
Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journal homepage: www.elsevier.com/locate/jnnfm

The effect of yield stress on pipe flow turbulence for generalised newtonian
fluids

J. Singh⁎, M. Rudman, H.M. Blackburn
Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia

A R T I C L E I N F O

Keywords:
Turbulent pipe flow
Direct numerical simulations (DNS)
Yield stress

A B S T R A C T

The effect of modifying yield stress on turbulent pipe flow of generalised Newtonian fluids at a friction Reynolds
number of 323 is investigated using direct numerical simulations. Simulations are carried out for Bingham and
Herschel–Bulkley fluids with the yield stress varying from 0% to 20% of the mean wall shear stress. Results show
that the effect of increasing yield stress is mostly similar to shear thinning in power-law fluids. The turbulent
viscous stress which arises due to viscosity fluctuations is negative for a yield stress fluid and is higher in
magnitude for higher yield stress. An analysis of the turbulent kinetic energy budget showed that the effect of
yield stress is mainly significant near the wall for ≲+y 60 which was also seen for shear-thinning power-law
fluids at similar Reτ . Additional shear thinning enhances the yield stress effect. The main difference between
shear thinning and yield stress is that the effect of yield stress is maximum outside the viscous sublayer whereas
shear thinning has a more significant effect inside the viscous sublayer.

1. Introduction

Many fluids found in industry and in nature do not show a uniform
viscosity. These fluids are called non-Newtonian fluids. Generalised
Newtonian fluids is a class of non-Newtonian fluids for which the
rheology can be modelled via the generalised Newtonian (GN) as-
sumption

=τ sρν γ( ˙ ) . (1)

Here τ is the shear stress tensor, ρ is fluid density, ν is fluid kinematic
viscosity (also called the effective viscosity), shear rate = s sγ̇ (2 : )1/2 is
the second invariant of the strain rate tensor  = +s v v[( ) ( )]/2 and v
is the velocity. The GN assumption also implies an isotropic, time-in-
dependent viscosity and an instantaneous response of the fluid to the
applied shear stress. Many GN fluids show yield stress i.e. they do not
flow until the shear stress exceeds a minimum value (yield stress).
Mining slurries, particle suspensions, waste water sludge, toothpaste,
cements, tomato ketchup, melted chocolate are examples of yield stress
GN fluids. Recently the Journal of non-Newtonian fluid mechanics
published a special issue (the first special virtual issue, 2014) focusing
only on yield stress fluids, which shows the continuing research interest
in these fluids.

The effective viscosity of a GN fluid is defined via a rheology model.
There are various rheology models available for yield stress GN fluids
[1,2] in which the Herschel–Bulkley rheology model is a widely used

model which relates the fluid kinematic viscosity to the shear rate via

= +− −ν ρ τ γ Kγ( / ˙ ˙ ).y
n1 1 (2)

Here, the yield stress τy, fluid consistency K and the flow index n are
model parameters. For n<1, Eq. (2) represents shear-thinning beha-
viour i.e. the fluid viscosity decreases with increasing shear rate. With

=n 1.0, Eq. (2) reduces to the Bingham rheology model
= +−ν ρ τ γ K( / ˙ ),y

1 with K known as plastic viscosity. When =τ 0,y
Eq. (2) reduces to a power-law rheology model which represents purely
shear-thinning (or thickening) behaviour. It is worth noting that
rheology model parameters are usually determined via regression using
an experimentally measured shear rheogram (one dimensional shear
stress versus shear rate measurements) and have no intrinsic physical
meaning. In the following Herschel–Bulkley (HB), Bingham and power-
law (PL) fluids are those whose rheology can be well-modelled with the
corresponding model.

Turbulent pipe flow is an important class of wall bounded turbulent
flows. A pipe flow has the characteristic feature of an enclosed geo-
metry, making it easiest to realise in experiments compared to other
wall bounded flows such as channel and boundary layer flows [3]. It
also has a direct and familiar application – pipeline transport which is
very common at mining and waster water treatment sites to transport
slurries which can show both yield stress and shear-thinning behaviour
and the rheology of which can be modelled via the HB rheology model
[4]. In spite of wide applications, studies of turbulent pipe flow of HB
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fluids are limited [5–9].
The HB rheology combines the effect of yield stress and shear

thinning (or thickening). It has been shown that the HB rheology delays
transition to turbulence to a higher Reynolds number and reduces the
turbulent friction factor =f τ ρU2 /w b

2 under fully developed turbulent
conditions [5,7,8]. The HB rheology increases the turbulent anisotropy
by increasing the velocity fluctuations in the axial direction but de-
creasing the same in the radial and the azimuthal direction compared to
Newtonian fluid. These trends are consistent with those of a shear-
thinning fluid alone [7], therefore, the effect of the yield stress alone on
turbulent pipe flow dynamics is not clear. Peinxinho et al. [10] claimed
that the yield stress did not have a significant effect in the turbulent
regime, however, fluids used in that study showed some viscoelastic
behaviour, and the effect of yield stress is less clear.

In real fluids the rheology model parameters are generally coupled
with each other. The rheology arised from surface effects in fine particle
suspensions and polymer interaction in polymer based lab fluids. The
rheology is changed by modifying concentration and potentially pH,
however, such changes generally modify all rheology parameters
[11–13], and it is difficult to change just one while keeping others
constant. This makes experimental investigation of individually varying
rheology model parameters impossible. Numerical simulations, espe-
cially direct numerical simulations (DNS) are promising in this aspect
and have been used in the past in turbulent flow studies of HB fluids
[7,8]. Although significant discrepancies had been observed between
numerical and experimental results [8], recently these have been shown
to be caused by a lack of high shear rate data used in rheology char-
acterisation [14]. DNS provides a detailed picture of the flow and once
validated, can be reliably used to understand the effect of individually
varying rheology model parameters. DNS has other advantage that
unlike other numerical techniques such as Reynolds averaged Na-
vier–Stokes (RANS) and large eddy simulations (LES), it does not re-
quire any special model to capture the flow at small length scales. There
have been some efforts in developing RANS and LES models for GN
fluids [9,15–17] but there are no universally accepted models yet
available.

Turbulent flows present a wide range of length scales (eddy sizes)
and the HB rheology decreases the range of the length scales in the flow
[7]. Earlier DNS studies of HB fluids [7,8] considered flow indices

=n 0.52 and 0.6 with a maximum Reynolds number ReG (defined in
Section 2.2) of 8000. However, the flows showed some transitional
behaviour especially for =n 0.52. To overcome this limitation, the
current study considers a slightly higher Reynolds number ≈Re 11000G
( =Re 323τ ) to study the effect of yield stress τy on a turbulent pipe flow.
To study the effect of varying τy alone, simulations are run using the
Bingham rheology model with the yield stress varying from 0% to 20%
of the mean wall shear stress. Additional simulations with the HB
rheology model are run to study the effect of additional shear thinning.
The results of mean flow, turbulence intensities and the turbulent ki-
netic energy budget are analysed and compared with those of New-
tonian and PL fluids. The key findings are that the effect of yield stress
is confined to the near wall region and unlike shear thinning it affects
flow most noticeably outside the viscous sublayer.

2. Methodology

2.1. Numerical method

The numerical method used here is identical to that used in Rudman
& Blackburn [7,8,18]. Here we briefly review the simulation metho-
dology. A nodal spectral element-Fourier DNS code is used to solve the
governing equations (Eq. 3) for an incompressible fluid with a spatially
varying viscosity.

  = − + + =−v τ g vD Dt ρ p ρ/ ( · ), with · 01 (3)

where v is the velocity vector, p is the static pressure, τ is the stress

tensor and ρg is the body force. For ease of notation, we divide p, τ and
ρg in Eq. (3) by the constant fluid density ρ, but refer to them as
pressure, stress and body force respectively. The body force g is set
equal to the mean axial pressure gradient. The modified shear stress
tensor, τ/ρ, is modelled via the GN assumption (Eq. 1) and the fluid
viscosity, ν γ( ˙ ), is modelled via the HB rheology model. The governing
equations are solved in Cartesian coordinates where the pipe cross
section (x-y plane) is discretized using spectral elements as shown in
Fig. 1, while Fourier expansion is used in the axial (z) direction. Results
are later transformed for presentation in cylindrical coordinates. The
code has been validated for DNS of pipe flow of turbulent Newtonian
fluids [18] and non-Newtonian fluids [8,14]. For more details of the
simulations code we refer the reader to [7,8,19].

2.2. Reynolds number

The non-uniform viscosity of GN fluids makes the choice of an ap-
propriate viscosity scale unclear. We choose the nominal wall viscosity,
νw, for the viscosity scale as discussed by Rudman et al. [7]. For the HB
rheology model, νw is given as:

=
−

ν
ρ

K τ
τ τ

1
( )

.w
n

w

w y
n

1/

1/ (4)

Here τw is the mean wall shear stress which is determined from the
mean axial pressure gradient ∂P/∂z as:

= ∂ ∂τ R P z( /2)( / )w (5)

where R is the pipe radius. Using νw, pipe diameter =D R2 , bulk flow
velocity Ub (flow rate per unit area) and the friction velocity

=u τ ρ* ( / ) ,w
1/2 we define the generalised Reynolds number ReG and the

friction Reynolds number Reτ as:

= =Re U D ν Re u R ν/ and * / .G b w τ w (6)

2.3. Simulation parameters and non-dimensional variables

Simulations are run for a fixed friction Reynolds number Reτ of 323
which is equivalent to a generalised Reynolds number ≈Re 11, 000G
(ReG slightly varies with n and τy, see Table 1). The effect of τy alone is
studied with =n 1.0 (Bingham rheology model) and τy varying from 0%
(Newtonian) to 20% of τw. Additional simulations with =n 0.8 and

=τ 0%y (PL) and 10% of τw are carried out to study the additional effect
of shear thinning.

Results are normalised using the friction velocity =u τ ρ* ( / )w
1/2 for

the velocity scale and νw/u* for the length scale. Hence the distance

Fig. 1. Detail of a spectral-element mesh used to discretise pipe cross-section, illustrating
grid nodes for 12th-order element interpolation functions, =N 12p .
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from the wall is expressed in wall coordinates as = −+y R r u ν( ) */ ,w
where r is the radial distance from the pipe centre. The non-dimensional
turbulence intensities are expressed as ′ = ′+u u u( ) / *i i

2 1/2
. Shear stress is

normalised by τw, shear rate by u ν* / w
2

and the turbulent kinetic energy

budget terms by u ν* / w
4

. In the current simulations, τw (and hence the
axial body force) and νw are fixed for all cases and the consistency is
calculated using Eq. (4) for a given τy. The simulations parameters are
given in Table 1. Non-dimensional body force gR/u*2 is fixed at 2 and
the nominal wall viscosity νw/(u*R) is fixed at 1/323 in all simulations.
The consistency K decreases with increasing τy to maintain constant
Reτ . Increasing τy increases the bulk velocity Ub, which increases further
as the fluid becomes more shear-thinning (HB10 has higher Ub than
Bi10). The fluid viscosity is plotted as a function of shear rate in Fig. 2.
As set the fluid viscosity is the same at the wall shear rate =γ γ˙ w ( =+γ̇ 1
in Fig. 2) in all simulations. Fluid viscosity increases for <γ γ˙ w ( <+γ̇ 1)
with increasing τy or shear thinning but decreases for >γ γ˙ w ( >+γ̇ 1).

2.4. Details of mesh, domain and time averaging

A mesh and domain independence study was carried out in [18] for
a Newtonian fluid at the same Reτ to ensure that the second and higher
order turbulence statistics do not vary with further mesh refinement or
with increasing the domain length. The same mesh and the domain
length is used here for all simulations. Since turbulent eddies are ex-
pected to grow in size with increasing τy or shear thinning, this means
that the mesh will not be under-resolved. The two points correlations of
the axial velocity fluctuations (shown later for Bingham fluids in Fig. 4
for two different +y ) decay to zero, which shows adequacy of the do-
main length. The mesh had 300 spectral elements of polynomial order
12 and 384 axial planes (192 Fourier modes) and the domain is ap-
proximately 12D long. This gives a near wall mesh spacing of =+yΔ 0.8
in the wall normal direction, ≈+rθΔ 4.5 in the azimuthal direction and

≈+zΔ 21 in the axial direction.
Simulations are run until the calculated instantaneous wall shear

stress and bulk velocity had reached a statistically steady state value
before collecting averages. The time-averaged statistics are then col-
lected for approximately 15 transit times of the domain.

3. Results and discussions

3.1. The effect of yield stress

We first present the results from Bingham fluids and compare them
with the Newtonian. Wherever appropriate the yield stress effect here is
compared with that of shear thinning alone (i.e. PL rheology with
n<1) as presented in [18].

Fig. 3 shows contours of instantaneous axial velocity near the wall
(in the buffer layer at =+y 10) and at a cross section. Despite having
the same nominal wall viscosity νw, differences in the flow of these
fluids are clear. Increasing τy reduces the fluctuations in the flow and
low speed streaks run longer in the streamwise direction for a higher τy.
This is similar to the effect of pure shear thinning [18].

The information illustrated in Fig. 3 can be quantified using the
integral length scale which is calculated by integrating the two point
correlation function to a point where it first crosses zero (for more
details see [18]). For streamwise velocity fluctuations, the two point
correlation is defined as:

= ′ ′ + ′

= ′ ′ + ′
′ ′

′ ′

ρ z u r θ z t u r θ z z t u r θ z

ρ θ u r θ z t u r θ θ z t u r θ z

(Δ ) ( , , , ) ( , , Δ , ) / ( , , )

(Δ ) ( , , , ) ( , Δ , , ) / ( , , ) .
u u z z z

u u z z z

2

2
z z

z z (7)

Profiles of the two point correlation of the axial velocity fluctuations

′ ′ρu uz z
are plotted as a function of the axial separation distance Δz/D in

Fig. 4. The two point correlation function ′ ′ρu uz z
decays to zero which as

Table 1
Simulation parameters for pipe flow of different n and τy at =Re 323τ . Non-dimensional
body force gR/u*2 is fixed at 2 and the nominal wall viscosity νw/(u*R) is fixed at 1/323.

Identifier n −K ρu R/( * )n n2 =+τ τ τ/y y w(%) Ub/u* ReG

Newt. 1.0 × −3.0870 10 3 0 15.93 10,322
Bi5 1.0 × −2.9399 10 3 5 16.12 10,463
Bi10 1.0 × −1.3927 10 3 10 16.49 10,635
Bi20 1.0 × −1.2379 10 3 20 17.23 11,103
PL 0.8 × −9.8128 10 3 0 16.49 10,681
HB10 0.8 × −2.8352 10 3 10 17.05 11,036

Fig. 2. Viscosity rheograms plotted for (a) Newtonian and Bingham fluids (b) power-law, Herschel–Bulkley and Bi10 fluids from Table 1. The effect of the yield stress is seen mainly at
shear rates lower than +γ̇w .

Fig. 3. Instantaneous axial velocity contours (left) at =+y 10 shown on developed cy-
lindrical surfaces and (right) at a cross section plotted for (from top) Newtonian fluid and
Bingham fluids Bi5, Bi10 and Bi20. Flow is from left to right, and lighter grey represents
higher speed. Flow becomes more transitional as the yield stress is increased.
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mentioned in Section 2 shows the adequacy of the domain length.
Profiles of streamwise and azimuthal integral length scales (in wall
units +lz and +lrθ) of axial velocity fluctuations (Fig. 5 a, and b) shows that
the integral length scale of the axial velocity fluctuations in both
streamwise and azimuthal directions near the wall increases with τy.
This is similar to the effect of shear thinning in PL fluids (Fig. 7 in [18]).
However, unlike PL fluids, here the profiles of the streamwise integral
length scale +lz cross each other away from the wall for Bi5 and New-
tonian (Fig. 5 a). Similar behaviour is seen in the profiles of +lz for Bi10
and Bi20, reasons for which are not clear. Except very close to the wall,
the azimuthal integral length scale +lrθ increases with increasing τy which
indicates wider turbulent streaks for higher τy. For a given τy, +lrθ in-
creases up to a certain +y and then decreases with further increasing +y .
This is because there is only a finite space available for a turbulent eddy
to grow in the azimuthal direction for a given r which decreases to zero
at the pipe centre.

3.1.1. Mean axial velocity and viscosity
Profiles of the mean axial velocity +Uz are shown in Fig. 6(a) and

compared to the Newtonian profile. For ease of discussion the flow
region is divided into four regions, the viscous sublayer ( <+y 5), buffer
layer ( < <+y5 30), log layer ( < <+y30 200) and the core region
( >+y 200). Although this kind of classification is common for

Newtonian fluids [20], bounds of the flow regions are not obvious for
non-Newtonian fluids. The mean axial velocity profiles show yield-
stress-dependence only outside the viscous sublayer and in the viscous
sublayer, the effect of τy is negligible. The mean axial velocity +Uz is
larger for higher τy for ≳+y 15, which corresponds to a higher flow
rate. In the log layer, +Uz profiles for all τy show a log region, however,
they shift above the Newtonian profile with increasing τy. The effect of
τy on the mean velocity gradient is marginal (Fig. 6 b) and it appears
primarily over the range of ∈ −+y [8 80]. These results are in contrast
to those of shear thinning alone in PL fluids in which +Uz increases at all

+y and the mean axial velocity gradient increases noticeably in the log
layer (Figs. 8 and 11 in [18]).

Increasing τy affects the mean viscosity +ν in a similar way to shear
thinning. For a given τy, the mean viscosity +ν is almost uniform in the
viscous sublayer, but increases rapidly with +y beyond ≈+y 10 (Fig. 7).
Similar to the mean axial velocity, +ν also shows yield-stress-depen-
dence mainly outside the viscous sublayer where it is larger for higher
τy. For Bi20, it is almost fifteen times larger than the nominal wall
viscosity νw at the pipe centre. This is expected because the shear rate γ̇
decreases with +y and the viscosity of a Bingham fluid increases with
increasing τy when <γ γ˙ ˙w (see Fig. 2 a). Unlike PL fluids, the mean
viscosity profiles of Bingham fluids do not show a clear log region (see
Fig. 9 in [18]).

Fig. 4. Two point correlation plot for the
streamwise velocity fluctuations ( ′ ′ρuz uz) plotted

as a function of the separation distance Δz/D at
(a) =+y 10 and (b) =+y 100.

Fig. 5. Profiles of the (a) streamwise integral length
scale and (b) azimuthal integral length scale plotted
as a function of +y for different τy.

Fig. 6. Profiles of the (a) mean axial velocity
and (b) its gradient plotted for different τy. The
mean axial velocity increases with τy whereas
its gradient is only marginally affected by in-
creasing τy, mostly in the buffer layer.
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3.1.2. Mean shear stress budget
For a pipe flow of an incompressible fluid, the mean axial mo-

mentum equation is written as:

− ∂
∂

+
∂

∂
=

ρ
P
z r

rτ
r

1 1 ( )
0rz

(8)

Here, τrz is the (r, z) component of the total mean shear stress tensor
given as:

=
∂
∂

− ′ ′ + ′ ′τ ν
U
y

v v ν s2rz
z

r z rz
(9)

= + +τ τ τrz
v

rz
R

rz
fv (10)

where τv is the mean viscous stress, τR is the Reynolds stress and τfv is
the turbulent viscous stress which is non-zero only for non-Newtonian
fluids. In the time averaged flow, only the (r, z) component of mean
shear stress tensor survives, therefore, the subscript rz is omitted in the
following discussion for clarity. Integrating Eq. (8) leads to

= ∂
∂

τ r P
z2 (11)

which can be expressed in wall units as:

= −+
+

τ y
Re

1
τ (12)

Eq. (12) shows that for a given Re ,τ the mean shear stress +τ is in-
dependent of the fluid rheology and therefore, any change in one shear
stress component must be balanced by changes in others.

Profiles of the mean shear stress components are plotted for dif-
ferent τy in Fig. 8(a) and (b) on linear and log +y axes. For a given τy, the
mean viscous stress = ∂ ∂+ + ++τ ν U y/v

z decreases monotonically with +y .
For a given +y , +τ v is larger for higher τy (Fig. 8). The latter is mainly due
to higher mean viscosity +ν for higher τy as we have seen that ∂ ∂+ +U y/z

is only slightly affected by τy (see Fig. 6 b). Note that +τ v at the wall is by
definition is a comparison of the mean wall shear stress calculated using
the mean velocity gradient and the mean pressure drop. It can be seen
that +τ v is slightly higher than one for τy>0, which suggests the mean
wall shear stress calculated from the mean velocity gradient will
slightly be in error. The increase in +τ v with τy is mostly compensated
for by a decrease in Reynolds shear stress +τ R . Similar to a shear-thin-
ning fluid (Fig. 10 in [18]), the turbulent viscous stress +τ fv is negative
for all τy. It increases in magnitude with increasing τy and decreases
with +y vanishing at the pipe centre. The turbulent viscous stress only
marginally (less than 5%) contributes in the total mean shear stress
budget. Overall, these results are similar to those of shear-thinning PL
fluids except for the behaviour of the turbulent viscous stress +τ fv . It is
less near the wall and larger near the centre which is opposite to that

seen for pure shear-thinning fluids (see Fig. 10 in [18]).

3.1.3. Turbulence intensities
Profiles of the turbulence intensities show that the axial turbulent

intensity, ′+u ,z is higher for higher τy and the peak shifts slightly away
from the wall (Fig. 9). In contrast, the radial and azimuthal turbulence
intensities ( ′+ur and ′+uθ ) are lower for higher τy. This is similar to the
effect of shear thinning in PL fluids (Fig. 15 in [18]). The net effect of
changes to turbulence intensities with τy is seen in the turbulent kinetic
energy ( +k ) profiles (Fig. 9 b). The turbulent kinetic energy +k increases
with τy for ≲+y 80. This increases is a result of increasing ′+uz with τy
which dominates the decrease in ′+ur and ′+uθ . However, the trend re-
verses for ≳+y 100 and +k decreases with increasing τy. This is because
the effect of τy on ′+uz diminishes there whereas contribution for ′+ur and

′+uθ continues to decrease with τy. A noticeable difference in +k profiles
compared to PL fluids is that the +k profiles for different n collapse in
the core (Fig. 23 in [18]) but the profiles for different τy do not. The
reason and the consequence of this is not clear. It is hypothesised that
this is due to the significantly increased viscosity in the core which is
generally higher for Bingham than PL fluids.

3.1.4. Turbulent kinetic energy budget
For a non-Newtonian fluid, an equation for the ensemble-average

turbulent kinetic energy (TKE, = ′ ′k u ui i
1
2 ) is written as [15]:

Fig. 7. Profiles of the mean viscosity plotted for different τy. The inset figure shows a
closer look of the mean viscosity profiles in the viscous sub-layer. Arrow shows the sense
of increasing τy. For the line legend see Fig. 6. Mean viscosity increases with increasing τy
for all +y but the effect is seen mainly outside the viscous sublayer.

Fig. 8. Profiles of the mean viscous stress +τ ,v Reynolds shear stress +τ R and the turbulent
viscous stress +τ fv plotted for different τy on (a) linear +y axis and (b) log +y axis. The
thick line shows the profiles of the total mean shear stress which is the same for all cases
and plotted here only for the Newtonian fluid. Increasing τy increases +τ v and +τ fv (in
magnitude) but decreases +τ R .
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(13)

Here, the terms in the first row are non-zero for both Newtonian and
non-Newtonian fluids. We refer these terms as Newtonian terms for
which the following is a standard terminology:

kt: rate of change of turbulence kinetic energy;
A : mean flow advection;
P : turbulent kinetic energy production;
T : turbulent transport;
Π: pressure-gradient work;
D : mean viscous transport;
ϵ: mean viscous dissipation.

The terms in the second row are non-zero only for non-Newtonian
fluids and we use the following terminology for these terms:

ξnn: mean shear turbulent viscous transport;
nnD : turbulent viscous transport;

χnn: mean shear turbulent viscous dissipation;
ϵnn: turbulent viscous dissipation.

The first two terms in Eq. (13), kt and ,A vanish for a pipe flow
which is temporally stationary and homogeneous. Turbulence receives
energy from the mean flow via the turbulent kinetic energy production

,P which is dissipated via the turbulent dissipation term ϵ. The trans-
port terms, Π, T and ,D only redistribute TKE within the domain.
Detailed explanation of these Newtonian TKE budget terms is available
in [20–22].

In the non-Newtonian terms, the mean shear turbulent viscous
transport, ξnn, and the turbulent viscous transport, ,nnD are transport
terms and therefore, either reinforce or oppose the transport by the
Newtonian terms. The last two terms in Eq. (13) are the mean shear
turbulent viscous dissipation, χnn, and the turbulent viscous dissipation,
ϵnn, which increase or decrease the turbulent dissipation due to the
Newtonian dissipation term ϵ.

Profiles of the TKE budget terms are plotted for different τy in
Fig. 10, which are mostly qualitatively similar to those of shear-thin-
ning PL fluids (Fig. 21 in [18]). TKE production, +,P is lower for higher

τy (Fig. 10 a). Since = ∂ ∂+ + ++τ U y( / )R
zP and ∂ ∂+ +U y/z is almost in-

dependent of τy (Fig. 6 b), lower +P is mainly due to lower +τ R for
higher τy (Fig. 8). In the +y range where +P shows the strongest yield-
stress-dependence, the mean viscous dissipation +ϵ is independent of τy.
A similar trend was observed for shear-thinning PL fluids (Fig. 21 in
[18]). At all other +y , the mean viscous dissipation +ϵ is larger (in
magnitude) for higher τy. Increasing τy has the greatest effect on +ϵ
outside the viscous sublayer which is in contrast to shear thinning
(where +ϵ increases in magnitude in the viscous sublayer (Fig. 21 in
[18])).

The total turbulent transport in the viscous sublayer is dominated by
the mean viscous transport +D which balances the mean viscous dis-
sipation +ϵ there (Fig. 10 a). The mean viscous transport +D is larger in
magnitude for higher τy, however, the effect of τy is negligible outside
the viscous sublayer. The remaining Newtonian transport terms, the
turbulent transport, +,T and the pressure-gradient work, +Π , show
yield-stress-dependence only in the buffer layer ( ≈ −+y 7 30, see
Fig. 10 a and b). The pressure-gradient work +Π is small compared to
other Newtonian transport terms and it decreases in magnitude with
increasing τy whereas the effect of increasing τy is marginal on +T .

The non-Newtonian terms which arise from viscosity fluctuations,
are plotted in Fig. 10 (c)–(e). The non-Newtonian transport terms, +ξnn
and + ,nnD are significant only for ≲+y 50. Although they change sign
with +y , they are larger in magnitude for higher τy at a given +y . The
mean shear turbulence viscous transport +ξnn has a sign opposite to the
mean viscous transport +D over most +y and therefore, reduces the
Newtonian transport terms (Fig. 10 c). The turbulent viscous transport,

+ ,nnD is approximately three times smaller than +ξnn. The overall effect of
the non-Newtonian transport terms is to decrease the magnitude of total
transport with the effect being larger for higher τy (Fig. 11). This is
similar to the effect of shear thinning in PL fluids (Fig. 21 in [18]).

The yield-stress-dependence of the non-Newtonian dissipation terms
is also similar to that of shear thinning alone. Both non-Newtonian
dissipation terms, +χnn and +ϵ ,nn are positive for Bingham fluids (Fig. 10 e)
and they are larger in magnitude for higher τy. The mean shear tur-
bulent viscous dissipation χnn is maximum near the wall and decreases
with +y vanishing somewhere in the log-layer depending on the value
of τy. The turbulent viscous dissipation +ϵnn is small in the viscous sub-
layer (about 1/3rd of +χnn), it reaches a minimum at ≈+y 10 and then
starts increasing with +y . The location where +ϵnn peaks shifts away from
the wall with increasing τy.

In the viscous sublayer, the total dissipation, = + ++ + ++ χϵ ϵ ϵ ,k
nn nn

decreases with increasing τy due to positive +χnn and +ϵnn (Fig. 10 f) and
the reduced dissipation persists until the start of the log layer ( ≈+y 30).
The total TKE transport, = + + + ++ + + + ++T ξΠ ϵ ,k

nn nnT D also de-
creases (in magnitude) near the wall ( <+y 60) with increasing τy except
near the edge of the viscous sublayer ( =+y 5) where the profiles for
different τy cross each other. Overall, the effect of increasing τy is seen

Fig. 9. Profiles of turbulence intensities (a) in the axial and the radial directions (b) in the azimuthal direction and turbulent kinetic energy plotted in wall coordinates for different τy.
Arrow shows the sense of increasing τy. For the line legend see Fig. 8. Turbulence intensity increases in the axial direction but decreases in the radial and the azimuthal direction with
increasing τy.
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to have a notable effect on the TKE budget for ≲+y 60 which was also
seen for PL fluids (Fig. 21 in [18]).

3.1.5. Summary
Results from Bingham fluids show that the effect of τy is greatest

outside the viscous sublayer and seen more noticeably in the viscosity
dependent terms, +τ ,fv +ϵ , +χnn and +ϵnn. The mean axial velocity is also
independent of τy in the viscous sublayer. This is in contrast to shear
thinning which showed the greatest effect inside the viscous sublayer
[18].

3.2. Modification of the yield stress effect by shear thinning

Many fluids in applications show both yield stress and shear-thin-
ning behaviour and can be modelled with the HB rheology model. In
order to see the joint effect of shear thinning and τy, the results of a
shear-thinning PL fluid with =n 0.8 (referred to as PL) and the Bingham
fluid, Bi10, are compared with those of a HB fluid with the same flow
index as the shear-thinning fluid ( =n 0.8) and τy as the Bingham fluid
( =+τ 0.10y ) at =Re 323τ . The HB fluid is referred to as HB10 in the
following discussion.

The fluid viscosity for the three fluids PL, Bi10 and HB10 is plotted
in Fig. 2 (b). Since νw is fixed, the viscosity profiles for PL, HB and Bi10
cross each other at the wall shear rate, =+γ̇ 1. Except in a range

∈+γ̇ [0.2, 1], the PL viscosity is lower than Bi10. In contrast, HB10
consistently shows higher viscosities than Bi10 for <+γ̇ 1 and lower for

>+γ̇ 1. Contours of the instantaneous axial velocity near the wall show
qualitatively similar flow for PL and Bi10 (Fig. 12). As expected, less
disordered motion and low speed streaks running longer are seen in
HB10 compared to other cases, which suggests that the flow of HB10 is
closer to transition than the other cases. Since the instantaneous flows
for PL and Bi10 are qualitatively very similar, the results of these two
fluids are compared first before considering the joint effect of τy and
shear thinning in HB10.

3.2.1. Comparison of power-law and Bingham rheologies
The mean axial velocity ( +Uz ) profiles of PL and Bi10 almost overlap

at all +y (Fig. 13 a), however, a close look via the mean axial velocity
gradient ∂ ∂+ +U y/z shows that +Uz is slightly higher (approximately 2%)

Fig. 11. Profiles of the sum of the Newtonian and non-Newtonian transport terms. The
non-Newtonian transport usually opposed the Newtonian transport.

Fig. 10. Profiles of (a,b) Newtonian kinetic energy budget terms (c–e) non-Newtonian terms (f) sum of the Newtonian and non-Newtonian transport and dissipation terms plotted in wall
units for different τy.
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for the PL fluid than Bi10 in the viscous sublayer (Fig. 13 b). Outside the
viscous sublayer, the profiles of ∂ ∂+ +U y/z for PL and Bi10 overlap
(marker and solid line). In contrast, profiles of the mean viscosity +ν
overlap for PL and Bi10 only very near the wall (Fig. 14 a). Away from
the wall, Bi10 clearly shows significantly higher mean viscosity than
PL, which is expected from their viscosity plots (Fig. 2). Shear rate
decreases with +y and for low shear rates Bi10 shows higher viscosity
than PL.

Similar to the mean axial velocity, profiles of the axial turbulence
intensity ′+uz and Reynolds shear stress +τ R also overlap for PL and Bi10
(Fig. 14 b) whereas profiles of radial and azimuthal turbulence in-
tensities ( ′+ur and ′+uθ ) deviate from each other outside the viscous
sublayer (Fig. 14 c). The turbulent viscous stress +τ fv is slightly lower (in
magnitude) for Bi10 than PL in the viscous sublayer and the trend re-
verses for >+y 10 (Fig. 14 d). Since the Reynolds shear stress profiles
overlap for these two cases (Fig. 14 b) and the total mean shear stress is
independent of rheology (see Section 3.1.2), the reduced +τ fv in the
viscous sublayer in Bi10 is balanced by a corresponding decrease in the
mean viscous stress +τ v as seen in Fig. 14 (d). In the TKE budget, the
viscosity dependent terms, +,D +ϵ , +ξ ,nn

+ ,nnD +χnn and +ϵ ,nn are larger in
magnitude for PL than Bi10 near the wall ( ≲+y 15) but, the trend
changes away from the wall (Fig. 15).

Overall the results of PL and Bi10 are mostly similar qualitatively
and quantitatively except for a few differences seen for the mean
viscosity and the non-Newtonian TKE budget terms.

3.3. Joint effect of shear thinning and the yield stress

HB10 includes both yield stress and shear thinning behaviour,
therefore, as expected the mean axial velocity profiles of HB10 deviate

above both PL and Bi10 (Fig. 13 a). In the viscous sublayer, profiles of
the mean axial velocity gradient of HB10 and PL overlap (Fig. 13 b),
which supports our argument presented for Bingham fluids in
Section 3.1 that yield stress does not have a significant effect on the
mean axial velocity in the viscous sublayer.

Since the mean viscosity +ν in the viscous sublayer is negligibly
affected by increasing τy or shear thinning (Fig. 14 a and Fig. 9 in [18]),

+ν profiles of HB10 overlap PL and Bi10 in the viscous sublayer. Outside
the viscous sublayer, +ν profiles of HB10 deviate above the others
(Fig. 14 a), which again shows that the yield stress has a prominent
effect on +ν away from the wall.

The joint effect of shear thinning and τy is to increase the anisotropy
of turbulent fluctuations, with increased ′+uz and decreased ′+ur and ′+uθ
outside the viscous sublayer (Fig. 14 b,c). Larger values of the turbulent
viscous stress +τ fv are also seen for HB10 compared to other cases due to
both shear thinning in the viscous sublayer and higher τy for ≳+y 10
(Fig. 14 d). The larger values of +τ fv for HB10 lead to a higher mean
viscous stress +τ v at the wall compared to other cases.

In the TKE budget, profiles of the transport terms and the TKE
production for HB10 deviate from others only near the wall for ≲+y 60
(Fig. 15). As expected, the TKE production +P is minimum for HB10 for
a given +y due to the joint effect of shear thinning and τy. In contrast,
the mean viscous transport +D and the mean viscous dissipation +ϵ are
maximum for HB10 (Fig. 15 a). The mean viscous dissipation ( +ϵ )
profile of HB10 closely follows the profile of PL in the viscous sublayer
and the profiles of Bi10 outside the viscous sublayer. Profiles of the non-
Newtonian terms for HB10 closely follow the profiles of the their sum
for PL and Bi10 (Fig. 15 b–d). These are more influenced by shear
thinning in the viscous sublayer and by τy outside it.

In summary, the combined effect of shear thinning and yield stress
is that all deviations observed for τy are increased in effect. The effects
are additive but not linear. Shear thinning in the HB rheology modifies
the flow primarily in the near wall region.

4. Summary and conclusions

The current study investigates the effect of yield stress τy on tur-
bulent pipe flow of a GN fluid using DNS. The friction Reynolds number
is fixed at 323. Results show that the effect of increasing τy is mostly
similar to shear thinning as reported in [18]. The axial velocity fluc-
tuations are correlated for a larger distance for higher τy. The bulk
velocity increases giving a lower friction factor with increasing τy. Mean
fluid viscosity increases significantly outside the viscous sublayer with
increasing τy. Increasing the yield stress increases the turbulence ani-
sotropy by increasing the axial turbulence intensity but decreasing the
radial and azimuthal turbulence intensities. Yield stress gives negative
turbulent viscous stress which increases in magnitude with further in-
creasing τy. Due to the non-zero turbulent viscous stress at the wall, the
mean wall shear stress calculated from the mean velocity gradient will
be slightly in error for the fluids considered here. The mean viscous
stress is also higher for higher τy but the Reynolds shear stress decreases

Fig. 12. Instantaneous axial velocity contours (left) at =+y 10 shown on developed cy-
lindrical surfaces and (right) at a cross section in the middle of the domain plotted for
(from top) HB fluids and Bi10. Flow is from left to right, and lighter grey represents
higher speed. Flow becomes more transitional as the yield stress is increased or the fluid
becomes more shear-thinning.

Fig. 13. Profiles of the (a) mean axial velocity,
+Uz (b) and the mean axial velocity gradient,

∂ ∂+ +U y/z plotted for PL, Bi10 and HB10.
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outside the viscous sublayer with increasing τy.
The effect of increasing τy on the turbulent kinetic energy budget is

also similar to that of shear thinning. The turbulent kinetic energy
budget terms show yield-stress-dependence mostly near the wall for

≲+y 60. Increasing τy decreases the turbulent kinetic energy produc-
tion but increases the mean viscous dissipation. However, the new
dissipation terms introduced due to viscosity fluctuations decrease the
total turbulent kinetic energy dissipation. The combined effect of shear
thinning and the yield stress is that all deviations observed for τy alone
are increased in effect. The effects are additive but not linear.

Although the effect of increasing τy is similar to shear thinning,
there are a few key differences. The effect of τy is minimum in the
viscous sublayer and is larger outside the viscous sublayer as seen in the
profiles of the turbulent viscous stress and the viscosity dependent
terms in the turbulent kinetic energy budget. This is in contrast to shear
thinning which affected flow the most inside the viscous sublayer.
Because the turbulent viscous stress is almost zero for a Bingham fluid

in the viscous sublayer, varying τy does not affect the mean axial ve-
locity inside the viscous sublayer to any notable extent. This is again in
contrast to shear thinning which increases the mean axial velocity in-
side the viscous sublayer [18].

The current study suggests that the effect of yield stress on turbu-
lence is confined near the wall for ≲+y 60. However, it is not clear that
how this yield-stress-dependent region will be affected at higher
Reynolds number. Further investigations are also required to confirm
whether the effect of yield stress will persistent at higher Reynolds
number or it will vanish and the results of Bingham fluids will collapse
on the Newtonian results.
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