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ABSTRACT

Results from a numerical study of turbulent Taylor-
Couette flow are presented. For the case in which the
inner and outer cylinders rotate in opposite senses,
the mean flow and Reynolds stress distributions ex-
hibit marked asymmetry about the radial mid-‘plane’,
in contrast to the symmetric distributions found in
plane Couette flow. These differences are caused by
centrifugal accelerations and mean streamline curva-
ture. The radius of the inner cylinder has a signifi-
cant influence on the turbulent flow and results are
consistent with plane Couette flow being the limit of
Taylor-Couette flow as the inner radius becomes in-
finite.

At both inner and outer cylinders a viscous sub-
layer is observed that obeys the usual linear relation-
ship, Ut = y*. A log layer is also predicted near
both inner and outer cylinders although it is of lim-
ited extent due to the comparatively low Reynolds
number of the flows. The law of the wall varies sig-
nificantly from plane Couette flow, is a strong func-
tion of radius ratio and is significantly different for
the inner and outer cylinders.

INTRODUCTION

Turbulent channel and Couette flows have been used
frequently in the analysis of turbulence models and
numerical schemes for Direct Numerical Simulation
(DNS) and Large Eddy Simulation (LES). The sim-
ple geometry of these flows lends itself to straight-
forward application of a wide variety of numerical
schemes. Additionally, the extensive range of exper-
imental data available (especially for channel flow)
allows detailed validation of turbulence models and
simulation methods to be undertaken.

Two-equation Reynolds averaged approaches for
modelling turbulence, such as the k—¢ model, perform
poorly in swirling and rotating flows, and more so-
phisticated two-point closures such as Reynolds stress
models must be employed to obtain satisfactory re-
sults. However full Reynolds stress models are com-
putationally expensive to use and prone to poor con-
vergence. Given the importance of swirling flows in
a wide range of industrial and aeronautical applica-
tions, simpler models that can empirically model the
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effect of swirl would have significant advantage, and
more effort needs to be focused on the effects of swirl
on turbulence. There exists an ideal prototype flow
for investigations of the effects of swirl — Taylor-
Couette flow.

Depending on the radius ratio and inner and outer
cylinder Reynolds numbers, a large range of flow
regimes arise. When both cylinders rotate in the same
sense, with the inner cylinder rotating more rapidly
than the outer cylinder, the canonical flow is a vortex
flow, with pairs of counter-rotating ‘donut’-shaped
vortices existing throughout the vessel for values of
the inner Reynolds number beyond a critical value,
Rec. This basic vortex structure exists well into the
flow regime that is genuinely turbulent. Transition
to turbulence in this case occurs via a gradual pro-
cess in which additional frequencies slowly appear in
the energy spectra with increasing Reynolds number
(Brandstater and Swinney 1987).

When the cylinders rotate in opposite directions,
the number of possible flow states is smaller and the
transition to turbulence occurs more rapidly as the
Reynolds number increases. For a fixed outer rotation
rate, as the inner rotation rate increases, cylindrical
Couette flow develops laminar spiral vortices, rapidly
followed by intermittent turbulent ‘bursts’ that even-
tually increase in size and merge with each other to
form ‘spiral turbulence’. Finally, according to An-
dereck et al. (1986), ‘featureless turbulence’ results
in which no very large scale vortex structures can be
visually observed.

In this paper, a DNS technique is used to examine
turbulent Taylor-Couette flow in vessels with radius
ratios of n = Ry/Ro = 0.875 and 0.667. For both
radius ratios, counter-rotating cylinders are examined
at a Reynolds number of 3000 (based on the velocity
difference between cylinders and the gap width). For
counter rotating cylinders this choice delivers a flow
in the ‘featureless turbulence’ regime (Andereck et
al. 1986).

STABILITY OF SWIRLING FLOWS

When rotation is applied to turbulent Poiseuille flow,
the flow on the anti-cyclonic side of the channel is
destabilised and flow on the cyclonic side is stabilised.




(The cyclonic side is the side on which the vorticity of
the boundary layer has the same sign as the rotation.)
In contrast, addition of a forced rotation either sta-
bilises or destabilishes plane Couette flow in the same
sense throughout the fluid depending on the sign and
magnitude of the additional rotation (Komminaho et
al. 1995, Bech et al. 1997). This difference arises be-
cause the mean spanwise vorticity in plane Couette
flow has the same sign throughout.

Taylor—Couette flow bears some resemblance to
plane Couette flow that has been subjected to rota-
tion about a spanwise axis and we may expect some
similarities to exist between these two flows. To illus-
trate the equivalence, compare non-rotating Couette
flow to Taylor—-Couette flow in which the cylinders
rotate in opposite senses. Addition of a cyclonic ro-
tation stabilises Couette flow and changes counter-
rotating Taylor-Couette flow toward outer rotating
TC flow (see Figure 1a) which is stable, even for very
high outer cylinder rotation rates. Addition of an-
ticyclonic rotation destabilises rotating Couette flow
and moves counter-rotating Taylor-Couette flow to-
ward inner-rotating T'C flow (see Figure 1b) which is
unstable for very low rotation rates.
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Figure 1: Effect of adding rotation to counter rotat-
ing Taylor—Couette flow. (a) Cyclonic rotation sta-
bilises, (b) Anticyclonic rotation destabilises.

The criterion for stability of a laminar swirling flow
with swirl velocity V is (Chandrasekhar 1981 § 66)

V a(rV)
r2 or

This is often written in terms of a Richardson number,
or (after Tritton 1992) a Bradshaw number,
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Equation 1 is equivalent to the criterion for a rotating
flow (see Equation 4, Tritton 1992) except that V is
replaced by {27, where 2 is the angular velocity in the
case of forced rotation. In the case where cylinders
rotate in opposite senses, B must be negative near the
inner cylinder and positive near the outer cylinder,
thus destabilising the flow near the inner cylinder and
stabilising it near the outer. In this regard, Taylor—
Couette flow is fundamentally different to the rotating
Couette flows discussed by Komminaho et al. (1995)
and Bech and Andersson (1997) in which the axis of
rotation passes through the centre of the channel. In
that case B has the same sign throughout the flow.

NUMERICAL METHOD

The numerical method is a spectral/spectral-element
method in which a 2-D Galerkin spectral element
method in the r-z plane is extended into the 6-
direction in Fourier space. The method is outlined
in Tomboulides et al. (1993). Our implementation
runs in parallel using MPI message passing

When choosing a domain size for DNS it is im-
portant to ensure that the predicted flow field is not
constrained by the domain. The domain sizes chosen
here are similar to those of Bech and Andersson which
were shown to be adequate. For Couette flow and
Taylor-Couette flow with 7 = 0.875 the dimensions
were 1 x 27/3 x 27 in the wall normal, streamwise
and spanwise directions. The discretisation in wall-
normal/spanwise planes was 6 x 20 spectral elements
with 8th order basis functions and 96 Fourier planes
in the streamwise direction. For Taylor-Couette flow
with 7 = 0.667 the domain size was 1 X pi X 2w
with the same spectral element discretisation and 48
Fourier planes. For the Reynolds numbers considered
here, placement of nodes corresponds to the first point
away from the wall lying at a value of approximately
yt =0.5.

Two-point velocity fluctuation correlations in the
streamwise direction on the centre-plane (not shown)
were of order 0.1 at a separation of half the domain
length, indicating that an increased domain length
may be desirable. There is a small oscillatory com-
ponent to the correlations in the spanwise direction,
suggesting a large scale vortex structure may exist. In
the time-mean velocity field there is some evidence of
a weak time-mean vortex structure, however its mag-
nitude is only 2% of the difference in swirl velocity
between the two cylinders, and continues to decrease
as averages are gathered over longer times.

The torque predicted on the inner cylinder (for a
case of inner cylinder rotation only at a Reynolds
number of 3000) was compared to the torque mea-
surements of Taylor (1936) and the simulation results
of Hirschberg (1992) and agreement was within the
experimental and numerical scatter reported in those
two studies.
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Figure 2: Streamwise velocity for Taylor-Couette flow

RESULTS

For the case of counter-rotating cylinders, inner and
outer Reynolds numbers of Rey = 1,286 and Rep =
—1,714 are used. For a radius ratio of 7 = 0.875,
this corresponds to flow inside the regime labelled
‘featureless turbulence’ by Andereck (1986).

Contours of instantaneous streamwise velocity on
cylindrical surfaces y* = 1.5 distant from the in-
ner and outer cylinders are shown in Figure 2a for
n = 0.875 and Figure 2b for n = 0.667. The streak
structure on the inner cylinders is clearly visible and
the spacing of the structures is approximately the dis-
tance between cylinders (this is also seen in the span-
wise velocity correlations). The flow structure on the
outer cylinders is significantly different to the inner,
with fewer and weaker streaks for 7 = 0.875 and al-
most no streaks at all for 7 = 0.667. The absence of
streaks is indicative of turbulence damping and bears
a similarity to Poiseuille flow subjected to rotation.

A plot of B (see Equation 1) versus wall normal
position shown in Figure 3. The negative values of B
near the inner cylinder and positive values near the
outer are consistent with the predicted destabilisation
of the flow near the inner cylinder and stabilisation
near the outer. For n = 0.667 the comparatively
higher value of B near the outer cylinder (compared
to 7 = 0.875) is reflected in the damped wall struc-
tures seen in Figure 2b.

The mean streamwise velocity profile for Taylor-
Couette flow is quite similar to that of plane Cou-
ette flow without rotation (Figure 4). However the
anti-symmetry of the Couette flow profile no longer
applies. Because the torque on the inner and outer
cylinders must balance, the effect of reducing 7
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at yt = 1.5: (a) n = 0.875, and (b) n = 0.667.

(increasing the curvature of the walls) is to increase
the mean wall shear stress at the inner cylinder and
decrease it at the outer. The wall shear stress val-
ues at inner and outer cylinders bracket the value
obtained in plane Couette flow at the same Reynolds
number. For = 0.667 the wall shear stress is ap-
proximately 1.4 times higher than plane Couette flow
at the inner cylinder and 0.6 times at the outer. These
results suggest that plane Couette flow can be viewed
as the limit of counter-rotating Taylor-Couette flow
as the radius ratio approaches unity.

The differences in wall shear stress influence the
mean streamwise velocity profiles when plotted in
wall coordinates (Figure 5). Close to the cylinder
walls, the usual linear relationship, U t = ytis
obeyed by all profiles although the transition to a log
region is delayed on the outer cylinder, especially for
high curvature (smaller 7)) and enhanced on the inner
cylinder, again more so high curvature.
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Figure 3: B as a function of wall normal position.
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Figure 4: Mean streamwise velocity (a) and

Reynolds stress R,g (b) as a function of the wall-
normal coordinate for plane Couette and Taylor-
Couette flows at at equivalent Reynolds numbers.

20 [ . Tg=o.ee'r
C 0
i » Tn-n.a'zs
15~ oCouette
i 1
% B a T, oams
= 10 -
5
0

Figure 5: Mean streamwise velocity plotted in wall
units. A line with Ut = 4.6 + 2.5Iny* has been
drawn through the log region of Couette flow.

Although the Reynolds number of the simulations
is quite low and a broad logarithmic region does not
exist in these flows, the results show that the wall pro-
files are significantly altered, suggesting that law of
the wall boundary conditions that are widely used in
Reynolds-averaged turbulence models need to be ad-
Justed in flows with significant swirl. Higher Reynolds
number simulations currently under investigation will
assess Reynolds number effects on the wall profiles.

SUMMARY

The mean flow and Reynolds stress distributions ex-
hibit marked asymmetry about the radial mid-‘plane’
in Turbulent Taylor-Couette flow. The radius of the
inner cylinder has a significant influence on the turbu-
lent flow and results are consistent with plane Cou-
ette flow being the limit of Taylor-Couette flow as
the inner radius becomes infinjte. Viscous sub-layers
are are predicted to obey the usual linear relationship
at both cylinders. The log regions differ significantly
from plane Couette flow, are strong functions of ra-
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dius ratio and are significantly different for inner and
outer cylinders.

REFERENCES

ANDERECK, C.D., LIU, S.S. and SWINNEY, H.L.
(1986) ‘Flow regimes in a circular Couette sys-
tem with independently rotating cylinders’, J. Fluid
Mech. 164 155-183.

BECH, K.H. and ANDERSSON, H.L. (1997) ‘Tur-
bulent plane Couette flow subjected to strong system
rotation’, J. Fluid Mech. 347 289-314.

BRADSHAW, P. (1969) ‘The analogy between
streamline curvature and buoyancy in turbulent shear
flow’, J. Fluid Mech. 36 177-191.

BRANDSTATER, A. and SWINNEY, .H.L. (1987)
‘Strange attractors in weakly turbulent Couette-
Taylor flow’, Phys. Rev. A 35 2207-2220.

CHANDRASEKHAR, S. (1981) Hydrodynamic
and hydromagnetic stability Dover, New York.
HIRSCHBERG, S., (1992), * Numerical simulation of
turbulent Taylor Couette flow’, in Ordered and tur-
bulent patterns in Taylor-Couette flow, Eds C.D.
Andereck and F. Hayot, Plenum Press, New York
149-157.

KOMMINAHO, J., LUNDBLADH, A. and JO-
HANSSON, A.V., (1996) ‘Very large structures in
plane turbulent Couette flow’, J. Fluid Mech. 320
259-285.

MARCUS, P.S. (1984) ‘Simulation of Taylor-
Couette flow. Part 2. Numerical results for wavy-
vortex flow with one travelling wave’, J. Fluid Mech.
146 65-113.

SMITH, G.P. and TOWNSEND, A.A., (1982) ‘“Tur-
bulent Couette flow between concentric cylinders at
large Taylor numbers’, J. Fluid Mech. 123 187-217.

TAYLOR, G.I. (1936) ‘Fluid friction between rotat-
ing cylinders. I-Torque measurements’ Proc. Royal
Soc. Lond. A 157 546-564.

TOMBOULIDES, A.G., ORSZAG, S.A. and KAR-
NIADAKIS, G.E. (1993) ‘Direct and large-eddy sim-
ulation of axisymmetric wakes’, AIAA Paper No.92-
0546, 31st Aerospace Sciences Meeting and Exhibit,
January 11-14 Reno NV,



