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Linear Stability Analysis and Direct Numerical Simulations of Swirling Buoyant Flows
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Abstract

The current study investigates the effect of heating defined via
Richardson number on the stability of swirling flows via lin-
ear stability analysis and direct numerical simulations. Such
flows are common in combustion and mixing applications and
are simple models for atmospheric flows such as fire whirls
and dust devils. The linear stability characteristics of azimuthal
wavenumbers m= 1-5 are investigated at a fixed Reynolds num-
ber of 500 and at three inlet swirl angles where the non-buoyant
(without heating) flow shows linear stability characteristics dif-
ferent from each other. The results show that the heating may
initially have a stabilising effect but with more heating, the flow
ultimately becomes unstable to perturbations. The growth rate
of the leading eigenmode agrees with the predictions of three-
dimensional direct numerical simulations. The centre-line axial
velocity is increased noticeably with heating, indicating much
larger axial momentum in unstable buoyant flows than non-
buoyant flows.

Introduction

Plume flows with swirl entry are common in applications such
as in combustion and mixing and are the simplest models for
atmospheric swirling flows – fire whirls and dust devils. Fire
whirls and dust devils share similarities such as they require a
background circulation and they harvest energy from the buoy-
ancy generated due to a localised heating near the ground. In
addition to the energy source, an eddy generating mechanism is
also essential for the formation of dust devils and fire whirls [9].
Eddies may be generated by the topographical features, via
the interaction of multiple flames or by the interaction of the
flame with the local shear and ambient conditions [5, 9]. Un-
der favourable conditions, they can extend hundreds of meters
above the ground. In case of combustion applications, swirling
flows provide improved combustion characteristics and fuel ef-
ficiency. Despite their applications and importance, the basic
fluid dynamics of these flows is poorly understood.

Fire whirls and dust devils have been studied via field observa-
tions, however, much insight into their flow has been gained via
laboratory experiments. Laboratory experiments of fire whirls
have shown longer flames with rotation imposed compared to
non-rotating flames, which is primarily due to the suppression
of turbulence by rotation. In the case of pool fires, additional
flame lengthening occurs due to increased convection, which in-
creases fuel burning [4]. The azimuthal velocity in a fire whirl
showed a radial distribution similar to a forced vortex inside the
core region and a free vortex outside the core [4].

The present study uses direct numerical simulations and global
stability analysis to systematically investigate the effect of
buoyancy and circulation on a plume flow with a tangential en-
try with the primary objective of investigating the stability of

Figure 1: Schematic of the computational domain. The red
curve shows the imposed scalar distribution at the base and the
blue curve shows the profile of the velocity magnitude imposed
at the inlet. The image on the right shows the full domain with a
closer look of the mesh near the base; domain’s vertical height
is 30R.

the flow. Our simulation model is a cylindrical domain of ra-
dius R with a heated base and outflow at the top (figure 1).
The flow with a specified velocity vector and temperature enters
through the side wall. The inlet swirl angle θ is defined as tanθ

= Ur/Ut , where Ur is the inlet radial velocity and Ut is the inlet
tangential velocity. The past experimental studies of laboratory
scale fire whirls showed that most of the inflow occurs near the
ground [7], therefore, we restrict the inlet height to d = 0.2R.
The total inflow entering into the domain is fixed, which im-
plies lower swirl and higher radial inlet velocities at larger θ.
The average inlet velocity U0 is used for the velocity scaling
and the radius of the domain R is used for the length scale. In
an unpublished separate study we obtained the neutral stabil-
ity curves for different azimuthal wavenumbers in non-buoyant
swirling flows (figure 2) using the same methodology as used
here. In the current study, the effect of heating is investigated
at a fixed Reynolds number, Re = 2U0R/ν = 500 where ν is the
fluid’s kinematic viscosity. The effect of heating is quantified



via Richardson number Ri defined as:

Ri = gβ(cs− c0)R/U2
0 . (1)

Here, g is the gravitational acceleration, cs is the base temper-
ature, c0 is the ambient temperature and β is the coefficient of
thermal expansion which is taken as 1/c0 for air. The radius of
the heated region on the base is Rh ≈ 0.25R. Three swirl angles
are considered, θ = 40◦, 50◦ and 60◦. As seen in figure 2, the
non-buoyant flow shows different linear stability characteristics
at these swirl angles; the flow is linearly stable for θ = 40◦ and
unstable for azimuthal wavenumber m = 2 at θ = 50◦ and for
m = 1 at θ = 60◦. The current numerical set-up mimics the fire
tornado simulator at the Singapore science centre and is similar
to the one used by Wang et al. [10] for non-buoyant flows.

o

Figure 2: Neutral stability curves for different azimuthal
wavenumbers estimated using the linear stability analysis of
non-buoyant swirling flows. Unstable region is shown in grey.
Points marked by (?) are analysed in the current study for the
effect of buoyancy.

Methodology

We use a spectral element-Fourier code [2] to solve the follow-
ing non-dimensional continuity, momentum and energy equa-
tions:

∇∇∇ · vvv = 0 (2)

∂vvv/∂t + vvv ·∇∇∇vvv =−∇∇∇p+2Re−1
∇∇∇

2vvv− îRic (3)

∂c/∂t + vvv ·∇∇∇c = 2(RePr)−1
∇∇∇

2c (4)

where î denotes the axial direction, vvv is the velocity vector,
p is the pressure, Pr is the prandtl number and c is the non-
dimensional temperature defined as c = (c′ − c0)/(cs − c0)
where c′ is the dimensional temperature; thus, c varies from
0 to 1. The Boussinesq approximation is used for modelling
the buoyancy, therefore, the fluid properties are assumed con-
stant. The energy equation is coupled to the momentum equa-
tion via the buoyancy term Ric. The nature of convection (nat-
ural or forced) is usually dependent on the Richardson number
with natural convection being negligible for Ri < 0.1 and forced
convection being negligible for Ri > 10. For 0.1 < Ri < 10.0,
neither of the convections can be neglected. Fire whirls can be
approximately 1m-3 km in diameter with wind speeds of 10-50
m s−1 and the core temperature up to 1000◦ C [9]. For these
values, the Richardson number Ri varies from less than 0.1 to
more than a hundred.

The inlet velocity smoothly transitions from zero to the maxi-
mum value at both sides of the inlet. Similarly, a smooth transi-
tion for c at the base is ensured from c = 1 for r < Rh to c = 0
for r > Rh where r is the radial distance (see figure 1). The
non-dimensional temperature at the wall and at the inlet is set
to 0 (ambient temperature). A no-slip boundary condition is
used for the velocity at the base and at the wall and a robust
outflow boundary condition due to Dong et al.[3] is used at the
outflow. The governing equations are solved in cylindrical co-
ordinates where the radial-axial plane is discretized using spec-
tral elements and Fourier expansions are used in the periodic
azimuthal direction. Since we are interested in the flow dy-
namics near the base, a finer mesh-resolution is used there and
the mesh is sequentially coarsened towards the outlet (see the
right panel in figure 1). The mesh used in three-dimensional
DNS had 978 spectral elements of polynomial order 7 and 96
azimuthal planes.

θ = 40◦, Ri = 0.5 θ = 40◦, Ri = 1.5
c w c w

θ = 60◦, Ri = 0.0 θ = 60◦, Ri = 0.6 θ = 60◦, Ri = 2.0
c w c w c w

Figure 3: Base flow for different swirl angles θ and Ri. Con-
tours are shown for scalar c and the azimuthal velocity w and
streamlines are plotted for radial-axial velocities. Contours lev-
els (blue to red) are in the range 0− 1 for c and 0− 1.5 for w.
In all panels, the horizontal axis varies from 0 to R the vertical
extent is x = 4R.

For the linear stability analysis, base flows are generated using
the same numerical set-up as explained above but using only
one azimuthal plane (two-dimensional). Simulations were run
until the flow reaches a steady state following which the linear
stability computations are carried out for azimuthal wavenum-
bers m = 0−5. An eigenvalue solver is used for the linear sta-
bility analysis, which solves eigensystem iteratively by using an
orthogonal projection of the linear operator onto a Krylov sub-
space. For more details of the linear stability code we refer to
reader to [1, 8].



Results and discussion

Linear stability analysis

The distribution of the temperature and the velocity in the base
flow is shown in figure 3 for θ = 40◦ and 60◦ at different Ri.
Larger azimuthal velocities are evident for both θ in buoyant
flows (Ri > 0) compared to non-buoyant ones (Ri = 0). The
non-buoyant flows show two regions of reversed axial flow, one
near the domain axis and the other near the wall. The near-axis
vortex shrinks whereas the near-wall vortex grows in size as Ri
is increased from 0.0 to 1.5 for θ = 40◦. The same is observed
for θ = 60◦ and the near-axis vortex disappears for Ri = 2.0.
As the near-axis vortex shrinks with increasing Ri, the higher
temperature region shifts towards the domain axis. The larger
radial momentum of the inflow in θ = 60◦ compared to θ = 40◦

also helps in concentrating the high temperature region near the
axis.

Figure 4: Growth rates from the linear stability analysis for
three swirl angles at Re = 500 plotted as a function of Ri. Only
the results of azimuthal wavenumbers which becomes unstable
in the range of Ri considered are shown.

Figure 4 shows the growth rates λr (the real part of the eigen-
value) from the eigenvalue solver plotted for different θ as a
function of Ri. In each panel, only the results of azimuthal
wavenumbers which become unstable in the range of Ri in-
vestigated are included. At θ = 40◦ where the non-buoyant is
stable (λr < 0) remains stable until Ri reaches to 1.0 and be-
come unstable (λr > 0) thereafter for azimuthal wavenumbers
m = 1−3. The azimuthal wavenumber m = 2 become unstable
first followed by m = 1 and m = 3 with increasing Ri. The
eigenmode shapes plotted in figure 5 show that different az-
imuthal wavenumbers become unstable in different regions of
the domain. The higher azimuthal wavenumber i.e. m = 3 ap-
pears near the wall and close to the base whereas m = 2 appears
near the centre of the domain, and m = 1 appears near the do-
main axis and away from the base. In contrast to θ = 40◦, the
non-buoyant flow (Ri = 0.0) is unstable for other swirl angles.
As seen in figure 4, the linear growth rates show a distinct be-
haviour for θ = 50◦ and θ = 60◦ with increasing Ri. At θ = 50◦

for which, the azimuthal wavenumber m = 2 was unstable in
non-buoyant flow becomes quickly stable with adding buoy-

ancy; however, it along with wavenumbers m = 3,4 become
unstable for Ri & 1.0.

θ = 40◦ θ = 60◦

Ri = 1.5 Ri = 0.0 Ri = 0.2 Ri = 1.5 Ri = 2.0

Figure 5: Eigenmode shapes of different azimuthal wavenum-
bers visualised via the iso-surfaces of axial vorticity; red is pos-
itive and blue is negative. The domain vertical extent shown is
30R (full domain).

In contrast to θ = 50◦, the flow with θ = 60◦ does not immedi-
ately become stable with addition of buoyancy. Although, buoy-
ancy stabilises the non-buoyant unstable wavenumber m = 1,
m = 2 becomes unstable returning to the stability again as
Ri reaches ≈ 0.4. With further increasing Ri, the azimuthal
wavenumber m = 4 first becomes unstable followed by m = 3
and m = 2. In the range of Ri considered, neither of m = 1
and m = 5 show a positive linear growth rate and thus, remain
linearly stable to perturbations. Similar to θ = 40◦, higher
azimuthal wavenumbers become unstable close to the base
and away from the domain axis compared to lower azimuthal
wavenumbers (figure 5). The azimuthal wavenumber m = 2 is
concentrated near the axis and is axially stretched in buoyant
flow compared to the non-buoyant flow.

Overall, these results show that the buoyancy has both stabilis-
ing and non-stabilising effects depending on the nature of the
non-buoyant flow and the inlet swirl angle θ. It stabilises the
non-buoyant unstable azimuthal wavenumbers but the instabil-
ities may appear in other wavenumbers. For all swirl angles
considered here, the flow ultimately becomes unstable with in-
creasing Ri.

Direct numerical simulations

Three-dimensional DNS are carried out to verify the linear sta-
bility results using the initial conditions generated by adding the
leading unstable eigenmode to the base flow. The iso-surfaces
of axial vorticity and the temperature are shown in figure 6
for θ = 40◦ and θ = 50◦ at different Ri. The near-axis region
(core) is dominated by the positive vorticity and negative vor-
ticity wraps around the positive vorticity. As expected from the
linear stability analysis, the flow is axi-symmetric for Ri < 1.0
for both θ but twisting of the positive vorticity iso-surface and
breaking down of the negative iso-surface is seen for Ri = 1.5
for both θ. Energy in the leading Fourier mode for these cases



(Ri = 1.5) initially grows exponentially at a rate expected from
the linear stability analysis then diverts below to a constant en-
ergy value (not shown here), which indicates the super-critical
non-linear behaviour of the bifurcation.

θ = 40◦ θ = 50◦

Ri = 0.0 Ri = 1.5 Ri = 0.0 Ri = 0.9 Ri = 1.5

Figure 6: Top row shows iso-surfaces of axial vorticity for θ =
40◦ and 50◦ at different Ri from DNS. Red shows the positive
vorticity and blue shows the negative vorticity. The bottom row
shows the iso-surfaces of the non-dimensional temperature for
the corresponding cases. Vertical extent is x≈ 10R in all panels.

Once the energy in different Fourier modes reach to steady
value, statistics are collected for a thousand simulation time
units which corresponds to approximately thirty flow-through
times. The time-averaged profiles of the centre-line non-
dimensional temperature and axial velocity are shown in fig-
ure 7 for non-buoyant (Ri = 0.0) and unstable buoyant (Ri =
1.5) flows at θ = 40◦ and θ = 50◦. With heating, the axial ve-
locity is significantly enhanced. The maximum velocity is ap-
proximately seven times larger for more swirling flow (vtR > vrR

in θ= 40◦) and approximately four times larger for less swirling
flow (vtR < vrR , θ = 50◦) in buoyant flow compared to non-
buoyant flow. The location of the peak value is slightly closer to
the axis for θ = 40◦ whereas is slightly away from the axis for
θ= 50◦ in buoyant flow compared to non-buoyant flow. Overall
the DNS results are consistent with the linear stability predic-
tions and highlight the differences between more swirling and
less swirling flows and buoyant and non-buoyant flows.

Conclusions

The current study employs direct numerical simulations and the
linear stability analysis to investigate the effect of buoyancy on
the stability of swirling flows. The Reynolds number is fixed
and three swirl angles of distinct non-buoyant linear stability na-
ture are considered. The results show that the buoyancy initially
has a stabilising effect on the unstable non-buoyant azimuthal
wavenumbers, however, the flow ultimately becomes unstable
to different azimuthal wavenumbers with heating although at
different Ri depending on θ and the azimuthal wavenumber. The
three-dimensional DNS predictions of the growth rate of the
leading eigenmode agree with the linear stability predictions.
The time-averaged centre-line axial velocity is significantly in-
creased with buoyancy, which suggests a significantly larger ax-
ial momentum in buoyant flows compared to non-buoyant ones.

Figure 7: Non-dimensional temperature (top) and axial velocity
(bottom) plotted as a function of height x for θ = 40◦ and θ =
50◦ at different Ri.
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