are similar,
but smaller.

Figure 1.55 sets the pattern found in all the results examined for the variation of
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FIGURE 1.56: Variation of K, with V, observed by Forsching (1968). o = 1.7%,
Re ~ 1.3 x 10°.

K, with V.. K, is negative for most values of V, (energy extracted from the cylinder),
except for a small range of V., above the value at which the frequencies of cylinder
oscillation and fixed cylinder Strouhal frequencies match (V; &~ 5). This corresponds to
the instability region found in free-vibration tests. Values of €, may be derived from
their data, using the phase angle information in figure 1.25, but as this is likely to be
inaccurate it has not been done.

Forsching’s tests (1968) were carried out using the open jet of the Gottingen low-
speed wind tunnel. A variety of cylinder cross sections were investigated, including one
which matched the original Tacoma Narrows bridge. The coefficient K of velocity-
correlated force which was used by Forsching is related to K, by

K!'\/2

- , 42
o= =2 (1.42)

A sample of the results, for @ = 1.7% and Re ~ 1.3 x 10° are plotted in figure 1.56. It
can be seen that the general trend of the results matches that of Protos, Goldschmidt
and Toebes, although the peak value of K, is lower.

The results of Jones, Cincotta and Walker (1969) are particularly significant for
the design of large structures because of the high Reynolds numbers (6 x 10° < Re <
1.8 x 107). The results show some evidence of the influence of Mach number (0.13 <
Ma < 0.4), and the effects of blockage (18.8%, but with slotted working section) may
have been significant. Only results for which the Mach number was less than 0.3 are
presented here. The maximum oscillation amplitude employed was a = 2.78%, and the
results show that at these amplitudes the majority of lift force was uncorrelated with
motion. It seems that the system of inertial force signal cancellation they employed
was calibrated in still fluid, and for this reason an offset of 1.0 has been added to their
results for coefficient of added mass. The set of results presented in figure 1.57 was
recorded at an amplitude of motion a = 1.39%.

The set of data presented in figure 1.57, at a = 1.39%, is the most complete of
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Ficure 1.57: Values of C, and K, calculated from the results of Jones, Cincotta &
Walker (1969). o = 1.39%.

those supplied at amplitude levels o« = 0.35%, 0.69%, 1.39% and 2.78%. Values at
other amplitudes show similar trends with V; - S%, while the magnitude of the values
dropped slightly with increased amplitude.

Nakamura, Kaku and Mizota (1971} conducted experiments to measure acceleration-
and velocity-correlated forces using a free vibration technique. To check the effect of
mass ratio m/pD?, tests were conducted using cylinders immersed in water or air;
the results presented here relate to the experiments conducted in air. The technique
employed was to release the cylinder from an initial amplitude & = 0.1, and to measure
the oscillation frequency, and logarithmic decrement {or increment). By comparing
these to still-air values, estimates of the acceleration- and velocity-correlated forces
could be made. Again, an offset value of C, = 1 has been added to the results. The
Strouhal number in their experiment was 0.215, giving a reduced velocity for frequency
matching of V. = 4.65. The results presented in figure 1.58 are for a mass ratio m/pD?
of 23.3; the results for mass ratios of 15, 23.3, 58.4 and 108 were very similar. They
show the same trends of K, with V. seen in the other results in the survey. The values
of C, change from positive to negative near V, = 5, and reach a peak near frequency
matching at V, = 4.65, where K, changes sign rapidly with small change in V;.

Yano and Takahara (1971) carried out tests with forced oscillation of a cylinder in
a wind tunnel. Values of K, derived from their data for o = 3.3%, figure 1.59, show
a similar trend with V, as those of other workers. In their results, the values of V, for
lock-in were also recorded; the range for @ = 3.3% are shown on figure 1.59. Inside the
range, the frequency of lift forces matched that of cylinder oscillation and one peak was
observed in the force spectra, while outside the range two peaks were observed in the
spectra. The results show clearly that lock-in is not a pre-requisite for motion-correlated
forces to exist.

By contrast, the same trend of K, with V; is observed even when lock-in occurs over
the range, as shown in figure 1.60, from the results of Tanida, Okajima and Watan-
abe (1973). These measurements were conducted at o = 14%, Re = 4 x 10%; similar
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FIGURE 1.60: Values of K, calculated from the results of Tanida, Okajima & Watan-
abe (1973). Lock-in was reported for all the indicated values of V.

resulis obitained at Re = 80.

Sarpkaya (1978} conducted an extensive series of tests using forced oscillations of
cylinders in a water tunnel. The amplitude was varied in the range « = 0.13 to & = 1.03,
and Reynolds numbers were in the range 5 x 10® < Re < 2.5 x 10*. To achieve this
variation, a number of cylinders of different diameters, aspect ratios and blockages
were used. The values of (), which Sarpkaya measured are shown in figure 1.61, while
figure 1.62 shows the values of K,,.

An interesting aspect of his measurements was that the range of amplitudes em-
ployed was great enough to arrive at values of K, which were negative over the com-
plete range of V.. The values of K, measured at V, = 5.0 are shown as a function of
amplitude in figure 1.63. This graph indicates that the maximum amplitude for free
vibration, reached in the limit K, — 0, would be a ~ 0.9. Another feature of the results
is that they give the lowest values of K,___, lower than those at the nearest comparable
Reynolds number (Nakamura, Kaku & Mizota) by a factor of about four, as shown in
figure 1.54. Sarpkaya’s results have been used as the basis of schemes for prediction of

response amplitudes by Patrikalakis and Chryssostomides (1985, 1986).
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FIGURE 1.61: Values of C; presented by Sarpkaya (1978).

The last set of results to be examined here are those of Middlin and Simmons (1983).
Their measurements of velocity-correlated forces were presented in the form of a power
transfer coefficient

R
P of3DY’

where P is the time-averaged power transfer per unit length. From this,

K, = Zy

8r3a?

The results for smooth flow are presented in figure 1.64. Results conducted in turbulent
flow (grid turbulence with I, = 4.5% and LE/D ~ 1) were also given; little change was
produced by the addition of turbulence, probably because the flow was subcritical and

the turbulence intensity fairly low.
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FiGURE 1.62: Values of K, calculated from the results presented by Sarpkaya (1978).
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1.6.7 Influence of Turbulence

As discussed in §1.4.5, no experiments have directly examined the influence of turbu-
lence on motion-correlated forces acting at sections of circular cylinders.

1.7 Prediction of Cross Flow Response

No single procedure has yet become accepted for the prediction of cross flow response of
slender cylindrical structures in flows of air. This may be contrasted with the prediction
of the along flow response of such structures in turbulent flows, where the “Gust Factor”
method is now commonly used. Much of the difficulty is due to the fact that the
vortex shedding process and particularly its interaction with structural oscillation is
poorly understood. Further problems are introduced by a lack of understanding of
the influence of turbulence on vortex shedding, and to a lesser extent the influence
of structural taper, surface roughness, wind shear, and mode shapes. Finally there is
the difficulty of verifying the performance of prediction methods since it is costly to
measure the forces which act on, and the resulting response of full-scale structures and
the characteristics of the flows to which they are subjected.

For a general structure, the shapes of the vibration modes must be taken into
account; the mode j with characteristic frequency f,; is described by a mode shape
W;(z). In this case, the most natural generalization of m, the mass per unit length of
the structure, is the “mode-generalized” mass per unit length

Jo m{(2)¥3(z) dz
Mej = I ¥
fo ‘I’?(z) dz

(1.44)

which is usually similar to the mass per unit length over the portion of the mode which
shows significant response. Similarly, the average diameter in that region, D;, may be
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Combined
response

FIGURE 1.65: Sketch of the progression of the cross flow response of a slender structure
in a turbulent flow as the mean flow speed changes.

computed. Together these may be used to estimate the mass-damping parameter for
the jth vibration mode

(1.45)

1.7.1 Summary of Response Characteristics

Vortices are formed in the wake of bluff structures as a result of concentration and
interaction of the shear layers (separated boundary layers) which leave it. The vor-
tices are formed alternately on the two sides of the wake in a quasi-periodic manner,
giving rise to regions of low pressure which exert forces on the structure. Significant
vortex-induced vibration amplitudes only occur when the frequency band of the vortex
shedding forces overlaps that of a structural vibration mode. The progression of forced
random vibration response amplitude with mean flow speed is sketched for an idealized
slender structure in figure 1.65. At lower speeds, vortex induced vibration of the first
few modes provides most of the response, which eventually becomes dominated by re-
sponse of the lowest modes to cross-flow buffeting caused by the lateral components of
turbulence.

The characteristics of the vortices shed by slender structures change with the am-
plitude of structural vibration response. If the amplitude is large enough there is an
interaction between the movement of the structure and the formation of vortices. This
fact greatly complicates the prediction of vibration amplitudes.

The nature of the forces and response is observed to be a strong function of the mass-
damping parameter K; which partly characterizes the ratio of the structural damping
forces to the forces produced by vortex shedding.
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Forced Random Vibration

If the mass-damping of the structure is sufficiently large the amplitude of response is
small (~ 1% D} and there is little interaction between the vortex forces and the struc-
tural movement. In this case the vortex shedding process is not completely organized in
time or space. The statistical properties of the forces produced by vortex shedding are
those of a narrow band random process. At any one site the forces are not characterized
by a single frequency and fixed phase, but the energy is spread over a band of frequen-
cies, The PDF of the forces has the typical bell shape of a Gaussian distribution. The
organization of the vortices along the span of the structure is also incomplete.

From the point of view of predicting the mean-squared structural response to vortex
induced loads, this lack of organization is reflected in the description of how the cross-
spectral density of forces acting at any two points on the structure varies with the
location of the points. A simpler but less complete alternative is to describe the lack
of organization using a correlation function which measures the correlation between
forces acting at different sections of the cylinder at the same instant, in conjunction
with autospectra of lift forces. The value of the correlation function is observed to drop
from unity to zero as the spanwise distance between the sections at which the forces
are measured increases.

For lightly-damped structure the response shows typical characteristics of forced
random vibration of a lightly damped system driven by random loads which have a
bandwidth comparable to or larger than the Half-Power Bandwidth of the structural
admittance 4w ¢, f.;. The structural response has a PDF which is near-Gaussian, and
its spectral density is concentrated in a narrow band around the structural natural
frequency; the structure acts as a mechanical band-pass filter of the vortex-shedding
loads.

Motion-Correlated Forces

If the mass-damping of the structure is small the amplitude of response can become
large enough to influence the vortex shedding process, so tending to produce vortices
which are more organized in space and time. Some proportion of the forces produced
by these vortices are correlated with the motion of the cylinder. When averaged over
a long period of time, some of the otherwise apparently random force has a definite
phase relationship to the motion of the structure; as amplitude of motion increases,
the vortices and the forces become less random, and the portion of the force correlated
with structural motion increases. The cross flow forces become more sinusoidal in
character at each section along the structure as the amplitude of response rises, and the
correlation between forces along the span increases as the vortices fall into a spanwise-
constant phase relationship to the structural motion. This is a non-linear feedback
effect, since the motion of the structure produces more organized vortices which exert
greater loads on the structure, giving a larger structural response which in turn leads
to still better-organized vortices, and so on. The change in response amplitude with
K is illustrated in figure 1.29, from the tests conducted by Wootton {1969) on a model
stack. The increasing organization of the vortices is reflected in the statistics of the
vortex shedding forces and the response. The spectrum of the forces becomes sharper
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and the PDF of the response approaches that for a sinusoidal process, with a peak
factor of v/2 (fig. 1.30).

If the centre frequency of the vortex shedding is removed from the structural natural
frequency then two peaks may be observed in the spectra of the cross flow vortex
shedding forces, one at the structural vibration frequency and one at the vortex shedding
frequency. If the separation of the frequencies is not too large, the non-linear feedback
between the structural motion and the vortices can result in the the synchronization of
vortex shedding with the structural oscillation {“lock-in", see fig. 1.16). The range of
separation of frequencies for which this entrainment or lock-in can occur increases as
the mass-damping of the structure is reduced (fig. 1.28).

Ultimately as the mass-damping is reduced to zero, a limiting response amplitude
is reached, typically of the order of one cylinder diameter.

Implications for Design

For most civil engineering structures, the stresses induced by large amplitudes of mo-
tion are high enough to produce significant fatigue damage, if not to produce failure
immediately, so the designer must ensure that the mass-damping of the structure does
not become so low that there is danger of entering the regime where the non-linear feed-
back effect discussed above can take hold. If this is a problem, possible solutions are to
add damping or mass so that the mass-damping of the structure increases, to raise the
natural frequency of the structure by stiffening so that the critical velocity (where the
frequencies of vortex shedding and the structures coincide) lies above the design range,
or to disrupt the vortex-shedding process by adding devices such as helical strakes to
the structure.

Often the simplest alternative is to add damping to the structure. At the transition
from the forced random vibration to the motion-dependent regime, the response am-
plitude is sensitive to comparatively small changes in damping. This means that while
small increases in damping can reduce the response significantly, uncertainties in damp-
ing estimates should be allowed for in design, since a variation in damping below the
design estimate can bring about a transition between regimes. Once the low-amplitude
forced vibration regime is reached, the amplitude of the response becomes less sensitive
to further addition of damping: the RMS response is halved each time the damping is
increased by a factor of four. The various options open to the designer have been more
thoroughly discussed by Vickery, Isyumov and Davenport (1983).

Features of Alternative Response Models

The greatest amplitude of vortex-induced response occurs when vortex shedding and
structural natural frequencies coincide and most prediction models available concentrate
on this condition. For structures under examination for vortex induced vibrations in
air, response occurs mainly at the natural frequencies of the structure even if the vortex
shedding forces have a significant bandwidth.

A number of different models for predicting structural response of slender cylindrical
structures have been produced, with varying degrees of sophistication and success in
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predicting observed responses. Often the models and their numerical parameters are
based around a comparatively small set of calibration data, and are found to work
poorly when extended to new situations. The models tend to fall naturally into two
main groups; those used to predict large- and low-amplitude motions. In the regime
where large amplitudes of response are observed there have been two major sets of
models, the wake oscillator and correlation length types. Typical examples of both
types are presented by Blevins {1977). Negative-damping models (§1.7.5) provide a
transition between low and high amplitude response regimes.

1.7.2 Low Amplitude Response—Forced Random Vibration

Turning first to the low amplitude regime, the response is typically found to be narrow
band random, and the more successful models are based in random vibration theory as
applied to line-like structures. Crandall (1979) gives a detailed account of the theoretical
development. If, as is typically the case for the lowest vibration modes of lightly-damped
slender structures, there is no significant frequency overlap between the responses of
the different modes, the theory requires a description of the spatial distribution along
the structure of the co-spectra’ of vortex shedding loads.

Most of the costly civil engineering structures in this regime have been chimney
stacks, so the methods and their calibration have been oriented towards stack design.
The first significant model of this type was that of Vickery and Clark (1972). ESDU
(Ttem 85038) appear to have used that model as the basis of their broad band'® method
and while it seems that there has been some adjustment to the numerical values of the
parameters, the responses predicted using the two models are likely to be very similar.

The ESDU broad band method assumes that the bandwidth of the excitation is
much broader than that of the resonant peak of the admittance function. Specifically
the approximation is that the vortex shedding is a white noise process with a constant
value of spectral density equal to that at the peak of the actual spectrum of vortex
shedding forces. This simplifying assumption is often used for structures with lightly
damped vibration modes and natural frequencies that are widely separated (see New-
land 1984 ch. 14). The inaccuracies incurred by this assumption are small compared to
the uncertainties in the parameters of the response model.

The general form of the RMS response predicted by these methods is

9The real parts of the cross-spectra.

®While the terms “broad band” and “narrow band” are conventionally used to describe the rela-
tive frequency bandwidth of a stochastic process compared to the frequency at which the maximum
spectral density is observed, the ESDU usage is slightly different. ESDU use the terms to describe the
relative bandwidth of the forces produced by vortex shedding compared to the Half Power or Mean
Square bandwidths (Newland 1984, ch. 14) of the structural mechanical admittance function. At low
amplitudes of structural response the vortex shedding forces have a bandwidth greater than or compa-
rable to the structural mechanical admittance bandwidth (4road band). When the response amplitude
becomes sufficiently large the vortices become organized by the structural motion. The bandwidth of
the vortex shedding forces then narrows significantly to become smaller than that of the mechanical
admittance (narrow band). Emphasized text is used here to denote the ESDU usage.
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1 f;S(f;) 1
Do ) 4}CJ- . \/C_J . (1.46)

Ty =

Here, f; is the frequency of oscillation of the jth vibration mode, K; is the modal
stiffness for that mode, and S(f;) is the value of the spectral density of the mode-
generalized cross flow force at the frequency f;. Die is some reference diameter, and
o4 18 the RMS modal response amplitude made dimensionless with respect to Di.s.

1.7.3 Wake Oscillator Models

The wake oscillator models are empirical dynamical models based on observations such
as that made by Bishop and Hassan (1964 b), that the behaviour of the wake of the
cylinder shows some of the characteristics of a “non-linear self excited oscillator” cou-
pled to the motion of the structure. The mathematical progenitor of these models is
contained in the paper by Birkhoff (1953). Models of this sort are able to reproduce in a
gualitative way much of the observed behaviour such as sensitivity to structural damp-
ing, self limiting amplitude and frequency entrainment. Many wake-oscillator models
have been produced; ten such models are discussed by Scanlan in Dowell et al. (1989).
Dowell {1981) expressed the general aim in the construction of these models:

The desire, of course, is to obtain the equations of the solid oscillator and
the fluid oscillator by separate, independent means and to use them together
to predict the behaviour of the combined fluid-elastic system.

The main difficulty is that the models are empirical, with no detailed relationship to
the fluid dynamics being given. Often they have three or four free parameters, fitted to
match the model to particular experimental results, and so have limited or uncertain
wider application. None of them has been developed to the point where it could be
used in high Reynolds number applications in turbulent flow, partly because there have
been insufficient experiments to enable all the parameters to be matched (it is often
unclear what the physical significance of the parameters is).

The wake oscillator models are as yet unsuited to the prediction of response of typ-
ical civil engineering structures, perhaps largely because emphasis has been placed on
predicting the large oscillations which occur with low values of the mass-damping pa-
rameter, and not on the low amplitude forced random vibration regime. For example,
the wake-oscillator models have thus far been unable to incorporate or account for the
observed change with oscillation amplitude in the spanwise correlation of vortex shed-
ding forces (they assume perfect correlation). More importantly, cross flow forces have
been assumed vary sinusoidally with time, while observations show that the actual vari-
ation is narrow-band random in nature at small amplitudes of structural oscillation. On
the other hand, the models are capable of predicting frequency entrainment, hysteresis,
and amplitude-limited behaviour at low values of K.
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1.7.4 Correlation Length Models

Correlation length models concentrate specifically on the situation where the vortex
shedding frequency matches that of the structure, which is when the largest vortex
shedding forces and vibration amplitudes occur. The lift forces are separated into parts
in phase with the velocity and acceleration of the structure. This is based on the fact
that when the amplitude of response is large enough to significantly influence vortex
shedding, the forces produced by the vortices are found to have a definite average
phase relationship to the structural motion. Only the part of the lift force which is in
phase with the velocity of the structure is dealt with. For high values of mass ratio
(m/pD?) the part in phase with the acceleration is usually small in relation to the
stiffness and inertia forces in the structure (which are in balance since the structure is
at resonance), so its main effect is to change the natural frequency by a small amount,
usually ignored. The part in phase with the velocity of the structure is balanced by the
structural damping forces (which are relatively small).

These models also deal with the fact that the spanwise correlation of the vortex
shedding forces is observed to increase with amplitude of structural movement. This
is done by employing a spanwise correlation function which is used to describe the
correlation between vortex shedding forces acting at different sections at the same time.
The function is dependent on amplitude of response, being closer to unity for a greater
distance along the structure the larger the amplitude of oscillation. The functional
relationship is based on experimental data.

‘The construction of the models begins with observed responses, and works back to
arrive at an amplitude-dependent local coefficient of lift {(but only that part in phase
with velocity), allowing for mode shape and amplitude dependence of spanwise corre-
“lation. This process has been described by Blevins (1977).

The ESDU narrow band method is a correlation length model. Examination of
the design charts in ESDU 85038/9 shows that the coefficients used are functions of
Reynolds number, surface roughness, turbulence intensity and scale. The dependence
has been estimated on the basis of experimental results and observations of coefficients
found for full size structures as explained in ESDU 85038. The data on which this
process has been carried out are somewhat limited and the resulting estimates can
consequently show quite large scatter, but at least the physical basis of the coefficients
is more clear than is the case for wake oscillator models, and trends in behaviour can
be accounted for.

As indicated above, ESDU 85038/9 adopt two different approaches to the prediction
of response amplitudes. If the dimensionless amplitude of structural response, arms,
is greater than 2% then narrow band responses are predicted using the correlation
length model and a peak factor of /2 appropriate to a sinusoidal process is used.
Otherwise a broad band response is assumed and the amplitude is re-estimated with a
forced random vibration method (with similar aerodynamic parameters) using a peak
factor of 4 appropriate to a Gaussian process. The method to be described next is
more realistic in that it predicts a smooth transition between low and high response
amplitudes as the structural mass-damping is reduced.
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1.7.5 Negative Damping Models

Negative damping models account for experimentally-observed motion-correlated forces
by introducing forces proportional to structural motion in the modelling equations.
At appropriate reduced velocities, these forces (on average) act in phase with cylinder
velocity, and hence have some similarity to negative damping forces. In order to predict
structural vibrations at low response amplitudes (high values of K,), the models also
incorporate lift forces which act independently of structural motion. Scanlan (Simiu &
Scanlan 1986, §6.1.1) describes the basis of one such model, but the most significant
and well-developed model of this kind is that described first by Vickery (1978) and
subsequently developed by Vickery and Basu (1983a, b, c; 1984, Basu 1982). This
model is also discussed in Simiu and Scanlan’s book (§6.1.2 & ch. 10).

Vickery and Basu’s model

The model extends the forced random vibration prediction scheme proposed by Vickery
and Clark (1972) by modifying the overall system damping to account for velocity-
correlated forces. As such, it is primarily directed to the low amplitude regime, but
some work has been carried out in order to calibrate it to observed high amplitude
responses (Daly 1986). The form of the model allows a natural progression from low
to high responses as K, drops. The basic assumption used is that the vortex shed-
ding forces and their interaction with cylinder motion may be expressed as the sum of
two independent processes. One is the narrow-band-Gaussian vortex shedding process
and the other—the motion-correlated part—models velocity-correlated forces as a neg-
ative aerodynamic damping, the magnitude of which decreases as response amplitude
increases. Although forces correlated with both cylinder acceleration and velocity are
observed in experiments (§ 1.6), the model only attempts to describe forces correlated
with velocity. This approach is reasonable, since for most structures in flows of air the
mass ratio m/pD? is comparatively high, so aerodynamic forces which are correlated
with cylinder acceleration are small in relation to the forces required to accelerate the
structural mass at resonance. On the other hand, the aerodynamic velocity-correlated
forces are often comparable in magnitude to the structural damping forces. Motion-
correlated forces vary with reduced velocity, with maximum values of velocity-correlated
force coefficients observed at reduced velocities the same as or slightly above the value
for coincidence of structural and vortex shedding frequencies. As a resulf, the maxi-
mum values of vortex-induced cross flow response amplitude are expected at reduced
velocities in the range 5 to 6.

The velocity-correlated forces are described in terms of the aerodynamic damping
parameter K,. Experimental observations using forced oscillations (e.g. fig. 1.63) sug-
gest that this reaches a maximum value as the amplitude of motion drops to zero and
decreases monotonically with increased amplitude until zero values of K, are reached.
This 1s in agreement with experimental observations for freely-vibrating structures,
where it is found that the amplitude of motion is self-limiting as K, drops to zero. In
Vickery and Basu’s model, the form adopted for the variation of K, with « is parabolic,
as illustrated in figure 1.66 (a):
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K, = Koo [1 - (i) 2} , (1.47)

oy,

or, equivalently for a uniform cylinder oscillating with a uniform mode shape:

o = 22 [1 - (i)g] . (1.48)

m ey,

Here, K, is the aerodynamic damping parameter in the limit ¢ — 0; oy, is a limiting
amplitude, reached as K, — 0.

This two-parameter model for the velocity-correlated cross flow forces can alter-
natively be considered in the form of a coefficient the of lift forces correlated with
structural velocity, using equation 1.35, i.e.

Chy (1.49)

V2 )

r

B 1672 K 0 l 0!3]
a |

as shown in figure 1.66 (b).

Stripped to its essentials, the model suggests that significant amplitudes of response
only arise when K drops to reach K,q, and if it falls below this, the amplitude settles
at such a level that the overall system damping is zero, as shown in figure 1.66 (a).

The negative aerodynamic damping is incorporated into the random vibration pre-
diction procedure described in §1.7.2 simply by subtracting it from the structural damp-
ing. As described there, the approximation for the response of a lightly-damped mode
is of the form

Lo nfiS(f5) 1

Dref 4}CJ \/CTJ .

The introduction of negative aerodynamic damping is most straightforward in the case
of a constant-diameter cylinder oscillating with a uniform mode shape in a uniform
flow, in which case the equation is modified as follows:

Ty =

1\ =fi5(f) !
Det | 4K; ‘/ij%ﬁ’ao [1—("5‘2')2]

Since the vibration is random, it is assumed that the negative aerodynamic damping is
a function of the RMS amplitude o,; likewise the value of oy, in equation (1.50) is now
interpreted as a limiting RMS amplitude.

O =—

(1.50)

Some slight complications in the coefficients of equation (1.50) are introduced when
the assumptions of uniform mode shape, uniform diameter and flow are relaxed, but
the form of the equation does not change. The detail may be found in the papers by
Vickery and Basu (1983 a, b).

The form of the variation of RMS response with amplitude predicted by the model
is shown in figure 1.67{a). At high values of K, the response amplitude is primarily
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FIGURE 1.66: Dependence of negative aerodynamic damping with response amplitude
incorporated in Vickery and Basu’s model. (a}; variation of K, with e, (b); variation
of C, with o.
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FIGURE 1.67: Variation of RMS response amplitude o with mass-damping parameter
K, predicted by Vickery and Basu’s model. (a) Schematic, with shape of K,~a curve.
(b) Comparison of fitted curve with the form of equation (1.50) to Wootton’s {1969)
resuits for a cantilevered stack model with a rough surface and AR=11.5:1 (after Vickery
and Basu 1983 ¢).

dependent on the random excitation provided by vortex shedding, and the negative
aerodynamic damping has little effect, so that the RMS response amplitude is nearly
inversely proportional to K% (or (1/%). As K, drops to become comparable with
K0, the response amplitude becomes very sensitive to changes in K, since the overall
system damping approaches zero. When K|, drops below Ko, the response amplitude is
determined primarily by the shape of the K,—a curve, and becomes almost independent
of the size of the excitation provided by the random vortex shedding excitation.

A comparison between a fitted curve with the form of equation (1.50) and experi-
mental results obtained on a model stack by Wootton {1969) is given in figure 1.67 (b).
The fit {computed by Vickery & Basu) is good {except in the low K, limit), but note
that the three coefficients were fitted to the results rather than estimated from indepen-
dent sets of experiments. The fitted value of Ko = 0.54 is however in the range of what
would be expected on the basis of tests made using forced oscillation (e.g. fig. 1.54).
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In its simplified form {eq. {1.50)), the model predicts RMS response amplitudes but
contains no information concerning the PDF of the response. It is known that the
response PDF changes in form from that for a Gaussian process at high values of K,
to that for a sinusoidal process at low values (e.g. fig. 1.30). Vickery and Basu (1983 a)
conducted numerical simulations in which second-order ordinary differential equations
incorporating the appropriate form of nonlinear negative aerodynamic damping were
driven by Gaussian noise. It was found that the response PDFs changed their form
with K in the expected manner, and that the peak factor g could be approximated by

4
=2 l1 + 1.2arctan {0.75 (f;o) H : (1.51)

The model is able to account for the increase in spanwise correlation of lift forces
which is observed with increased oscillation amplitude. It is assumed that the motion-
correlated forces are well-correlated along the span. In that case, since the motion-
correlated forces initially increase with increased amplitude, the spanwise correlation
increases above that which is provided by the random vortex shedding forces. Vick-
ery (1978) showed that a model in which motion-correlated lift forces initially increase
linearly with amplitude could account for the increases in spanwise correlation observed
by Novak and Tanaka (1975, fig. 1.23). As a consequence of the eventual decrease in
motion-correlated lift forces at the limiting amplitudes which is incorporated in the
model, it also predicts that spanwise correlation should decrease back to that observed
on a stationary cylinder as the amplitude of oscillation reaches a maximum.

The effect of large-scale turbulence on the variation of K, with V. has also been
incorporated in the model, in a similar way to the quasi-steady variation in the spectra
of lift force described in §1.5.5. The PDF of the along-flow velocity fluctuations is
convolved with the K,-V; curve for smooth flow. The results of this process are shown
in figure 1.68, which was originally presented by Vickery and Basu (1983 a). No attempt
is made to account for the possible influence of turbulence on the spanwise correlation
of motion-correlated forces.

Shape of K,—a curve

Now that the basic aspects of this kind of model have been introduced, some attention
will be given to the assumptions on which it is based, in particular to the forms of the
K,~a and Cp,—a curves. Much of the discussion rests on the fact that, aside from the
constants V,?/(16x?), the K,—« curve is obtained from the Cj,~« curve by dividing by
a. It is presumed that the Cj,—a curve passes through C;, = 0 at a = 0 (reasonable
since the velocity-correlated lift must be zero when o = 0) and, in the case of positive
velocity-correlated forces at least, rises as ¢ increases and finally drops to zero at some

maximum amplitude {based on experimental observations that limiting amplitudes are
reached as K, — 0).

Taking a polynomial form for the Cj,—~a curve

Crp = gy + as0?® +az0® + -+ + a,a” (1.52)
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FIGURE 1.68: Quasi-steady variation produced by turbulence in the shape of the K,~V,
curve predicted by Vickery & Basu’s model (from Basu 1982).

it can be seen (with the aid of eq. 1.49) that the slope of the curve at the origin (a;) is
proportional to K,p. Put another way, the requirement of a positive value of 8C}, /O at
the origin forces a positive value of K,;. Next it can be seen that the slope of the K-«
curve at a = 0 is positive, zero or negative according to the sign of coefficient a,. In
equation (1.49), a, is zero and correspondingly the slope 9K, /8« in equation (1.47) is
zero at the origin. Given the basic shape of the Cj,—a curve (rising from the origin, then
falling) and a polynomial description, the characteristics of the K,~a curve vary with
the number of coefficients (a;) used. If two coefficients are used then, for a quadratic

Cly = aya + aza® | (1.53)

a; must be positive and a, negative, leading to a form of the K,~a curve which drops
linearly from K,q to zero as a increases. For a cubic, a¢; must be positive, a; zero and
a3 negative, as for Vickery and Basu’s model.

This process could be continued by introducing more coefficients or using higher-
order polynomials, but the point is that many different shapes and characteristics of the
K,~a and Cp~a curves can be produced. From the point of view of producing a work-
able model, the less number of parameters the better. Support for the two-parameter
form used by Vickery and Basu is provided by the curve fit shown in figure 1.67 (b},
however, other experimental evidence suggests different forms. Figure 1.69 presents
results of tests conducted by Vickery and Watkins (1962) in which the mass-damping
parameters of a series of geometrically-similar tubes were varied. Reynolds numbers
were in the range 10*-10°. It can be seen that there was no rapid increase in « as K,
dropped below some critical value (as observed in Wooton’s tests), so these results do
not support the assumption that dK,/0a = 0 at low amplitudes. A curve similar to
Vickery and Watkins’ was presented by King (1977). Vickery and Watkins provided
estimates of velocity-correlated coefficient of lift on the basis of the results in figure 1.69;
these are presented in figure 1.70. It can be seen that the shape of the fitted curve does
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FIGURE 1.69: Test results for a series of geometrically-similar cylinders of varying

mass-damping parameters. Maximum amplitude as a function of 27 K,. Vickery &
Watkins (1962).

not match that of figure 1.66 (b) in detail. Finally, it may be noted that in figure 1.63
values of K, initially drop as a increases, then rise again before falling to zero. Again,

this is at variance with the model proposed by Vickery and Basu for the change of K|,
with a.

1.7.6 Comparisons of Predictions with Observed Responses

The final test of a response prediction method is to compare its predictions with ob-
served responses. Difficulties can arise because the observations of significant responses

of full-size structures are comparatively few. The difficulties may be summarized as
follows:

o There is often considerable uncertainty about the parameters of the structure and
conditions in the flow. For instance, in most cases the siructural damping can only
be estimated, which is unfortunate because this is of prime importance. Hence
there must be uncertainty when comparing predicted and observed responses, as
to how much error can be attributed to the poor performance of the prediction
method and how much to errors in the parameters input to the model.
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o The observations of structural movement tend to leave out the majority of struc-
tures which do not show significant movement, so the observation set may be
biased, for instance towards those structures which have unusually low structural
damping.

e Since the Reynolds numbers for the full-size observations often lie above the range
available in wind tunnel studies there is an obvious temptation to use the results
to adjust model parameters for the high Reynolds number regime to force greater
agreement between observation and prediction. This means that there is a lack of
independence between the models and the observations, and so doubt about the
applicability of the models to new situations.

A significant set of observed responses of full-sized steel stacks has been published by
Pritchard (1984), and responses of concrete stacks have been compared with predictions
by Vickery and Basu (1984). Pritchard’s data covered isolated stacks, stacks which are
reported as being members of groups of stacks, and stacks for which grouping was not
reported.

ESDU compare the predictions of its methods with an edited set of Pritchard’s data
and that supplied by Vickery and Basu. The results are plotted as Figure 8.1 of ESDU
Item 85038. Study of that figure indicates that the ESDU procedures tend on average
to underpredict response in the transition region from broad to narrow band regimes,
and to overpredict response in the limit as mass-damping drops to zero. Since the
response data are not referenced in 85038 Table 8.1 which lists the publications from
which the model parameters were derived, ESDU make it possible to conclude that the
set of observations provides an independent check of their procedures.

To provide further comparison of ESDU predictions with the observed data, the
observed and predicted responses from 85038 Table 8.2 are re-plotted here (fig. 1.71)
as functions of the mass-damping parameter K,. Comparing figures 1.71(a) and (b)
shows the considerable amount of scatter that exists between the predicted and observed
responses. Some scatter is attributable to errors in estimates of model parameters and
observed responses, as discussed above.

Basu and Vickery (1984) published a comparison of measured and predicted re-
sponses for five reinforced concrete stacks, using the negative-damping model described
above. The coeflicient of variation of 25% between predicted and measured responses is
quite large, but because of the small sample size and the number of unknowns in their
model it is difficult to draw definite conclusions from the comparison.



1.7. PREDICTION OF CROSS FLOW RESPONSE

1-113

Bl Bﬂ L %ﬁm 1 T T LI 1 L L] l i 1 ]
L O m Conica b
. o Ty o Parallel 4
o % A Taper (5T) 4
N R ® Taper (0)

Be
amax U. ID g A ]

- A 4 N 3
C A &H@E ]
L o o i
o @% EI o-1
I s l

D- 01 i ! 1 J MY | i

0.1 . 1.0 3.0
K,

Uc 80 L E) [ ] 1 T T 1 Li ! L B
i m A Caniceal :
- L o ® Parallel |
X O A Taper (ST} 4
I m‘“ s = & & Taper (0)

(G L]
ag™ 8
- A, % m
- o &>
L o |
- . %0 9 _
m
U. 01 1 i 1 4 i i
0.1 1.0 3.0
K,

FiGURE 1.71: Comparison of (a); responses predicted by ESDU and (b); observed
responses of chimney stacks as functions of K,



1-114 ‘ CHAPTER 1. REVIEW

1.8 Issues for Research

A number of topics which require further investigation arise from this review. The
underpinning motivation is the desire to extend the range of data available for cross
flow response prediction, and to improve the understanding of the vortex shedding
process and interaction with cylinder motion, so that response prediction models may
better match reality.

A recurring theme has been that the influence of turbulence on lift forces and vortex
shedding needs more detailed investigation, particularly at super- and transcritical Rey-
nolds numbers. For fixed cylinders, the general expectation (see e.g. Zdravkovich 1990,
quoted in §1.5.5), is that high levels of turbulence will reduce the extent of the super-
critical regime and trigger a return to the organized vortex shedding of the transcritical
regime at lower Reynolds numbers than is the case in smooth flow. The investigations
of Cheung (1983, §1.5.6) indicate that this is the case, but more detail concerning the
spectral composition and spanwise relationships of sectional forces is required. For os-
cillating cylinders, the effect of turbulence on motion-correlated forces has never been
directly investigated (see the discussions of §§1.4.5 and 1.7.5).

Concerning oscillating cylinders, several points for study have been noted, in addi-
tion to the one just referred to. The first is that uncertainty surrounds the oscillation
amplitude required for lock-in in subcritical flows; some studies {e.g. Koopman 1967,
§1.4.1) have indicated that an amplitude threshold exists, below which lock-in does not
occur. The relationship of motion-correlated forces and increased spanwise correlation
needs attention: are they aspects of the same phenomenon, as suggested by Vickery
and Basu {§1.7.5), or should they be addressed separately, as the correlation length
models discussed in §1.7.4 imply? The partition of lift forces into motion-correlated
and residual parts has not been studied as a specific experimental issue; this partition
is an assumption of negative damping models for prediction of cross flow response, as
discussed in § 1.7.5. Wootton’s investigation (1968, 1969; see § 1.4.1) suggested that im-
position of cylinder motion could produce a return to organized vortex shedding in the
supercritical Reynolds number regime in smooth flow past smooth cylinders, a sugges-
tion that is accepted in at least one text (Sarpkaya & Isaacson 1981). This is of interest
because of the implication that large amplitude cross flow oscillations are possible in
the supercritical regime, in which it is usually assumed that cross flow forces are small.

It was decided that an experimental programme employing forced cross flow oscil-
lations could examine these issues. For this purpose, a wind tunnel model was devised.
The model was 2 200 mm diameter, 900 mm long smooth cylinder containing six force
transducers at which forces acting on thin (20mm width) slices of cylinder could be
measured. Oscillation amplitudes up to £6 mm (3% diameter) could be obtained over
a frequency range 10 Hz to 50 Hz. Reynolds numbers in the range 1 x 10° to 6 x 10°
could be achieved in smooth and turbulent flows using the 2mx1 m working section of
the Monash University 450 kW wind tunnel. The comparatively moderate aspect ratio
(4.5:1) and tunnel blockage {10%) are compromise values, allowing high supercritical
Reynolds numbers in smooth flows and transcritical Reynolds numbers in turbulent
flows.



