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Dispersion and diffusion in coated tubes of arbitrary cross-section
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Abstract

We examine a numerical technique developed to simulate unsteady dispersion and diffusion in coated tubes of arbitrary but
axially-constant cross-section. The method is validated against analytical asymptotic solutions produced for tubes of circular
section, then applied to the study of dispersion in equivalent tubes of square section, coated on one, two, three or four walls, and
in a family of tubes of rectangular section, again with stationary phase coating on one wall. The results show that both the
sectional geometry and coating regime have a profound influence on the axial dispersion, and hence on the efficiency of associated
chromatography. For rectangular-sectioned columns with single-wall coating, the greatest separation efficiency results when the
coating is applied to one of the longer segments of the cross-sectional perimeter. Published by Elsevier Science Ltd.
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1. Introduction

The problem of transport of solute in a laminar flow
within a coated tube of circular cross-section — a
capillary separation column — was studied by Aris
(1959), who provided analytical solutions for the time-
asymptotic transport and dispersion rates. At the inter-
face between the mobile solute phase and the stationary
coating phase, Robin (or ‘mixed’) mass-transfer
boundary conditions apply that result in coupling of
unsteady transport in the two domains. The tendency
towards unequal static partition of solute species be-
tween the two phases and the properties of the inter-
phase coupling results in the separation of different
solute species; various species are transported by the
flow at different rates, as they spend differing average
amounts of time in the stationary phase. The resulting
separation of different species is the basis of capillary
chromatography.

Following Aris (and the related contemporary work
of Golay, 1958), there has been a number of analytical
investigations (Davidson and Schroter, 1983; Purnama,
1988; Shankar and Lenhoff, 1991; Phillips and Kaye,
1998; Phillips, Kaye and Robinson, 1995) into different

aspects of the problem; these have in the main concen-
trated on the behaviour in columns of circular section.
Aris also provided a solution method for the case where
both the tube and the coating are of arbitrary (but
axially constant) section, with the restriction that one
phase must completely surround the other; in topologi-
cal terms, the outer, ‘stationary’, phase must be doubly
connected, the inner, ‘mobile’, phase can be either
simply or doubly connected. In order to remove these
topological restrictions, and in order also to be able to
study transient behaviour at small times, a numerical
solution of the problem has been pursued here.

Motivation for the current work stems from a desire
to study chromatography in columns of non-circular
section, and with non-uniform coatings, such as might
be produced by etching and spray coating. There is
interest in columns of this kind for application in
micro-scale (‘on a chip’) and high-performance liquid
chromatography (HPLC) (e.g. Hudson et al., 1998;
Spangler, 1998).

We analyse the physical problem and show that its
numerical analogue produces a set of discrete
Helmholtz equations that are coupled through Robin
interphase boundary conditions. We demonstrate that
the numerical method developed for the solution of the
advection–diffusion problem successfully simulates the
transport and dispersion of solute within a column of
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circular section by comparison to Aris’ analytical
asymptotic results for tubes of circular section. These
results are compared with those obtained for square
and rectangular section columns.

2. Physical description

The separation column is decomposed into two do-
mains, one for the mobile phase, and one for the
stationary phase, as illustrated in Fig. 1. Inert carrier
fluid flows within the mobile phase domain, and it is
assumed that the transport of the solute has no effect
on motion of the carrier. Flow of the carrier phase is
assumed to be incompressible, which is the case for
liquid carriers, and which is also a reasonable approxi-
mation for gases if simulation is carried out over a
length of tube for which the pressure drop is minimal
compared with the mean pressure. The tube diameter is
assumed to be sufficiently large compared with the
molecular mean free path that all species can be consid-
ered to be continua. The Reynolds number is low
enough for the flow to be laminar.

The flow of carrier solute in the mobile phase domain
is taken to be steady and invariant in the z̄ direction (an

overbar here denotes a dimensional variable), with ve-
locity distribution v̄(x̄, ȳ) which can be found by solv-
ing a 2-D Poisson equation

92v̄=
1
m̄

�
−

dp̄
dz̄
�

on Vm, (1)

where p̄ is the pressure and m̄ is the dynamic viscosity of
the carrier phase. Given the applied pressure gradient
and viscosity, Eq. (1) is solved for v̄ in the (2-D) mobile
phase section, Vm, with boundary condition v̄=0 at
the wall (here, the Vm–Vs phase interface, G). For the
method to be outlined in Section 3, this (numerical)
solution is carried out as a preprocessing step prior to
tackling the full advection–diffusion problem, and is
used as data in its solution. For example, we show in
Fig. 2 isopleths of the velocity distribution in tubes of
circular, square and rectangular cross-section.

We will define a length scale ā=A( m
1/2, where A( m is

the cross-sectional area of the mobile phase domain. If
C( is the concentration of solute and Q( its total amount,
we define the dimensionless concentration c= ā3C( /Q( .
A convenient velocity scale is given by the average
carrier velocity W( , from which we can derive a
timescale T( = ā/W( .

It is convenient now to nondimensionalise the re-
maining variables and subsequent equations. The ratio
of the cross-sectional area of the mobile phase to that
of the stationary phase is defined as b=A( m/A( s. If the
diffusion coefficients of solute in the mobile and sta-
tionary phases are, respectively, D( m and D( s, we define
their ratio l=D( s/D( m. Using the mobile-phase diffusion
coefficient we define the Péclet number,

Pe=
W( ā
D( m

. (2)

At the mobile–stationary phase interface G there
may be a surface resistance to mass transport, ex-
pressed through a mass-transfer coefficient h( . From
this, we define a (mass-transfer) Nusselt number,

Nu=
h( ā
D( m

. (3)

2.1. Transport equations

In the mobile phase, transport of c is governed by the
unsteady advection–diffusion equation,

(c
(t

+v
(c
(z

=
1

Pe
92c on Vm, (4)

while in the stationary phase, transport is governed by
the unsteady diffusion equation,

(c
(t

=
l

Pe
92c on Vs. (5)

Fig. 1. Diagram showing the cross-section of a separation column of
arbitrary shape; the column is uniform in the z (out-of-page) direc-
tion, which is the direction of solute phase flow.

Fig. 2. Isopleths of mobile phase velocity w for laminar flow in tubes
of circular, square and (10:1) rectangular cross-sections.
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The outer wall of the column (#Vs) is assumed inert
and impervious to c, so the appropriate boundary
condition to be applied at #Vs is zero flux, i.e. #c/#n=
0, where #/#n is a derivative taken in the outward
normal direction. To model a perfectly adsorbing
boundary we could alternatively set c=0. Where do-
main symmetry can be used to simplify the problem,
the appropriate boundary condition is again specifica-
tion of zero flux at the symmetry plane.

2.2. Boundary conditions at the phase interface

At the phase interface G, special boundary conditions
must be applied. These have to account for the parti-
tion coefficient a, which expresses the equilibrium parti-
tion of concentration c between the stationary and
mobile phases; cs=acm in equilibrium. In addition,
they have to account for equality of fluxes of c on each
side of the interface, which in turn are proportional to
the disequilibrium cs−acm. The appropriate conditions
are (Aris, 1959).

(cm

(n
= −l

(cs

(n
=Nu(cs−acm), (6)

where the directions of the unit outward normals, n, are
equal and opposite at the interface G between Vm and
Vs. Variation of the partition coefficient a between
solute species is usually the primary determinant of
species separation rates, but for low values of Nu the
interface resistance can also have a significant effect.

The patching condition (Eq. (6)) can be rearranged to
give a pair of Robin boundary conditions (Haberman,
1987) that are applied simultaneously in Vm and Vs:

(cm

(n
+Nu(acm−cs)=0 on Vm,

(cs

(n
+

Nu
l

(cs−acm)=0 on Vs. (7)

These have the generic form,

(c
(n

+K(c−C)=0. (8)

2.3. Analytical asymptotic solutions

Aris (1959) provided detailed asymptotic solutions
for the case in which the cross-sectional boundaries of
all phases are concentric circles, with the mobile phase
lying between radii r̄0 and r̄1, the stationary phase
between r̄1 and r̄2. Using the ‘method of moments’, Aris
was able to show that the location of the first axial
moment (mean) of the concentration peak travels with
asymptotic speed.

V( =W( 1(r̄1
2− r̄0

2)+W( 2a(r̄2
2− r̄1

2)
(r̄1

2− r̄0
2)+a(r̄2

2− r̄1
2)

where W( 1 is the mean velocity in the inner phase; W( 2

the mean velocity in the outer phase. In the usual case
where r̄0=0 and W( 2=0, this reduces to the standard
result:

V( = r̄1
2

r̄1
2+a(r̄2

2− r̄1
2)

W( 1=
1

1+k
W( =RW( , (9)

where k is the ‘retention factor’ a/b. The same asymp-
totic result is true regardless of the geometry of the
cross-section.

Aris also provided equations for the asymptotic time
rate of change of the higher axial moments of the
(radially-integrated) concentration profile, for example
of the variance s̄2, i.e. the peak-broadening rate. Here
Aris’ (Eq. (17)) is simplified for the case, r0=W( 2=0,
and written for the dimensionless variance s2= s̄2/ā2.

Pe
2

ds2

dt
=R

�
1+

k1

p
Pe2�+ (1−R)

�
l+

k2

p

Pe2

lb

�
+R(1−R)2 1

2ap1/2

Pe2

Nu
, (10)

where, with r=r2/r1, the geometric factors,

k1=
1+6k+11k2

48(1+k)2 ,

k2=
2r4 ln r2/(r2−1)−3r2+1

8(1+k)2(r2−1)
. (11)

The numerical value of Eq. (10) gives the ratio of the
asymptotic dispersion-induced axial spreading rate to
the molecular diffusion rate in the mobile phase.

Aris derived a solution method for the asymptotic
spreading rate in arbitrary cross-sections also (subject
to the topological constraints mentioned in Section 1),
leading to a generalisation of Eq. (10) that is cast in
very similar form. By comparison of his two results, it
may be seen that the first terms in the two bracketed
expressions are related to diffusion in each phase,
weighted by phase areas, and are otherwise independent
of details of the flow and the geometry of cross-section.
The factors k1 and k2 are controlled by the geometry of
the cross-section, while the geometric dependence of the
last term, which reflects resistance to mass transfer
across the phase interface, relates only to its sectional
perimeter length.

3. Numerical method

In order to convert the mathematical idealisation of
the problem into one that can be solved numerically,
we adopt a set of space–time discretisations of the
governing PDEs. In what follows we present a particu-
lar discretisation based on backward differences in
time, Fourier expansion in the axial direction, and
spectral elements in the cross-sectional plane. This com-
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bination provides exponential (‘spectral’) spatial con-
vergence provided the solutions are smooth in each
domain. Within the resolution regime tested here, the
prime determinant of convergence is the tolerance
adopted for iterative coupling between the stationary
and mobile phases, to be described in Section 3.4. For
additional detail concerning convergence properties,
consult Blackburn (2000).

3.1. Fourier basis for axial coordinate direction

As the column is uniform in the axial (z) direction, it
is convenient to assume that the problem is periodic in
that direction, with periodic length Lz,

c(x, y, z, t)=c(x, y, z+Lz, t).

A slug of high concentration advected down the tube
will seem to pass out one end and return through the
other. Provided the axial length scale of the slug is
always much shorter than the length of tube simulated,
however, the results will be a good approximation of
the actual transport.

With the assumption of periodicity, the 3-D scalar
field c can be projected exactly onto a set of 2-D
complex Fourier modes.

ĉk(x, y, t)=
1
Lz

& Lz

0

c(x, y, z, t)e− ifkz dz (12)

with the Fourier series reconstruction,

c(x, y, z, t)= %
+�

k= −�
ĉk(x, y, t)e ifkz, (13)

where i= (−1)1/2 and f=2p/Lz. For numerical ap-
proximation, the set of modes is truncated at some
finite number M ; if the solution is smooth in the
z-direction, the truncated approximation converges to
the continuous solution exponentially fast (Gottlieb
and Orszag, 1977). After Fourier transformation, the
equivalents of the gradient and Laplacian operators
become

90 � (
(x

,
(

(y
, ifk

�
,

90 2
� (2

(x2,
(2

(y2, −f2k2�90 xy
2 −f2k2

and transport equations (Eqs. (4) and (5)) become

(ĉk

(t
+ ifkwĉk=

1
Pe

90 2ĉk on Vm, (14)

(ĉk

(t
=

l

Pe
90 2ĉk on Vs, (15)

for each Fourier mode k. Owing to the linearity of the
original equations, Fourier transformation completely
decouples the various modes, which can be evolved
independently and/or concurrently. Thus the originally
3-D problem is converted into a set of 2-D problems.

3.2. Temporal e6olution

A mixed explicit–implicit temporal evolution ap-
proximation is applied to the transformed transport
equations; a fully implicit scheme could be imple-
mented, but at the expense of requiring complex arith-
metic. The temporal derivative of ĉk is approximated at
time level n+1 using a backward-differencing scheme
of order J,

(ĉ k
(n+1)

(t
:

1
Dt
�

g0ĉ k
(n+1)+ %

J−1

q=0

aqĉk
(n−q)�, (16)

while the advective terms are approximated at time
level n+1 using polynomial extrapolation of order J.

ifkwĉk
(n+1): ifkw %

J−1

q=0

rqĉk
(n−q). (17)

The discrete weights g0, aq, rq for schemes up to third
order have been tabulated by Karniadakis, Israeli and
Orszag (1991). Applying these approximations pro-
duces the following semi-discrete Helmholtz equations
for the evolution of each Fourier mode.�
90 xy

2 −f2k2−
g0Pe
Dt

�
ĉ k

(n+1)

=Pefkw %
J−1

q=0

rqiĉk
(n−q)+

Pe
Dt

%
J−1

q=0

aqĉk
(n−q) on Vm,

(18)�
90 xy

2 −f2k2−
g0Pe
lDt

�
ĉ k

(n+1)=
Pe
lDt

%
J−1

q=0

aqĉk
(n−q) on Vs,

(19)

or in generalised form,

(90 xy
2 −jk

2)ĉk= f. k. (20)

At this stage the overall structure of the discrete
problem is apparent: for every Fourier mode at each
timestep there are two elliptic (Helmholtz) problems to
be solved, coupled through Robin boundary conditions
at the phase interface. In order to further define the
discretisation we must adopt a numerical method for
solution of these elliptic problems.

3.3. Galerkin spectral element method

To complete the discretisation, a Galerkin spectral
element method is applied to the modal Helmholtz
equations (Eq. (20)), as well as to the Poisson problem
(Eq. (1)) for the velocity field w. To arrive at the
Galerkin formulation, the partial differential equation
is first multiplied by a weight or test function 6 and
integrated over the domain, following which the inte-
gral is symmetrised by applying Gauss’ theorem. This
procedure results in the so-called weak form of the
original equation. Applied to Eq. (20) this produces



H.M. Blackburn / Computers and Chemical Engineering 25 (2001) 313–322 317

Fig. 3. One-dimensional Gauss–Lobatto–Legendre Lagrange basis
functions on the master domain [−1, 1] shown for a sixth order
expansion.

3.4. Iterati6e coupling

Previously published techniques developed for inter-
domain coupling in elliptic problems discussed by
Quarteroni and Valli (1999) are designed for the case
where there is a single global problem (e.g. with identi-
cal mechanical properties in each sub-domain) and also
are not directly applicable for domains coupled through
Robin boundary conditions. We have thus developed a
simple iterative coupling of solutions in the two do-
mains (Blackburn, 2000). It is interesting that the
method relies on the linkage provided by a finite value
of the interface mass-transfer coefficient, a physical
effect sometimes ignored in analytical treatments.

In each sub-domain only the values of c from the
other side of the interface are treated as data supplied
by the previous iteration (here the index p relates to a
sub-iteration that is distinct from the timestep).

(cm
(p)

(n
=Nu(c s

(p−1)−acm
(p)) on Vm,

(c s
(p)

(n
=

Nu
l

(acm
(p−1)−c s

(p)) on Vs. (23)

As dictated by Eq. (22), the values at step (p) are
interpreted as contributing to the system Helmholtz
matrix, while those at (p−1) contribute to the forcing.
This iteration technique was found to be convergent,
and may be combined with iterative solution of the
elliptic problem. Iteration continues until the relative
change in the L2-norm of the solution in each domain
drops below a fixed tolerance e ; typically here e=1×
10−10. The method can be generalised to deal with an
arbitrary number of stationary phases.

4. Column with circular cross-section

In order to test the numerical method developed for
the coupled advection–diffusion problem, the com-
puted asymptotic time rate of change of the location
and spread of the concentration peak compared with
the analytical results (Eqs. (9) and (10)) for one set of
parameters in a column of circular section. Parameters
were Pe=Nu=a=10; b=50; l=250×10−6. The
retention factor k=0.2, while the geometric parameters
k1=0.03894( , k2:0.0115166. Spectral element meshes
for the two domains are illustrated in Fig. 4; symmetry
properties allow only a quarter of the domain to be
represented. Spectral element shape functions were
ninth order tensor-product GLL Lagrange interpolants,
and 64 planes or 32 complex Fourier modes of data
were employed in the column-axis direction. Column
length Lz=1000, and a Gaussian-shaped initial concen-
tration in the mobile phase with axial variance s2=800
was employed. The Gaussian initial pulse is a numeri-

&
V

(90 xyĉk90 xy6+jk
2ĉk6)dV= −

&
V

f. k6 dV+
&

G

(ĉk

(n
6 dG,

(21)

where V is either Vm or Vs, and G represents any
boundary on which ĉk is not directly specified, i.e. all
boundaries in the present problem. One means of ac-
commodating Robin boundary conditions (Eq. (8)) on
G is to insert them into the last term in Eq. (21), and
then to rearrange the result to give&

V

(90 xyĉk90 xy6+jk
2ĉk6)dV+

&
G

Kĉk6 dG

= −
&

V

f. k6 dV+
&

G

KC6 dG. (22)

A Galerkin problem results when the function space
from which trial functions ĉk and test functions 6 are
drawn is the same. This must be a Sobolev-1 space for
Eq. (22) to be guaranteed convergence (Strang and Fix,
1973). For discrete solution a finite number of functions
are chosen, leading to a system of algebraic equations.
For solution in complex geometries, the domain is
subdivided into a set of simpler geometries (finite ele-
ments), with the test and trial functions having compact
support over adjoining elements. Typically the integrals
in Eq. (22) are approximated numerically using an
appropriate Gauss rule.

The method is further defined by choosing a function
space from which the finite element test and trial func-
tions are drawn. The conventional finite element
method uses functions which are typically low-order
polynomials, however, we have chosen instead a high-
order method. The spectral element method (Patera,
1984; Karniadakis and Sherwin, 1999) is related to the
conventional finite element method but employs La-
grange basis functions that have the Gauss–Lobatto–
Legendre (GLL) points as knots. For problems with
smooth solutions, the spectral element method gener-
ates approximations that converge exponentially to the
true solution as the polynomial order in each element is
increased (Maday and Patera, 1989). The expansion
basis on each element is an isoparametric mapping of
tensor-products of 1-D GLL Lagrange interpolants of
arbitrary order (see Fig. 3 for a sixth order expansion).
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cally convenient shape, and relatively undemanding in
terms of axial resolution, as it is smooth in both
physical and Fourier domains; however, the method
would work with any arbitrary initial distribution given
sufficient resolution, since physical diffusion will
rapidly act to overcome any discontinuities. Time inte-
gration was second order (J=2) with Dt=0.1.

Profiles of tube centreline concentration are shown in
Fig. 5 starting at the initial condition, then at five times
up to t=500. The decline from the initial peak is
brought about by a combination of radial equilibration
and partition between phases of the initially Gaussian-
shaped concentration pulse. The effects of domain peri-
odicity may be just observed for the final profile.
Clearly the partition between phases has the expected
effect of slowing the mean transport rate; without the
retarding effect of the wall coating, the concentration

Fig. 6. Contours of c in the mobile phase near the initial position of
the concentration pulse at early times for the circular-section column.
In each plot, the lower boundary corresponds to the column centre-
line, and the upper boundary to the phase interface G.

Fig. 4. Two-domain spectral element mesh for simulation of transport
in a separation column of circular section. There are five elements in
the mobile phase and two in the stationary phase — the two phases
are shown separated for clarity.

peak would have been centred at z=1000 when t=
500.

The mean and variance of the concentration profiles
are approximated numerically as

m=

& Lz

0

zC(z)dz& Lz

0

C(z)dz
:

%
Nz−1

j=0

zj Cj

%
Nz−1

j=0

Cj

, (24)

s2=

& Lz

0

(z−m)2C(z)dz& Lz

0

C(z)dz
:

%
Nz−1

j=0

(zj−m)2Cj

%
Nz−1

j=0

Cj

, (25)

where Nz is the number of axial planes and C(z)=
	V m

c(z)dV is the cross-sectional integral of c at loca-
tion z, computed using Gauss–Lobatto quadrature.
Higher moments of the concentration profile may be
similarly approximated.

The analytic expressions (Eqs. (9) and (10)) for the
asymptotic time rates of change dm/dt=R=0.83( ,
Pe ds2/2 dt: (1.846472+0.4888240+0.00652997)=
2.3418264. In order to obtain approximately asymptotic
values from the simulation, time integration was carried
out up until t=500, then from tabulated estimates of m

and s2, finite differences over the final interval of
Dt=200 were used to estimate dm/dt:0.83333244 and
Pe ds2/2 dt:2.3418266, showing very good agreement
to the analytical solutions.

Fig. 5. Tube centreline concentration profiles for flow in a column of
circular cross-section. Profiles are for times t=0, 100, 200, 300, 400
and 500.
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The initial condition for the simulation is a 3-D
Gaussian-shaped pulse of c, centred in the mobile
phase. Contours of concentration, shown in Fig. 6,
demonstrate how the shape of the pulse redevelops

towards its asymptotic shape as dispersion, diffusion
and phase partition take effect.

Conservation of c as the partition between phases
becomes established is illustrated for early times in Fig.
7, where the total amount of c in each phase (nor-
malised by the initial amount in the mobile phase at
t=0), S, is shown as a function of time. In the mobile
phase, the asymptotic value of Sm=R, while for the
stationary phase the asymptotic value of Ss=1−R.

5. Columns with square cross-sections

The starting point for this work was a desire to study
performance of chromatography in columns of non-cir-
cular section and with arbitrary coating geometry. We
now turn to comparing the dispersion performance of
the circular section dealt with in Section 4 to that for a
family of square sections, which have identical dimen-
sionless parameters to the circular section but which
vary in coating geometry. Specifically, we examine the
dispersion in four square-sectioned columns that are
coated on four, three, two and one walls (Nc=4, 3, 2
and 1 respectively).

Meshes for the four square-sectioned columns are
shown in Fig. 8. Note that the property of symmetry
about vertical centrelines has been assumed. The
meshes differ only in the geometry of the coating
regime, and in the boundary conditions applied on the
outer edges of the mobile phase. As indicated above,
the thickness of the stationary phase has been adjusted
in each case in order to maintain b=50, and since the
partition coefficient a was maintained constant, the
retention factor k is the same for all columns.

Simulation results, presented in terms of the time
evolution of the first three axial moments of the solute
pulse distribution in Vm for the four square cross-sec-
tioned columns, are shown in Fig. 9 — results for the
circular-section column are shown for comparison.
Since the retention factor k is identical for all these
columns, it is expected that the asymptotic transport
rates for the mean (m) would be identical, as is borne
out by the results presented in Fig. 9a; asymptotic
transport rates agree with the theoretical value to at
least five significant figures for all cases. The initial
mean location, m=500, corresponds to the pulse being
centred in the domain (Lz=1000) at t=0.

For chromatography applications, it is the spreading
rate of the peak that determines the separation effi-
ciency of the column, and it can be seen in Fig. 9b that
the coating regime has a substantial effect. While the
spreading rate for Nc=4 is effectively the same as for
the column with circular section, performance deterio-
rates as the number of coated walls reduces. The
asymptotic spreading rate, ds2/dt, for Nc=1 is greater
than that for the circular-section column by a factor of

Fig. 7. Partition of c between phases at early times, illustrating
conservation of mass. For each phase, S is the volume integral of c,
normalised by the value existing in the mobile phase at t=0.

Fig. 8. Meshes for simulations with square cross-sections, (a) coated
on four walls, Nc=4; (b) coated on 3 walls, Nc=3; (c) coated on two
walls, Nc=2; (d) coated on one wall, Nc=1. Sections are symmetric
about vertical centrelines; only half of the square is represented.

Fig. 9. Simulation results showing first three axial moments in mobile
phase domain of solute pulse as functions of time for circular section
compared with those for square sections coated on four (Nc=4),
three (Nc=3), two (Nc=2) and one (Nc=1) walls.
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Fig. 10. Simulation results showing axial variance and skewness in
mobile phase domain of solute pulse as functions of time for rectan-
gular section columns that have stationary phase coating on one wall,
and nominated aspect ratios AR.

6. Columns with rectangular cross-sections

In order to examine the effect of cross-section shape
on dispersion, simulations were carried out for rectan-
gular cross-section columns, with a stationary phase
coating only on one wall (the square section Nc=1
from Section 5 is one of the family of sections exam-
ined). The variable here was the aspect ratio AR of the
section, where this is defined as the ratio of sectional
perimeter length of the coated wall to that of an
adjacent wall. Other dimensionless parameters were
maintained the same as for the previous simulations,
and in particular the sectional length scale ā is still
based on the area of the mobile phase cross-section.
The results are presented in Fig. 10, where rates of
change for the axial variance and skewness of the solute
pulse for different values of AR are compared.

The aspect ratio AR of the rectangular section is seen
to have a very substantial effect on the axial dispersion
rate. In Fig. 11 the asymptotic time rate of change of
the axial variance of the solute pulse normalised by the
value for the circular cross-section, DR, is shown as a
function of the rectangle aspect ratio AR. The value
‘dispersion ratio’ (DR) represents the effective axial
diffusion rate of a solute pulse compared with what
would be observed in an equivalent conventional circu-
lar coated tube. Evidently the separation efficiency of
the singly-coated rectangular section exceeds that for
the circular section (i.e. DRB1) for AR\5, approxi-
mately, given the set of dimensionless parameters
adopted for the simulations. Conversely, low aspect
ratios can produce columns of comparatively poor sep-
aration efficiency (DR�1 when AR�1).

The process of redistribution of c from the initial
condition in the AR=0.2 column is shown in Fig. 12.
Even at t=5 the front-to-rear asymmetry that produces
the comparatively high negative values of skewness in
Fig. 10b can be observed.

7. Discussion and conclusions

Starting from physical fundamentals, a numerical
simulation method has been developed for simulation
of diffusion and dispersion in capillary chromatogra-
phy. The method incorporates a new iterative technique
for domain decomposition coupled across a phase inter-
face through Robin boundary conditions. Results
demonstrate the success of the method, and its poten-
tial application to prediction of mean transport and
peak-broadening rates in capillary separation, as well as
early-time evolution from initial conditions.

Comparative simulations with different cross-sec-
tional geometries but with matching dimensionless
parameters illustrate that variations in coating regime
and cross-section shape both play an important role in

Fig. 11. Simulation results showing DR, the ratio of the asymptotic
rate of change of the axial variance of the solute pulse normalised by
the value for a column of circular cross-section, as a function of the
rectangular cross-section aspect ratio AR, when there is a stationary
phase coating on a single side of the rectangle. Rectangles drawn
centred on the data points indicate the cross-section geometry for
each AR; in each case the coating would be on one of the horizontal
faces.

approximately 3.8 — the overall effective axial diffu-
sion rate for Nc=1 is almost nine times higher than the
molecular diffusion of the solute in the stagnant carrier.
The effect of coating regime on the axial skewness of
the distribution at short times is also substantial, as can
be seen in Fig. 9c, however, the skewness will approach
zero asymptotically (Aris, 1959).
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influencing axial dispersion rates. Comparing results for
a column with a circular cross-section to those for a
square cross-section, but with stationary phase coating
on all four walls showed that the axial dispersion rates
were virtually identical for the parameter set selected
for simulation. Changing the coating in the square
cross-section column to a single coated wall produced a
marked increase in axial dispersion rate. For rectangu-
lar-section columns with coating on one wall, the aspect
ratio of the rectangle had a substantial effect on axial
dispersion rates, with higher aspect ratios producing
lower axial dispersion, other factors equal — axial
dispersion rates significantly lower than for an equiva-
lent circular-section column can be achieved.

The numerical method we have outlined is not de-
pendent on the adoption of Fourier expansions and
spectral elements; other combinations of discretisations
should also work. See Henderson (1999) for an analysis
of operation counts for the spectral element methods
used here. The iterative coupling across the phase inter-
face (Section 3.4) could benefit from a more sophisti-
cated approach, as the convergence rate of this
coupling is a prime determinant of run-time at present.
Typically, of the order of 100 iterations are required per
time step to achieve the convergence tolerance e=1×
10−10, when this iteration is uncoupled from the
Helmholtz solutions (Section 3.3) on each domain.

The amount of time required for solution is not
heavily dependent on the shape of the domain. For

example, the 5000-step simulations used to produce
Fig. 9 required 44.5 h for the circular-section mesh
shown in Fig. 4, and 45.5 h for the single-coating
square-section mesh shown in Fig. 8d, when run on a
175 MHz SGI R10000 workstation — these simulation
results are comparable since the meshes have similar
numbers of elements in each phase, and the same
resolution. Simulations for the mesh shown in Fig. 8a,
with three times as many elements in the stationary
phase, and approximately twice as many elements in
total than the mesh in Fig. 4, take approximately twice
as long.

It is significant that the separation performance of a
column can be substantially improved by changing the
aspect ratio of its cross-section, however, the improved
performance comes at the cost of requiring a higher
pressure drop for a given volumetric flow rate, given a
constant cross-sectional area. For example, the pressure
gradient required to drive a laminar flow of carrier
through a 10:1 aspect ratio rectangular-section tube is
5.1 times greater than is required for the same volumet-
ric flow rate through a circular-section tube of the same
area (a square section requires a pressure gradient that
is only 13% greater than a circular one).

The physical explanation for the changes in separa-
tion performance with coating regime and geometry is
probably related to the change in thickness of the
stationary phase and available mass-transport area at
the interface of the two phases. This is an inference that
can be drawn from Fig. 9: for the square-section tubes
there, the thickness of the stationary phase increases as
the number of coated sides, Nc, reduces from 4 to 1,
with a consequent increase in spreading rate. The thick-
ness of the stationary phase is not the sole determinant
of the effect, however; for example in Fig. 11 the
coating thickness for the rectangular tube with AR=10
is approximately 12% circular tube, the perimeter
length of the interface G lower by the same amount, but
the dispersion ratio DR is approximately 70% less. This
indicates that a characteristic cross-flow length of diffu-
sion is also significant in influencing dispersion: for
example an integral-weighted minimum length from G

to an isopleth of average velocity.
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