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Mass and momentum transport from a sphere in steady
and oscillatory flows
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Heat or mass transfer from spherical particles in oscillatory flow has important applications in
combustion and spray drying. This work provides a parametric investigation of drag forces
experienced by, and transport of a passive scalar from, an isolated rigid fixed sphere in steady and
oscillatory axisymmetric flows. At Schmidt~Prandtl! number of 1, oscillatory flows with Reynolds
numbers in the range 1–100 and oscillation amplitudes in the range 0.05–5 sphere diameters are
investigated using numerical simulation. Scalar concentration is uniform on the surface of the sphere
and zero in the far field. Coefficients of peak drag for steady and oscillatory flows are presented and
compared to values obtained from Basset’s analytical solution for Stokes flow, and the relative
contributions of the added mass, Stokes drag, and Basset history terms are examined. At the higher
Reynolds numbers and amplitudes, it is found that the time-average mass transfer rate can be more
than double that for diffusion in quiescent fluid, or in Stokes flow. Time-average Sherwood~Nusselt!
numbers for oscillatory flows asymptote to the Stokes limit at low oscillation amplitude, regardless
of Reynolds number. An unexpected result is that at intermediate Reynolds numbers and oscillation
amplitudes, it is possible to depress the time-average mass-transfer coefficient slightly below that for
Stokes flow. Within the Reynolds number range considered, Sherwood–Nusselt numbers in steady
flow are found to be always higher than for an oscillatory flow of the same root-mean-square~rms!
velocity. © 2002 American Institute of Physics.@DOI: 10.1063/1.1510448#
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I. INTRODUCTION

Heat or mass transfer from spherical particles in osci
tory flow has important applications, for example, in co
bustion and spray drying. As an idealization of the situat
encountered in applications, where there may be many
ticles in more or less close proximity, giving rise to a no
uniform far-field velocity and concentration of scalar, in th
work we will consider scalar transport from a single isolat
sphere in a background flow with rectilinear oscillation. T
scalar value is assumed to be uniform and steady on
surface of the sphere, and zero in the far-field.

Scalar and momentum transport are two aspects to
problem that are rarely dealt with together, perhaps in p
because of the largely experimental basis of previous wor
the area. A number of investigations of both steady and
cillatory flows past spheres at low to moderate Reyno
numbers, exist1–8 but these have dealt with fluid dynamic
aspects, without considering scalar transport. Even so
systematic parametric studies that document force co
cients for spheres in oscillatory flows at moderate Reyno
numbers and amplitudes have appeared. Studies dealin
detail with scalar transport are largely confined to stea
flow.9–12Analytical results have been developed for transi
scalar transport from spheres at low Peclet numbers,13,14 and
a numerical study at finite Reynolds and Peclet numb
dealing with a step change in scalar value, has a
appeared.15

While there is technological interest in heat and m
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transfer from spheres in oscillatory flow,16 often for com-
paratively low Reynolds and Schmidt~Prandtl! numbers,
most of the published investigations have been based
physical experiment~see a review17 of work up to 1976!, and
as such have typically dealt with Reynolds numbers ab
the onset of wake transition, and comparatively high Schm
numbers. A single preliminary numerical study of sca
transport in low to moderate Reynolds number oscillato
flow past a sphere has appeared.18 Those results indicate a
unexpected, apparently unbounded, increase in time-ave
scalar transport as oscillation amplitudes are reduced to
values for all Reynolds numbers considered. A fundame
expectation is that at finite Reynolds numbers, flows w
approach oscillatory Stokes flow as oscillation amplitud
approach zero. A corresponding expectation for scalar tra
port is that it uncouples from the flow field and asymptotes
the ‘‘Stokes flow limit,’’ i.e., the same uniform radial diffu
sion found in quiescent fluid. These expectations are c
firmed by the analytical results.13,14,19

Two dimensionless groups are required to uniquely id
tify the oscillatory flow past a sphere; here they are chose
the Reynolds numberRe5UmaxD/v and the amplitude ratio
A/D, whereUmax is the maximum freestream flow speed,D
is the sphere diameter,v is the fluid kinematic viscosity and
A is the amplitude of freestream fluid particle motion.
oscillatory flows,Umax5vA, in which v is the angular fre-
quency of oscillation, while in the steady flows also cons
ered here,Umax is taken as the freestream speed. The R
nolds number and amplitude ratio are sometimes combi
in a Stokes number,St5vD2/v5Re/(A/D).

The passive scalar can be thought of either as temp
7 © 2002 American Institute of Physics
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3998 Phys. Fluids, Vol. 14, No. 11, November 2002 H. M. Blackburn
ture or mass concentration; the two can be conside
equivalent at the same numerical values of Prandtl
Schmidt ~Sc! number, owing to the analogous behavior
heat and mass transfer. The remainder of the discussion
be couched in terms of Schmidt and Sherwood~Sh! numbers
for mass diffusivity and transport coefficient, respective
with the understanding that these are interchangeable
Prandtl and Nusselt numbers.

The current study comprises a numerical investigation
scalar and momentum transport from a sphere in both ste
and oscillatory incompressible flows in the range of Re
nolds numbers 1<Re<100. Flow oscillation amplitudes fal
in the range 0.05<A/D<5. The Schmidt number here i
taken to be unity, a value that is broadly representative
mass diffusion from liquid droplets in gases,20 so the values
of Sherwood numbers computed, and behavioral trends,
be also considered typical for this application. In addition,
the value is relatively close to the Prandtl number for air,
results and trends will be approximately correct for h
transfer from spheres in air flows.

In steady uniform flow, sphere wakes are steady and
symmetric at Reynolds numbers up toRec1'210, where a
supercritical bifurcation to nonaxisymmetric, but still stead
flow occurs.3,4,7 Subsequently, a supercritical Hopf bifurc
tion to oscillatory wake flow occurs atRec2'273.7 As the
maximum Reynolds number for both steady and oscillat
flow in the current study wasRe5100, and oscillation am-
plitudes restricted to less than five sphere diameters, it
been assumed that the oscillatory flow retains axisymme
Floquet analysis will be required in order to help resolve t
issue.

II. NUMERICAL METHOD

A. Continuum equations

The continuum equations for unsteady diffusion in
unsteady incompressible flow are

] tu1N~u!52
1

r
¹p1v¹2u, with ¹•u50, ~1!

] tc1C~u,c!5a¹2c, ~2!

whereu is fluid velocity andc is scalar concentration,p, r,
and v, respectively, the fluid’s pressure, density, and kin
matic viscosity,a5v/Sc the scalar diffusivity. In the case
that the scalar is temperature, the effect of dissipation
kinetic energy on scalar transport is assumed to be ne
gible. The nonlinear and convective termsN(u) andC(u,c)
can be composed in a number of ways~which are equivalent
for continua!; here ‘‘skew-symmetric’’ forms are employed
i.e., N(u)5(u•“u1“•uu)/2, C(u,c)5(u•¹c1“•uc)/2.
In the present application,~1! and ~2! are solved in a cylin-
drical coordinate system where thex coordinate is aligned
with and ther coordinate is normal to the axial direction
Far-field flows are parallel to the coordinate system axis.

B. Derived coefficients

Drag coefficients are computed using the peak fr
stream flow speed
Downloaded 24 Oct 2002 to 152.83.22.19. Redistribution subject to AI
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Cd5
8Fd

rUmax
2 pD2 , ~3!

the drag force is exerted by pressure and viscous tractio

Fd52pE e1•$np2mn•@¹u1~¹u!T#%rds, ~4!

wheren is the domain unit outward normal,e1 is the unit
axial vector and the integral is taken around the perimete
the sphere outline in the meridional semiplane of the cy
drical coordinate system. The Sherwood number is compu
as19

Sh5
2

D2~cmax2c`!
E n•¹crds. ~5!

Time-mean values, such asSh, are cycle-average values
while ~cyclic! peak values are indicated asCd̂. Both time-
mean and peak values were computed from cubic spline
terpolations of time series data.

C. Time integration

The Navier–Stokes and scalar transport equations~1!
and~2! are integrated in time using a mixed explicit–implic
time-splitting scheme based on backwards differentiatio21

The original scheme was designed to integrate the mom
tum equations~1! alone; changes have been made as requ
to incorporate scalar transport: scalar convection is hand
explicitly while diffusion is handled implicitly. A second
order-time variant of the method was employed for all c
culations.

D. Spatial discretization

An axisymmetric cylindrical-geometry spectral eleme
method was employed for spatial discretization. Expans
functions within each element are tensor products
Lagrange polynomials that use the Gauss–Lobat
Legendre~GLL! points as knots. The adaption of the sta
dard spectral element method to a cylindrical coordinate s
tem has some similarities to previous formulations4,5

Helmholtz problems that arise in the time-split are symm
trized by pre-multiplication byr , while any remaining sin-
gular terms on the axis are set to zero. This approach
been shown to preserve exponential convergence for axis
metric Stokes problems.22,23An extension of the method ha
been made to nonaxisymmetric flows.24

Where integral quantities such as drag forces and sur
fluxes are required, e.g., in~4! and~5!, these were computed
using Gauss–Lobatto quadrature. Azimuthal vorticity w
computed from the velocity field via collocation differentia
tion during post-processing.

Mesh design for the present application in oscillato
flows is a compromise between the extremely fine rad
resolution required near the sphere, particularly for low
cillation amplitudes and high Reynolds numbers, and a la
domain size required for flows and scalar transport approa
ing the Stokes limit. The spectral element mesh adopted
the results presented here meets both these requiremen
Fig. 1 illustrates. The domain-size extents of this mesh
xmax/D5650, r max/D550, and the layer of elements neare
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3999Phys. Fluids, Vol. 14, No. 11, November 2002 Mass and momentum transport from a sphere
the sphere wall is 0.02D thick in the wall-normal direction.
Other meshes of smaller extent (xmax/D5620, r max/D
520) and lesser near-wall refinement have also been
ployed during testing and check runs.

E. Boundary conditions

At solid walls, no-slip boundary conditions are applie
to velocity variables, and a nonzero scalar concentrationcmax

is prescribed. In the case of oscillatory flow, time-varyi
velocities and zero scalar concentration are prescribed at
field boundaries. For steady flow, a constant velocity a
zero scalar value are set on far-field boundaries except
outflow boundary, where zero normal gradients of veloc
and scalar variables are applied, and the pressure is s
zero. For all boundaries other than the steady-flow outflow
‘‘high-order’’ pressure boundary condition21 is obtained by
taking the dot product of the domain unit outward norm
with the momentum equations to produce

]np5r n•~2N~u!2v“3“3u2] tu!, ~6!

where the rotational form of the viscous term exploits t
solenoidality of the velocity. This formulation allows th
time-split to retain the same accuracy as the differenc
scheme used to integrate] tu. On the axis, the appropriat
boundary conditions are]nu5v5]nc5]np50, whereu is
the axial andv the radial velocity component.

It should be noted that the far-field boundary conditi
for scalar concentration in the Stokes flow limit is

c`5cmaxD/2~x21r 2!1/2. ~7!

This would be a valid approximation at low Reynolds nu
bers and oscillation amplitudes, but as most interest is at

FIG. 1. Spectral element mesh, upper: full mesh, 146 elements; lower
tail, close to sphere. Dimensions are given in terms of sphere diameteD;
the inner-most layer of elements is 0.02D thick.
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higher Reynolds numbers, it was decided to usec`50 at the
far-field boundary for all flows, and employ a large doma
size in order to compensate. It can be assumed that the m
mum error in the scalar transport results presented her
dominated by this assumption:~7! provides a representativ
value of 1%, based on the domain size employed~see also
Fig. 3!. Also, the largest errors can be assumed to occu
the lower Reynolds numbers.

F. Verification and resolution studies

In order to verify the performance of the computation
method in oscillatory flow, we first compare the time vari
tion of drag coefficient at (Re51, A/D50.05) with Basset’s
analytic solution for drag force in unsteady Stokes flow.2,25

CdB52
4

3A/D
sinvt2

2

3A/D
sinvt1

24

Re
cosvt

2
12

~Re A/D !1/2sin~vt2p/4!, ~8!

is the asymptotic unsteady coefficient of drag predicted
Basset’s solution for a sphere immersed in flow w
freestream~axial! velocity U5vA cosvt. The four contribu-
tions to the total drag in~8! result from:

~1! The pressure gradient required to accelerate the fluid
the free-stream—if instead, the sphere is made to os
late in quiescent fluid, this term is zero;

~2! the force required to accelerate the volume of fluid d
placed by passage of the sphere: This is the ‘‘add
mass’’ term;

~3! Stokes drag, the only term that does not disappea
steady motion;

~4! forces due to the cumulative effect of vorticity diffuse
from the surface of the sphere in its past motion—this
the ‘‘Basset history’’ term, and more precisely stated it
only this term that is due to Basset.

The relative difference between the numerical Navie
Stokes solution and Basset’s Stokes solution is shown
Fig. 2. The maximum relative difference is approximate
431024 and has an approximately sinusoidal variation

e-

FIG. 2. Relative difference between the computed time variation of coe
cient of drag force acting on a sphere in oscillatory flow atRe51, A/D
50.05 and that given by Basset’s analytical solution for unsteady Sto
flow.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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4000 Phys. Fluids, Vol. 14, No. 11, November 2002 H. M. Blackburn
time, although the third harmonic makes a significant con
bution. The maximum value is nearly identical to that co
puted in an earlier study2 at a lower Reynolds number but th
same oscillation amplitude (Re50.1, A/D50.05).

At low oscillation amplitudes, the scalar transport a
ymptotes to the Stokes flow limit~i.e., uniform radial diffu-
sion! as Reynolds numbers approach zero.14 This effect is
observed in Fig. 3, which shows profiles ofc̄ along the line
x50 for A/D50.05: at the lowest Reynolds numbers, t
profiles asymptote towards the Stokes flow limit~but see the
remarks in Sec. II E concerning the effects of boundary c
ditions on errors!.

Additional evidence of the correct operation of the co
putational method is given by the good agreement with
sults previously obtained in steady flows, as discussed
Sec. III.

Mesh resolution studies have been carried out at e
limit of the ~Re, A/D) control space for which oscillatory
flow results are presented. Only those forRe5100, A/D
50.05 are given here, in Table I, as they demonstrated
greatest variation with GLL shape function order,Np . The
results were collected after sufficient number of flow osc
lations had taken place for the flow to reach an asympt
state. This was especially important at the (Re5100, A/D
50.05) combination, where over 10 000 oscillation cyc
were required for the reported scalar transport results to
come asymptotic to within five significant figures. All re
ported oscillatory flow results are for a time step that
1/1000th of an oscillation period, i.e.,Dt50.002p/v.

Subsequent to the resolution studies, a GLL polynom
orderNp54 was selected to obtain the results of parame
investigations of oscillatory flow to be presented in Sec.

FIG. 3. Profiles of time-average scalar concentration obtained on thex50
traverse forA/D50.05. The profiles asymptote towards the Stokes fl
limit as Reynolds number is decreased. Profiles forRe<20 are visually
indistinguishable. The slight systematic deviation from the exact Stokes
limit is caused by the use of the far-field boundary conditionc`50 as
opposed to the Stokes valuecmax/2(x21r 2)1/2—see Sec. II E.
Downloaded 24 Oct 2002 to 152.83.22.19. Redistribution subject to AI
i-
-

-

-

-
-
in

ch

e

-
ic

s
e-

l
c
,

since all values were converged to three significant figure
better at this level. Where it was considered prudent, th
computations were backed up with spot-checks usingNp

56, but no significant differences to theNp54 solutions
were detected. For the steady flow results to be presente
Sec. III,Np58 was used, as asymptotic values could read
be obtained without significant demand on computer
source.

III. STEADY FLOW

The same spectral element mesh as designed for osc
tory flows ~Fig. 1! was used to compute the steady-flow r
sults.

A. Force coefficients

Figure 4 shows coefficients of drag~total, viscous and
pressure! as functions of Reynolds number over the ran
1<Re<100. Viscous drag is the dominant component un
Reynolds numbers just above 100 are reached, where p
sure drag is about to become dominant. In Fig. 4, lines sh
ing values for Stokes’ solution (Cd524/Re) and Oseen’s

w

FIG. 4. Sphere drag coefficients for steady flow, as a function of Reyn
number. Total drag,d; viscous drag,h; pressure drag,s; Stokes’ solution,

; Oseen’s approximation, ; fitted curve, — –, Cd524/Re
14/Re1/3. Independent computational results, Refs. 2 and 3.

TABLE I. Results of spectral element order convergence tests conducte

Re5100, A/D50.05. Np , GLL shape function order;Cd̂, peak coefficient
of drag; Sh, cycle-average Sherwood number;û, v̂, ĉ, peak values at
x/D50.65, r /D50.1.

Np Cd̂ Sh û v̂ ĉ

2 43.607 2.4202 0.175 83 0.035 974 0.779 22
4 43.986 2.4796 0.174 04 0.031 867 0.768 76
6 43.983 2.4784 0.174 18 0.031 829 0.768 83
8 43.983 2.4780 0.174 18 0.031 832 0.768 87
10 43.983 2.4778 0.174 18 0.031 831 0.768 88
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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4001Phys. Fluids, Vol. 14, No. 11, November 2002 Mass and momentum transport from a sphere
approximation26 are also displayed, and it can be seen t
the computed results asymptote to values for Oseen’s
proximate solution at the lowest Reynolds numbers. A sim
and accurate corelation for the total coefficient of drag, up
Re5100, is given by

Cd5
24

Re
1

4

Re1/3. ~9!

For purposes of comparison, values ofCd obtained in
two independent computational studies2,3 are also presente
in Fig. 4, and it can be seen that the present results m
these well. Most of the small differences between the th
sets of results can probably be attributed to somew
smaller domain extents used in the earlier works (Rmax

525D used by Chang and Maxey2 and 15D used by Johnson
and Patel3 cf. 50D here!, with the higher blockages contrib
uting to the slightly higher values ofCd computed in the
previous studies.

B. Mass transfer coefficients

Figure 5 shows the Sherwood number as a function
Reynolds number. At low Reynolds numbers, the Sherw
number asymptotes to the Stokes flow limit,19,14 Sh52, and
for Re<10 the computed values are in excellent agreem
with results obtained forSc51 using matched asymptoti
expansions.12 The computed values are in reasonable agr
ment with a previously published correlation@Eqs.~5!–~25!,
Clift, Grace, and Weber19# fitted to numerical results for a
wide range of Schmidt/Prandtl numbers available up to 19
and which forRe<1 ~below its quoted range of applicabi
ity! agrees poorly with the analytical results.12 As Reynolds
numbers increase, theSh–Re relationship asymptotes to a

FIG. 5. Sphere Sherwood number forSc51.0 in steady flow, as a function
of Reynolds number. Computed values,d; asymptotic expansions~Ref. 12!,

; correlation~Ref. 19! for 1,Re,400, • • • •; fitted curve,
(Sh5@22.6931(1.475Re1/3)2.693#1/2.693).
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approximate 1/3-power law, at least up toRe5100, accord-
ing to the results shown in Fig. 5. A blending-function a
proach provides the following fit:

Sh5@22.6931~1.475Re1/3!2.693#1/2.693. ~10!

Although originally fitted to the Stokes flow limit and
present computational data only, this is seen in Fig. 5 to a
match well with the analytical results12 down to lower Rey-
nolds numbers—the new correlation~10! is virtually indis-
tinguishable from the low-Re asymptotic expansion values

IV. OSCILLATORY FLOW

A. Time-dependent flows and scalar transport

Here we examine instantaneous contours of azimu
vorticity and scalar concentration in subsets of the compu
tional domain for three points in the (Re, A/D) control
space. In each case, the contours illustrate flows for ha
motion cycle at 1/16th-period phases, starting at timet50 in
U5Umaxcosvt.

Figure 6 illustrates the flow at (Re5100, A/D50.05);
the highest Reynolds number, lowest amplitude case. Es
tially all the vorticity remains in nearly spherical-she
boundary layers, extremely close to the sphere, with vortic
in each shell alternating in sign on a traverse normal to
sphere surface. The slight asymmetry of vorticity in the ax
direction, most visible in Figs. 6~d!–6~f!, is the key feature
of the vorticity field that distinguishes this from an equiv
lent Stokes flow. The difference from Stokes flow is mo
readily apparent in the general shape of the scalar cont
@Figs. 6~i!–6~p!#, which besides having a small axial asym
metry, are distinctly prolate at locations remote from t
sphere.

Figure 7 illustrates the flow at (Re520, A/D50.5). The
Reynolds number is smaller than for the previous case b
factor of five, which in part accounts for the larger rad
length scales at which the vorticity alternates in sign
traverses outward from the surface of the sphere. Despite
reduced Reynolds number, the effects of advection of vor
ity are more noticeable in Fig. 7 than they are in Fig.
owing to the increased oscillation amplitude. Interesting
while there is distinct axial asymmetry in the contours
scalar concentration, the departure from shells of spher
shape~although not necessarily centered on the sphere! is
greatest at radii of the order of one sphere diameter from
origin. An additional interesting feature of this case is th
the time-average Sherwood number is actually depres
slightly below the Stokes flow limit, one of the small numb
of cases where this is so~see Sec. IV D!.

The effects of advection on transport of both vortici
and scalar concentration are clearly evident atRe5100,
A/D55, as shown in Fig. 8. Both vorticity and scalar co
centration are swept sufficiently far from the sphere in ea
motion cycle that contours show local maxima, remote fro
the surface of the sphere, that have evolved during prev
cycles.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 6. Instantaneous contours of~a!–~h! positive ~black! and negative~gray! azimuthal vorticity and~i!–~p! scalar concentration for (Re5100, A/D
50.05), shown over half a fluid motion cycle in 1/16-period phases. Fluid is initially moving to right at maximum speed. Vorticity contour incremee
nonuniform to aid illustration of flow structure. Scalar contours commence atcmax and continue with a uniform decrement of 0.05cmax.
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FIG. 7. Instantaneous contours of~a!–~h! positive ~black! and negative~gray! azimuthal vorticity and~i!–~p! scalar concentration for (Re520, A/D
50.5), shown over half a fluid motion cycle in 1/16-period phases. Fluid is initially moving to right at maximum speed. Vorticity contour increme
nonuniform to aid illustration of flow structure. Scalar contours commence atcmax and continue with a uniform decrement of 0.05cmax.
Downloaded 24 Oct 2002 to 152.83.22.19. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 8. Instantaneous contours of~a!–~h! positive ~black! and negative~gray! azimuthal vorticity and~i!–~p! scalar concentration for (Re5100, A/D
55), shown over half a fluid motion cycle in 1/16-period phases. Fluid is initially moving to right at maximum speed. Vorticity contour increme
nonuniform to aid illustration of flow structure. Scalar contours commence atcmax and continue with a uniform decrement of 0.05cmax.
Downloaded 24 Oct 2002 to 152.83.22.19. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 9. Time-average vorticity, scalar concentration, and streamlines forA/D55, Reynolds numbers as indicated:~a!–~c!, contours of positive~black! and
negative~gray! azimuthal vorticity;~d!–~f! contours of scalar concentration~black! overlaid with streamlines~gray!. Streamline loops nearest sphere ha
clockwise circulations in first quadrant@i.e., in ~d!–~f!#. The alignment of the free-stream oscillatory flow is horizontal.
Downloaded 24 Oct 2002 to 152.83.22.19. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 10. Profiles of cycle-average radial velocity componentv on traverses of the linex50, for ~a! A/D50.05; ~b! A/D55.
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B. Cycle-average flows and scalar transport

The cycle-average fluid flow displays a steady stream
component that in each quadrant of the meridional semip
flows inward along the oscillation axis towards the stag
tion point, then radially outward. Often this flow is su
rounded by another circulation with opposite sense in e
quadrant, however a single diagnostic parameter for e
tence of the second circulation cell has not yet be
identified.2 For oscillatory Stokes flow, only a single recircu
lation cell is expected in each quadrant.1

The cycle-average flows atA/D55 are illustrated for
Re5100, 10, and 1 in Fig. 9; contours of time-average v
ticity are shown in Figs. 9~a!–9~c!, while contours of time-
average scalar concentration are shown overlaid with ti
average streamlines in Figs. 9~d!–9~f!. Time-average
vorticity exhibits the multilayer structure seen for the insta
taneous flows~as is true for all sets of computed results!, but
the influence of Reynolds number on prolation of the vort
ity field is clearly evident. Also, the length scale over whi
vorticity alternates in sign near the surface of the sphere f
as Reynolds number increases. A feature that is not obv
from the contour plots is that vorticity magnitudes fall
Reynolds number is decreased.

The time-average flow, as illustrated by the streaml
patterns in Figs. 9~d!–9~f!, shows that the inner region o
streaming flow grows larger as Reynolds number decrea
a bounding streamline between the two circulation cells
be seen in each of Figs. 9~d! and 9~e!, but not in Fig. 9~f!.
Not evident from the streamline patterns is that the p
streaming velocity in the inner cell increases with Reyno
number~at least atA/D55, but this is not necessarily th
case at lower amplitudes, see below!. While the time-average
scalar advective transport is not solely produced by the ti
average flows—scalar–velocity correlations also have
role—there seems to be a clear linkage between the ti
average flow and the scalar transport contours, particular
Re5100. In that case, the inner streaming flow along
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~horizontal! flow oscillation axis towards the surface of th
sphere produces an observable depression in the scalar
tours on the axis~at a radius of approximately one sphe
diameter!. The inner flow then advects scalar first radia
outwards~vertically!, then axially~horizontal!. As inner flow
advection velocities fall, departing the immediate vicinity
the sphere, cross-flow diffusion starts to dominate, and sc
is able to cross the mean streamlines into the outer reci
lation, enabling it to be transported far from the origin.

While the time-average vorticity field always display
shells of alternating sign, it is not clear if a two-celle
streaming flow is always present in each quadrant. In or
to examine the cell structure of streaming flow, profiles
radial velocity obtained along the linex50 ~i.e., on a radial
traverse, normal to the fluid oscillation axis! have been ex-
tracted atA/D50.05 and 5 for all Reynolds numbers stu
ied. Details of these profiles near the sphere are show
Fig. 10. Recirculation cell boundaries correspond to ze
crossings in these plots. Evidently, two-celled topologies
ist at the highest Reynolds numbers for each of these
amplitudes, and as stated above, the peak velocity of
inner recirculation cell increases monotonically with Re
nolds number atA/D55.

To help clarify the issue of number and extent of rec
culation cells, the radial locations of the first zero-crossin
of radial velocity componentv have been extracted from th
data used to prepare Fig. 10, and plotted in Fig. 11. It app
that the size of the inner recirculation cell grows witho
bound as Reynolds numbers are reduced, at least unti
zero-crossing location approaches the maximum radial
tent of the computational domain (r max550D), where the
analysis becomes unreliable—for this reason, data points
largestr /D have been omitted from Fig. 11.

Contours of the time-average scalar concentration at
limits of the (Re, A/D) control space considered here a
shown in Fig. 12. It can be seen that at the low-Reyno
number, low-amplitude limit (Re51, A/D50.05), scalar
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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diffusion dominates, and contour lines closely approxim
circular arcs, consistent with scalar transport approxima
the uniform radial diffusion that represents the Stokes fl
limit. At the high-Reynolds number, high-amplitude lim
(Re5100, A/D55), scalar advection is more significan
and the outer contours ofc are clearly influenced by the
time-mean streaming flow within the computational doma
In order to check domain-extent effects on sphere-surf
scalar transport rates atRe5100, A/D55, computations
were repeated on a smaller domain (xmax/D5620, r max/D
520). While this changed the far-field contours, no sign
cant effect onSh was detected.

C. Peak force coefficients

Peak coefficients of drag in oscillatory flows are sho
in Fig. 13~a!. Subtracting the inertial componentCd,i

5(4D/3A)sinvt, i.e., the first term in~8!, from the coeffi-
cient of drag time series prior to extracting peak values,
can also obtain the coefficient of drag for a sphere oscilla
in a quiescent fluid: The corresponding peak drag coe
cients are shown in Fig. 13~b!. For purposes of compar
ison, values of peak coefficient of drag computed from B
set’s analytical Stokes flow solution~8! are also plotted in
Fig. 13, and it can be seen that this provides a good appr
mation to the total drag force up toA/D51 at the higher
Reynolds numbers, and considerably above this at the lo
Reynolds numbers.

In order to examine in more detail the contributio
made by the various terms in Basset’s solution, and how w
that predicts the drag coefficients obtained computationa
the normalized drag coefficients for various combinations
terms in ~8! are plotted as functions ofRe at variousA/D
values in Fig. 14. In order to maximize the relative contrib
tions of the Stokes drag and Basset history terms, the va

FIG. 11. Location of the first zero-crossing of the cycle-average radial
locity v on traverses of the linex50 as functions of Reynolds number, fo
A/D50.05 andA/D55. Maximum radial extent of computational doma
is r max550 D.
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represented are for a sphere made to oscillate in quies
fluid, i.e., the values obtained from simulation are those
Fig. 13~b!, and the first term in~8! has been correspondingl
omitted. ForA/D<0.2, peak coefficients of drag obtaine
from Basset’s solution are virtually indistinguishable fro
those obtained using numerical simulation at all the R
nolds numbers employed here, and the same is true
A/D<2 at Re51.

D. Cycle-average mass transfer coefficients

Cycle-average Sherwood numbersSh are shown in Fig.
15 as functions of oscillation amplitude and Reynolds nu
ber. The most interesting features of this plot are associa
with the high- and moderate-Reynolds number results.
Re5100, values ofSh appear to approach a highA/D as-
ymptoteSh'5 for A/D*2. Sh falls rapidly withA/D, then
recovers nearA/D50.2, before falling slowly again asA/D
reaches the lowest values used in this study. For intermed
Reynolds numbers (Re550, 20, 10),Sh–A/D curves have
local minima for A/D'0.3—in the vicinities of these
minima, Sh can fall marginally below the Stokes limitSh
52. For these intermediate Reynolds numbers, it see
likely that for A/D,0.05, Sh values will again begin to
decrease, on the basis of what is observed forRe5100. For
the lowest Reynolds numbers (Re55, 2, 1), values ofSh
asymptote monotonically to the Stokes flow limit asA/D
falls. In all cases it is expected that for all Reynolds numb
the uniformA/D→0 limit of Sh is the Stokes flow value.

In order to gauge the mass-transfer performance in
cillatory flow relative to that in steady flow, the same valu
of Sh as shown in Fig. 15~a! are repeated in Fig. 15~b!, but
normalized by the steady-flow values given by~10!. The
Reynolds number used to compute values ofShequiv from
~10! is the rms value corresponding to the peak value lis
in Fig. 15~a!, e.g., forRe5100, the corresponding Reynold
number to computeShequiv from ~10! is 100/21/2570.711. It
is immediately apparent that the normalized mass-tran
values are always less than the equivalent steady flow val
This results from pollution of the surrounding fluid wit
scalar effluent from previous flow cycles in the oscillato
flow case—for steady flow, there is always a continu
supply of uncontaminated fluid.~The same conclusion—tha
the oscillatory flow values are always lower than the equi
lent steady flow values—is also reached if the peak, rat
than rms, Reynolds numbers are used in performing the c
parison.!

V. DISCUSSION AND CONCLUSIONS

The main results of the parametric investigations carr
out in the present work are summarized in Figs. 13–15.

With regard to peak coefficients of drag in oscillato
flows ~Fig. 13!, an interesting finding is that Basset’s analy
cal result for Stokes flow~8! provides a good basis for pre
diction of asymptotic peak drag coefficients even at qu
large Reynolds numbers (Re'100), provided the oscillation
amplitude is not too large (A/D&0.5). A detailed examina-
tion of the relative contributions of various terms in Basse

-
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FIG. 13. Peak coefficient of drag for a sphere~a! stationary in oscillatory flow and~b! oscillating in quiescent fluid, as functions of oscillation amplitude a
Reynolds number. Dotted lines~• • • •! show predictions of Basset’s solution~8! at each Re.
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solution for the asymptotic drag~8!, compared to the value
obtained through numerical simulation~see Fig. 14! is re-
vealing. Within the parameter ranges studied here, the c
tribution of the Basset history term to the total drag is alwa
substantial, typically larger than the Stokes drag forA/D
<0.5. At all oscillation amplitudes, the contribution o
Stokes drag becomes relatively less with increasingRe, and
indeed at the lower amplitudes, the contribution of Stok
drag becomes insignificant forRe*10, with added mass an
history terms dominating. Again at all amplitudes, the re
Downloaded 24 Oct 2002 to 152.83.22.19. Redistribution subject to AI
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s
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tive contribution of the Basset history terms is greatest
intermediate values of Reynolds number~e.g., atRe'10 for
A/D50.2), and the Reynolds number at which this con
bution is greatest increases with oscillation amplitude.

Time-average mass-transfer coefficients~Fig. 15! can be
elevated substantially above the Stokes flow value,
within the limits of the parameter set used here, the amo
of elevation appears to increase with Reynolds number.
also possible, at least forSc51, to depress time-averag
d
FIG. 14. Peak coefficients of drag~for a sphere oscillating in quiescent fluid! derived from Basset’s solution~8!, normalized by the values obtaine

computationally (Ĉd,DNS). Added mass term only,m; added mass1 Stokes drag,d; added mass1 Stokes drag1 Basset history term,j.
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FIG. 15. ~a! Cycle-average Sherwood number forSc51.0 in oscillatory flows, as functions of oscillation amplitudeA/D and Reynolds number. Compute
values,d; Stokes’ flow limit,Sh52, . ~b! Cycle-average Sherwood number normalized by the corresponding rms steady flow value.
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mass-transfer coefficients below the Stokes flow value,
though not by a large amount.

Previous computational predictions of scalar transpor
oscillatory flows,18 which showed Sh climbing without
bound asA/D→0 now appear erroneous, most likely as
result of low mesh resolution near the surface of the sph
In that work, the radial distance to the first mesh point aw
from the sphere wall was approximately 10% of the sph
radius, which is obviously inadequate when the flow osci
tion amplitude may be of the same order, or at moder
Reynolds number, when boundary layers are thin. The
rectA/D→0 asymptotic value ofSh is the Stokes flow limit,
Sh52, regardless of Reynolds number or Schmidt numbe14

a theoretical conclusion supported by the simulation res
presented here.

Time-average mass transfer coefficients in oscillat
flow were found to be lower than the corresponding r
steady-flow value. However, in potential drying application
oscillatory flow will usually be superimposed on a bac
ground quasi-steady flow. Small droplets or particles w
asymptote to a rest state with respect to the background fl
hence a more relevant basis of comparison of mass tran

TABLE II. Peak drag coefficients for a sphere oscillating in quiescent fl
@see Fig. 13~b!#. Drag coefficients in steady flow are indicated byA/D5`
~see Fig. 4!.

A/D\Re 1 2 5 10 20 50 100

0.05 80.4 55.9 37.3 29.2 23.9 19.6 17.6
0.1 60.9 40.2 25.1 18.7 14.6 11.3 9.80
0.2 48.5 30.5 17.8 12.6 9.36 6.82 5.67
0.5 38.5 22.9 12.3 8.17 5.70 3.82 2.99
1 34.0 19.5 9.96 6.36 4.29 2.75 2.08
2 31.1 17.3 8.57 5.35 3.53 2.20 1.60
5 28.9 15.8 7.68 4.71 3.04 1.83 1.30
` 27.3 14.9 7.14 4.31 2.72 1.58 1.09
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performance in these kind of flows is the Stokes flow lim
Although in most cases, mass transfer coefficients in osc
tory flows are above the Stokes flow limit value, it is al
possible to obtain values somewhat below this, so that g
design of drying equipment for these applications requi
careful consideration.

Regarding the flow field, an issue not previously r
solved in examinations of oscillatory axisymmetric flow
around spheres has been the number of recirculation c
present in the time-average streaming flow.1,2 While a purely
numerical approach is probably not the most appropr
means with which to examine the issue fully, a conclus
supported by the present work is that for finite Reyno
numbers there are always four~axisymmetric! cells—two are
encountered on each axial traverse away from the origin
the sphere. The extents of the inner cells appear to g
without bound asA/D→0 for all finite Reynolds numbers
In the Stokes flow limit, only the inner cells remain.

A more realistic basis for assessment of mass tran
from particles or drops in oscillatory axisymmetric flow
would involve simulations in which the sphere was free
move in response to drag forces, which are not difficult

TABLE III. Time-average Sherwood numbers for a sphere oscillating
quiescent fluid, or for a sphere in oscillatory flow@see Fig. 15~a!#. Sherwood
numbers in steady flow are indicated byA/D5` ~see Fig. 5!.

A/D\Re 1 2 5 10 20 50 100

0.05 2.02 2.02 2.01 2.01 2.01 2.13 2.48
0.1 2.02 2.02 2.01 2.00 1.99 2.11 2.60
0.2 2.02 2.02 2.01 1.99 1.95 2.04 2.61
0.5 2.03 2.03 2.02 1.99 1.93 2.06 3.00
1 2.04 2.06 2.07 2.07 2.06 2.48 4.06
2 2.06 2.10 2.18 2.25 2.35 3.19 4.94
5 2.11 2.18 2.36 2.54 2.80 3.77 5.11
` 2.31 2.52 2.96 3.47 4.20 5.57 6.96
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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arrange, but require introduction of another dimensionl
parameter,rs /r, i.e., the ratio of sphere to fluid densit
Another issue that remains to be addressed is determina
of the envelope of oscillation amplitudes and Reynolds nu
bers within which the flows retain their axisymmetry.

APPENDIX: TABULATED VALUES

Computed coefficients of drag and Sherwood numb
are presented in Tables II and III.
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