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Abstract

Results are presented from a numerical study of transient growth experienced by infinitesimal

perturbations to flow in an axisymmetric pipe with a sudden 1:2 diametral expansion. First, the

downstream reattachment point of the steady laminar flow is accurately determined as a function

of Re and it is established that the flow is linearly stable up to Re=1400. A direct method is

used to calculate the optimal transient energy growth for specified time horizon τ , Re up to 1200,

and low-order azimuthal wavenumber m. The critical Re for the onset of growth with different

m is determined. At each Re the maximum growth is found in azimuthal mode m=1 and this

maximum is found to increase exponentially with Re. The time evolution of optimal perturbations

is presented and shown to correspond to sinuous oscillations of the shear layer. Sub-optimal

perturbations are presented and discussed. Finally, full three-dimensional DNS with the inflow

perturbed with Gaussian white-noise confirms the presence of the structures determined by the

transient growth analysis.
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I. INTRODUCTION

The dynamics of flow through abrupt geometrical expansions is of both practical impor-

tance and fundamental interest. The axisymmetric expansion1–6, in particular, is a primitive

geometry occurring in numerous engineering and industrial settings. It is also relevant to

bio-medical applications as a model of flow through arterial stenoses7–11. At a fundamental

level this geometry, together with the closely related planar expansion12–14 and backward-

facing step15? –18, serve as prototypes for understanding the dynamics of flow separation.

Over the past four decades studies of these flows have addressed issues such as reattachment

lengths1, symmetry breaking5, and time-dependence20.

The focus of this paper is the transient linear dynamics of the 1 to 2 axisymmetric

expansion. We show that for values of the Reynolds numbers well below any linear instability,

the flow strongly amplifies infinitesimal inlet perturbations. We argue that transient linear

amplification is a potentially more important effect in this flow than linear instability.

Much of the previous research on the axisymmetric expansion has concentrated on the

steady, laminar flow regime and the accurate determination of the separation and subse-

quent reattachment. Both experimental1–5,19,20 and computational19,21,22 studies find that

the reattachment length varies linearly with Reynolds number in the steady regime, with

the proportionality depending on whether the inlet flow is a flat profile or a fully developed

Hagen–Poiseuille profile23. Separation and reattachment in the turbulent regime has also

been studied12,24.

Recent and carefully controlled experiments by Mullin et al.5 on the 1 to 2 expanding

pipe flow with a fully developed inlet profile report a steady-state breaking of axisymmetry

at Re = 1139 ± 10. The Reynolds number is defined in terms of the inlet diameter and

bulk velocity. This symmetry breaking is the rotational analog of the symmetry breaking

observed in the symmetric planar expansion13,14,25. However, in the planar case there is now

general agreement between computation and experiment on the bifurcation, while in the

axisymmetric case, linear stability computations by Hall et al.26 (also verified in the present

study) find that there is no bifurcation of the perfectly symmetric problem at Reynolds

numbers comparable to those reported in the experiments5.

Many experimental studies report unsteadiness and oscillations in the expanding-pipe

flow1,5,20,27,28. There is, however, no agreement as to the Reynolds number at which oscilla-
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tions first arise. The explanation for the discrepancy has been attributed to the sensitivity

of the expansion to the inlet profile4,22,23.

FIG. 1: Sketch illustrating the evolution of a perturbation through an expanding pipe. Small inlet

perturbations are amplified in the region of the separated axisymmetric shear layer, but eventurally

decay downstream. Hence, even though the flow is linearly stable, it supports very strong transient

growth of perturbations.

The aim of this paper is to quantify and highlight the importance of transient growth of

infinitesimal perturbations in expanding pipe flow. Fig. 1 illustrates the essential idea. Small

disturbances in the inlet upstream of the expansion are amplified in the region containing

the separated axisymmetric shear layer following the expansion. The amplified disturbances

are then advected into the downstream pipe where they inevitably decay. This leads to

a situation in which the flow may be highly sensitive to incoming perturbations, but only

transiently. Hence, even though the flow is linearly stable, in that all perturbations eventu-

ally decay and likewise all eigenvalues are negative, the flow may be highly susceptible to

small perturbations. From a local perspective one would attribute the transient dynamics

to a localized region of convective instability within the flow resulting from an inflectional

velocity profile29–31. In the context of a direct numerical study where one does not resort

to local parallel approximations but instead fully resolves all aspects of the flow, one under-

stands and analyzes the transient dynamics as a transient growth problem or equivalently

as a singular value problem. For example, recent studies have highlighted the importance of

transient dynamics due to localized regions of convective instability for the backward-facing

step15, curved channel flow15,32 and steady and pulsatile stenotic flow8. This is the approach

taken in the present work.
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FIG. 2: Geometry of the expanding pipe. The computational flow domain Ω is illustrated with the

cylindrical coordinate system and the inlet and outlet lengths indicated (not to scale).

II. METHODOLOGY

A. Governing equations and flow geometry

The flow is governed by the incompressible Navier–Stokes equations

∂tu + (u · ∇)u = −∇p + Re−1∇2u, (1a)

∇ · u = 0, (1b)

where u is the fluid velocity and p is the modified or kinematic static pressure. Without loss

of generality we have set the density to unity. The equations are written in dimensionless

form with the velocity normalized by Ū , the bulk velocity of the incoming flow, and lengths

normalized by the diameter of the inlet pipe D. Thus the Reynolds number is the bulk

Reynolds number of the inlet pipe flow given by Re = ŪD/ν, where ν the fluid’s kinematic

viscosity.

To avoid possible confusion when reading the following material it is useful to emphasize

here the approach taken to non-dimensionalization. Except where indicated otherwise, all

quantities reported employ the normalization used above in defining the Reynolds number.

In particular this means that lengths are presented in terms of the inlet pipe diameter, D.

The exception we make to this rule is in recording downstream reattachment points, where

step height h = D/2 is also used as a measure of length. This exception is made to facilitate

comparison to previous works. Throughout the paper, times are in units of D/Ū .

The pipe geometry naturally lends itself to using cylindrical coordinates which are denoted

(x, r, θ). Here x is used for the axial coordinate since this corresponds to the streamwise

direction, with x = 0 at the expansion location. The fluid velocity in these cylindrical

coordinates is thus written u = (ux, ur, uθ).
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Ideally the flow geometry would be infinite in the streamwise direction. In practice, the

computational flow domain Ω consists of a finite inflow region of length Li upstream of the

expansion and a finite outflow region of length Lo downstream of the expansion as in Fig. 2.

For sufficiently large Li and Lo, as used in this study, results are independent of these lengths

and the flow approximates the infinite case.

We impose a fully developed Hagen–Poiseuille incoming profile, which in non-dimensional

form is given by u = 2(1 − 4r2)ex. We use no-slip boundary conditions on all walls of the

pipe and impose a stress-free outflow boundary condition at the downstream end of the pipe.

Thus the boundary conditions for the flow problem are

u(∂Ωi, t) = 2(1− 4r2)ex, (2a)

u(∂Ωw, t) = 0, (2b)

ex · ∇u(∂Ωo, t) = 0, p(∂Ωo, t) = 0, (2c)

where ∂Ωi is the inlet boundary at x = −Li, ∂Ωw is the boundary corresponding to the rigid

walls of the inlet pipe, outlet pipe and expansion, and ∂Ωo is the outlet boundary at x = Lo.

Variations on these boundary conditions will appear in the stability and transient growth

problems as well as for studies of noisy inflow and will be discussed at the appropriate place.

B. Linear stability and transient growth problems

We briefly summarize the main aspects of the linear stability and transient growth prob-

lems. Some further details for the particular problem are given in Sec. II C. General accounts

of the time-stepper approach used here may be found elsewhere33,34.

The first step in the analysis is to obtain base flows U. In this study these are steady,

two-dimensional, axisymmetric solutions to Eqs. (1) of the form U = (Ux(x, r), Ur(x, r), 0).

For the range of Re considered in this paper, these solutions are unique functions of Re.

The next step is to consider the evolution of infinitesimal disturbances u′ to the base

flow. These are governed by the linearized Navier–Stokes equations

∂tu
′ + DN · u′ = −∇p′ + Re−1∇2u′, (3a)

∇ · u′ = 0, (3b)

where

DN · u′ ≡ (U · ∇)u′ + (u′ · ∇)U (4)
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The boundary conditions for Eqs. (3) will be addressed at the end of Sec. II C.

The linear evolution of a perturbation from t = 0 to a later time t under Eqs. (3) can be

expressed eloquently as the action of a linear state transition operator A(t) on the initial

perturbation u′(0) as

u′(t) = A(t)u′(0). (5)

We then perform an analysis, either of stability or of transient growth, for this linear evolu-

tion operator.

For linear stability, we seek normal mode solutions of the form u′(x, r, θ, t) =

exp(σjt)ũj(x, r, θ) + c.c., where the ũj are eigenmodes and the σj are eigenvalues. For

any fixed arbitrary time T (typically T is of order unity under the scaling we have used) the

eigenmodes are solutions of

A(T )ũj = µjũj (6)

where the eigenvalues µj and σj are related by µj = exp(σjT ). The eigenvalues µj of largest

modulus are found iteratively by actions of the operator A(T ) as discussed in Sec. II C. If

there exist any solutions of Eq. (6) with |µj| > 1, corresponding to σj with positive real

part, then the base flow U is linearly unstable.

The transient growth computations consist of determining the greatest possible energy

growth, G, over all initial perturbations for a given finite time horizon τ . Because the evolu-

tion is linear, it is sufficient to consider initial perturbations with unit norm in the standard

L2 inner product (·, ·) over the flow domain Ω. Then the energy of such a perturbation after

time τ , relative to the initial energy, is

E(τ)

E(0)
= ||u′(τ)||2 = (u′(τ),u′(τ)) ,

where ||u′(0)|| = 1. Using the evolution operator A(τ) and its adjoint A∗(τ) this can be

written as

E(τ)

E(0)
= (A(τ)u′(0),A(τ)u′(0))

= (u′(0),A∗(τ)A(τ)u′(0)) .

Let λj and vj denote eigenvalues and normalized eigenmodes of A∗(τ)A(τ):

A∗(τ)A(τ)vj = λjvj, ||vj|| = 1. (7)
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Then the maximum growth obtainable at time τ , denoted G(τ), is

G(τ) ≡ max
||u′(0)||=1

E(τ)

E(0)
= max

j
λj. (8)

Thus the maximum growth is obtained by computing the dominant eigenvalue, and cor-

responding eigenmode, of A∗(τ)A(τ). This is again done iteratively through actions of

A∗(τ)A(τ) as discussed in Sec. II C.

Finding the dominant eigenvalues of A∗(τ)A(τ) is equivalent to finding the largest sin-

gular values of A(τ). The eigenmode vj in Eq. (7) provides an initial perturbation u′(0)

which generates a growth λj over time τ . Referring to Fig. 1, this is the inlet perturbation.

Potentially, one is also interested in the evolution of perturbations from t = 0 to some large

value of t where the perturbation washes out of the system. The evolved perturbation at

time τ has a particular meaning however. Defining uj to be the normalized perturbation at

time τ evolved from initial condition u′(0) = vj, we have

A(τ)vj = σjuj, ||vj|| = ||uj|| = 1, (9)

where σj = ||u′(τ)||. This is nothing other than the leading part for the singular value

decomposition of A(τ).

When solving the eigenvalue problem, the time horizon, denoted T in this case, is set by

practical considerations; the eigenvalues λj are independent of T . For the transient growth

problem, the eigenvalues of A∗(τ)A(τ), singular values of A(τ), depend on the time horizon,

here denoted τ , and this value is a parameter of study — each new τ requires a new solution

to (7). As is the case for linear stability, in the transient growth problem one is primarily

interested in the optimal energy growth given by the dominant eigenvalue of A∗(τ)A(τ) as

these describe the ‘most dangerous’ cases. However, as we show in Sec. III C the first few

sub-dominant eigenvalues can also be of interest.

The final general point is that the eigenmodes of A(τ) and A∗(τ)A(τ) are trigonometric

in the azimuthal direction, of the form exp(imθ)+c.c., for integer m. Moreover, eigenmodes

with different azimuthal mode numbers m decouple. As a result, m effectively becomes

a specified input parameter to the stability or transient growth problem. (See Sec. II C).

Specifically then, the optimal energy growth is a function not only of the time horizon τ as

indicated in Eq. (8), but also the control parameter, Re, and the azimuthal mode number

m, i.e. G = G(τ, Re,m). For clarity, the notation used later in this paper will be restricted

to only those dependencies relevant to the context.
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C. Further details

For completeness we present further details of the numerical computations used in this

study. We employ a time-stepper approach33 in which all problems are solved with the same

code base: a spectral/hp element–Fourier discretization of the Navier–Stokes equations35.

A representative computational mesh is shown in Fig. 3. The axial–radial plane, (x, r),

is discretized using a spectral-element mesh as in Fig. 3(a). All meshes used in this study

have the same inflow length Li = 5 and the same refinement structure in the vicinity of the

expansion. This mesh has been used in previous studies of the planar backward-facing step8.

The outflow length requirements depend on τ and vary from L0 = 25 (as in Fig. 3) at small τ

up to L0 = 75 at τ=130, the largest considered in this study. The longer meshes differ from

that shown only by the continuation of regular downstream elements. The requirements for

the inflow and outflow lengths are set by the boundary conditions on the transient growth

computations discussed shortly.

Velocity components and the pressure are expanded in a tensor product of order-N poly-

nomials within each element. In the azimuthal direction a Fourier representation with com-

plex modes is used to produce the full three-dimensional physical geometry illustrated in

Fig. 3(b). A Fourier-mode-dependent set of boundary conditions is imposed at r = 0, the

centerline of the pipe, as detailed elsewhere35. For linear analyses, azimuthal Fourier modes

can be dealt with independently, whereas in direct nonlinear simulations of three-dimensional

states, Fourier modes must be dealt with concurrently.

The choice of polynomial order for the spectral-element expansion is dictated by the need

to resolve the separated shear layer of the base flow. This can be best assessed by analysis

of the reattachment of the separating streamline, since its location depends sensitively on

the resolution of the separated shear layer, particularly near the separation point. Table I

shows the dependence of the flow reattachment point, xr, on polynomial order at Re=1000.

A value of N = 6 is sufficient to resolve the flow accurately and this value is used for all

computations in this study.

Nonlinear solutions consists of two types. First, there are steady, axisymmetric base

flows U = (Ux(x, r), Ur(x, r)). These are computed by time evolving the two-dimensional

(axisymmetric) Navier–Stokes equations with boundary conditions given by Eqs. (2) until

a steady state is reached. The final flow field is then stored for use with the linear stability
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TABLE I: Streamwise position of base flow reattachment point (in units of step height, h) at

Re=1000, as a function of spectral-element polynomial order N . The outflow length is Lo = 75 =

150h.

Order, N xr/h

3 89.3312

4 89.2565

5 89.2655

6 89.2630

7 89.2623

8 89.2620

analysis and growth computations.

The other types of nonlinear solutions presented are fully three-dimensional, time-

dependent flows resulting from small disturbances added to the parabolic inflow. Specif-

ically, the transverse velocity components of the inflow are perturbed by a small amount of

Gaussian white noise. The boundary conditions, Eq. (2a), are replaced by

u(∂Ωi, t) = 2(1− 4r2)ex + ηrer + ηθeθ (10)

where ηr, ηθ are random variables drawn from a Gaussian distribution with zero mean and

standard deviation γ. In most cases we use γ = 10−2, but also use γ = 2.5× 10−3.

The linear computations (eigenvalues and optimal growth) are based on the time-stepper

approach in which the actions of the linear operators A and A∗ are effected by evolving

perturbations in time using a modified version of the same simulation code. This is coupled

with standard linear algebra algorithms to obtain the desired eigenvalues and eigenmodes.

Since we work in cylindrical coordinates and the base flows are axisymmetric, the lin-
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earized advection operator in Eqs. (3–4) has the following explicit form

DN · u′ =




U · ∇ 0 0

0 U · ∇ 0

0 0 U · ∇



+


∂xUx ∂rUx 0

∂xUr ∂rUr 0

0 0 Ur/r





u′

x

u′
r

u′
θ


where U · ∇ = Ux∂x + Ur∂r. Thus the only non-zero term resulting from cylindrical coor-

dinates is Uru
′
θ/r. All other terms vanish for the base flows we consider or have Cartesian

analogs.

Computing the action ofA∗(τ), necessary for computing the action ofA∗(τ)A(τ), requires

evolving perturbations by equations that are adjoint to Eqs. (3). Using integration by parts

these adjoint equations are

−∂tu
∗ + DN∗ · u∗ = −∇p∗ + Re−1∇2u∗ (11a)

∇ · u∗ = 0 (11b)

where u∗ and p∗ are the adjoint velocity and pressure fields, respectively. The adjoint

advection terms are

DN∗ · u∗ =



−U · ∇ 0 0

0 −U · ∇ 0

0 0 −U · ∇



+


∂xUx ∂xUr 0

∂rUx ∂rUr 0

0 0 Ur/r





u∗

x

u∗
r

u∗
θ


The change of sign from (U · ∇)u′ to −(U · ∇)u∗ follows from one integration by parts,

together with the divergence-free condition. The second term is equivalent to a standard

matrix transpose. The action of A∗(τ)A(τ) on a perturbation is obtained by evolving the

perturbation forward τ time units under Eqs. (3), followed by evolving the perturbation
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backward τ time units under Eqs. (11). This is easy to implement when using the time-

stepper approach.

For axisymmetric base flows, the linear operators A and A∗ are homogeneous in the

azimuthal direction and different azimuthal modes decouple. Eqs. (3) and (11) then have

invariant subspaces of the form

u′
x(x, r, θ, t) = ûm

x (x, r, t) cos(mθ)

u′
r(x, r, θ, t) = ûm

r (x, r, t) cos(mθ)

u′
θ(x, r, θ, t) = ûm

θ (x, r, t) sin(mθ)

p′(x, r, θ, t) = p̂m(x, r, t) cos(mθ)

or similar with any rotation in θ, where m is integer. The time stepping code thus evolves the

three velocity components (u′
x, u

′
r, u

′
θ), on a strictly two-dimensional (x, r) spectral-element

mesh. The mode number m is an input parameter.

For computing the eigenvalues of A(T ), the inflow boundary condition is homogeneous

Dirichlet, and all other boundary conditions are as in Eqs. (2). For computing eigenvalues

of A∗(τ)A(τ) we use homogeneous Dirichlet boundary conditions on all boundaries both for

the operator A(τ) and A∗(τ). As discussed elsewhere33, for transient growth problems it is

essential that the boundaries be sufficiently far upstream and downstream that perturbations

do not reach them during the computation of A∗(τ)A(τ). This requirement dictates the

values of Li and Lo used in this study. We find Li = 5 is sufficient for all cases considered

in this study. We vary Lo but verify that it is far downstream of computed perturbations.

Eigenvalues are computed using a modified Arnoldi iteration method33. In brief, repeated

application of the relevant evolution operator, A(T ) or A∗(τ)A(τ), to a random starting

vector u0 generates a Krylov sequence and subsequently an upper Hessenberg matrix, H,

which spans a subspace of the image of the operator. After relatively few iterations, the

dominant eigenvalues of H converge to the dominant eigenvalues of A(T ) or A∗(τ)A(τ), thus

allowing the important eigenvalues and eigenvectors to be computed at low computational

cost and memory requirements.
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(a)

(b)

FIG. 3: A spectral element mesh used in this study. For the case illustrated there are 563 elements,

an inflow length of Li = 5 and an outflow length of Lo = 25. When required, meshes with more

elements and outflow lengths up to Lo = 75 have been used. The two-dimensional mesh (a) used

for linear analysis is extended to three dimensions (b) for non-linear analysis (DNS) where Fourier

expansions are used in azimuth.
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FIG. 4: Contour plot of the base-flow streamfunction at Re = 600, showing the separation and

reattachment of the flow, and the recirculation region behind the expansion. Contours are drawn

at intervals of 0.125 in the core of the flow, and at intervals of 0.02 in the recirculation region.

III. RESULTS

A. Base flows

We begin with a brief discussion of the steady, axisymmetric base flows. Figure 4 shows

the streamfunction for a typical case, at Re=600. Streamlines of the high-speed core flow

are drawn as dotted lines, while the separation streamline emanating from the expansion

edge and the recirculation streamlines are drawn as solid lines. Contour level intervals for

the streamfunction in the recirculation region and in the core region are distinctly different

in order to better illustrate flow structure.

The base flows at all other Reynolds numbers in our study are qualitatively similar,

12



 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  10  20  30  40  50  60

 0  20  40  60  80  100  120

R
e

x
r

x
r
 / h

FIG. 5: Relationship between downstream reattachment point xr and Reynolds number for base

flows with a fully-developed inlet profile up to Re=1400. Points are the computed value of xr

and the solid line shows the best-fit proportionality given by xr/h = 0.0876 Re. The dotted lines

indicate reattachment lengths for the base flows at Re=600 (corresponding to Fig. 4) and Re=1200.

differing primarily in length of the recirculation region. Figure 5 shows the relationship

between the recirculation length, that is the downstream reattachment point denoted xr,

and Reynolds number for the base flows up to Re=1400. The recirculation length increases

linearly with Re according to xr/h = 0.0876 Re. We believe this to be the most accurate

study yet reported of recirculation length for the 1 to 2 expanding pipe. The constant of

proportionality we obtain is slightly lower than that of Iribarne et al.27, who report a linear

relationship with a proportionality of 0.096 for a fully-developed inlet profile. However, our

value matches the more recent experimental observations of Hammad et al.3 who reported

a value of 0.088.

B. Linear stability

For completeness we report in Table II the leading eigenvalues (those with largest real

part) obtained from a linear stability analysis up to Re=1400. At least for Re from 600 to

1400 the leading eigenvalues all correspond to azimuthal modes with m=1 and only these

eigenvalues are reported. The eigenvalues reported in Table II agree with those of Hall et

al.26 to within 0.3%. In all cases the leading eigenvalues are real and negative, and hence as

stated at the outset, the axisymmetric base flow is linearly stable up to Re=1400. In fact
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TABLE II: Leading eigenvalues for linear stability of flows in the 1 to 2 axisymmetric expansion

for Reynolds numbers indicated. All values correspond to azimuthal mode number m=1. All are

real and negative and hence the axisymmetric base flow is linearly stable up to at least Re = 1400.

Re σ

600 −6.2388× 10−3

1000 −2.6827× 10−3

1400 −1.4571× 10−3

Hall et al.26 determine that there are no positive eigenvalues to considerably higher Re.

C. Transient energy growth

Having established that the flow is linearly stable up to at least Re=1400, we turn to

the determination of the most dangerous, that is energetic, transient dynamics. Recall that

such a study involves not only the Reynolds number, but also the time horizon τ and the

azimuthal mode number m. We begin by presenting results as a function of τ and m for a

fixed value of Re and subsequently we consider the dependence on Re.

1. Dependence on azimuthal mode number

Figure 6 shows optimal growth envelopes G(τ) for perturbations in the axisymmetric

(m=0) and first six non-axisymmetric modes (m=1 to 6) over a range of time horizons at

a fixed Reynolds number of Re=600. In general, the greatest increase in energy is seen in

the first azimuthal mode, m=1, which at this Reynolds number peaks at τ ' 50, just at

the right edge of the figure, and decreases for larger τ . The higher mode numbers exhibit

less growth and peak at considerably smaller values of τ . For example, the m=2 growth

envelope peaks at τ ' 19.5 where the optimal growth there is an order of magnitude less

than for the m=1 mode at the same value of τ and 1.5 orders of magnitude less than for the

m=1 mode where it obtains its maximum.

There is generally a monotonic decrease in growth with increase in mode number, with two

exceptions. The first is that the m=0, axisymmetric, mode growth envelope is qualitatively
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FIG. 6: Energy growth envelopes at Re=600 for azimuthal mode numbers (as indicated) up to

m=6.

different from the others and in particular the growth peaks at a much earlier time horizon

and has a much smaller value in comparison to any of the low-order, non-axisymmetric

modes. The other exception to the dominance of m=1 is at small time horizons. Below

τ ' 3 the m=2 mode exhibits larger optimal growth than the m=1 mode, and below τ ' 2

the m=3 mode exhibits larger optimal growth than the m=2 mode. (This can be clearly seen

by enlarging the electronic version of Fig. 6.) We have not attempted to resolve the details

and mode ordering at yet smaller values of τ . This modal behavior, where the m=1 mode

dominates except for short time horizons, has also been reported for flows in parallel36,37

and constricted8 pipes.

The dominance of the energy growth for the m=1 mode is observed at all other Reynolds

numbers in our study. Hence, for the remainder of the paper we shall mainly focus on the

m=1 case. Some results will also be presented for the m=0 case since it is qualitatively

different from the others and because it represents the strictly two-dimensional problem.

2. Reynolds number and time horizon

The dependence of the optimal growth on Reynolds number and time horizon is well

summarized by contour plots of G(τ, Re). Figures 7(a) and (b) show such contour plots

for m=1 and m=0 modes, respectively. Only contours with G ≥ 1 are plotted and the

no-growth contours, corresponding to G = 1, are emphasized by the thicker black curves.
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TABLE III: Table of critical Reynolds numbers, Rec
m, maximum growth values Gmax

m and corre-

sponding time horizons for maximum growth, τmax
m (for Re=600 and Re=1200 as indicated) for

each of the first four azimuthal modes, m.

m Rec
m Gmax

m (600) τmax
m (600) Gmax

m (1200) τmax
m (1200)

0 64 9.20× 100 4.4 2.32× 101 6.2

1 26 6.23× 103 50.1 3.77× 106 106

2 38 1.95× 102 19.5 7.59× 102 34.1

3 54 8.05× 101 14.6 3.17× 102 28.3

To the right of the no-growth contours G is less than unity, meaning that the energy of any

perturbation will be less than its initial energy at these values of τ .

The intersection of the no-growth contour with the Reynolds number axis is a saddle-

point of the growth function in the τ −Re plane and indicates a critical Reynolds number,

Rec, above which energy growth is possible. This critical value depends on mode number m

and so we define Rec
m as the value of Re for which

∂G(τ, Rec
m)

∂τ

∣∣∣∣
τ=0

= 0.

For Re > Rec
m, the growth envelope G(τ) for mode number m has positive slope at τ=0 and

so G(τ) > 1 for a least some values of τ . The smallest critical value occurs for m=1 with

Rec
1 = 26. Values of Rec

m for other m are also quite low and given in the second column of

Table III.

As the Reynolds number increases perturbations with m=1 azimuthal structure can be

amplified by large factors. Specifically, one can see in Fig. 7(a) that at Re=1200, pertur-

bations are amplified by factors of over 106. Thus, even though the flow is linearly stable

at Re=1200, it is capable of amplifying small perturbations to appreciable levels through

strictly linear growth. In contrast to the m=1 modes, axisymmetric modes of Fig. 7(b)

experience very limited growth and are confined to much shorter time horizons for all Re

studied.
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FIG. 7: Contours of optimal transient energy growth as a function of time horizon, τ , and Reynolds

number for (a) azimuthal mode number m=1 and (b) azimuthal mode number m=0.

3. Time evolution of optimal perturbations

We now consider the time evolution of some optimal perturbations at Re=1200. Figure 8

shows the optimal growth envelope for Re=1200 and m=1, along with the transient energy

evolution under the linearized Navier–Stokes equations from three different initial conditions.

The initial perturbations are the computed optimal perturbations for three different values

of τ as indicated. The case τ=110 is very nearly the initial condition giving the maximal

energy growth at Re=1200. As is necessarily the case, each of these transient evolution

curves touches the optimal growth envelope at its corresponding τ value, but otherwise they

lie entirely below the envelope.

Figure 9 depicts the perturbation field evolving from the optimal initial condition for
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FIG. 8: Energy growth under linear evolution at Re=1200, m=1 for three different initial conditions

corresponding to optimal perturbations at τ=30, 70 and 110. Circles denote the optimal growth

envelope. Each linear evolution curve touches the envelope at its respective τ value, as indicated

by a filled circle.

τ=110, (Re=1200, m=1). This evolution corresponds to the transient energy trajectory

drawn with a solid line in Fig. 8. Owing to the small magnitude of the initial perturbation

relative to its evolved state, we visualize the perturbation at early times differently from

later times. Initially the perturbation is shown via a contour plot of the azimuthal velocity

component uθ in a planar cut through the geometry. Subsequent fields are visualized in

terms of three-dimensional isosurfaces of azimuthal velocity. The evolving perturbation is

plotted on a relatively small section of the computational domain every four time units until

time 28. The perturbation is also plotted when it attains its maximum energy, at t=110.

At this time the perturbation is well downstream of the expansion: the centroid of the

perturbation energy lies at xc = 47.1.

Unsurprisingly, the optimal initial perturbation is concentrated near the flow separation

at the expansion from where it is subsequently advected by the base flow into the separated

shear layer. In passing over the shear layer, chevron structures emerge in a packet, initially of

very limited streamwise extent. After an initial rapid growth phase, the structure stabilizes

as it approaches the time of peak growth after which the vortices at the rear of the structure

begin to decay. The anti-symmetric appearance of the perturbation is a direct consequence

of the m=1 azimuthal structure. Note that there is a characteristic axial wavelength of the
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FIG. 9: Evolution of optimal initial disturbance in the m=1 mode visualized through con-

tours/isosurfaces of azimuthal velocity at Re=1200 from t = 0 (bottom) in time intervals of four

units in the spatial range −2.5 ≤ x ≤ 15. The top figure shows the evolved disturbance at its

maximum growth. The spatial range is 36.5 ≤ x ≤ 54 and the isosurface levels two orders of

magnitude larger than in the lower part of the figure.

disturbance that is approximately preserved through the transient growth.

Transient behaviour of the optimal perturbation in m=0 at Re=1200 is illustrated

through isosurfaces of radial velocity in Fig. 10. The initial disturbance is again concen-

trated around the step edge. Shortly afterwards it evolves into a set of toroidal rolls of

alternating sign which advect downstream, first growing in energy up to t ≈ 6, then de-

caying. Again note that the axial wavelength of the disturbance is preserved through this

transient behaviour.

The physical nature of the perturbed shear layer for Re=1200, m=1 is illustrated in

Fig. 11. The optimal perturbation at time of maximum energy growth is linearly combined

with the base flow at a relative energy level of 5%. This combined state is visualized via

an isosurface of azimuthal vorticity. The image suggests that the optimal perturbation

manifests as a sinuous oscillation of the shear layer, as was also observed in the optimal

growth analysis of flow in a stenotic pipe8. Note that the azimuthal orientation is arbitrary,

due to rotational symmetry of the flow, and has been chosen here so as to emphasize the

structure of the surface.
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FIG. 10: Evolution of optimal initial disturbance in the m=0 mode visualized through isosurfaces

of radial velocity at Re=1200 from t = 0 (bottom) in time intervals of two units in the spatial

range x ∈ [−2.5, 15].

FIG. 11: Physical interpretation of the maximal disturbance at Re=1200. Shown is a linear

superposition of the base flow with the optimal m=1 disturbance at the time of maximum growth,

t=110. The disturbance has a relative energy magnitude of 5% compared to the base flow. The

visualization is a semi-transparent isosurface of azimuthal vorticity at a level highlighting the

separated shear layer.

4. Growth maxima

At a given Reynolds number, and for a specified azimuthal mode number m, the maximum

of G over all time horizons τ is an important quantity. We thus define the maximum growth
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FIG. 12: Optimal energy growth, Gmax
m , as a function of Re for each of the first four azimuthal

modes. Above Re ≈ 300, Gmax
1 increases exponentially with Reynolds number at a rate of 0.41

orders of magnitude for each increase of 100 in Re. Inset shows detail at small Re. Curves intersect

log Gmax
m = 0 at the critical Reynolds number Rec

m of each mode m.

and the corresponding time horizon as

Gmax
m (Re) = max

τ
G(τ, Re,m),

τmax
m (Re) = arg max

τ
G(τ, Re,m).

Table III includes the maximum growth and corresponding time horizons at representative

Reynolds numbers of 600 and 1200.

The growth maxima are plotted in Fig. 12 as a function of Re for several values of

m. Each curve emerges at the corresponding critical value Rec
m. The figure highlights the

significantly different magnitude of growth obtainable for m=1 perturbations compared with

perturbations in other azimuthal mode numbers, particularly axisymmetric perturbations.

Beyond approximately Re=300, log Gmax
1 (Re) is seen to be linear with Re indicating an

exponential dependence of maximal growth on Reynolds number. This may also ultimately

be true of the other broken symmetry perturbations at Reynolds numbers higher than those

studied here. Similar exponential growth with Reynolds number has been observed for two

other separated flows: flow over a backward-facing step15 and steady flow in a stenotic pipe8.

This exponential dependence is significantly different from the classic parallel flows, planar

Couette flow38 and straight pipe flow36,38, for which the maximum transient growth increases

only with the square of Reynolds number.

The form of evolved optimal perturbations at the time of maximal growth, τmax
m , are
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TABLE IV: Characteristics of the optimal perturbations at the time of maximum growth τmax for

m=1 modes at Reynolds numbers indicated. Along with τmax the centroid location (xc, rc) of the

evolved perturbation energy, as well as the local axial wavelength λx and temporal frequency St

of the perturbation. At Re=600 the frequency spectrum is not sufficiently sharp to determine a

value.

Re τmax xc rc λx St

600 50.1 21.3 0.40 4.6 -

800 69.0 29.9 0.40 4.2 0.082

1000 87.6 38.5 0.40 3.6 0.079

1200 106 47.1 0.40 3.3 0.081

expected to provide a good indication of what might be observed in a flow subject to small

perturbations. See for example the perturbation at t = 110 in Fig. 9 and the combined state

shown in Fig. 11. We shall address this in Sec. IIID where we consider nonlinear simulations.

Here we list in Table IV some pertinent characteristics of the optimal perturbation fields

at the point of maximum growth for the case of m=1. For each Re, τmax
m is given, along

with the centroid location (xc, rc) of the energy of the evolved perturbation, as well as the

local axial wavelength λx and temporal frequency St of the perturbation. The wavelength

of the evolved perturbation decreases slightly with Reynolds number, while the temporal

frequency is essentially independent of Reynolds number. The non-zero radial location rc

is a consequence of the fact that the centroid is calculated from a Fourier mode, in the

meridional semi-plane, and it represents the radial location where the disturbance is largest

(if the energy centroid were calculated in physical space then rc would be zero).

Fig. 13 shows xc, the axial location of the perturbation energy centroid at maximal

growth, together with the reattachment point of the base flow previously plotted in Fig. 5.

One sees clearly that for Re & 500 the optimal disturbance at its peak energy growth lies

consistently about five diameters (10 step heights) upstream of the reattachment point of

the base flow. This provides strong evidence that the separated shear layer is driving the

growth of perturbations.
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FIG. 13: Location of the centroid of the disturbance at its maximum growth (points connect by

solid lines), compared with the location of the reattachment point (dashed line). The disturbance

reaches its maximum approximately 5 diameters upstream of reattachment point.

5. Suboptimal growth

The optimal perturbations considered thus far are those which provide the maximum tran-

sient energy growth under linear evolution. However suboptimal perturbations can attain

comparable energy, with the first sub-dominant perturbations in particular demonstrating

growth on the same order of magnitude as the optimal perturbations. We have calculated

suboptimal perturbations, and corresponding energy growth factors, by computing the sub-

dominant eigenvalues and eigenmode of A∗(τ)A(τ) in Eq. (7) by the Arnoldi method as

described in Sec. II C

In Fig. 14 we show growth envelopes for the optimal and first three suboptimal pertur-

bations at Re=600. A few additional suboptimal growth factors are plotted at τ = 50. It

is apparent that the growth envelopes are grouped in pairs. The first subdominant curve is

very similar to the optimal envelope – it attains its growth maximum at nearly the same

value of τ and with 80% the energy amplification of the optimal. Each of the second pair of

suboptimal growth envelopes peaks at an earlier time horizon than for the first pair suggest-

ing the eigenmodes undergo slightly different dynamics. These modes obtain about 30% of

the optimal energy growth. The first eight leading eigenmodes at τ = 50 indicates further

pairing of modes. We have not resolved details of suboptimal dynamics further into the

spectrum.
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FIG. 14: Leading four growth envelopes for the optimal and suboptimal perturbations for the m=1

mode at Re=600. The circles on the dotted line at τ=50 show the first eight leading eigenvalues

at the point of the peak optimal growth.

The perturbation fields themselves provide valuable insight into the pairing of growth

envelopes. The azimuthal velocity of the four leading modes at τ = 50 are visualized in

Fig. 14. These fields have been obtained by evolving each (sub)optimal initial condition,

each with the same energy norm, to time t = 50. Referring to Eq. (9), these are the first four

left singular vectors of A(50) multiplied by the corresponding singular value. The isosurface

levels are the same for all four modes.

The pairing of the eigenvalues is immediately apparent: the corresponding optimal modes

come in pairs that are primarily related by a phase shift of π/2 relative to one another. This

has been previously observed and discussed in the context of the planar backward-facing

step15. For a truly streamwise invariant flow, such as for a straight pipe, the optimal

modes necessarily come in pairs exactly related by a π/2 phase shift since the modes are

trigonometric in the streamwise direction (sine and cosine pairs). Essentially, the expansion

can be viewed as a breaking of streamwise translation symmetry of the flow. The breaking

is very significant for the base flow since it gives rise to the separated shear layer which

dominates the flow in the expanding pipe. However, the optimal perturbations see a flow

with only a relatively weak broken streamwise symmetry and hence come in pairs with only

slightly different dynamics and growth rates.
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FIG. 15: Iso-surfaces of azimuthal velocity for the four leading perturbations at Re=600, m=1

evolved to time t = 50. (a) and (b) are the optimal and first sub-optimal modes. (c) and (d) are

the next pair of sub-optimal modes. (See Fig. 14.)

D. Response to noise

To demonstrate the relevance of the linear growth computations to a real flow in the

presence of small inlet noise, we have performed a limited number of full, three-dimensional

direct numerical simulations with weak noise imposed on the inflow as described in Sec. II C.

For each simulation, the initial state is the steady laminar flow at the given Reynolds number.

Starting at time zero, noisy inflow boundary conditions are imposed.

In the first instance, we analyze the dynamics of the flow in terms of the modal energies

over the full domain defined by

Em(t) =
1

2

∫
Ω

||ûm(t)||2 (12)

where ûm is the mth component of the azimuthal Fourier transformed velocity field. Figure 16

shows the evolution of modal energies at three values of Re. The axisymmetric component

of the energy, E0, is larger than all others and is off the scale of the figure. It starts at, and

remains essentially unchanged from, the energy of the steady base flow.

In all cases, the energy of the m=1 mode grows within a short time as the effect of the

noisy inflow condition propagates through the domain. For Re=600, the m=1 modal energy

saturates above the noise floor of all other modes. It is nevertheless quite small. At Re=900,

the m=1 modal energy saturates at 500 times the level of the noise floor. The m=2 modal

energy is just barely distinguishable above the higher modes. At Re=1200, the first three

modes are clearly visible with the m=1 modal energy more than four orders of magnitude
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FIG. 16: Modal energy in a noisy inflow DNS of the expanding pipe flow at (a) Re=600, (b)

Re=900, and (c) Re=1200. Modal energies visible above the noise floor of 10−9 are labeled.

Initially the flow is the steady axisymmetric base flow. The axisymmetric energy E0 is off the scale

of the figure.

above the noise floor and approximately one order of magnitude above the m=2 mode. Some

long period (T ' 200) dynamics may be present in the noise-driven flow at Re=1200, but

we have not investigated these as they are outside the focus of our study.

The modal energies shown in Fig. 16 clearly confirm the dominant response of the m=1

mode as determined by the optimal growth analysis. Moreover, for the Reynolds numbers

examined, the saturation value of the m=1 energy E1 is consistent with exponential depen-

dence on Re with half an order of magnitude for each Re increase of 100. This compares

very favorably with the dependence of Gmax
1 on Re in Fig. 12.

Having established that a weak noisy inflow does in fact preferentially excite the m=1

mode, we proceed to examine the nature of the resulting flow. Figure 17 shows the optimal

linear mode at Re=900 [Fig. 17(a)] and Re=1200 [Fig. 17(b)], together with instantaneous

snapshots of the noise-driven flow at the corresponding Reynolds numbers. Specifically, the

top half of each sub-figure shows the optimal perturbation, corresponding to m=1, at the
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optimal time τmax. Energy of the perturbation field is visualized. The bottom half of each

sub-figure shows the three-dimensional flow at a representative time instant. The time is

arbitrary except that it is chosen so that the phase of the nonlinear flow aligns with the

phase of the optimal mode. For the nonlinear flow the axisymmetric modal energy (which

dominates the flow) is removed and the energy in the remaining three-dimensional field in

visualized in a semi-meridional plane (lower half of the pipe). Figure 18 further highlights

the structure of nonlinear flow seen in Fig. 17(b) with contour plots of the three velocity

components.

The most striking feature of the noise-driven nonlinear flow is that it exhibits precisely the

same chevron structures as predicted by the transient growth analysis. The wavelengths of

the fully nonlinear flow and the optimal perturbation are almost exactly the same. Moreover,

while the structures in the noise-driven flow occupy a greater streamwise extent than the

optimal perturbation, the location of the maximum in the nonlinear flow is well aligned

with the location of the optimal. As the Reynolds number increases and the location of

the optimum moves downstream, so does the location of the nonlinear maximum. There is

one final interesting feature of the nonlinear state. Due to the rotational symmetry of the

geometry, the m=1 structures may have any orientation in θ. Thus in the noise-driven flow

the orientation of the chevron structures is not fixed but can, and does, vary in both space

(seen in Fig. 18) and time.

The noise-driven nonlinear flow is time varying and depends on the noise level imposed

at the inflow. We address these aspects briefly in Fig. 19. In Figs. 19(a)-(c) we capture the

instantaneous state of the nonlinear flow at Re=900 at three times separated by 50 time

units. The first plot, Fig. 19(a), is at the same time instant as Fig. 17(a). In this figure we

plot kinetic energy as a function of x sampled along two rays down the length of the pipe.

Both rays are at r = 0.8. One (solid) is at θ = 0 and the other (dashed) is at θ = π/2. Since

the flow at Re=900 is dominated by m=1, it is sufficient to use only these two rays to sample

the azimuthal structure of the flow. These kinetic energy profiles give a good representation

of the instantaneous flow structures. Occasionally the nonlinear flow is relatively quiescent

[as in Fig. 19(b)] and as can be seen in comparing Fig. 17(a) with Fig. 17(c), when structures

are visible, their strength and location within the pipe vary to some extent.

For the same inlet noise, the structures occupy a much larger streamwise extent at

Re=1200, Fig. 17(d), and they tend to be located further downstream. By reducing the
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FIG. 17: Visualization of noise-driven flow and optimal perturbation at (a) Re=900, and (b)

Re=1200, in the range 10 < x < 65. The upper half of each pipe shows the m=1 optimal

perturbation at the respective Reynolds number, evolved to the point of maximum growth. The

lower half shows a snapshot of the noise-driven flow for comparison.

FIG. 18: Isosurfaces of streamwise (top), radial (middle) and azimuthal (bottom) velocity com-

ponents for the noise-driven flow showing the downstream disturbance induced by the stochastic

forcing at the same time instant as Fig. 17(b).

noise level of the input at Re=1200, the nonlinear state becomes more purely m=1 and the

nonlinear structures tend to be more localized and shown in Fig. 17(e).

A profile comparison of the standard deviation of velocity components from the linear

analysis and the noisy simulation is given in Fig. 20. The profiles for the noise-driven flow

were obtained through temporal-azimuthal averaging of the flow and extracted through a

radial line at x=100.0, while the linear profiles were attained through a streamwise averaging

of the disturbance profile at its maximal evolution. The streamwise and radial profiles

correlate to a high degree. The broader shape of the azimuthal profile from the noise-driven

flow is probably due to the contribution of other modes in the system.

Finally, we have extracted important statistical properties of the flow with stochastic

forcing. The frequency of the noise-driven flows are St ≈ 0.08, in agreement with the

optimal perturbations in Table. IV, but cannot be determined to better than one digit of

accuracy. There are similar limitations on the wavelengths of the noise-driven flow and our

opinion is that the visual comparison in Fig. 17 is probably more reliable. The centroids

of the turbulent kinetic energy match those of the optimal perturbations to a reasonable

degree in the streamwise direction, while matching almost exactly in cross-stream position.
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FIG. 19: Energy of noise-driven flow through the line r = 0.8 for the θ = 0 (solid lines) and θ = π/2

(dotted lines). (a)-(c) Re=900, (d) Re=1200, (e) Re=1200 at 1/4 the noise level of (d). Vertical

lines indicate xc, the centroid of the optimal linear perturbation at the corresponding value of Re.

Note that when comparing the centroid of the linear Fourier mode to that of the present

noise-driven simulations, we use the centroid of a two-dimensional azimuthal-average of the

turbulent kinetic energy.

IV. SUMMARY AND DISCUSSION

We have presented a numerical study of transient dynamics in an axisymmetric expand-

ing pipe. As an important aside, we have first independently confirmed that the steady

axisymmetric flow is indeed linearly stable up to Re=1400. We find that nevertheless at

linear order perturbations are very strongly amplified in the region of the separated shear

layer that extends downstream of the expansion. For example, at Re=1200 the energy of

perturbations can be amplified by a factor of over 106. The initial disturbances giving max-

imal transient growth are localized in the vicinity of the pipe expansion and have azimuthal

mode number m=1. Under linear evolution, these disturbances quickly evolve into packets

of waves characterized by a chevron structure corresponding to a sinuous oscillation of the

shear layer. These disturbances gain energy through an inflectional instability mechanism

as they pass along the shear layer, reaching energetic maxima just upstream of the reattach-
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FIG. 20: Radial profiles of velocity component standard deviations comparing the noise-driven
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velocity (dotted line).

ment point of the flow. Thereafter, disturbances advect downstream where they ultimately

decay in the stable downstream pipe. Through direct numerical simulations we have es-

tablished that the linear results do capture, quantitatively, most features seen in a fully

three-dimensional nonlinear flow subjected to small Gaussian inlet noise. Thus we have not

only quantified in detail the transient response of this flow but we have also demonstrated

the importance of this type of linear analysis to flows that would commonly be described as

convectively unstable, and thus noise amplifiers.

The expanding pipe flow shares many properties with other documented geometries,

although there are also some important differences. The most similar example to the present

one is found in a recent study of transient growth of disturbances to steady and pulsatile flows

in a pipe with a smooth axisymmetric constriction8. Such flows have been the subject of

extensive research7,9,10,39,40 owing to the importance of the associated flows through arterial

stenoses. The two other closely related flows are the planar backward-facing step15,17 and

the curved channel flow32.

Probably the most significant similarity amongst all these separated flows is the de-

pendence of growth rate on Reynolds number. In all cases, beyond some value of Re, the

maximal growth Gmax depends exponentially on Re. This exponential dependence is in stark

contrast to parallel shear flows, such as straight pipes and channels, in which the maximum
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growth typically scales only as the square of Reynolds number36–38. This highlights the very

important difference between the transient growth studied here and that discussed exten-

sively in parallel shear flows41. Here the transient growth is closely linked to the variation

of the flow in the streamwise direction, as illustrated in Fig. 1. Physically, perturbations

grow rapidly in the region of the shear layer driven by the inflectional velocity profile, but

this growth is only transient because perturbations advect past the reattachment point and

thereafter decay. Chomaz refers to convective non-normality31 to distinguish these cases

from the lift-up non-normality driving transient growth in parallel shear flows. See also

Marquet et al.42.

The exponents for different separated flows can be compared. In the present study,

Fig. 12, Gmax for the m=1 azimuthal mode increase at a rate of 0.41 orders of magnitude

for each increase of 100 in Re. For convience in this discussion we denote this rate as

α = 0.41/100. In the study of stenotic flow8 the rate is not explicitly reported but is

obtainable from the available data. The rate is α = 1.23/100. However, for the stenotic flow

Re is based on the flow upstream of the stenosis. For comparison with the present work, the

stenotic flow Re should be corrected upwards by a factor of 2 to account for the local Re

at the stenosis. This gives a rate of increase of Gmax, again for the m=1 azimuthal mode,

of α = 0.61/100, quite close to that of the sudden axisymmetric expansion. In the study

of the planar backward-facing step15 the rate is stated explicitly giving α = 1.18/100. This

is the growth rate for strictly two-dimensional modes, but for the planar case three-dimen-

sional effects are not very important. The Re for the backward-facing step is based on the

centerline velocity. Correcting this downwards by a factor of 2/3 to convert to bulk velocity,

Gmax for the backward-facing step increases at a rate of α = 1.77/100. This is faster than

for the axisymmetric flows, but it is not altogether different.

Another point of comparison between the different separated flows is the downstream

location of the optimal perturbation when it reaches its maximum growth. In all reported

cases this downstream location grows linearly with Re. In the present study we find this

location to be consistently 5 inlet diameters upstream of the reattachment point. In the

steady stenotic case the location is consistently slightly downstream of the reattachment

point, although not far from it. These findings are all consistent with the picture of a shear

layer driven instability. Interestingly, this is very different from the case of the planar back-

ward-facing step in which the optimal perturbation is well downstream of all separation and
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reattachment points when it reaches its maximum growth. However, in the curved channel32,

the perturbation is located in the vicinity of the reattachment point at its growth maximum.

One can also consider the form of the optimal perturbations in different cases. Again, not

surprisingly, the optimal modes found in the sudden expansion studied here are very similar

to the optimal modes in the steady stenotic flow. In both cases the optimal perturbations

have m=1 azimuthal structure and visually are nearly the same. (Compare Fig. 10 with

Fig. 5 of Blackburn et al.8.) On a more quantitative level one can compare the wavelengths

in the two cases. From Table IV, at Re=800 the wavelength of the optimal disturbance

at its maximal location is λ = 4.2. For the stenotic flow (in terms of equivalent Reynolds

numbers and length scales) the wavelength is λ = 3.7. Taking into account the variation of

wavelengths with Re and the fact that the conversion from the stenotic Reynolds number

to the present one is not exact, these values are quite close. In any case, these wavelengths

are significantly longer than those observed in the planar backward-facing step15 and curved

channel flow32, in which the optimal modes have a roll structure whose wavelength is typically

twice the outflow channel height.

One can likewise consider the Strouhal frequencies observed in various cases. Instead

of attempting a detailed comparison, we take a slightly different approach following closely

the discussion by Marquet et al.32. Noting that the perturbations are essentially packets of

traveling waves, one can invoke the kinematic relationship c = λSt , equivalently St = c/λ,

between the speed of a packet c, the wavelength, and the frequency. In the present study

the bulk velocity in downstream pipe is 1/4 due to the 1 to 4 increase in cross-sectional area.

Perturbations traveling at the bulk speed with typical wavelength, λ = 3.6 say at Re=1000,

would be expected to have frequency St = c/λ = 0.25/3.6 = 0.07. This is essentially

that observed. Marquet et al.32 argue the same holds for the planar backward-facing step

and the curved channel. In all cases the Strouhal frequencies are of comparable magnitude

St ∼ 10−1; differences between the velocity scales in the different configurations hinders a

more precise comparison.

Given that the dominant mechanism driving the growth of perturbations is surely in-

flectional instability of the shear layer, one could attempt to determine the frequency of

growing perturbations from a local analysis of the numerically computed shear layer. This

has been attempted for the backward-facing step and is further discussed by Marquet et

al.32. Basically the difficulty is that, even ignoring that the flow is not parallel, the fre-
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quency determined from a local analysis depends on the station at which the analysis is

done and only the order of magnitude of the frequency is reliably determined. In reality the

flow is far from parallel in the vicinity of the separation point and likewise the dynamics of

perturbations is initially quite complex. See for example Fig. 9 at time 4.

We conclude with a brief discussion of related experiments. Our measurements of recir-

culation length give a linear dependence on Re according to xr/h = 0.0876 Re. This can be

considered to be a perfect match to the proportionality 0.088 reported in experiments by

Hammad et al.3. The connection between our computations and experiments with regard

to the shear-layer oscillations is less satisfying at present. While there are several mentions

of shear-layer oscillations in the experimental literature on the 1 to 2 expanding pipe, quan-

titative details are lacking. Typically oscillations are associated with the breakdown of the

linear scaling of the recirculation length with Reynolds number1,27,28 and there is no agreed

value of the Reynolds number at which this occurs4. We believe that this is due to the fact

that there is no linear instability to define such a threshold for oscillation and the onset

of oscillations detectable in experiment will depend on factors such as the level of noise

in the experiment. Oscillations observed in some experiments, for example by Sreenivasan

and Strykowski20 and Mullin et al.5, are clearly of a very different character than the waves

examined here. The oscillations found in these experiments have a much lower frequency,

by more than an order of magnitude, than ours and are observed at Re above 1500.

There are two possible points of contact between calculations presented here and pub-

lished experiments. The first is the work of Latornell and Pollard4 on the expanding pipe.

They report small sinusoidal waves appearing in the shear layer. At Re=750 these are ob-

served to start at approximately 20 inlet diameters downstream of the expansion, which is

consistent with our optimal growth results from Table IV. The other is the work of Griffith et

al.9 on flow in a stenotic geometry. They report shear-layer oscillations and in fact associate

these with convective instability. Moreover, for a blockage of 0.75 (corresponding to a 1 to 2

expansion following the stenosis), they measure nondimensional oscillation periods roughly

in the range of 0.2 to 0.3 for Reynolds numbers in the range 400 to 800. Converting to

expanding pipe units, this gives Strouhal frequencies in the range 0.4 to 0.6 for Re between

800 and 1600. Although larger, these frequencies are of the same magnitude as those we

obtain. Differences between the geometries could account for the discrepancy.

We hope that the detailed results presented here will motivate experimentalists to look
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qualitatively at these transient dynamics in the future.
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