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A systematic comparison of thermal scaling properties of pipe and channel flows is presented. DNS data
are used to compute thermal statistics for friction Reynolds numbers of 180 and 395 and Prandtl
numbers ranging between 0.025 and 7. A distinct four layer regime for the thermal field is clearly
identified in both channel and pipe flows. The analysis reveals that the balance breaking and exchange of
leading order terms in the mean energy equation that occurs across an intermediate layer is similar to
the exchange of terms in the mean momentum equation. The present analysis suggests that, at high
Peclet numbers in the four layer regime, the scaling characteristics of the temperature field become
increasingly similar to those of the momentum field at high Reynolds number. The intermediate nor-
malisation found by adopting the theory used for the momentum field provides a convincing scaling for
the mean temperature and turbulent heat flux profiles for both pipe and channel flows. In contrast to
velocity field statistics, the inner normalized mean temperature and heat flux profiles show significant
discrepancies between pipe and channel flows.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

While velocity-statistical comparisons between pipe and chan-
nel flow are relatively commonplace, comparisons of thermal field
statistics are not. An example comparison of velocity statistics is
that Monty et al. [1] revealed long meandering features of wall-
bounded turbulent pipe and channel flows. Later, Monty et al. [2]
made comparisons of mean statistics of pipe and channel flows
and found that the inner-normalized mean velocity profile was
identical in these two flows for y/d < 0.25, where y is the wall
normal distance and d is the channel half-height or pipe radius.
Higher order statistics such as skewness and flatness showed
agreement that extended up to y/d ¼ 0.5. Recent analyses of tur-
bulent wall bounded flow in pipes and channels by Monty et al.
[1,2], Wei et al. [3,4], Ng et al. [5], Chin [6] suggest that many of the
statistical properties of these flows are similar, even though their
geometries differ. At a nominally similar Reynolds number
(Ret ¼ dþ ¼ utd/n x 1000, where ut is the friction velocity and n is
the kinematic viscosity), Chin [6] performed a detailed comparative
: þ61 3 8344 4290.
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study of turbulent pipe and channel flow using DNS. He concluded
that lower order statistics were more inclined to show agreement
between the two different flows. The mean velocity profile of pipe
flow, however, has a more pronounced wake function. Chin [6]
further found good agreement of the Reynolds stress profiles of
these two flows except beyond the logarithmic region
(yþa0:15Ret, where yþ ¼ yut/n is the inner normalized wall-
normal distance). His results suggest that the difference is mainly
due to the constriction of the growth of structures in the azimuthal
direction for the pipe flow. His investigations, however, did not
examine the invariant scaling characteristics of pipe and channel
flows.

Wei et al. [3] explored the four-layer structure of turbulent pipe
and channel flows associated with the properties of the mean
momentum equation. Based on a generic first-principles frame-
work, Wei et al. [4] introduced a mesoscaling of Reynolds shear
stress in turbulent channel and pipe flows that showed invariant
profiles of shear stress. Further investigations by Klewicki et al. [7]
and Klewicki [8] confirmed the identical behaviour of these two
flows. This is reasoned to stem from these flows having identical
mean dynamical equations. The value of Reynolds number at which
the four layer structure is nominally established has been investi-
gated for both channel and pipe flows [7,9], and in each case was
found to be Ret x 180.
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There are a large number of studies available to explore the
various theories pertaining to the logarithmic-like properties of the
mean velocity profile, including the von K�arm�an constant. In
contrast, there is a relative paucity of data sets for wall bounded
turbulent heat transfer. Efforts to explore the logarithmic-like
properties of the mean temperature profile constitutes a long-
standing challenge [10], owing to the complicated effects of both
Reynolds number, Ret and Prandtl number, Pr. Analogous to the
mean velocity profile, the logarithmic equation for the mean tem-
perature profile in statistically stationary wall-bounded flow with
turbulent heat transfer is traditionally written as

Q
þ ¼ k�1

q lnyþ þ bðPrÞ; (1)

where Q
þ is the non-dimensional mean temperature normalized

by the friction temperature, Tt ¼ qw/rCput, qw is the heat flux
applied at the wall, r is the mass density, Cp is the specific heat at
constant pressure, kq is the von K�arm�an constant for temperature,
and b is an additive constant that has been purported to be directly
proportional to Prandtl number and independent of Reynolds
number [10]. Similar to what is found for the mean velocity profile,
(1) is typically said to be valid on the region that is neither close to
the wall nor near the centre of the pipe or channel. The thickness of
the logarithmic layer depends on the magnitude of Reynolds and
Prandtl numbers. Gowen and Smith [10] reported that the value of
k�1
q is almost constant at 2.5 for Prandtl numbers 0.026 � Pr � 14.3
and Reynolds numbers 104 � Ret � 5 � 104. Kader [11] developed a
correlation for the mean temperature profile based on interpola-
tion of experimental data for both turbulent pipe and channel flow.
Here the value of k�1

q was set at 2.12. Kader's correlation is given by

Q
þ ¼ Pr yþ expð�GÞ þ

"
k�1
q ln

(�
1þ yþ

� 1:5ð2� y=dÞ
1þ 2ð1� y=dÞ2

)

þbðPrÞ
#
expð�1=GÞ; (2)

where

G ¼ 10�2�Pr yþ�4
1þ 5Pr3 yþ

with k�1
q ¼ 2:12: (3)

Kader also established an approximate form for the additive
function, b(Pr), that determines the temperature difference be-
tween the wall and the lower edge of the logarithmic layer as
follows

bðPrÞ ¼
�
3:85Pr1=3 � 1:3

�2 þ k�1
q lnðPrÞ: (4)
Table 1
List of the values of von K�arm�an constant kq for turbulent heat transfer.

References Type Ret Pr Pet ¼ RetPr kq

Kasagi et al. [12] Channel 150 0.71 106.5 0.36
Johansson and

Wikstr€om [13]
Channel 265 0.71 188.15 0.33

Kawamura et al. [14] Channel 180e395 0.2e0.71 36e280.45 0.40
Kawamura et al. [15] Channel 180e395 0.2e1.0 36e395 0.41
Kawamura and Abe [16] Channel 180e640 0.71 127.8e454.4 0.43
Orlandi and

Leonardi [17]
Channel 180e395 1.0 180e395 0.41

Abe et al. [18] Channel 180e1020 0.71 127.8e724.2 0.43
Piller [19] Pipe 180 0.71 127.8 0.34
Satake et al. [20] Pipe 180 0.71 127.8 0.35
Satake et al. [20] Pipe 1050 0.71 745.5 0.46
Redjem-Saad et al. [21] Pipe 186 0.2e1.0 37.2e186 0.347
This equation is reported to be valid for Pr number ranging from
6 � 10�3 to 40 � 103. Data from DNS can be used to provide an
estimate (albeit at low Ret) for the value of kq in the logarithmic
region. Table 1 shows a representative list of studies along with
their estimated values of kq.

The significance of a universal kq in the logarithmic law is
expressed by the slope of the mean temperature profile and is re-
flected by the weighted wall-normal gradient of Q

þ such as
kq ¼ ðyþdQþ

=dyþÞ�1. Applied engineering practice often assumes
that kq is a constant in order to estimate the mean temperature
profile, and thus to find the effective thermal efficiency. Empirical
evidence, however, shows that kq varies with the type of flow and
with Reynolds and Prandtl numbers (see Table 1). Moreover, some
researchers, such as George [22], argue that neither theory nor the
data support the existence of a universal log law for wall-bounded
turbulent flows. The variation of kq in Table 1 motivates a more
detailed analysis.

As noted at the outset, comparative studies of turbulent heat
transfer in pipes and channels are rare. Kozuka et al. [23] compared
mean temperature profiles obtained from channel DNS with Kad-
er's correlation [11]. They found that (2) predicted the mean profile
reasonably for Ret ¼ 395, but with increasing Pr the differences in
the logarithmic region became significant. Only Piller [19]; Satake
et al. [20] and Redjem-Saad et al. [21] have attempted to make a
comparison between turbulent pipe and channel flow DNS.
Redjem-Saad et al. [21] compared RMS temperature fluctuations
and turbulent heat flux for 0.026 � Pr � 1.0 at Ret ¼ 186 with the
channel flow DNS data of Kawamura et al. [24]. Both Redjem-Saad
et al. [21] and Satake et al. [20] calculated the turbulent Prandtl
number profile. Their results showed agreement with Kawamura
et al. [24] in the vicinity of the wall. Neither of these works
compared the scaling properties of the thermal energy equation for
these two different geometries, as is done herein.

Investigations of thermal scaling analysis have been carried out
for the case of channel flow [25e28]. A brief review is presented in
Saha et al. [28]. In contrast, no detailed thermal scaling analyses
have been conducted for pipe flow. This at least partly stems from
the limited availability of data sets for turbulent heat transfer in
pipe flow. Our present efforts place attention on revealing the
scaling properties of the mean energy equation for the case of
turbulent heat transfer in pipe flow. DNS for a range of moderate
Reynolds and Prandtl numbers are carried out and compared with
existing channel data. The present analysis follows the framework
explained in Saha et al. [28]. Properties of four distinct thermal
balance layers and a generalized form of the intermediate length
scaling are utilized to reveal the subtle differences and highlight the
similarities between the pipe and channel statistics.
2. Simulation procedure

2.1. Mathematical model

Direct numerical simulation was carried out for flow in a heated
pipe of radius d and length L. The velocity field is turbulent and fully-
developed. The incompressible Newtonian fluid is heated with a
uniform heat flux qw imposed at the pipe wall. The fluid properties
are assumed to be constant and the temperature is treated as a
passive scalar. The three-dimensional incompressible Naviere-
Stokes equations in cylindrical coordinates can be written as

vu
vt

þ NðuÞ ¼ �VP0 þ nV2uþ F; (5)

V$u ¼ 0; (6)
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where P0 ¼ p0/r is the kinematic fluctuating pressure, N(u) repre-
sents the non-linear advection terms implemented in skew-
symmetric form for robustness and the velocity vector is
u(x,r,q,t) ¼ (ux,ur,uq). Coordinates in the axial, radial and azimuthal
directions are denoted by x, r, q respectively. The last term in
Equation (5) is the forcing vector F ¼ (Fx,0,0), where Fx ¼ 2u2t=d is
the axial driving force per unit mass that corresponds to the mean
pressure gradient in the x-direction. Its use allows both the pres-
sure and velocities to remain axially periodic. We consider no-slip
boundary conditions for all velocity components, and Neumann
boundary conditions for the pressure at the pipe wall.

The energy equation for passive scalar (temperature) transport
is

vT
vt

þ NðTÞ ¼ aV2T ; (7)

where N(T) represents the non-linear thermal advection terms in
skew-symmetric form, a¼ kc/rCp is the thermal diffusivity and kc is
the thermal conductivity. The temperature field is fully developed
(see below), and thus statistically homogeneous in the axial di-
rection. Periodic boundary conditions are used in the axial direction
for the temperature field.

Based on the unit length scale and the unit velocity scale, the
governing Equations (5)e(7) can be transformed to dimensionless
equations in a number of ways. There are two different approaches
that are usually employed. In the first approach, the fundamental
length scale is the pipe diameter, D ¼ 2d, and the unit velocity scale
is the bulk-flow velocity ub, which is defined as the ratio of mean
volumetric flow rate and pipe cross-sectional area (4〈Q〉/pD2). The
time scale is therefore D/ub. After normalization, (5) becomes

vU
vtb

þ NðUÞ ¼ �VP0b þ
1

ReD
V2Uþ F; (8)

where F ¼ ð16Re2t=Re2D;0;0Þ and ReD ¼ ubD/n is the bulk-flow Rey-
nolds number. In order to calculate the required dimensionless
axial force term, one has to estimate the value of Ret. One of the
common methods is to use the Blasius relationship [29] for tur-
bulent flow in a smooth pipe. At moderate Reynolds numbers
(2500 � ReD � 105), the Blasius law [29] for the smooth-pipe
relationship is given by

Ret ¼ 99:436� 10�3Re7=8D : (9)

The dimensionless temperature Q is traditionally defined as

Q ¼ 〈Tw〉� T
Tr

; (10)

where Tr ¼ qw/rCpub is a reference temperature based on bulk ve-
locity and 〈Tw〉 denotes the wall temperature averaged in time and
in the circumferential direction. Normalization of (7) using these
variables yields

vQ

vtb
þ U:VQ� Ux

1
Tr

v〈Tw〉
vX

¼ 1
ReDPr

V2Q; (11)

where Pr ¼ n/a is the Prandtl number and X ¼ x/D is the nondi-
mensional distance in streamwise direction. Due to axial period-
icity of the temperature field, the rate of change of ensemble-
averaged temperature becomes invariant. The wall thermal
boundary condition demands a linear increase of the bulk tem-
perature 〈Tb〉 in the axial direction. The following equalities are
satisfied for thermally fully developed flows,
v〈T〉
vX

¼ v〈Tb〉
vX

¼ v〈Tw〉
vX

¼ constant; (12)
and by adopting the mean energy balance for the current problem,
one can show that

v〈Tw〉
vX

¼ 4qw
rCpub

¼ 4Tr : (13)

The dimensionless energy Equation (11) can be written as

vQ

vtb
þ U:VQ� 4Ux ¼ 1

ReDPr
V2Q: (14)

This approach of nondimensionalization is employed in the
studies by McIver et al. [30]; Chin et al. [31,32] for the velocity field,
and by Saha et al. [33] for thermal field. One needs a good estimate
of the Reynolds number Ret (e.g., from an available correlation) in
order to fix the axial force term. This limitation can be overcome by
using the wall friction velocity, ut, to normalize (5)

vuþ

vtt
þ N uþ� � ¼ �VP0þ þ 1

2Ret
V2uþ þ F

þ
; (15)

where F
þ ¼ ð4;0;0Þ. Similarly, the thermal energy equation can be

normalised using the friction temperature, Tt, and then (7) takes
the form

vQþ

vtt
þ uþ:VQþ � 8

Ret
ReD

uþx ¼ 1
2RetPr

V2Qþ: (16)

One needs ReD in advance in order to integrate (16), i.e., the
solution to the NaviereStokes Equation (15) needs to have reached
a statistically steady state in order to evaluate ReD, and thus
maintain a constant ensemble-averaged temperature at each point.
Using normalised variables, the thermal boundary condition at the
wall is

Q ¼ Qþ ¼ 0: (17)

In the present study, the governing Equations (15) and (16) are
considered, as this avoids the need for any empirical correlation to
estimate the required parameters.
2.2. Numerical method

The present DNS code is based on a cylindrical-coordinate
spectral element/Fourier spatial discretization technique [34] that
can solve the governing Equations (15) and (16) with high spatial
accuracy. The spatial discretisation employs two-dimensional
spectral element mesh in the meridional semi-plane and Fourier
expansion in the azimuthal coordinate. Within each spectral
element 10th order GausseLobattoeLegendre Lagrange inter-
polants are employed. Exponential or spectral convergence can be
achieved through this method and it has successfully been used for
DNS of turbulent heat transfer in pipe flow [33]. Turbulent flow is
computed from an initial velocity and pressure field supplied by the
fully developed flow state obtained by Chin [6], while the initial
thermal field is given as the streamwise velocity component
multiplied by the Prandtl number. Simulations are carried out until
the ensemble average temperature at the centre of the pipe has
converged to a constant value. The validation of flow field and
thermal statistics has been successfully carried out in order to gain
confidence in the accuracy of the statistics. The validation pro-
cedures and the comparative results are documented by Saha [35].
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3. Datasets

Thermal statistics of pipe flow are derived from the DNS just
described. Channel flow data were gathered from the open litera-
ture. Momentum analyses indicate that the onset of the four layer
structure for pipe flow occurs at about Ret ¼ 180 [7]. Thus, the
parameter range of the present experiments allows comparison of
these two flows for a Reynolds number fixed near the onset of the
four layer regime for the momentum field. The influence of
different domain lengths on the accuracy of the various thermal
statistics was investigated and described in Saha et al. [33]. Here,
we present results from numerical simulations for Pr ¼ 0.025e0.71
in a pipe of length L/d¼ 8p and Pr¼ 1e7 for L/d¼ 4p at Ret ¼ 180. A
pipe length of L ¼ 8pdwas selected for all simulations at Ret ¼ 395.
This selection is a compromise between the required computa-
tional cost and the accuracy of various thermal statistics. Table 2
shows the simulation parameters and grid resolutions for the
present data sets. For each data set, the statistics were calculated
after the flow had reached a statistically steady state. High reso-
lution DNS data of turbulent channel flow and heat transfer from
Kawamura's group [23,24,36] for 0.025 � Pr � 7 and Ret ¼ 180 and
395 are also shown for comparison. It should be noted here that the
same thermal boundary condition (isoflux heating) for channel
flow DNS is used in the present pipe flow simulations.
4. Mean thermal energy equation

A rational starting point for scaling analysis of heat transfer is
the mean thermal energy equation. The companion analysis asso-
ciated with heat transfer in fully developed turbulent channel flow
has been presented in detail in Saha et al. [28]. As a result, we only
consider the case of pipe flow, and then compare with the channel
flow equation. We consider statistically stationary flow and heat
Table 2
Summary of comparison of DNS database for turbulent heat transfer in channel and
pipe flow. Pipe flow data is obtained from the present DNS whereas channel flow
data is adopted from the DNS database of Kawamura's group [23,24,36] at http://mu
rasun.me.noda.tus.ac.jp/turbulence/poi/poi.html.

Flow type Ret Pr Pet L/d Dxþ Dyþ Dzþ/D(dq)þ Symbol

Channel 180 0.025 4.5 12.8 9.0 0.20e5.90 4.5 5

Pipe 180 0.025 4.5 8p 9.0 0.178e5.589 4.4 ©
Channel 180 0.05 9 6.4 9.0 0.4e11.5 4.5 ✹

Pipe 180 0.05 9 8p 9.0 0.178e5.589 4.4 (

Channel 180 0.1 18 6.4 9.0 0.4e11.5 4.5 -

Pipe 180 0.1 18 8p 9.0 0.178e5.589 4.4 ,

Channel 180 0.2 36 6.4 9.0 0.4e11.5 4.5 )

Pipe 180 0.2 36 8p 9.0 0.178e5.589 4.4 ∅
Channel 180 0.4 72 6.4 9.0 0.4e11.5 4.5 +

Pipe 180 0.4 72 8p 9.0 0.178e5.589 4.4 4

Channel 180 0.6 108 6.4 9.0 0.4e11.5 4.5 ;

Pipe 180 0.6 108 8p 9.0 0.178e5.589 4.4 ▽
Channel 180 0.71 127.8 6.4 1.1 0.05e0.97 1.1 C

Pipe 180 0.71 127.8 8p 9.0 0.178e5.589 4.4 B

Channel 180 1.0 180 6.4 1.1 0.05e0.97 1.1 <

Pipe 180 1.0 180 4p 4.5 0.06e3.73 4.4 8

Channel 180 2.0 360 6.4 1.1 0.05e0.97 1.1 A

Pipe 180 2.0 360 4p 4.5 0.06e3.73 4.4 ◊
Channel 180 5.0 900 6.4 4.5 0.20e5.90 2.25 :

Pipe 180 5.0 900 4p 4.5 0.02e1.65 2.2 △
Channel 180 7.0 1260 6.4 0.56 0.05e0.97 1.1 =

Pipe 180 7.0 1260 4p 4.5 0.02e1.65 2.2 ⊲
Channel 395 0.025 9.875 12.8 9.88 0.15e6.52 4.94
Pipe 395 0.025 9.875 8p 9.9 0.13e8.2 4.85
Channel 395 0.71 280.45 6.4 1.2 0.11e2.1 2.5
Pipe 395 0.71 280.45 8p 9.9 0.04e3.6 4.85
Channel 395 1.0 395 6.4 1.2 0.11e2.1 2.5
Pipe 395 1.0 395 8p 9.9 0.04e3.6 4.85
transfer in an axisymmetric pipe. By applying Reynolds decompo-
sition and time averaging (7) becomes

ux
vT
vx

¼ a

"
v2T
vx2

þ 1
r

v

vr

 
r
vT
vr

!#
� 1

r
v
�
r〈u0rT 0〉

�
vr

; (18)

where ux is the streamwise mean velocity, T is the mean temper-
ature, u0r is the fluctuating radial velocity and T0 is the fluctuating
temperature. The expression for the mean axial temperature
gradient (13) allows (18) to be written as

2qwux
rCpubd

¼ n

rPr
v

vr

 
r
vT
vr

!
� 1

r
v
�
r〈u0rT 0〉

�
vr

: (19)

The boundary conditions at the pipe wall, r ¼ d, are

ux ¼ u0r ¼ T 0 ¼ 0;
vT
vr

¼ qw
kc

: (20)

This implies that there are no fluctuating components of
streamwise velocity and temperature at the wall. At the centreline,
r ¼ 0,

vT
vr

¼ 〈u0rT
0〉 ¼ 0: (21)

Integrating (19) with respect to r from the pipe centre (r ¼ 0) to
some arbitrary r (r < d) and making use of the boundary conditions
(21) yields

2qw
rCpubrd

Zr
0

ruxdr ¼ n

Pr
vT
vr

� 〈u0rT
0〉: (22)

It is convenient to rewrite (19) in terms of the distance from the
wall, y ¼ d � r. Using this and (22) yields

2qw
rCpubd

264 1

ðy� dÞ2
Zd�y

d

ðy� dÞuxdy� ux

375 ¼ n

Pr
v2T
vy2

� v〈u0rT 0〉
vy

;

(23)

where the bulk velocity can be expressed as

ub ¼ 2
d2

Zd
0

ðd� yÞuxðyÞdy: (24)

By employing the non-dimensional mean temperature variable,
Q

þ, the inner normalized form of (23) becomes

1
Pr

d2Qþ

dyþ2 þ dT
þ
q

dyþ
þ ε

2Rs
�
yþ
�
¼ 0; (25)

where RsðyþÞ ¼ 2=uþb ½1=ðyþ � dþÞ2
Z dþ�yþ

dþ
ðyþ � dþÞuþx dyþ � uþx � is

the scaled thermal advection function, dþ ¼ Ret, ε ¼ 1=
ffiffiffiffiffiffi
dþ

p
and

T
þ
q ¼ �〈u0rT 0〉

þ is the inner normalized radial turbulent heat flux.
Similarly, the outer normalised form of (18) becomes

ε
2

Pr
d2Qþ

dh2
þ dT

þ
q

dh
þ RsðhÞ ¼ 0; (26)

where RsðhÞ ¼ 2=ub½1=ðh� 1Þ2
Z 1�h

1
ðh� 1Þuxdh� ux� and h¼ y/d is

the outer normalized wall normal distance. Equations (25) and (26)
are analogous to the mean energy equations for channel flow [28]

http://murasun.me.noda.tus.ac.jp/turbulence/poi/poi.html
http://murasun.me.noda.tus.ac.jp/turbulence/poi/poi.html
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except the expressions for T
þ
q and Rs are for a circular geometry.

For future reference, we also note that the formulation of Wei
et al. [25] provides an alternate form of the inner normalised en-
ergy equation

d2j

dy2s
þ dT

þ
q

dys
þ s2RsðysÞ ¼ 0;

A þ B þ C ¼ 0

(27)

where j ¼ Q
þ
=Q

þ��
h¼1, s

2 ¼ Q
þ��

h¼1=ðPrdþÞ, ys ¼ h/s2 is the new
inner normalized distance and the scaled advection function is
Rs(ys) ¼ Rs(h(ys)) ¼ Rs(s2ys). The boundary conditions on (27) are

j ¼ T
þ
q ¼ 0;

dj
dys

0ð Þ ¼ 1 at ys ¼ 0: (28)

An alternate inner variable is introduced here to identify the
dependences on Pr and it can be expressed by assuming the power
law effect of Prandtl number as

yþq ¼ Prbyþ; (29)

where b is a constant coefficient. Employing it in (25) yields

d2Qþ

dyþ2
q

þ dT
þ
f

dyþq
þ f2Rq

�
yþq
�
¼ 0;

A þ B þ C ¼ 0

(30)

where Rqðyþq Þ ¼ Rsðhðyþq ÞÞ ¼ RsðPr�byþq =d
þÞ, T

þ
f ¼ Pr1�bT

þ
q and

f ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþPr2b�1

p
. The thermal boundary conditions at the pipe

wall, yþq ¼ 0, are

Q
þ ¼ 0;

dQþ

dyþq
¼ Pr1�b: (31)
Fig. 1. Sketch of the four layers structure of the leading terms in (30) for fixed Peclet
number; layer I is the molecular diffusion/mean advection balance layer, layer II is the
heat flux gradient balance layer, layer III is the heat flux gradient/mean advection
balance meso layer and layer IV is the turbulent heat flux gradient/mean advection
balance layer. Note that across layer III the turbulent heat flux gradient crosses through
zero, and there is an exchange of leading order balance.
At sufficiently high Ret, Rqðyþq Þ is O(1) for all values of yþq except
in the region interior to the peak in the Reynolds shear stress. Note
also that (27) and (30) are governed by three mechanisms;
A ¼ gradient of the molecular diffusion flux, B ¼ gradient of the
turbulent transport flux and C ¼ mean streamwise advection.

5. Thermal scaling characteristics

During the transitional regime in the channel, the balance of
leading order terms in the mean energy equation has yet to orga-
nize into the distinct four layer structure [28]. A representative
smooth-wall four layer thermal structure at a fixed Peclet number
is illustrated in Fig.1 based on the ratio of the heat flux gradients (A/
B in (27) or (30)). Within each layer the terms in (27) or (30) are not
all of leading order. The magnitude of the ratio (A/B) exceeds unity
in layer I, indicating a nominal balance between the mean
streamwise advection and the gradient of molecular diffusion flux,
and thus coincides with the traditional conductive sublayer. In layer
II, the dominant balance is between the gradient of the molecular
diffusion flux and turbulent transport flux. All three terms are of
equal order across layer III, whereas the A term loses leading order
and there exists a dominant balance between the B and C terms in
layer IV. Here we investigate the proposed scalings (described in
Saha et al. [28] for channel flow) associated with thermal four layer
structure of pipe flow.

5.1. Minimum Prandtl number

Themagnitude orderings of terms A, B and C in (27) and (30) are
used to explore the Ret and Pr dependencies on the formation of the
four layer regime, see [28]. Here it is useful to reiterate that the
scaled advection function (term C), although distinct from the
channel flow case, approaches a constant in the outer region for
increasing Ret and fixed Pr, and that the onset of the four layer
regime for momentum occurs at nominally the same Reynolds
number Ret ¼ 180 for both pipe and channel flows [7,9].

By examining the ratio of terms A/B as shown in Fig. 2(a), we can
explore the onset of the four layer regime for the thermal field in
pipe flow. Here the aim is to determine the minimum Prandtl
number for the existence of the thermal four-layer structure for Ret
at least at the onset of the four-layer regime for the momentum
field. Using the criterion based on the ordering of terms in layers II
and IV, we estimate the lowest value of Pr for Ret� 180 that satisfies
the thermal four-layer structure. In order to satisfy the criteria
proposed by Elsnab et al. [9], the ordering of the terms A, B and C
should be such that jB/Cjmax � 10 in layer II and jB/Ajmax � 10 in
layer IV. A close examination of Fig. 2(a) for Pr < 0.6 reveals that in
layers II and III these criteria are not simultaneously met. At Pr ~ 0.6,
however, jB/Cj attains a maximum value of 14.6 in layer II and jB/
Ajmaxx 11.23 in layer IV. This confirms that, similar to channel flow,
the onset of the four layer thermal regime occurs for Pr � 0.6 at
Ret x 180.

5.2. The four layer regime

Fig. 2(b) plots the heat flux gradient ratio (A/B) as a function of
yþq ¼ Pr yþ for Pr � 0.6. It exhibits the distinct four-layer structure
also found in channel flow. In layer I, however, this ratio attains
large negative values for low Pr. This is different from the channel,
e.g., see Fig. 5(d) in Saha et al. [28]. For increasing Prandtl number,
the beginning of layer II moves to smaller yþq . As expected, the outer
edge of the �1 ratio region moves to greater yþq with increasing
Reynolds and Prandtl numbers. Around the location of the peak
turbulent heat flux, there is a balance breaking and exchange
process where all three terms are of the same order (layer III). The



Fig. 2. Ratio of the gradient of the molecular diffusion flux to the gradient of the turbulent transport flux (A/B) in pipe flow. Symbol shapes for DNS data are given in Table 2. (a) The
solid lines mark data for Pr � 0.6. The wall normal distance yþq is chosen as yþ for the case at b ¼ 0 (see Equation (29)). (b) Results are from the present proposal of (30) for b ¼ 1 and
Pr � 0.6. All black symbols represent data for Ret ¼ 180 and red symbols for Ret ¼ 395. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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dynamical characteristics of layer III leads one to consider how to
best express the mean energy equation in an invariant form that
properly reflects this leading order balance. The last layer (layer IV)
clearly shows that the leading balance here is between the gradi-
ents of turbulent heat flux and the streamwise mean advection.

6. Comparison of inner and outer scaling

6.1. Mean temperature profiles

The conventional way to represent the mean temperature near
the wall involves normalization using the friction temperature and
the viscous length scale, e.g., [19,21,23]. Fig. 3 compares the inner-
normalised mean temperature between pipe and channel flows.
The influences of Prandtl and Reynolds numbers are separately
marked in Fig. 3(a) and (b). Apart from a narrow zone within the
molecular sublayer (layer I), the mean temperature profiles do not
merge anywhere for varying Pr, see Fig. 3(a). An underlying reason
for this is that the normalisation parameter does not include the
effect of Prandtl number explicitly. This point is clarified in Fig. 3(b),
which shows that the traditional inner normalizationworks well in
layer I (at least) for fixed Prandtl number.

A noticeable difference between the pipe and channel flow
temperature profiles is apparent in the logarithmic layer at higher
Prandtl numbers. Here, there is a tendency for pipe flows to have a
higher normalized temperature. This observation is consistent with
the findings of Piller [19]. A similar observation was also noted by
Chin [6] when comparing the streamwise mean velocity in pipes
Fig. 3. Comparison of traditional inner scaling of mean temperature for pipe and channel sh
The upward shifted data shown in (a) has higher value of Pr. Symbol shapes for DNS data are
All black symbols/lines represent data for Ret ¼ 180 and red symbols/lines for Ret ¼ 395. (Fo
the web version of this article.)
and channels, where the pipe mean velocity profile exhibited a
larger wake function. Comparison of the mean temperature in the
pipe and channel (Fig. 3) reveals that Kader's correlation fails to
merge the mean temperature profiles of both pipe and channel
flows, irrespective of variations in Reynolds and Prandtl numbers.

The shortcoming of the traditional inner scaling near the wall
can be addressed by an alternate scaling based on a Taylor series
expansion of the mean temperature profile. The resulting normal-
ised mean temperature depends on Prandtl number and was
employed by Redjem-Saad et al. [21] for pipe flow and Kawamura
et al. [24], Abe et al. [37], Kawamura et al. [38] for channel flow. This
alternate normalization for themean temperature,Qþ

=Pr, is shown
in Fig. 4(a). Emphasis is on the vicinity of thewall, where the profile
displays an asymptotic behaviour within the conductive sublayer
for both pipe and channel flows. Using a Pre dependent thermal
length scale with an exponent b, the proposed inner scaling (30)
also yields invariant mean temperature profiles near the wall for
both pipe and channel flows. Here the value of the coefficient b is
set to 1 based upon the parametric investigation performed by Saha
et al. [28]. The proposed scaling is illustrated in Fig. 4(b). This
normalisation yields profiles very similar to the alternate normal-
ization, but without altering the value of the mean temperature.
Under the current scaling framework, both pipe and channel flow
data show marginal deviations in the mean temperature profiles
for higher Pr and Ret.

The inner normalised mean temperature that follows the
formulation of Wei et al. [25] as mentioned in (27) is illustrated in
Fig. 5. Near the wall, the comparison between pipe and channel
owing effect of (a) Prandtl numbers at Ret ¼ 180 and (b) Reynolds numbers at Pr ¼ 0.71.
given in Table 2. The solid lines show temperature profiles from Kader's correlation [11].
r interpretation of the references to colour in this figure legend, the reader is referred to



Fig. 4. Comparison of inner scaling of mean temperature for pipe and channel. (a) Alternate inner scaling and (b) proposed inner scaling (30) for b ¼ 1. Symbol shapes for DNS data
are given in Table 2. All black symbols represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red symbols for Ret ¼ 395 and Pr ¼ 0.71, 1.0. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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flows yields a convincing profile invariance. In the outer part, the
change of Reynolds number, however, separates the temperature
profiles showing the existence of logarithmic region of the nor-
malised mean temperature. Furthermore, the variation of Prandtl
number does not show any impact on the mean temperature near
thewall. This is seen by observing the profiles for the black symbols
(Ret ¼ 180) and the red symbols (Ret ¼ 395).

Although the traditional inner normalization of the mean tem-
perature fails to scale the data properly, the outer-normalisedmean
temperature profiles appear to nominally exhibit invariance with
both Pr and Ret for ha0:2. This is shown in Fig. 6, where the inner-
normalized mean temperature is plotted in defect form.
6.2. RMS temperature profiles

The traditional inner and outer scaling of the root-mean-square
(rms) temperature fluctuation is compared for channel and pipe
flows in Fig. 7. This normalization fails to produce an invariant
profile near the pipe or channel wall (see Fig. 7(a)). Fig. 7(b) shows
that the peak of the temperature rms increases and moves to
smaller yþ with increasing Ret, and especially Pr (see also [14,21]).
Interestingly, there exists a weak dependence on the flow config-
uration that is most easily seen at higher Ret and Pr. Both Piller [19]
Fig. 5. Comparison of inner scaling of mean temperature for pipe and channel
following Wei et al. [25] as mentioned in (27). Symbol shapes for DNS data are given in
Table 2. All black symbols represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red
symbols for Ret ¼ 395 and Pr ¼ 0.71, 1.0. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
and Redjem-Saad et al. [21] compared the temperature rms profiles
in pipe and channel flows. They observed that the rms of temper-
ature fluctuation of pipe flow was slightly larger than that of
channel flow in the region from the location of the peak to the axis
of the pipe or channel. In fact, Redjem-Saad et al. [21] found that
this behaviour was most strongly influenced by variations in Pr, as
also observed in the present comparison.

The failure of inner-normalisation in Fig. 7 promotes the
investigation of alternative normalizations. Taylor series expan-
sions can be used to represent the temperature rms as y / 0,

Q
0þ ¼ Pr

�
bqyþ þ cqyþ2 þ…

�
; (32)

see [14,21,24]. According to the prediction of Redjem-Saad et al.
[21], bq should be independent of Pr if the Prandtl number is higher
than a certain limiting value (Pr � 0.71 for Ret ¼ 186). Kawamura
et al. [14,24] found an approximately constant value of the coeffi-
cient bq for Pr � 0.2. The logarithmic plot of Q0þ

rms=Pr in Fig. 8(a)
confirms the near-wall profile invariance for both pipe and channel
flows. Our selection of data for Pr � 0.6 also shows that the value of
bq is independent of Pr in the vicinity of the wall. Moreover,
Kawamura et al. [14], Redjem-Saad et al. [21] employed the alter-
nate normalization,Q0þ

rms=Pr y
þ versus yþ, in semi-logarithmic axes,
Fig. 6. Comparison of traditional outer scaling of mean temperature (temperature
defect law) for pipe and channel. Symbol shapes for DNS data are given in Table 2. All
black symbols represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red symbols for
Ret ¼ 395 and Pr ¼ 0.71, 1.0. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)



Fig. 7. Comparison of traditional (a) inner and (b) outer scaling of rms of temperature fluctuation for pipe and channel. Symbol shapes for DNS data are given in Table 2. All black
symbols represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red symbols for Ret ¼ 395 and Pr ¼ 0.71, 1.0. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. Comparison of inner scaling of rms of temperature fluctuation for pipe and channel. (a) Alternate inner scaling (32) and (b) proposed inner scaling (30) for b ¼ 1. Symbol
shapes for DNS data are given in Table 2. All black symbols represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red symbols for Ret ¼ 395 and Pr ¼ 0.71, 1.0. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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which allowed them to easily determine the asymptotic value of bq
as y / 0. The value of the coefficient bq near the wall for pipe flow
was estimated by Redjem-Saad et al. [21] to be approximately 0.4
for Pr � 0.71 at Ret ¼ 186, whereas Kawamura et al. [14] found a
slightly lower value (bq x 0.38 at Ret ¼ 180) in the channel.

The proposed scaling (30) based on a Pr-dependent thermal
length scale replicates a similar trend in the vicinity of the wall (see
Fig. 8(b)). Like the proposed mean temperature profile (Fig. 4(b)),
the influence of Reynolds and Prandtl number on the temperature
rms is effectively removed near thewall. From this, we surmise that
the proposed scaling approach (30) successfully satisfies the inner-
normalisation requirements for both mean and fluctuating
Fig. 9. Comparison of traditional (a) inner and (b) outer scaling of turbulent heat flux for
represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red symbols for Ret ¼ 395 and Pr ¼ 0.7
referred to the web version of this article.)
temperature and is applicable to both pipe and channel flows.
Moreover, the present comparison between pipe and channel dis-
plays consistent, but not identical trends for all values of Pr and Ret.
This is mainly due to the change of the duct curvature which affects
the distribution of thermal boundary conditions, as explained in
greater detail in x 6.4.

6.3. Wall-normal or radial heat fluxes

A comparison of the inner and outer-normalised turbulent heat
flux profiles is shown in Fig. 9. Existing (channel) and present (pipe)
DNS data reveal that the traditional inner normalisation fails to
pipe and channel. Symbol shapes for DNS data are given in Table 2. All black symbols
1, 1.0. (For interpretation of the references to colour in this figure legend, the reader is



Fig. 10. Comparison of inner scaling of turbulent heat flux for pipe and channel. (a) Alternate inner scaling and (b) proposed inner scaling (30) for b ¼ 1. Symbol shapes for DNS data
are given in Table 2. All black symbols represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red symbols for Ret ¼ 395 and Pr ¼ 0.71, 1.0. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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yield an invariant profile for varying Reynolds and Prandtl numbers
even within a couple of yþ units from the wall. These profiles also
display an apparent flow configuration influence. For Pr > 0.71,
traditional outer normalization, however, yields a much tighter
clustering of the profiles over an outer domain that extends from
the centreline inward. Neither of these normalizations yields an
invariant profile in the vicinity of the peak. It is also apparent from
Fig. 9(a) that for fixed Ret the inner normalisedmaximum turbulent
heat flux location moves outward with increasing Prandtl number,
while the outer normalized peak location moves inward (Fig. 9(b)).
Furthermore, the outer normalised pipe flow profile shows a
noticeably higher value than for the channel flow. Piller [19] and
Redjem-Saad et al. [21] also observed the similar behaviour of
higher intensity temperature fluctuations for pipe flow when
compared with channel flow.

Many researchers [14,21,24,38] have suggested the alternate
inner scaling of turbulent heat flux based on a Taylor series
expansion about the wall. In order to display the near wall effect,
this alternate scaling modifies the turbulent heat flux normalised
by Prandtl number as shown in Fig. 10(a). One of the interesting
features of this scaling is that at comparable parameter values the
pipe and channel flow profiles are convincingly the same. Unlike
the mean temperature, our proposed inner normalization (30)
Fig. 11. Comparison of inner scaling of turbulent heat flux for pipe and channel
following Wei et al. [25] as mentioned in (27). Symbol shapes for DNS data are given in
Table 2. All black symbols represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red
symbols for Ret ¼ 395 and Pr ¼ 0.71, 1.0. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
using b ¼ 1 does not produce an invariant heat flux profile.
Fig. 10(b) shows that this normalization exhibits a strong depen-
dence on both Reynolds and Prandtl numbers. This apparent limi-
tation of the proposed scaling (30) was previously reported in Saha
et al. [28]. For channel flow, the relevant observation here is that the
mean temperature profile adjacent to the wall can be made
invariant by stretching either Qþ or yþ by a function of Pr. For the
heat flux, however, invariance is only attained by self-consistently
stretching T

þ
q .

The scaling proposed by Wei et al. [25] as mentioned in (27)
causes the profiles to approximately merge near the wall (see
Fig. 11). Note also that the peak values of the profiles increase to-
ward unity with increasing Reynolds and Prandtl numbers. The
normalised heat flux profiles, however, indicate a noticeable
dependence on the duct geometry from the near-wall region to the
centre of the pipe (open symbols) or channel (closed symbols).
6.4. Streamwise heat fluxes

The streamwise turbulent heat flux, T
þ
s ¼ 〈u0xT 0〉þ, normalized

by the friction velocity and temperature is shown in Fig. 12. The
traditional inner and outer normalisations of the streamwise heat
flux profiles do not distinguish in the respective inner and outer
regions between the pipe and the channel results. These observa-
tions agree well with the comparisons performed by Piller [19] and
Redjem-Saad et al. [21]. Upon closer inspection of these profiles,
one notes a discrepancy in the peak values in these two flows. The
value of T

þ
s which increases with increasing Pr, has a slightly higher

turbulent heat flux T
þ
s;peak ¼ 18:69 for pipe compared with channel

flow T
þ
s;peak ¼ 18:28 at Pr ¼ 7 and Ret ¼ 180. Moreover, the location

of the near-wall peak flux seems to shift towards the wall with
increasing Pr and Ret. Another observation is noticed in the outer
core region. The outer-normalised heat flux profiles (Fig. 12(b))
exhibit an identical curve for both pipe and channel flows. This is
interesting since the respective streamwise velocity [6] or tem-
perature rms under outer normalisation each possess a slightly
greater value for pipe DNS than for channel DNS.

An alternate inner scaling using the ratio of T
þ
s =Pr is shown in

Fig. 13(a) with emphasis on the near-wall region. Taylor series
expansion of the temperature and velocity fluctuations allows the
streamwise heat flux to be expressed as

T
þ
s ¼ Pr

�
bxbqyþ2 þ cxcqyþ3 þ…

	
; (33)

where the correlation coefficient bxbq in the vicinity of the wall is
expected to be independent of Pr within the selected range. Both



Fig. 12. Comparison of traditional (a) inner and (b) outer scaling of streamwise turbulent heat flux for pipe and channel. Symbol shapes for DNS data are given in Table 2. All black
symbols represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red symbols for Ret ¼ 395 and Pr ¼ 0.71, 1.0. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 14. Schematic of applied heat flux and eddies in pipe and channel cross-section,
views taken along mean flow direction. This figure is adapted and modified from [6].
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Kawamura et al. [24] and Redjem-Saad et al. [21] presented this
alternate inner-normalization for channel and pipe flows, respec-
tively. The near-wall behaviour is revealed for both channel and
pipe flows in the present comparison. A weak dependence on Pr is
evident in Fig. 13(a). Similar to T

þ
q , the proposed inner-scaled pro-

files fail to merge in the vicinity of the wall for varying Ret and Pr.
The reasons for higher amplitude thermal statistics in the pipe

when compared to the channel remains an open question. Piller
[19] and Redjem-Saad et al. [21] suggested the effect of wall cur-
vature. The decreasing region of interaction from the opposing wall
offers a separate explanation (see Fig. 14). Similar to the explana-
tion proposed by Chin [6] for velocity statistics, pipe flow forces the
motions near the centerline to interact more vigorously; possibly
leading to higher velocity fluctuations. Similarly, the inward
applied heat flux contributes more strongly to higher temperature
fluctuations in pipe flows, whereas in the channel the distribution
of applied heat flux in the spanwise direction has a weaker inter-
action in the core region.
7. Comparisons of intermediate layer normalizations

From the analysis of the mean energy equation discussed at the
outset, layer III is where all three of the terms in Equation (27) or
(30) have the same order of magnitude. Regardless of Ret or Pr
this occurs in a region surrounding the peak turbulent heat flux.
Our goal is to rescale (27) or (30) such that all the terms are formally
O(1) in layer III. Following Wei et al. [25], a successful rescaling will
take the form
Fig. 13. Comparison of inner scaling of streamwise turbulent heat flux for pipe and channe
shapes for DNS data are given in Table 2. All black symbols represent data for Ret ¼ 180 and 0
references to colour in this figure legend, the reader is referred to the web version of this
cys ¼ sðys � ysmÞ; cTq ¼ ð1=sÞ
�
T
þ
q � T

þ
qm

�
; bj ¼ j� jm; (34)

where ysm is the location of the peak turbulent heat flux, T
þ
qm are

the peak value of turbulent heat flux and jm is the normalised
mean temperature at ysm (see Saha et al. [28]). Using the above
variables, the invariant form of the mean energy Equation (27)
becomes

d2bj
dby2s þ dcTq

dbys þ 1 ¼ 0: (35)
l. (a) Alternate inner scaling (33) and (b) proposed inner scaling (30) for b ¼ 1. Symbol
.6 � Pr � 7.0, and red symbols for Ret ¼ 395 and Pr ¼ 0.71, 1.0. (For interpretation of the
article.)



Fig. 15. Comparison of mesoscaling of (a) mean temperature and (b) turbulent heat flux between pipe and channel following Wei et al. [25] as mentioned in (35). Symbol shapes for
DNS data are given in Table 2. All black symbols represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red symbols for Ret ¼ 395 and Pr ¼ 0.71, 1.0. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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The desired invariant form is attained, as all of the normalized
terms are formally O(1). Note that dT

þ
q =dh is formally equal to

dbT q=dbys, and thus the intermediate scaled Equation (35) identically
matches the outer normalised Equation (26). This indicates that the
intermediate scaling should be appropriate for the turbulent heat
flux data into the outer region as long as the peak position is set at
the origin.

As explained in Saha et al. [28], the above formulation (35) fails
to produce invariant profiles of mean temperature in channel DNS.
Hence, it is our natural interest to investigate the existence of
invariant profiles for both pipe and channel using our proposed
scaling. This is done by repeating the rescaling procedure just
described to yield (35), but beginning with (36). Doing this reveals
that the inner normalised form of the mean energy Equation (30)
has corresponding intermediate variables

by ¼
ffiffiffiffiffiffi
Pr
dþ

r �
yþ � yþm

�
¼

ffiffiffiffiffiffiffiffiffiffi
dþPr

p
ðh� hmÞ; (36)

bTf ¼
ffiffiffiffiffiffiffiffiffiffi
dþPr

p �
T
þ
q � T

þ
qm

�
; (37)

bQ ¼
�
Q

þ �Q
þ
m

�
: (38)

Since the above meso-scaled variables do not depend on the
coefficient b, it is expected to yield a universal form of (30), also see
Seena and Afzal [39]. The resulting invariant form of the mean
energy equation is
Fig. 16. Comparison of the proposed mesoscaling (39) of (a) mean temperature and (b) tur
Table 2. All black symbols represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red symbols for
legend, the reader is referred to the web version of this article.)
d2 bQ
2 þ dbTfb þ 1 ¼ 0: (39)
dby dy

We explore the profile behaviours implied by (35) and (39).
Fig. 15 shows the profile normalizations of the mean tempera-

ture and turbulent heat flux associated with (35). As indicated, this
formulation fails to produce invariant mean temperature profiles
from bysm to the outer region. On the other hand, the heat flux
profiles under this normalization appear to merge, at least
approximately. As previously shown for channel flow [28], these
behaviours stem from introducing a normalized temperature
function other than Qþ. Interestingly, while the mean temperature
profiles are not invariant, there do not appear to be any significant
differences in the meso-scaled profiles from the pipe and channel.
This reinforces the intermediate scaling strategy explored by Wei
et al. [4] for the Reynolds shear stress.

Fig. 16 shows the mean temperature and heat flux scaled ac-
cording to (39). Over the relevant domain, all of the profiles merge
onto a single curve under the coordinate stretching produced by
the variables by, bQ and bTf. This scaling for mean temperature and
turbulent heat flux is apparently valid over an interior region that
extends from inside the peak in T

þ
q to a zone near the centerline. In

general, the theory indicates that this scaling should be valid in a
domain surrounding yþmðby ¼ 0; bTf ¼ 0Þ having an extent of
Dby ¼ Oð1Þ. As noted previously, however, this scaling naturally
melds with outer scaling, and thus in these coordinates it is
analytically predicted to extend to the centerline. Within the
domain just described, no significant differences between pipe and
channel flow data are observed (similar to the results of Wei et al.
[4]). For the present data sets, this domain extends from
bulent heat flux between pipe and channel. Symbol shapes for DNS data are given in
Ret ¼ 395 and Pr ¼ 0.71, 1.0. (For interpretation of the references to colour in this figure



Fig. 17. Comparison of approximate mesoscaling (41) of turbulent heat flux between
pipe and channel. Symbol shapes for DNS data are given in Table 2. All black symbols
represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red symbols for Ret ¼ 395 and
Pr ¼ 0.71, 1.0. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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�2< by <32. The intermediate scaling does not, however, hold in a
narrow region near the wall. This is where the scaling patch asso-
ciated with inner length is expected to hold. Like the mean tem-
perature profile, the scaled turbulent heat flux profiles convincingly
support the theory, as the profiles of Fig. 16(b) increasingly merge
onto a single curve with increasing Peclet number (Pet ¼ dþPr). The
lack of a proper inner scaled thermal heat flux indirectly restricts
the generality of this approach all theway to thewall. This is further
demonstrated by considering the properties of the underlying layer
hierarchy (explained below).

In order to evaluate the mesoscaled variables by and bTf, one
requires prior knowledge of the maximum turbulent heat flux
value and its location. Due to the limitation of precisely deter-
mining the value of hm and T

þ
qm, Wei et al. [4] proposed an

‘approximate’ mesoscaling. This scaling is based upon the limiting
behaviours of hm and T

þ
qm, which can be estimated for sufficiently

high Peclet number (Pet ¼ dþPr) as follows

hm ¼ O
�
1=

ffiffiffiffiffiffiffi
Pet

p �
; T

þ
qm ¼ 1� O

�
1=

ffiffiffiffiffiffiffi
Pet

p �
: (40)

From this, (36) and (37) then yield
Fig. 18. Comparison of layer width distribution of the L2 hierarchy for heat transfer in pipe
present case for b ¼ 1. Symbol shapes for DNS data are given in Table 2. All black symbols
Pr ¼ 0.71, 1.0. (For interpretation of the references to colour in this figure legend, the reade
by ¼
ffiffiffiffiffiffiffi
Pet

p
h� Oð1Þ; bTf ¼

ffiffiffiffiffiffiffi
Pet

p �
T
þ
q � 1

�
þ Oð1Þ: (41)

Thus an approximate scaling (41) can be constructed by plottingffiffiffiffiffiffiffi
Pet

p ðTþ
q � 1Þ versus ffiffiffiffiffiffiffi

Pet
p

h, without necessarily knowing the value
of hm and T

þ
qm. As shown in Fig. 17, the turbulent heat flux profiles

for both pipe and channel flows nominally merge to a single curve,
particularly for the higher Peclet number. This approximate scaling
is theoretically expected to improvewith increasing Peclet number.

8. Length scale hierarchy for the thermal field

The balance breaking and exchange of terms in layer III (as
shown in Fig. 2) is a consequence of a continuum of scaling layers.
This approach is analogous to the scaling behaviours for the mo-
mentum field as first introduced by Fife et al. [40]. Using the
invariant form of themean energy equation,Wei et al. [25] revealed
a self-similar structure, where the heat transfer occurs across a
hierarchy of layers, each of which having a distinct characteristic
width. In the present study, deeper consideration of (35) or (39)
reveals that the associated intermediate normalization arises as
an average property of an underlying continuous hierarchy of
scaling layers [25,28]. We denote this as the L2 layer hierarchy. This
hierarchy is bounded in space between the positive and negative
peaks in dTq/dy. Importantly, across each layer on the hierarchy
there is a balance breaking and exchange of terms, in (35) or (39),
that occurs at increasing scale with distance from the wall.

The self-similar heat transfer mechanism from layer to layer can
be revealed from the invariant form of the mean energy Equation
(35) or (39). A primary characteristic of the L2 hierarchy is its
associated length distribution, W, which measures the width of
each L2 layer as a function of ys or yþq . Here L denotes any given
layer on the hierarchy and the subscript to its dependence on the
parameter 2 given by (43). The width of these scaling layers in-
creases with distance from very near the wall to near the pipe or
channel centreline. Analogous to the momentum analysis, from the
decay rate of the turbulent heat flux gradient, it is possible to
calculate the layer width distribution, W across the hierarchy. Wei
et al. [25] show that

WðysÞ ¼ O
�
2�1=2

�
; (42)

where the parameter 2 is expressed as

2 ¼ dT
þ
q

dys
þ s2RsðysÞ: (43)
and channel flow. (a) Formulation based on Wei et al. [25] as mentioned in (42) and (b)
represent data for Ret ¼ 180 and 0.6 � Pr � 7.0, and red symbols for Ret ¼ 395 and
r is referred to the web version of this article.)
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We are able to evaluate the criterion for the logarithmic-like
dependence of the normalised mean temperature with increasing
Reynolds and Prandtl numbers. A linear W(ys) profile (exact or
approximate) is formally required for there to exist an exact or
approximately logarithmic mean temperature profile [25]. Fig. 18
shows the comparison of the W(ys) and similarly Wðyþq Þ profiles
for the channel and pipe flows of Table 2. Scaled mean temperature
profile data (Fig. 18(a)) suggest that logarithmic-like dependence
begins to emerge for ys � 1. Indications from the momentum field
analysis indicate, however, that the inertial log layer occurs beyond
the peak in the Reynolds stress. Thus, the expectation here is that
the “true” log layer for temperature occurs beyond the peak in T

þ
q ,

see Fig. 11. Comparisons reveal, however, that the logarithmic mean
temperature profile is more subtly established than for the mean
velocity profile [41]. One of the remarkable observations is that the
W distribution is almost invariant over the interior domain of in-
terest for the formulation of Wei et al. [25], whereas the formula-
tion underlying the invariant form (39) shows sharp distinction
between theWðyþq Þ profiles at different Ret and Pr. From Fig. 18 it is
also clear that higher Ret data (at any fixed Pr) are needed to fully
clarify the emergence of a logarithmic mean temperature profile.

9. Conclusion

DNS data for fully-developed turbulent pipe and channel flows
have been utilized to explore the scaling properties of the mean
thermal energy equation. The analysis employs a theory based on
the magnitude ordering of terms in the mean equation. Identifying
the leading order terms in the mean energy equation of turbulent
pipe flow reveals a four layer structure. This structure depends on
Ret and Pr, and is similar to that found for channel flow. The
traditional inner scale is transformed into a new inner length, and
the invariant form admitted by the relevant form of the mean en-
ergy equation is determined. These invariant forms apply to inner,
outer and intermediate regions of the flow, whose properties are
dependent on a small parameter that is a function of Reynolds and
Prandtl numbers. The present methodology scaled the turbulent
heat flux, and the mean temperature over a considerable domain
centred about the peak heat flux location. The present framework is
analogous to that used for the Reynolds shear stress by Wei et al.
[4], and also verifies their earlier findings for the intermediate layer
scaling [25]. The existence and properties of the L2 layer hierarchy
has been revealed in the simulation data, although it is also clear
that higher Ret data are needed to more fully assess the scalings
derived.

We conclude the following. The mean energy equation nor-
malised under inner and outer scaling reveals the same form except
the mean streamwise advection that depends on the flow geome-
try. Similarly, the onset of the four layer thermal regime occurs
when Pr � 0.6 for Ret � 180. The mean temperature profiles under
traditional inner normalisation show agreement between the two
flows, except in the core region. On the other hand, the proposed
inner scaling yields invariant mean temperature profiles indepen-
dent of duct wall curvature. The proposed inner scaling for turbu-
lent heat flux, however, fails to yield an invariant curve, and shows
strong variation between pipe and channel flows. The proposed
intermediate layer scaling approach successfully scales both mean
temperature and turbulent heat flux independent of any flow
configurations and conditions except very close to the wall. More-
over, the turbulent heat flux data accepts the applicability of
‘approximate’ meso-scaling valid for both pipe and channel flows.
The profile of the layer hierarchy associated with the intermediate
normalization is not invariant under the proposed normalisation.
However, the existing scaling theory by Wei et al. [25] produces an
approximately invariant layer width distribution.
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Nomenclature
Greek symbols
a thermal diffusivity of fluid
b additive constant for temperature
D difference operator
d half channel height or pipe radius
dþ Reynolds number based on friction velocity or K�arm�an

number
h wall normal distance normalized by half channel height

or pipe radius
hm outer scaled location of maximum turbulent heat flux
G exponential parameter defined in (3)
2 small positive number
kq von K�arm�an constant for temperature
V gradient operator
V2 Laplacian operator
n kinematic viscosity of fluid
f small parameter
p mathematical constant (z3.14159)
j normalized mean temperature
jm normalized mean temperature at ysm
r mass density of fluid
s small parameter
Q (dimensionless) temperature normalized by reference

temperature
q azimuthal distance
ε small parameter
Qc (dimensionless) temperature at the pipe centre
Qm (dimensionless) temperature at ym

Other symbols
( )0 fluctuating component
( )þ scaling with friction velocity
ð Þ spatial averagingcð Þ rescaled function
〈 〉 spatial and temporal averaging
j j absolute value

Roman symbols
F driving force vector
U (dimensionless) velocity vector normalized by bulk

velocity
u velocity vector
A gradient of the molecular diffusion flux
B gradient of the turbulent transport flux
b a constant coefficient
bq coefficient of Taylor's series expansion
bx coefficient of Taylor's series expansion
C mean streamwise advection
cq coefficient of Taylor's series expansion
Cp specific heat at constant pressure
cx coefficient of Taylor's series expansion
D pipe diameter
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Fx axial force per unit mass for smooth wall pipe
kc thermal conductivity of fluid
L computational or domain length in streamwise direction
L2 scaling layer
N non-linear terms in the NaviereStokes or energy equation
P kinematic pressure
p pressure
Pb (dimensionless) kinematic pressure normalized by bulk

velocity
Pet friction Peclet number
Pr Prandtl number
Q volumetric flow rate
qw constant wall heat flux
r radial direction
Rs scaled advection function
Rq scaled advection function
Rs scaled advection function
Ret Reynolds number based on friction velocity or K�arm�an

number
ReD Reynolds number based on bulk velocity
T temperature
t time
Tt friction temperature based on friction velocity
tt (dimensionless) time normalized by friction velocity and

pipe diameter
Tb bulk temperature
tb (dimensionless) time normalized by bulk velocity and

pipe diameter
Tr reference temperature based on bulk velocity
Tw wall temperature
ut friction velocity
uq velocity in azimuthal direction
ub bulk velocity
ur velocity in radial direction
Ux (dimensionless) velocity normalized by bulk velocity in

streamwise direction
ux velocity in streamwise direction
W width of layer hierarchy
X (dimensionless) distance normalized by pipe diameter in

streamwise direction
x streamwise distance
y wall normal distance
ys inner scaled variable
yþq inner scaled variable depends on Prandtl number and

friction velocity
ym wall normal location of maximum turbulent heat flux
ysm inner scaled location of maximum turbulent heat flux
z spanwise distance (reference to channel flow only)
Tf modified radial (pipe) or wall-normal (channel) turbulent

heat flux
Tq radial (pipe) or wall-normal (channel) turbulent heat flux
Ts streamwise turbulent heat flux
Tqm maximum radial (pipe) or wall-normal (channel)

turbulent heat flux
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