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Spectral element—Fourier methods applied to
simulation of turbulent pipe flow
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Abstract

We present results from direct numerical simulations of turbulent
pipe flow at a Reynolds number of 5000. The spatial discretisation
employs Fourier expansions in one geometrically homogeneous direc-
tion coupled with two-dimensional spectral elements in the remaining
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two coordinates. The geometry under study has two geometrically ho-
mogeneous directions, axial and azimuthal, and we compare statistics
from two sets of simulations that employ Fourier expansions for each
of these two directions in turn. For the case with Fourier expansions
in the azimuthal direction, a cylindrical coordinate system is used.
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1 Introduction

Direct numerical simulation (dns) is a tool that can be used to build a sta-
tistical database for turbulent flows. By resolving all dynamically significant
scales of the flow a complete picture of the behaviour of the flow is obtained.
Flow features can be visualised and turbulence statistics analysed to aid the
development of Reynolds-averaged turbulence models, which are widely used
in the engineering community. Resolving all relevant scales of the flow makes
dns a tool that, when carefully implemented, is equivalent to a short duration
laboratory experiment [4]. The advantage of simulations relative to exper-
iments is that all quantities of interest can be obtained for the whole field,
giving a picture of the flow being studied that can only be matched by ad-
vanced experimental techniques. The Reynolds number limitations present
in dns studies can to an extent be relaxed by use of large eddy simulation
(les), which employs turbulence models only for the finest length scales in
the flow.

This paper presents results from two simulations of turbulent pipe flow,
one performed using a Cartesian coordinate formulation, the other using a
cylindrical coordinate formulation. Comparing results for these two simula-
tions is of interest to us because we hope to simulate jet-type flows. The
geometry of jet-type flows is easily replicated using cylindrical coordinates,
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though this advantage is somewhat offset by added computational difficul-
ties. Before proceeding to the more complicated jet simulations the accuracy
of the cylindrical coordinate code must be verified. Turbulent pipe flow pro-
vides a means to check the accuracy of the code as both experimental [2] and
computational [3] data is available against which to compare the results. The
results will also provide a database of turbulent velocity data that can be
used as inlet conditions in later simulation of jet-type flows. Initial conditions
for dns are often generated using this method [5].

The Reynolds number for both simulations was Re = UD/ν = 5000,
where U is the superficial mean flow speed; Reynolds number based on the
friction velocity uτ = (τw/ρ)1/2, Reτ = uτD/ν = 343. The friction velocity
Reynolds number used in previous experimental investigations are Reτ =
uτD/ν = 338 [2] and for the computations Reτ = uτD/ν = 360 [3].

2 Computational Technique

The system under study is governed by the incompressible Navier-Stokes
equations

∂u

∂t
+ N(u) = −∇P + ν∇2u (1)

∇ · u = 0 (2)
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where P = p/ρ and N(u) represents the non-linear terms. In the present
formulation, these are implemented in skew-symmetric form, i.e.

N(u) = 0.5 [u · ∇u + ∇ · uu] . (3)

Two different spatial discretisations have been employed. Both involve
a spectral element-Fourier mode formulation, which uses two-dimensional
spectral elements in one plane and Fourier expansions for the third (out-
of-plane) dimension. Using Fourier expansions as the discretisation for the
third spatial dimension restricts the possible geometries to those that possess
a spatial homogeneity in one direction. The advantage of this formulation
lies in the simulation of problems requiring many grid points—analysing the
flow using its Fourier components results in a partly decoupled system that
is efficient to implement on parallel architecture computers.

The simulation using Fourier expansions in the pipe axis direction will be
referred to here as the Cartesian simulation. The simulation that employs
Fourier expansions in the azimuthal, or circumferential, direction in conjunc-
tion with a cylindrical coordinate system will be referred to as the cylindrical
simulation.

For the Cartesian coordinate system, the introduction of Fourier expan-
sions in the z coordinate direction leads to

u(x, y, z) =
∑
k


ûk(x, y)
v̂k(x, y)
ŵk(x, y)

 eiβkz, (4)
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with β = 2π/Lz, where Lz is the domain length in the homogeneous (z)
direction and k is a Fourier mode index. As a consequence,

∂u

∂z
=
∑
k

ûk iβk eiβkz;
∂2u

∂z2
=
∑
k

(
ûk − β2k2

)
eiβkz. (5)

By linearity we have

∇u =
∑
k

(
∂

∂x
+

∂

∂y
+ ikβ

)
ûke

iβkz ≡∑
k

∇̃ûke
iβkz, (6)

∇2u =
∑
k

(
∂2

∂x2
+

∂2

∂y2
− k2β2

)
ûke

iβkz

≡ ∑
k

(
∇2

xy − k2β2
)
ûke

iβkz ≡∑
k

∇̃2ûke
iβkz. (7)

Thus the transformed Cartesian-coordinate Navier-Stokes equations for each
mode k are

∂ûk

∂t
+ N̂(u)k = −∇̃P̂k + ν∇̃2ûk, (8)

∇̃ · ûk = 0, (9)

where N̂ (u)k represents the Fourier transform of the nonlinear product
terms, which are computed in physical space to avoid formation of convolu-
tion sums. In a distributed memory environment where each process holds a
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restricted set of Fourier modes, memory exchanges are required to compute
these nonlinear products.

For a cylindrical (z, r, θ) coordinate system, we introduce uz ↔ u, ur ↔ v,
uθ ↔ w, and Fourier expansions in the θ direction. Radial and azimuthal
velocities are linearly coupled through the Laplacian:

∇̃2 =
∂2

∂z2
+

1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂

∂θ2
≡ ∇2

rz −
β2k2

r2
. (10)

This produces linear coupling between the r and θ components of the trans-
formed Navier-Stokes equations:

∂ûk

∂t
+ N̂(u)zk = −∂P̂k

∂z
+ ν∇̃2ûk

∂v̂k

∂t
+ N̂(u)rk = −∂P̂k

∂r
+ ν(∇̃2v̂k − v̂k

r2
− 2

iβk

r2
ŵk)

∂ŵk

∂t
+ N̂(u)θk = −ikP̂k

r
+ ν(∇̃2ŵk − ŵk

r2
+ 2

iβk

r2
v̂k)

The change of variables

ṽk = v̂k + iŵk, w̃k = v̂k − iŵk (11)

is used to decouple the equations for v̂k and ŵk [10], resulting in:

∂ûk

∂t
+ N̂(u)zk = −∂P̂k

∂z
+ ν

[
∇̃2

rz −
(βk)2

r2

]
ûk, (12)
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∂ṽk

∂t
+ ˜̂N(u)rk = −

[
∂

∂r
− βk

r

]
P̂k + ν

[
∇̃2

rz −
(βk + 1)2

r2

]
ṽk, (13)

∂w̃k

∂t
+ ˜̂N (u)θk = −

[
∂

∂r
+

βk

r

]
P̂k + ν

[
∇̃2

rz −
(βk − 1)2

r2

]
w̃k, (14)

where

˜̂N(u)rk = N̂(u)rk + iN̂(u)θk,
˜̂N(u)θk = N̂(u)rk − iN̂(u)θk. (15)

At each time-step, this change of variables is applied and inverted before and
after the viscous sub-step is taken in the operator-splitting scheme used to
integrate the Navier-Stokes equations.

It was found that azimuthal low-pass filtering of near-axis velocity val-
ues [6] contributed significantly to the numerical stability of the cylindrical
formulation. This modification has been recently employed in the simulation
of flow past spheroids [8]. Figure 1 shows the form of the filter mask that
was applied to the velocity values at the end of each time-step. In effect, the
low-pass filtering ensures that nonlinear product terms are fully de-aliased
in the azimuthal direction near the axis in the cylindrical formulation.

No explicit de-aliasing is carried out during the formation of the nonlinear

product terms N̂(u)k in the Cartesian formulation, although it has been
shown [11] that the skew-symmetric form of the nonlinear terms (3) acts to
reduce aliasing errors. This reduction (through implicit cancellation of error
terms of opposite sign) acts only to reduce aliasing errors in the non-Fourier
directions in the present formulation.
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Figure 1: Low-pass filter mask applied to Fourier representation of velocity
fields in cylindrical formulation. k: Fourier mode number, r: radius/rmax.



3 Meshes C963

The remainder of the spatial and temporal discretisation is carried out
using standard spectral element methods [7].

The flow was driven along the pipe axis by a body force per unit mass of
magnitude 4τw/ρD applied to (1). The wall shear stress, τw, was calculated
using the Blasius relationship to allow the body force to be preset. Turbulent
flow was initiated from an initial 1/7 power-law profile with superimposed
random Gaussian noise at a magnitude of 0.0001% of the superficial mean
velocity U . Simulations were run until the measured average wall shear
stresses had stabilised near the pre-calculated value, at which point temporal
averaging for mean velocities and Reynolds stresses was initiated.

3 Meshes

The size of a computational domain must be chosen on the basis that it
is sufficiently large to allow the predominant flow structures to develop. A
domain length of L = 5D was chosen on the basis that turbulence quantities
have been found to be substantially uncorrelated at half this length [3].

Another important consideration is the resolution near the wall. For dns,
the first point away from the wall should be located at y+ < 1, with stream-
wise spacing ∆x+ ' 6 and cross flow resolution ∆z+ ' 15, with scaling in
‘wall units’, e.g. x+ = xuτ/ν [9].
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3.1 Cartesian coordinate simulation

Spectral element meshes for both simulations are shown in figure 2. The
mesh used for the Cartesian simulation has 64 elements, each with 10th order
Gauss-Lobatto-Legendre (gll) tensor-product shape functions. It uses 192
planes (96 complex Fourier modes) of data, which results in representative
grid sizes, ∆+ = [(∆x∆y∆z)1/3]+, varying from ∆+ ' 4.27 at the wall, to
∆+ ' 6.41 at the centre of the pipe.

The resolution used in the comparison simulation of Eggels et al . [3]
was ∆+ ' 4.9 near the wall and decreased towards the centre of the pipe
due to the cylindrical coordinate system used. Hence the mean resolution
at the wall in the current simulation is of a similar size. However, it should
be noted that the streamwise resolution used in the comparison simulation
was ∆z+ ' 7.03 whereas the resolution here is ∆z+ ' 11.2. This is due
to two factors: the domain length used in this simulation is L = 2πD, bro-
ken into 192 data planes compared with a domain length of L = 5D with
256 grid points along the streamwise axis used in the comparison simula-
tion [3]. It could be expected that a lower resolution could be used in the
present simulations without sacrificing accuracy, owing to the use of higher-
order spatial discretisations (the comparison simulation used only 2nd-order
accurate discretisations). The total number of grid points used in the Carte-
sian simulation was approximately 1.25 × 106, under half that used in the
comparison simulation [3].
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Figure 2: Cartesian and cylindrical spectral element meshes. In each case,
internal-element nodes are represented for half the elements.

3.2 Cylindrical coordinate simulation

The spatial discretisation for the polar coordinate simulations consisted of
the two dimensional mesh of length L = 5D (as shown in figure 2 for the
(r-z) plane) combined with 80 planes of data in the azimuthal direction.
Streamwise resolution is approximately ∆z+ = 17, while the approximate
wall-normal distance of the first grid-point is ∆y+ = 1.25. The resulting
representative grid size ∆+ = [(∆r(r∆θ)∆z)1/3]+ varying from ∆+ ' 6.6
at the pipe wall to ∆+ ' 5.6 at the pipe axis. The resolution on the pipe
axis in the comparison simulation was ∆+ ' 0.85 [3], much higher that
should be necessary to resolve the flow at the centre line. The number of
grid points used in the cylindrical simulation was approximately 3.25 × 105,
approximately one quarter that used for the Cartesian simulation, or about
one-eighth that used in the comparison simulation.
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4 Results

4.1 Qualitative flow features

Figure 3 shows contours of instantaneous streamwise velocity near to the wall
surface generated from one realisation of the cylindrical simulation. These
contours clearly show the unsteadiness of the flow, and the sections of fast
and slow moving fluid that make up the near wall flow structures. The
periodicity of the domain is also apparent in that the velocity contours at
either end of the domain match up.

4.2 Energy spectra

The use of Fourier expansions in one coordinate direction simplifies the task
of producing one-dimensional energy spectra. We compute the kinetic energy
of each mode k as

Ek =
1

2A
ρ
∫
Ω

ûk · û∗
k dΩ, (16)

where A is the area of the two-dimensional domain Ω and û∗
k is the complex

conjugate of velocity field ûk.

Figure 4 shows the ensemble-average energy spectra for the both simu-
lations. In both plots, the dominant energy in the mean flow is reflected
by the comparatively high value of E0. For the Cartesian simulation, the
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Figure 3: Contours of streamwise velocity on a surface close to the pipe wall
and on a plane through the pipe axis. Contours on both surfaces illustrate
the near-wall structures of the flow. The outlines of the spectral element
mesh for the cylindrical simulation is also shown.
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four decade difference in energy between E1 and highest Fourier modes sug-
gests adequate stream-wise resolution. The slight upward trend in the high-
est modes (k > 80) suggests contamination produced by aliasing. For the
cylindrical simulation, the roll-off at high wavenumbers is an artefact of the
azimuthal filtering discussed in § 2, and it does not appear that aliasing er-
rors are significant. However, the fact that there is only approximately a
two-and-a-half decade fall in energy between E1 and that for k ' 35 suggests
that the azimuthal resolution is somewhat low.

4.3 Mean velocity

Figure 5a) is a comparison between the mean velocity profiles obtained from
the different simulations. The velocity has been non-dimensionalised using
the friction velocity, uτ . Experimental data [2] is provided for comparison. It
can be seen that the Cartesian simulation provides good agreement with ex-
perimental data while the cylindrical simulation differs by approximately 3%
for most of the profile. We attribute the poorer agreement for the cylindrical
coordinate simulation to under-resolution—similar effects can be noted in
under-resolved dns data [1]. Figure 5b) shows the velocity profile re-plotted
against distance from the wall (in wall units uτ/ν) along a semi-logarithmic
axis. It again shows the significant difference between the experimental data
and that from the cylindrical simulation, while the data for the Cartesian
simulation are in comparatively good agreement with experimental values.
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(a) (b)

Figure 4: Ensemble-average energy spectra. The dominance of mode k =
0 in each plot reflects the contribution of the mean stream-wise flow. a):
Cartesian simulation, b): cylindrical simulation.
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(a) (b)

Figure 5: Non-dimensional velocity profiles from the simulations plotted
against a) pipe radius divided by diameter, and b) viscous wall units ν/uτ .
Experimental data [2] is shown for comparison.
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4.4 Fluctuating velocities

Figure 6a) shows the fluctuating streamwise standard deviation velocity ob-
tained from the simulations. The results from the Cartesian simulation differ
noticeably from the experimental results [2] and simulation results [3]. The
results from the cylindrical simulation do not agree well with experimental
measurements, another indication of poor spatial resolution.

The results for the fluctuating component of the radial velocity, shown in
Figure 6b) are much closer to the experimental data than was the case for the
axial velocity. The results from the Cartesian simulation, especially, provide
close agreement to experimental results [2]. The agreement is slightly poorer
in the case of the cylindrical simulation, but still quite good, except very
close to the pipe axis. For all three simulations, the poor agreement with
experimental data very near the wall can be attributed to resolution errors
in the experiment.

4.5 Turbulent shear stress

The turbulent Reynolds shear stress is plotted as a function of radius in
figure 7. The average total (turbulent + viscous) shear stress gives a basis
against which all four sets of results shown can be compared. Again, and
in agreement with trends shown in figure 6, the results from the Cartesian
simulation are in reasonable agreement with experimental values, except near
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(a) (b)

Figure 6: a) Fluctuating streamwise velocity and b) fluctuating radial
velocity, both normalised by the friction velocity uτ . Experimental data [2]
and simulation results [3] are shown for comparison.
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r/D = 0.4, while the results from the cylindrical simulation do not agree well
with either of the published results.

As shown in Figure 7, results for the Cartesian and the cylindrical simula-
tions agree well with one another in the near-wall region, but less well nearer
to the centre of the pipe. This fact, coupled with the lack of smoothness in
the profile of turbulent shear stress near the pipe axis, suggests that the lack
of spatial resolution in the cylindrical simulation has been most significant
in the buffer layer and near the centre of the pipe.

5 Discussion and Conclusion

Results from two simulations that employ spectral element-Fourier formula-
tions have been presented. The simulation using the Cartesian coordinate
system performed well when compared with experimental data. The Carte-
sian simulation has provided results that agree well with current experimental
and numerical results. We are confident that a database of the instantaneous
velocity fields will provide excellent inlet boundary conditions for the sim-
ulation of the jet-type flows that will form the main thrust of our future
work.

The comparatively poorer performance in the case of the cylindrical co-
ordinate system simulation are provisionally attributed to a lack of spatial
resolution. This is based on the fact that the total number of grid points
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Figure 7: Turbulent Reynolds shear stress. Experimental data [2] and
simulation results [3] are shown for comparison.
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is approximately one-eighth that employed in the comparison simulation [3],
and approximately one quarter that of the Cartesian simulation. We plan to
complete a more detailed study of resolution effects in the near future.

It was found that filtering of velocity data near the axis [6] was required
to stabilise the cylindrical simulations, and the effect of the functional form
adopted for this filtering needs to be more fully assessed.
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