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Transient energy growth of disturbances to co-rotating pairs of vortices with axial
core flows is investigated in an analysis where vortex core expansion and vortex
merging are included by adopting a time-evolving base flow. The dynamics of pairs
are compared with those of individual vortices in order to highlight the effect of
vortex interaction. Three typical vortex pair cases are studied, with the pairs comprised
respectively of individually inviscidly unstable vortices at the streamwise wavenumber
that maximizes the individual instabilities, viscously unstable vortices also at the
streamwise wavenumber maximizing the individual instabilities and asymptotically
stable vortices at streamwise wavenumber zero. For the inviscidly unstable case,
the optimal perturbation takes the form of a superposition of two individual helical
unstable modes and the optimal energy growth is similar to that predicted for an
individual inviscid unstable vortex, while where the individual vortices are viscously
unstable, the optimal disturbances within each core have similar spatial distributions
to the individually stable case. For both of these cases, time horizons considered
are much lower than those required for the merger of the undisturbed vortices.
However, for the asymptotically stable case, large linear transient energy growth of
optimal perturbations occurs for time horizons corresponding to vortex merging. Linear
transient disturbance energy growth exhibited by pairs in this stable case is two to
three orders of magnitude larger than that for a corresponding individual vortex. The
superposition of the perturbation and the base flow shows that the perturbation has
a displacement effect on the vortices in the base flow. Direct numerical simulations
of stable pairs seeded by optimal initial perturbations have been carried out and
acceleration/delay of vortex merging associated with a dual vortex meandering and
vortex breakup related to axially periodic acceleration and delay of vortex merging are
observed. For axially invariant cases, the sign of perturbation has an effect, as well
as magnitude; the sign dependence relates to whether or not the perturbation adds
to or subtracts from the swirl of the base flow. For a two-dimensional perturbation
that adds to the swirl of the base flow, seeding with the linear optimal disturbance
at a relative energy level 1 ⇥ 10�4 induces the pair to move towards each other and
approximately halves the time required for merger. Direct numerical simulation shows
that the optimal three-dimensional perturbation can induce the vortex system to break
up before merging occurs, since the two-dimensional nature of vortex merging is
broken by the development of axially periodic perturbations.
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1. Introduction

Large aircraft in landing and take-off configurations generate strong multiple trailing
vortex systems. In the near field, the trailing vortex sheet quickly rolls up and detaches
from the wing tips and outer flap tips to form a set of discrete co-rotating vortices on
each semi-span, which subsequently merge and form a pair of counter-rotating vortices
downstream of the wing over a distance of 5–10 wing spans (Meunier, Le Dizès
& Leweke 2005). These vortex systems may persist over long times before finally
diffusing, and can impose potentially dangerous rolling moments on any following
aircraft that encounters them (Crouch 2005). Airport safety regulations impose
additional delays between aircraft movements in order to mitigate such events, and
much of the motivation for studying dynamics and stability of trailing vortex wake
systems stems from desire to increase airport utilization factors, especially for large
aircraft.

Consideration of the dynamics of equal-strength vortex pairs is complicated by the
large variety of behaviours that may be encountered. At finite Reynolds numbers,
individual vortices expand and weaken with time owing to viscous diffusion, although
at high Reynolds numbers this effect is comparatively slow and quasi-steady analyses
may be made of the initial dynamics. On the basis of such an analysis, individual
vortices of a pair may be found asymptotically unstable to a variety of mechanisms,
as discussed, for example, by Heaton (2007b). Counter-rotating pairs are subject to
the long-wavelength Crow instability (Crow 1970), a mechanism shown to be stable
in the case of co-rotating pairs (Jiménez 1975). At shorter axial wavelengths, elliptic
asymptotic instabilities (Kerswell 2002) of either co-rotating or counter-rotating pair
systems can also arise where each vortex is distorted by the strain field of the other
such that sectional streamlines become elliptical in shape. Transient as opposed to
asymptotic dynamics of pairs may be significant, especially those associated with
vortex merging which occurs only for co-rotating vortex pairs. An examination of
optimal transient perturbations in quasi-steady counter-rotating pairs may be found
in Donnadieu et al. (2009). Studies of transient dynamics of co-rotating pairs have
thus far been confined to either direct numerical simulation (DNS), typically two
dimensional, or conducted experimentally (see the review by Meunier et al. 2005,
for discussion of both types). We are not aware of any existing study, quasi-
steady or otherwise, that considers optimal transient dynamics of co-rotating pairs.
The present work seeks to provide an introductory examination of this area, focusing
most attention on cases where merging occurs in the base flow and so quasi-
steady approximations are invalid.

In the remainder of this section we first consider the Batchelor model of the
individual vortices used to initialize our base flows, and the asymptotic and transient
behaviours expected of these vortices when considered individually (and, typically, on
the basis of quasi-steady analysis). We briefly discuss elliptic asymptotic instability
of pairs of such vortices, both co- and counter-rotating, and transient growth of
counter-rotating pairs. We examine previous observations of vortex merging both for
two-dimensional cases and in experiments where elliptic instability may contribute to
the event. Finally, we outline and justify the approach to be taken for our investigation
of optimal transient dynamics of co-rotating vortex pairs.

Trailing vortices often involve axial core flow in addition to swirl. A simple model
that allows for both axial core flow and swirl and which for an isolated vortex
satisfies the incompressible Navier–Stokes equations is provided by the Batchelor
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FIGURE 1. Radial profiles of axial and azimuthal velocity components for an individual
Batchelor vortex at swirl strength q = 0.8, time t = 0 and radial length parameter a(0) = 1.
Maximum azimuthal velocity is obtained at r = 1.12091, indicated by dashed line.

vortex (Batchelor 1964), defined in cylindrical coordinates (z, r, ✓ ) by

(uz, ur, u✓)(r, t) = (a�2 exp(�r2/a2), 0, qr�1
[1 � exp(�r2/a2)]), (1.1)

where a(t) = (1 + 4t/Re)1/2 represents the viscous diffusion of the radius of the vortex
core and q denotes the swirl strength. Here Re denotes the Reynolds number, defined
as Re = 1UR0/⌫, where 1U is the dimensional velocity excess in the core of each
individual vortex, R0 is the radius of an individual vortex core at time t = 0 and
⌫ is the kinematic viscosity. This model is adopted in what follows as the basis of
individual vortex initial conditions, taken at time t = 0. Profiles of axial and azimuthal
velocity components of a Batchelor vortex at time t = 0 and with q = 0.8 are shown
in figure 1; we observe that the maximum azimuthal velocity occurs at r = 1.12091.
As q ! 1, axial flow becomes negligible and the Lamb–Oseen vortex model is
approached.

We note that owing to viscous diffusion, the radial size of a Batchelor vortex
increases with time, while velocities decay. Since the rate of these changes decreases
as Reynolds numbers increase, quasi-steady analyses are generally reasonable for
high initial Reynolds number studies. However, as will be discussed below, quasi-
steady approaches cannot be appropriate to studies involving vortex merger, which
is inherently unsteady, and also inherently a moderate-to-low Reynolds number
phenomenon.

Asymptotic temporal behaviour of small perturbations to a quasi-steady individual
vortex may be described by the eigenmodal form u0(z, r, ✓, t) = û(r) exp[� t + i(kz +

m✓)], where the real and imaginary parts of � denote the growth rate and frequency
of the eigenmode û, respectively, k designates the streamwise wavenumber and m
represents the azimuthal wavenumber. There are two major categories of asymptotic
instabilities of perturbations to the Batchelor vortex: inviscid and viscous. We adopt
the standard terminology (see e.g. Heaton 2007b) that an inviscid-type instability is
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one for which the exponential growth rate � increases to a positive finite value as
Re ! 1, while a viscous-type instability is one for which the growth rate tends to
zero from above as Re ! 1. Inviscid-type helical instabilities are very strong for
q < 1.5, as investigated by Lessen & Paillet (1974), Lessen, Singh & Paillet (1974)
and Mayer & Powell (1992) and stabilized for q > 2.31, as predicted by Stewartson &
Brown (1985) and confirmed by Heaton (2007a): this means that inviscid mechanisms
are not relevant to the asymptotic dynamics of Lamb–Oseen vortices. Viscous-type
centre instabilities are much weaker, and occur at all values of swirl strength and high
values of Reynolds number as numerically investigated by Khorrami (1991) and Fabre
& Jacquin (2004) and theoretically predicted by Le Dizès & Fabre (2007).

Significant transient energy growth may occur when the individual vortex flow is
asymptotically stable or weakly unstable, as demonstrated in quasi-steady studies of
both the Lamb–Oseen vortex and the Batchelor vortex by Antkowiak & Brancher
(2004), Pradeep & Hussain (2006) and Heaton & Peake (2007). The optimal
perturbation is observed to be located in the region outside the vortex core and two
typical mechanisms of transient growth are identified, one at m = 1 and the other at
m = 0. Antkowiak & Brancher (2004) conjectured that at m = ±1 the transient effects
are produced by resonance, which occurs if the out-of-core structure oscillates with
the same frequency as a core wave. The same authors have identified another transient
growth effect at m = 0, named as an ‘anti-lift-up effect’, which is associated with
the emergence of azimuthal vorticity rolls emanating from azimuthal velocity streaks
(Antkowiak & Brancher 2007). It has been demonstrated by Pradeep & Hussain (2006)
and Heaton (2007b) via different approaches that the transient growth at m = 0 can be
arbitrarily large when the radial length of the computational domain tends to infinity.
Mao (2010) recently demonstrated that these two transient growth mechanisms can be
ascribed to the non-normality of a continuous part of the spectrum, corresponding to
asymptotically stable modes with energy lying outside the vortex core region. In this
work, the resonance effect on transient growth was observed, while the anti-lift-up
effect was not captured because the growth rate is small at m = 0 (even though the
growth can reach an arbitrary large value over an infinite time interval) and therefore
the waves with m = 0 did not produce optimal energy growth over the limited time
horizon investigated.

Pairs of two-dimensional vortices of equal strength undergo motion as each vortex
is advected (and strained) by the velocity field of its partner. In counter-rotating pairs,
this results in a linear translation of the pair, while for co-rotating vortices, the pair
rotates in the same sense as the individual vortices. In either case another parameter
enters the problem, which is the dimensionless initial spacing of the pairs, typically
supplied as a(t)/b. For pairs of vortices, there is no available analytical model which
satisfies the Navier–Stokes equations, however for moderate-to-high Reynolds numbers
a typical approach is to employ as initial condition the linear sum of two Batchelor
vortices. Provided that the initial spacing is sufficient, this system rapidly evolves to
a quasi-steady state which can be used for asymptotic stability analysis. In addition
to the single-vortex instability mechanisms outlined above, new mechanisms relying
on the interactions between two vortices come into play. For asymptotic instability of
co-rotating pairs prior to merging, only the short-wavelength elliptic mechanism needs
to be considered.

The short-wave elliptic instability for an individual vortex in an external imposed
strain field was numerically studied by Tsai & Widnall (1976) and theoretically
described by Moore & Saffman (1975) as the resonant interaction between the
strain and Kelvin waves with azimuthal wavenumbers m = ±1. This elliptic
instability has been well-documented by Kerswell (2002) and is also observed in the
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co-rotating Lamb–Oseen vortex pair flow (Le Dizès & Laporte 2002; Meunier &
Leweke 2005). As noted by Meunier et al. (2005), asymptotic elliptic instability arises
in the co-rotating Lamb–Oseen pair system prior to merger for moderate Reynolds
numbers, Re > 2000.

The study by Roy et al. (2008) examined asymptotic elliptic instability in the
co-rotating Batchelor pair system at streamwise wavenumber k > 1 and high values
of the swirl strength q > 1.67 where the inviscid instability is weak. Similar to the
work of Lacaze, Ryan & Le Dizès (2007) on the counter-rotating system, a number
of elliptic instabilities were observed, each corresponding to resonance between a pair
of Kelvin modes differing by two in azimuthal wavenumber, and in both studies the
m = ±1 sinuous modes of the Lamb–Oseen system were stabilized by the addition
of axial flow owing to a breaking of a symmetry between the m = �1 and m = 1
Kelvin waves that is only present when there is no axial flow. As outlined in Roy
et al. (2008), the elliptic instabilities of the co-rotating and counter-rotating Batchelor
vortex systems are broadly similar, but the effect of Coriolis acceleration, present in
the co-rotating case and absent in the counter-rotating case, is to shift the modes to
somewhat lower axial wavenumbers and to give a general increase in amplification
rates. For counter-rotating Lamb–Oseen pairs, a new oscillatory elliptic instability
involving Kelvin waves with azimuthal wavenumbers m = 0 and | m |= 2 was recently
addressed by Donnadieu et al. (2009), who also investigated the transient energy
growth of disturbances to a counter-rotating vortex pair.

As time proceeds, the individual vortices in a two-dimensional pair gradually expand
and weaken as the result of viscous diffusion. In the case of a two-dimensional system
of co-rotating vortex pairs, the vortices rotate around their mutual centroid at an
almost constant radius and speed until the core radius to spacing parameter reaches a
critical value of approximately a/b = 0.22, regardless of the initial Reynolds number
(Meunier et al. 2005). At this time, the merging process begins; the vortices are
driven towards each other and rotation of the pair speeds up, until separate vortex
cores can no longer be discerned and the merger is complete. The resulting single-
vortex system then diffuses away. For the two-dimensional case, core velocities do
not affect these dynamics. Elliptic instability (arising for Re > 2000 in the case of
Lamb–Oseen co-rotating pairs) can have a strong influence on the merging process,
initiating it earlier and producing a final turbulent vortex of larger core size after
merging completes (Meunier et al. 2005). We note that the merging process, either
two or three dimensional, is highly unsteady and hence is not suited to study via
quasi-steady approaches.

The importance of vortex interactions and vortex core expansions in the dynamics
of vortex systems suggests it is necessary to take into account the time dependence
of the base flow and conduct dynamic analyses over the whole process of the vortex
interaction until merging completes. Transient growth analysis is an ideal tool with
which to study this problem but little attention has been paid to the non-normality
of vortex systems in the unsteady evolution process. In the present paper, a co-
rotating vortex pair is adopted as an example vortex system and transient dynamics
in the expansion–merging process are investigated computationally. The choice of
co-rotating rather than counter-rotating vortex pairs dictates that the individual vortices
undergo rotation around their joint centroid rather than translation parallel to the
plane of symmetry, which could require a much larger computational domain. In
addition, most of the previous works on dynamics of vortex pairs have been concerned
with vortex systems consisting of individually stable vortices. The system instability
of vortex pairs consisting of asymptotically unstable vortices has not been fully
understood. In our work, the dynamics of vortex pairs consisting either of individually
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unstable vortices or individually stable vortices are investigated and compared with
the dynamics of the individual vortices in order to help fill this gap. For the systems
chosen, the asymptotic behaviour of the pairs (stable/unstable) is the same as for the
individual vortices.

We first used (Re, q) = (1000, 0.8), where the individual vortex has strong inviscid
instability (Broadhurst 2007), in order to study the interaction of the pair’s mutual
strain field and the inviscid instability. The swirl strength q = 0.8 ensures that a
helical-type instability is activated. Following this, we increase the swirl strength
to q = 2 and change the Reynolds number to Re = 3000 so as to activate the
viscous centre instability in each individual vortex (Fabre & Jacquin 2004). Here
we chose a relatively high Reynolds number since this is essential for a viscous
centre instability to be observed. Then we further increase the swirl strength to q = 3
to preclude asymptotic instabilities associated with individual vortices and focus on
vortex interaction and merging. In this case we employ Re = 100 in order to ensure
that the vortices merge within a relatively brief time interval. Since our Reynolds
numbers are based on the maximum axial velocity and initial radius rather than, as is
conventional for Lamb–Oseen vortices, on the circulation, we note that our Reynolds
numbers may not be directly comparable to those cited in other studies. For example,
in the scaling adopted by Meunier et al. (2005), the initial Reynolds number for this
case is 2⇡⇥q⇥100 = 1885. While this Reynolds number may still seem somewhat low,
it is relevant to the study of merger dynamics, since (with initial core spacings above
those for commencement of merging) the system is close to the onset of merging, set
approximately at the border between the end of the initial quasi-steady phase (‘stage 1’
in figure 5 of Meunier et al. 2005) and the merger-onset phase (‘stage 2’). As noted by
Meunier et al. (2005) the duration of two-dimensional mergers is almost independent
of the initial Reynolds number of the pair. In the three-dimensional case which gives
the largest transient growth during merging, the basic mechanism is identified as
elliptic.

Following studies of linear transient growth, we turn to examine the influence of
nonlinear effects on the transient dynamics of the asymptotically stable pair. It is found
that while the growth of perturbations falls as their relative amplitude is increased,
this decline is accompanied in the two-dimensional case by either an acceleration or
delay of vortex merging, depending on the sign of the perturbation, and in the three-
dimensional case when perturbation levels are large, by a break-up of the individual
vortices of the pair prior to merging.

2. Problem definition

In what follows, the linear summation of two Batchelor vortices is used as an
initial condition to generate base flows with time-evolving co-rotating vortex pairs. In
Cartesian spatial coordinates (x, y, z), corresponding to transverse, vertical and axial
directions respectively, the initial condition can be expressed as

U(t = 0) = �
q
r2

1
(y � y1)[1 � exp(�r2

1)] �
q
r2

2
(y � y2)[1 � exp(�r2

2)] (2.1a)

V(t = 0) =
q
r2

1
(x � x1)[1 � exp(�r2

1)] +
q
r2

2
(x � x2)[1 � exp(r2

2)] (2.1b)

W(t = 0) = exp(�r2
1) + exp(�r2

2) (2.1c)

where r2
1 = (x � x1)

2
+ (y � y1)

2, r2
2 = (x � x2)

2
+ (y � y2)

2 and (x1, y1) and (x2, y2) are
the initial locations of the two individual vortex cores. We note that axial vorticity
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of this combination has positive sign, although of course the choice is arbitrary. For
the view orientations chosen for figures, individual vortices and pairs rotate with a
counter-clockwise sense.

As noted in § 1, while each isolated Batchelor vortex satisfies the
Navier–Stokes equations, the combined initial condition does not. However, when
this initial condition is evolved via time integration, there is a quick relaxation process
(t < 0.01) during which the vortices equilibrate with each other without changing
shape significantly (Sipp, Jacquin & Cossu 2000). This relaxation process is explained
using the damped Kelvin modes of each vortex by Le Dizès & Verga (2002). This
rapid and small readjustment has been found to have negligible influence on the
outcomes provided in the present work.

The initial coordinates of the two vortex centroids are (x1, y1) = (�b/2, 0) and
(x2, y2) = (b/2, 0), where we have concentrated most attention on a dimensionless
spacing b = 6. This initial spacing ensures that the individual vortices in each pair
are not initially significantly distorted by their mutual strain field, and that the
vortex system can merge over a relatively small time interval. In the individual
vortex simulations used for purposes of comparison, the vortex centroid is located
at (x, y) = (�b/2, 0).

The problem to be examined is transient growth of optimal perturbations to the co-
rotating vortex pair system. Base flows are taken to be time evolving, two dimensional
with three velocity components. Perturbations are, in general, three dimensional with
three velocity components with a Fourier decomposition in the axial coordinate (for
which the base flows are homogeneous). The four dimensionless parameters to be
considered are swirl strength q, Reynolds number Re, initial core spacing to radius
ratio a(0)/b and axial wavenumber k.

3. Transient growth methodology

Assuming the fluid to be Newtonian and the flow incompressible, the relevant
equations of motion are the incompressible Navier–Stokes equations:

@tu = �u ·ru � rp + Re�1
r

2u, r ·u = 0, (3.1)

where u is a velocity vector field and p is a modified pressure, all considered in
a spatial domain ⌦ . Decomposing the flow field into the sum of a base flow and a
perturbation, u = U+u0, p = P+p0, inserting into (3.1), and retaining only terms linear
in the perturbation, one obtains the linearized Navier–Stokes (LNS) equations

@tu0
= �U ·ru0

� u0 ·rU � rp0
+ Re�1

r
2u0, r ·u0

= 0. (3.2)

As noted in § 2, the perturbation is further decomposed in the axial coordinate
direction, such that u0 = ũ exp(ikz) + c.c., where k is the axial wavenumber. In the
linear case each such Fourier mode will evolve independently. Spatial distributions of
eigenmode and perturbation vorticity shown in the figures to follow are derived from
two-dimensional Fourier modes ũ.

We adopt a direct approach to computing initial conditions that lead to optimal
transient growth, based on sequential time integration of the linearized and adjoint
Navier–Stokes equations (Barkley, Blackburn & Sherwin 2008; Blackburn, Barkley &
Sherwin 2008). As is typical, we define transient growth with respect to the energy
norm of the perturbation flow, derived from the L2 inner product

2E(u0) = (u0,u0) ⌘

Z

⌦

u0 ·u0 dV, (3.3)
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where E is the kinetic energy per unit mass of a perturbation, integrated over the full
domain. If the initial perturbation u0(0) is taken to have unit norm, then the transient
energy growth over time horizon ⌧ is

E(⌧ )

E(0)
=

�
u0(⌧ ),u0(⌧ )

�
=

�
A (⌧ )u0(0),A (⌧ )u0(0)

�
=

�
u0(0),A ⇤(⌧ )A (⌧ )u0(0)

�
, (3.4)

where A (⌧ ) is the forward state transition operator whose action is obtained by
integrating the LNS equations (3.2) over interval ⌧ ; A ⇤(⌧ ) is the adjoint of A (⌧ ),
whose action is obtained by integrating the adjoint LNS equations

�@tu⇤
= U ·ru⇤

� u⇤ · (rU)T
�rp⇤

+ Re�1
r

2u⇤ with r ·u⇤
= 0 (3.5)

backwards over the interval ⌧ . The action of the symmetric operator A ⇤(⌧ )A (⌧ ) on u0

over the time horizon ⌧ is obtained by sequential time integration of A (⌧ ) and A ⇤(⌧ ),
starting with u0 as an initial condition. The optimal energy growth over all possible
initial conditions for a specific time horizon, G(⌧ ), can be interpreted as the largest
eigenvalue of the operator A ⇤(⌧ )A (⌧ ) (equivalently the square of the leading singular
value of A (⌧ )) and this leading eigenvalue is calculated via an Arnoldi method that
relies on repeated application of the joint operator. The global maximum is denoted by
Gmax = max⌧ G(⌧ ). Perturbation velocity boundary conditions are u0 = u⇤ = 0.

The base flow data are time dependent and updated at every time step by
reconstruction from a moderate number of precomputed time slices. We have
investigated two interpolation methods to reconstruct the base flow: cubic spline
interpolation and four-point-Lagrange (local cubic) interpolation. Both methods deliver
similar results but the first needs all of the slices at every time step and makes
the base flow reconstruction the dominant work component. Local cubic interpolation
is much cheaper while delivering formally the same order of accuracy in time as
global cubic spline interpolation, so four-point-Lagrange interpolation was adopted.
For convenience and speed all of the base flow data were retained in core memory but
only four slices are actually needed in core to compute the interpolant at any instant
so the majority could be kept in slower memory if required. The same base flow
reconstruction methodology was applied in Mao, Sherwin & Blackburn (2011).

4. Discretization and validation, base flow calculations

The governing equations are discretized via quadrilateral spectral elements with
nodal tensor-product expansion bases. A second-order backward-difference time-
splitting scheme with equal-order interpolation of velocity and pressure (Karniadakis,
Israeli & Orszag 1991; Guermond, Minev & Shen 2006) is used for time integration
with time step 1t = 0.005. Where we have employed contour plots of solution axial
vorticity component to illustrate results, this was computed in post-processing via
collocation differentiation.

The mesh used for base flow, eigenmodal, transient growth and DNS calculations
is shown in figure 2. Spectral elements are concentrated in the approximately circular
region in which energy of the vortex pair is concentrated.

To validate our implementation, we compute the exponential temporal growth
rate � for an eigenmodal perturbation to a time-invariant base flow, and examine
both spatial convergence with respect to the expansion basis polynomial order P and
comparison with other published results. The growth rate is calculated using a time
stepper approach, using an Arnoldi method based on repeated integration of the LNS
equations (3.2) over a small time interval, as outlined in Tuckerman & Barkley (2000)
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FIGURE 2. Mesh used in the base flow calculation, transient growth and DNS studies for
both individual vortex and co-rotating vortex pair simulations: (a) entire domain; (b) detailed
view, with two circles to represent initial core regions in the vortex pair flow.

Reynolds number (Re) 100 1000 10 000
Swirl strength (q) 0.622 0.771 0.776
Axial wavenumber (k) 1.108 1.659 1.664

� , P = 2 0.18109 0.32419 0.35106
� , P = 3 0.18118 0.32446 0.35134
� , P = 4 0.18118 0.32446 0.35135
� , P = 5 0.18118 0.32446 0.35136
� , P = 6 0.18118 0.32446 0.35135
� (Fabre & Jacquin 2004) 0.1812 0.3245 0.3514

TABLE 1. Study of convergence with respect to basis function polynomial order P for
the asymptotic growth rate � of a perturbation to an individual Batchelor vortex, with
validation against the results of Fabre & Jacquin (2004).

and Barkley et al. (2008). The data computed using the present method and mesh are
compared with the published results of Fabre & Jacquin (2004) in table 1. We can see
that the two sets of data agree very well. The growth rate for Re = 10 000 converges
to four significant figures at P = 4, where P is the polynomial order of the used to
construct tensor-product spectral element basis functions. Both P = 4 and P = 5 have
been adopted for subsequent calculations.

Since the axial velocity and vorticity of the base flows satisfy the same
advection–diffusion equation, it would be sufficient to compute just one of these
in order to generate a three-component base flow (Donnadieu et al. 2009), but in
the present work the three velocity components are evolved simultaneously via two-
dimensional DNS.

Development of a typical base flow is illustrated in figure 3. Each individual vortex
rotates around the centroid of the pair and is elliptically deformed owing to the strain
field generated by the other vortex (figure 3b). Owing to viscous diffusion, the vortex
cores expand with increasing time (figure 3c). When the separation distance falls
below the merging threshold, the two vortices become closer and closer and finally
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FIGURE 3. Development of axial vorticity contours of the co-rotating vortex base flow from
the initial condition as described by (2.1). Initial Reynolds number Re = 100, core spacing
b = 6, swirl strength q = 3: (a) t = 0; (b) t = 5; (c) t = 39; (d) t = 60. Contour levels range
from ⇣z = 0 to 1.6 and the same levels are used in all of the subplots. Darker shading indicates
higher vorticity level.

merge to form a single vortex surrounded by rotating arms connected to the core
(figure 3d).

In the transient growth study, the unsteady base flow is saved every 100 time steps,
corresponding to time interval 1T = 1t ⇥ 100 = 0.5, which was found to be adequate
for both the individual vortex and co-rotating vortex pair cases at the highest Reynolds
number considered, Re = 3000, on the basis that the relative change of maximum
transient energy growth fell below 0.2 % when using 1T = 0.3.

5. Linear transient energy growth

Three representative cases are considered in what follows. In each, the dynamics of
a co-rotating vortex pair and that of an individual vortex are compared. In the first
case for q = 0.8, the individual vortices have a strong inviscid-type helical instability
and the amount of transient energy growth exhibited by the pair is very similar to that
for an individual vortex out to the time-horizon considered, which precedes merging.
This similarity reflects the fact that the transient growth mechanism for each vortex
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FIGURE 4. Inviscidly unstable helical eigenmode (a), for an individual vortex at (Re, q, k) =

(1000, 0.8, 1.7); dashed/solid lines denote positive/negative axial vorticity; thick solid line is
the contour line of axial vorticity 1.5 in the base flow. A comparison of transient energy
growth for the individual vortex and for a vortex pair composed of unstable individual
vortices is shown in (b). The growth rate of the helical instability is � = 0.323 and the
corresponding energy growth rate is 2� , as illustrated by the slope of the dash-dotted line in
(b), see the text.

of the pair is substantively the same as for an isolated vortex. In the second case
for q = 2, the individual vortices have a weak viscous-type core instability, transient
energy growth for the pair is somewhat larger than for an individual vortex, and the
mechanism for transient growth in the pair is rather different to that of an individual
vortex. In the third case for q = 3, the individual vortices are asymptotically stable but
exhibit moderately strong transient growth; transient growth is substantially larger for
the pair, and as we will show in § 6, can influence the time taken for vortex merging.

5.1. Inviscidly unstable vortices; q = 0.8, Re = 1000
First we focus on the influence of the strain field imposed by an adjacent vortex on
the most unstable mode of an individual vortex, i.e. the widely investigated helical
unstable mode, in a co-rotating vortex system. We also take into account the rotation
effect of the vortex pair by using a time-dependent base flow. The adoption of non-
periodic unsteady base flow excludes the calculation of asymptotic instabilities but
if the most unstable mode associated with the time-frozen base flow is dominant,
the optimal perturbation is expected to have a similar structure with this least stable
mode. Therefore, the flow parameters are set to (Re, q, k) = (1000, 0.8, 1.7) in order to
activate the inviscid helical instability of the individual vortex, with the corresponding
eigenmode illustrated in figure 4(a). The axial wavenumber k = 1.7 is adopted to
maximize the asymptotic growth rate at these values of Reynolds number and swirl
strength for an individual vortex (Broadhurst 2007). The merging threshold of the
base flow is not reached in the time interval considered. From the transient optimal
growth envelopes illustrated in figure 4(b), it can be inferred that normal/eigenmodal
instabilities dominate in both the individual vortex and the vortex pair and there are
limited non-normal transient effects over small time intervals. The energy growth of
the co-rotating vortex pair is slightly smaller than that of the individual vortex (the
difference is negligible compared with the magnitude of G at ⌧ > 30), due to the
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FIGURE 5. Contours of axial vorticity for optimal initial perturbations of an individual vortex
and (a) ⌧ = 3, (b) ⌧ = 27, and a pair of co-rotating vortices at (c) ⌧ = 3, (d) ⌧ = 27, when the
individual vortex is inviscidly unstable at (Re, q, k) = (1000, 0.8, 1.7). Dashed/solid contour
lines denote positive/negative vorticity and the thick solid line is the contour line of axial
vorticity 1.5 in the base flow.

interaction between vortices over large time intervals. As may be seen, the large
time-horizon rate of increase of G with ⌧ for both the individual vortex and the vortex
pair is smaller than (twice) the growth rate of the helical unstable mode, for which
� = 0.323. This difference is accounted for by the fact that the base flows used in
the transient growth studies decay over time, whereas in the calculation of � , the base
flow is considered time independent.

The optimal perturbations and outcomes are summarized in figure 5. For the
individual vortex, the optimal perturbation at small ⌧ has four pairs of helical
structures, but for larger ⌧ the optimal perturbation takes on the threefold symmetry of
the eigenmode, as shown in figure 4(a). This mode transfer occurs because at small
time intervals, when the non-normal effects are evident, the growth with m = 4 is
larger than that with m = 3, while at large time horizons, when the non-normal effects
vanish and the asymptotic instabilities become dominant, the growth with m = 3 is
larger than that with m = 4 (at the parameters investigated, the largest energy growth
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FIGURE 6. Contours of axial vorticity of the asymptotic instability of an individual vortex
(a) and transient energy growth of the individual vortex and a vortex pair composing of
viscously unstable individual vortices (b) at (Re, q, k) = (3000, 2, 0.27). In the contour plot,
dashed/solid lines denote negative/positive vorticity and the thick solid line is the contour
line of axial vorticity 1.5 in the base flow. The growth rate of the helical instability is
� = 9.17 ⇥ 10�3 and the corresponding eigenmodal energy growth rate is 2� , as illustrated by
the slope of the dash-dotted line in (b).

rate of asymptotic instabilities is obtained at m = 3, see Broadhurst 2007). For the
vortex pair, the optimal perturbation for ⌧ = 3 consists of two separated structures
located in the vortex cores and, as for the optimal perturbation for an individual vortex
of this type and for the same time horizon, each core structure has four pairs of spiral
arms. However, these pairs lack strict fourfold symmetry, although the perturbations
within each core more closely approach this as time evolves. It is notable that the
overall structure of the perturbation for the pair system has a 180� rotation symmetry
with respect to the centroid of the base flow (x, y = 0, 0). For ⌧ = 27, as mentioned
previously the optimal structure in each core takes on the threefold structure possessed
by both the single-vortex eigenmode and the optimal perturbation in an individual
vortex for longer time horizons. However, again the initial perturbation in each core
lacks complete rotation symmetry; each helical mode consists of three spiral arms with
two pairs stronger than the remaining one. There is also a slight elliptic deformation
of the structure, with the axes of the ellipse tilting from the x- and y-axes owing
to the rotation of the base flow. This mode can be interpreted as an elliptically
deformed helical instability which is the resonant interaction between the strain field
and Kelvin waves with azimuthal wavenumbers m = �3 and m = �1, as reported by
Lacaze et al. (2007) and Roy et al. (2008) in their asymptotical stability studies with
counter-rotating and co-rotating vortex pairs, respectively. Once again it appears that
there is a 180� rotation symmetry of the complete structure about the centroid of the
base flow.

5.2. Viscously unstable vortices: q = 2, Re = 3000
At parameter values (Re, q) = (3000, 2), individual Batchelor vortices exhibit viscous-
type instability, with spiral eigenmodal structure confined mainly to the viscous core
region, as illustrated in figure 6(a); the concentration of perturbation energy around the
vortex axis has led to these instabilities often being referred to as centre modes.



Non-normal dynamics of co-rotating vortex pairs 443

–6 –5
–3

–2

–1

0

1

3

2

–4 –3 –2 0–1

–8
–8

–6

–6

–4

–4

–2

–2

8

8

6

6

4

4

2

2

0

0

x

(a)

(c)

–6 –5
–3

–2

–1

0

1

3

2

–4 –3 –2 0–1

(b)

–8
–8

–6

–6

–4

–4

–2

–2

8

8

6

6

4

4

2

2

0

0

x

(d )

FIGURE 7. Axial vorticity contours of optimal initial perturbations of an individual vortex
(a,b) with ⌧ = 9, 30, and a pair of co-rotating vortices (c,d) with ⌧ = 9, 30, when the
individual vortex has viscous centre instability at (Re, q, k) = (3000, 2, 0.27). Two contour
levels are used and contour lines are removed for clarification. Dark shading represents
positive vorticity, light shading represents negative vorticity, and the thick solid line is the
contour line of axial vorticity 1.5 in the base flow.

The axial wavenumber is set to k = 0.27 in order to activate the most unstable
mode for an individual vortex for the parameters considered and investigate the effects
of strain field on the well-documented viscous centre mode. Although in this case
the vortices are individually asymptotically unstable, the growth rate is relatively slow
when compared with the transient growth for ⌧ < 10. So in comparison to the q = 0.8
study we observe a strong initial growth due to non-normal transients.

Transient energy growth for an individual vortex and a vortex pair when viscous
centre instability appears is shown in figure 6(b). In each case the envelope curve
consists of several segments due to jumps in symmetry properties of the optimal
perturbation with increasing ⌧ , as also happens in the inviscidly unstable case
discussed in the previous section. For example, from the optimal perturbations of
the individual vortex in figure 7(a,b), we note that for ⌧ = 9, there are two pairs of
spiral branches in the optimal structure but at ⌧ = 30, the number has reduced to
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FIGURE 8. Contours of optimal energy growth Gmax as a function of time horizon ⌧ and axial
wavenumber k for (a) an individual vortex and (b) a co-rotating vortex pair. In (b), there are
two local maxima, the first for (k = 0, ⌧ = 39), where Gmax = 1.45 ⇥ 104, and the second
for (k = 0.75, ⌧ = 40), for which Gmax = 4.56 ⇥ 104. The cases considered employed a swirl
strength where individual vortices are asymptotically stable (Re = 100, q = 3).

one, and the optimal initial perturbation resembles the adjoint of the leading unstable
viscous centre mode.

The optimal initial perturbation structure of the vortex pair at ⌧ = 9 (figure 7c)
lies predominantly in the interaction region between the vortex cores. At ⌧ = 30
(figure 7d) there are perturbations associated with each individual vortex, and these
are of similar magnitude to the interaction-region structure. This structural change is
reflected in the segmented rise of energy growth with ⌧ corresponding envelope curve
shown in figure 6(b). The expansion of the potential region structure with ⌧ is a
reflection of the optimal perturbation in the individual vortex whose radius expands
with increasing ⌧ . We note that the optimal initial perturbations for the pairs are
different to those for an individual vortex in the sense that those for the individual
vortex lie within the core (directly exciting eigenmodal structure) while those for the
pairs lie outside the cores, in the regions which can be initially considered as potential
flow. With increasing time however, perturbations to the pairs progress to the core
regions, in a manner similar to the observations made for stable vortex pairs (as will
be discussed in § 5.3). This type of growth is analogous to the resonance effect first
proposed by Antkowiak & Brancher (2004). This transformation of energy from the
potential-flow region to the vortex core owes to the non-normality of the potential
eigenmodes, which are either in the form of one wave packet outside the vortex core
or of two wave packets, with one inside the core and the other outside it (Mao 2010).

5.3. Asymptotically stable vortices: q = 3, Re = 100
In this final case we investigate transient growth within the co-rotating vortex pair
composed of vortices with Re = 100 and q = 3, which individually are asymptotically
stable at all axial wavenumbers (Fabre & Jacquin 2004). Significant transient growth
for an individual vortex with q = 3 (but at a larger Reynolds number) was reported
by Heaton (2007a). Contours of optimal energy growth Gmax with time horizon ⌧
and wavenumber k as independent variables are shown in figure 8 for both individual
vortices and vortex pairs. Over the time horizons considered, ⌧ = 0–60, maximum
transient energy growth for the vortex pair is two to three orders of magnitude
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FIGURE 9. Optimal energy growth envelopes (solid lines) and representative transient
responses (dashed/chained lines) for two-dimensional perturbations to stable vortices (with
q = 3, Re = 100): (a) growth for an individual vortex and (b) growth for a co-rotating vortex
pair.

larger than that for the individual vortex. For individual vortices, maximum transient
energy growth occurs for axially invariant flows, i.e. k = 0, while the distribution of
Gmax for pairs is bi-modal, with maxima occurring both for (k = 0, ⌧ = 39), where
Gmax = 1.45 ⇥ 104, and for (k = 0.75, ⌧ = 40), for which Gmax = 4.56 ⇥ 104. The
bi-modal behaviour for pairs is associated with two distinct physical mechanisms, as
we will show in what follows.

In the remainder of this section, we first examine the details of behaviour for
two-dimensional perturbations (k = 0) owing to its simplicity and comparatively large
transient growth. Then we examine behaviour for axial wavenumber k = 0.75, which
gives the maximum transient growth. We note that there are significant differences
between the linear/nonlinear behaviours of these two cases, as will be further
examined in § 6.

5.3.1. Two-dimensional perturbations, k = 0
Figure 9 shows the optimal growth and transient responses of the individual vortex

and the co-rotating vortex pair for perturbations with axial wavenumber k = 0. The
optimal growth curve can be understood as the envelope of the individual responses
evolved from optimal perturbations corresponding to different time horizons ⌧ , as
indicated in the plot. From the energy growth curve of the individual vortex (see
figure 9a), we see that there is reasonably strong transient growth before ⌧ = 10 and
then the growth increases more slowly. A large time interval is therefore required to
reach the maximum growth of the individual vortex (in agreement with Heaton &
Peake 2007). Because our focus is concerned with the dynamics of vortex pairs rather
than those for an individual vortex, we have not extended the range of ⌧ to find the
maximum energy growth of an individual vortex.

In the transient growth plot of the vortex pair illustrated in figure 9(b), we note
that the maximum growth in the co-rotating vortex pair occurs for ⌧ = 39, which
corresponds to the vortex merging phase in the base flow shown in figure 3(c). Two
individual optimal growth profiles are also shown, for ⌧ = 5 and ⌧ = 39. There is
however another local maximum of transient growth for the ⌧ = 5 initial perturbation
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near t = 5, which is induced by transient effects of the individual vortices rather than
vortex interaction.

Contours of axial vorticity of the optimal initial perturbations and outcomes are
illustrated in figure 10. The optimal initial perturbation of the individual vortex is
concentrated in the potential-flow region and moves away from the vortex core as ⌧
increases. This structure can be interpreted as a combination of potential eigenmodes,
whose energy is concentrated in the potential region in both the Lamb–Oseen vortex
(Fabre, Sipp & Jacquin 2006) and the Batchelor vortex (Mao 2010). From the outcome
of the optimal initial perturbation at t = ⌧ = 30, we see that the energy inside the
vortex core becomes dominant and the structures in the potential-flow region are
negligible. This transient growth mechanism has been described as a combination of
Orr and induction effects associated with a vortex core contamination in the context
of a Lamb–Oseen vortex (Antkowiak & Brancher 2004). In their work Antkowiak &
Brancher argue that the unwinding, under a Orr-type motion, of the spiral structure in
the axial vorticity perturbation shown in figure 10(a) leads to a radial velocity in the
core regions. Consideration of the linearized vorticity equations then highlights how
the presence of a radial perturbation velocity permits the base flow axial vorticity to be
induced into the core perturbation region as shown in figure 10(b).

The evolution of the ⌧ = 5 and the ⌧ = 39 initial perturbation to the co-
rotating vortex pair is similar to that of the perturbation in the individual vortex
over short time intervals (t < 10) before the merging phase. Therefore, the initial
conditions shown in figure 10(c,d) undergo an initial Orr-type unwrapping leading to
a radial velocity that induces axial vorticity in the core regions. The initial structure is
concentrated in the potential region of each vortex and in the interaction region around
the centroid, where the strain rate will be maximized as the vortex system rotates.
Careful consideration of the initial perturbation shown in figure 10(c) highlights that
there is a rotational anti-symmetry about the centroid. As the perturbation evolves
into the core region at t = 5 as shown in figure 10(d) the rotational anti-symmetry
is maintained, however the secondary growth of this initial condition at t = 39 (see
figure 9b) is associated with a perturbation which has a rotational symmetry broadly
similar to that shown in figure 10(f ). However, from the transient growth analysis
at ⌧ = 5 there is a sub-dominant initial condition which has rotational symmetry
and ⇠10 % less growth at t = 5. This initial condition still evolves to a rotational
symmetric state at t = 39 similar to figure 10(f ). We next consider the optimal initial
perturbation for ⌧ = 39 shown in figure 10(f ) and note that the structure is rather
different for ⌧ = 5. The structure of initial perturbation vorticity now has expanding
spiral arms in the periphery of the circular region of rotation of the vortex pair, while
the amount of perturbation in the interaction region is comparatively low. This initial
condition is also rotationally symmetric. As time evolves, the Orr and induction effects
drive the structure from being energetic in the potential zone to being energetic in the
vortex cores. However, for this initial perturbation the solution at t = 5 maintains its
rotational symmetry and we subsequently observe continued growth over the whole
time interval up to t ⇡ 39. The rotational symmetry is consistent with the underlying
symmetry of the merging base flow as discussed in Meunier et al. (2005). Inspecting
the interaction of this perturbation with the base flow, we see that this perturbation
at t = ⌧ = 39 displaces the vortex cores in the base flow and pushes the vortices
towards each other, as illustrated in figure 10(f ), where the solid arrows point to the
rotation direction of the co-rotating vortices without being perturbed and the hollow
arrows denote the moving direction of the base flow vortices after considering the
displacement effects of the perturbations. Correspondingly if reversing the perturbation,
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FIGURE 10. Contours of axial vorticity in optimal two-dimensional initial perturbations and
outcomes for an individual vortex and a co-rotating vortex pair at (Re, q, k) = (100, 3, 0). The
initial and outcome perturbations are normalized to have the same energy. Dashed/solid lines
denote negative/positive vorticity and the thick solid line is the contour line of axial vorticity
1.5 in the base flow. (a,b) initial perturbation and outcome for an individual vortex, with time
horizon ⌧ = 30, energy growth G = 75.7. (c,d) initial perturbation and outcome for a vortex
pair, with time horizon ⌧ = 5, energy growth G = 32.0. (e,f ) initial perturbation and outcome
for an vortex pair, with time horizon ⌧ = 39, energy growth G = 1.45 ⇥ 104. The filled arrow
in (f ) denotes the moving direction of the vortices in the base flow without being perturbed
and the hollow arrows denote the displacement direction of the perturbation on the vortices in
the base flow.
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FIGURE 11. Transient growth envelopes at various initial Reynolds numbers and initial core
spacings, with (q, k) = (3, 0).

the displacement effect turns to pull the vortices away from each other. Therefore, it
can be expected that this perturbation has the potential to control (delay or accelerate)
the merging process of the base flow. This control effect will be verified in § 6.1.

One may argue that the significant rise of optimal energy growth around the
merging phase is due to the larger swirl number of the single vortex formed after
merging, but the optimal energy growth of the Batchelor vortex at q = 6, which is
twice as strong in swirl than the vortex studied here, is G = 198.2 at ⌧ = 39, so the
increase of swirl strength is not the principal reason for the large transient growth
close to the merging point. In addition, when the base flow merges, the perturbations
in the cores of the pair of vortices are in opposite phases so they cannot merge to form
a perturbation in the core of the combined vortex, as shown in figure 10(f ).

Transient growth during the merging process at other values of vortex distance and
Reynolds numbers has also been examined, as illustrated in figure 11. We note that
a longer time interval is required to obtain merger at larger values of either b or Re.
In all of the cases examined, the transient growth rises rapidly before the merging
phase and reflects the transient dynamics of an individual vortex after merging into a
single vortex. Therefore, the parameters we initially considered (b = 6 and Re = 100)
incorporate the typical transient dynamics of a co-rotating vortex pair (at least in
the range of Reynolds numbers considered), and produces vortex merging over a
reasonably small time interval.

5.3.2. Three-dimensional perturbations at axial wavenumber k = 0.75
Having examined axially homogeneous perturbations, we now turn our attention to

the optimal perturbations for k = 0.75, which at a time horizon of ⌧ = 40 provides the
global maximum transient energy growth for the pair system in figure 8. Figure 12
illustrates optimal energy growth profiles (solid lines) and representative transient
responses (dashed lines) of global optimal perturbations when ⌧ = 40. We note that for
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FIGURE 12. Optimal energy growth envelopes (solid lines) and representative transient
responses (dashed lines) for perturbations to stable vortices with (Re, q, k) = (100, 3, 0.75):
(a) growth for an individual vortex and (b) growth for a co-rotating vortex pair.

the co-rotating vortex pair, the transient energy growth indicated by the dotted line is
slightly smaller than the optimal growth envelope when t < 20, while the two curves
almost overlap at greater times. Once again the co-rotating vortex pair transient growth
is two to three orders of magnitude larger than for the isolated vortex. Similar to the
optimal growth envelopes of the two-dimensional problem the envelopes for both the
isolated vortex and for the co-rotating vortex pair have similar magnitudes for ⌧ < 10.
For larger values of ⌧ , however, we again for the pair observe a significant growth up
to the merging phase at ⌧ ⇡ 40 where the growth is of order 104.

In attempting to explain why we observe such significantly higher growth in the
vortex pair case, we consider in figure 13 the spatial structures of the optimal
initial perturbations, and the outcomes obtained by linear evolution at intermediate
and maximal-growth times. In figure 13(a) we show the two-dimensional Fourier
coefficient of the initial optimal perturbation of the isolated vortex which if plotted
as a three-dimensional iso-contour correlates very well with the Lamb–Oseen case
investigated by Antkowiak & Brancher (2004, figure 2). Antkowiak & Brancher
conjecture that the transient growth of the isolated vortex is a resonance phenomenon,
as is also supported by the results of Pradeep & Hussain (2006). The resonance
was related to an interaction between the outer potential mode and an inner discrete
Kelvin-type mode. It would seem likely that the earlier growth for ⌧ < 10 in the
co-rotating vortex pair results from a similar phenomenon.

The optimal initial disturbance for the co-rotating pair is shown in figure 13(c) and
similar to the initial perturbation of the two-dimensional case shown in figure 10 we
observe an energetic initial perturbation in the outer potential region around the base
flow cores. In this case we have a similar level of perturbation in both the interaction
region between the vortex cores and in the spiralling region at the outer part of the
cores. We note that this initial perturbation is rotationally asymmetric. The significant
additional transient growth for ⌧ > 10 shown in figure 12 still requires explanation.
The obvious candidate for physical mechanism underlying transient growth in this
three-dimensional case is elliptic instability, but any precise analysis is clouded by the
fact that quasi-steady assumptions cannot be made, since core sizes and spacing vary
rapidly in time during the merging process. Examination of contours of axial vorticity
associated with the optimal perturbation for ⌧ = 40 at intermediate times, as plotted in
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FIGURE 13. Contours of axial vorticity in optimal three-dimensional perturbations and
outcomes in an individual vortex and a co-rotating vortex pair for axial Fourier modes
at (Re, q, k) = (100, 3, 0.75), where the flow is stable. Initial and outcome perturbations
are normalized to the same energy. (a,b) Initial perturbation and outcome for an individual
vortex, time horizon ⌧ = 40 and energy growth G = 26.1. (c–f ) Development of perturbations
for a vortex pair at t = 0, 5, 10, 40 respectively, time horizon ⌧ = 40 and energy growth
G(⌧ ) = 4.56 ⇥ 104. Dashed/solid lines denote negative/positive vorticity and the thick solid
line is the contour line of axial vorticity 1.5 in the base flow. For the computation at ⌧ = 40,
the mesh outside the vortex core was slightly refined.
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figure 13 at t = 5, 10, shows structure comparable with m = 1, �1 asymptotic modes
obtained by quasi-steady analysis by Roy et al. (2008, see figure 3 of that paper). We
therefore conjecture that the co-rotating vortex pair considered undergoes growth due
to an elliptic-type instability between 10 < t < 40 before the rapid variation of the base
flow at merging brings this to an end, causing growth to saturate and eventually decay.

6. DNS of linearly stable vortex pairs with optimal perturbations

Nonlinear evolution of optimal perturbations to co-rotating vortex pairs obtained
in asymptotically stable cases at (Re, q) = (100, 3) and with k = 0 and k = 0.75 is
investigated to highlight the physical performance of the optimal perturbations which
display large linear energy growth. Nonlinear behaviour of optimal perturbations in the
inviscidly unstable and viscously unstable cases is not examined, since for the inviscid
case, linear dynamics are dominant and strong, while for the viscously unstable case,
both non-normal and linear growth are weak.

6.1. Two-dimensional DNS at k = 0
In the axially homogeneous case, k = 0, we first examine the effect of introducing
the optimal perturbation at a small relative energy level but where the sign of the
perturbation is changed. In the linear case such a change of sign has no effect
on transient energy growth since the perturbation is an eigenmode of the operator
A (⌧ )A ⇤(⌧ ). However, in the nonlinear system we find that changing the sign of the
optimal initial perturbation has a significant effect, which is to either promote or delay
vortex merging. We choose to define a positive-signed perturbation as one that pushes
the two vortices in base flow towards each other and correspondingly a negative-signed
perturbation as one that pulls the vortices in base flow away from each.

Initially, the optimal linear perturbation is added to the base flow at relative energy
level ±1 ⇥ 10�4, and the perturbed flow is evolved through DNS to a final time
horizon. Two typical optimal perturbations, obtained at ⌧ = 5 and ⌧ = 39 respectively,
are used as the initial disturbances. Vorticity contours for the initial perturbed flow
and resulting evolutions are shown in figure 14. These may be compared with the
equivalent unperturbed cases shown in figure 3(c,d). For time horizon ⌧ = 5, well
before vortex merging occurs, the dynamics reflects the transient characters based
on the quasi-stationary base flow of the co-rotating vortex system. The perturbed
outcomes for t = ⌧ = 5 are shown in figure 14(a,c). The initial perturbation, which
for this time horizon is strongest in the interaction region, see figure 10(c), does not
influence the dynamics of the vortex system significantly, regardless of sign. However,
for time horizon ⌧ = 39 corresponding to vortex merger in the unperturbed case,
we find that changing the sign of perturbation substantively alters outcomes, as may
be seen by examining figure 14(b,d) and comparing these with figure 3(d). Clearly,
perturbation of a positive sign induces the pair to merge more rapidly, whereas the
reverse is true for the negative perturbation.

In the outcome of the optimal perturbation as shown in figure 10(f ), we see that
the superposition of perturbation and base flow generates displacement effects on the
vortices in the base flow and changes the rotation direction of the vortices. Mao &
Sherwin (2012) have observed this optimal-perturbation-induced displacement of the
vortex core in the context of an individual vortex, which is referred to as ‘vortex
meandering’. The displacement effect here can be considered as a synchronized dual
vortex meandering, where the two vortices are displaced in such a direction to be
closer to each another and accelerate the vortex merging. Clearly if reversing the
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FIGURE 14. Axial vorticity contours for two-dimensional DNS of vortex pairs at (Re, q, k) =

(100, 3, 0), showing the effect of either positive of negative perturbations. Compare with the
equivalent unperturbed results shown in figure 3(b,c), which share contour levels with the
present figure: (a,b) relative perturbation level +1 ⇥ 10�4 at t = ⌧ = 5 and t = ⌧ = 39, and
(c,d) �1 ⇥ 10�4 at the same instants; see the text for the discussion of signs.

direction of the initial perturbation, the base flow vortices will be pulled away from
each other and subsequently merge at a later time.

Our next consideration is the nonlinear effect of the relative amplitude of two-
dimensional perturbations. Figure 15(a) illustrates the saturation of perturbations at
increasing initial relative energy level in the nonlinear evolution compared with the
linear optimal growth. The energy of perturbations for nonlinear evolution is obtained
by integrating over the domain after subtracting the base flow field from the outcomes
of nonlinear evolution. The first effect to be observed is that increasing initial
perturbation magnitude leads to reduced energy growth and saturation at earlier times,
compared with the linear case; similar nonlinear outcomes have been observed in
other flows (e.g. Blackburn et al. 2008). The effect of perturbation sign on saturation
amplitude is not particularly strong, however negative perturbations delay saturation
compared with positive perturbations; this delay can be associated with delayed vortex
merging.

Figure 15(b) shows more directly the nonlinear effect of perturbation on vortex
merging, as assessed from vortex core distance, being the distance between the
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FIGURE 15. Examining the nonlinear effect of increasing perturbation level for (Re, q, k) =

(100, 3, 0): (a) energy growth, where in the nonlinear cases the energy in the perturbation is
obtained after subtracting the unperturbed base flow; (b) vortex core distance.

centroids of the vortices where axial velocity and axial vorticity reach maxima. It may
be seen that positive-signed perturbations of increasing size promote merger (reduce
core distance more rapidly), while the reverse is true of negative-signed perturbations.
In fact, negative perturbations can lead initially to an increase in vortex core distance,
before merging inevitably occurs. It can also be observed that a comparatively small
positive perturbation (relative energy level 1 ⇥ 10�3) approximately halves the time
required for vortex merging in this system. We note that for the unperturbed case of
figure 15(b), the evolution of vortex core distance with time is similar to the final
stages (2–4) of merging as seen in figure 5 of Meunier et al. (2005). This supports
our supposition (see § 1) that our initial choices for Re and a(0)/b are adequate to
encompass the merging process.

If this axially homogeneous initial perturbation varies sinusoidally in the axial
direction, then the vortex pair rotates with various speeds and the merging can
be delayed, accelerated or unaffected at different axial locations. Therefore it can
be anticipated that an initial perturbation with non-zero axial wavenumber has the
potential to lead to breakup of the vortex pair. In the following section, we examine
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FIGURE 16. (a) Energy growth of perturbations at different axial modes in DNS and LNS,
where (Re, q, k) = (100, 3, 0.75). (b) Development of the axially invariant energy component
in perturbed and unperturbed conditions with various initial perturbation energy levels. The
values are normalized by the energy of the initially unperturbed flow.

the nonlinear evolution of the optimal initial perturbation at k = 0.75 and inspect
effects of three-dimensional perturbation developments.

6.2. Three-dimensional DNS with k = 0.75
Nonlinear development of the optimal perturbation obtained at k = 0.75 is conducted
by perturbing the initial base flow with the global optimal perturbation (for ⌧ = 40)
at a relative energy levels 1 ⇥ 10�8, 1 ⇥ 10�6 and 1 ⇥ 10�4. (As noted in § 5.3.2, the
sign of perturbation does not influence outcomes in the three-dimensional case, other
than to shift the disturbance axially.) The axial extent of the computational domain is
set to Lz = 2⇡/k = 8⇡/3 and Fourier expansions are used to discretize flows in the
axial direction; 32 Fourier modes were used for the computations described below. The
energy of the first five modes reported here has converged to three significant figures
with respect to the number of axial Fourier modes.

Figure 16(a) shows the temporal evolution of energy in the first four axial Fourier
modes with an initial perturbation of relative energy level 1 ⇥ 10�4 in the first non-zero
mode (labelled mode k), and compares it to evolution of the same perturbation using
LNS (with energy only in mode with axial wavenumber k), which is the same as
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shown in figure 12(b). For clarity, energy evolutions in higher axial modes have not
been plotted. For the DNS, energies in modes with axial wavenumber 2k–7k initially
rise rapidly from zero as energy is redistributed nonlinearly from mode k = 1. As was
the case in the two-dimensional DNS of § 6.1, nonlinear energy growth is lower than
for the linear case, and saturation occurs earlier, at t ⇡ 24 compared with t = ⌧ = 40.
The higher modes (2k, 3k, . . .) peak at slightly later times, and essentially are slaved
to the fundamental mode. It may also be noted that up to t ⇡ 10, energy growth for
mode k is much the same for both DNS and LNS.

Figure 16(b) illustrates the nonlinear effect of the optimal perturbation on energy
in the axially averaged flow (i.e. in mode 0k). We see that nonlinear effects induce
significant reduction in axially averaged energy, especially at large perturbation levels.
As expected, the energy history of the vortex with small initial perturbation level
(1 ⇥ 10�8) almost overlaps with that for the unperturbed vortex.

From the iso-surfaces of axial vorticity shown in figure 17, we see that at
initial perturbation energy level 1 ⇥ 10�8, the nonlinear development of the optimal
perturbation has little influence on the merging process of the vortex pair, as illustrated
in figure 17(a), but at larger perturbation levels 1 ⇥ 10�6 and 1 ⇥ 10�4, nonlinear
evolution of the optimal perturbations distorts the vortex pair and drives the vortices
to break up before merging, as shown in figure 17(b,c). At the parameters considered
in this case, the optimal transient growth in a single vortex is around three orders
smaller than that in a vortex pair. For the largest initial perturbation level investigated,
we did not observe vortex breakup in the context of a single vortex (see figure 17d)
even though we note that Hussain, Pradeep & Stout (2011) had achieved a significant
vortex core distortion by adopting large initial perturbations. Considering the range of
initial perturbation energy adopted in this study, we do not attribute the break up with
an isolated vortex mechanism. As already discussed in § 5.3.2 the co-rotating vortex
pair undergoes significant transient growth in contrast to the isolated vortex and it
seems plausible that this is due to an elliptic type instability. Indeed some suggestion
of the elliptic nature of the instability is shown in middle image of figure 17(c)
which is reminiscent of the images shown in Meunier et al. (2005, figure 11b) of the
elliptic instability of two Kelvin waves of m = 1 and m = �1. Clearly in this case a
two-dimensional vortex merging is not observed at large perturbation levels.

7. Discussion and conclusion

We have undertaken the transient growth analysis of a pair of identical Batchelor
vortices, initially separated by a distance of six core radii, which was allowed to
evolve until, in the unperturbed two-dimensional case, the vortices merge into a single
structure. The evolution of the co-rotating vortex pair is analogous to the experimental
results obtained by Meunier et al. (2005). Other separation distances were tested,
from five to eight core radii, and the results were similar in terms of the forms of
optimal structures obtained, and the shapes of the envelopes of energy growth up to
the merging phase. Three representative cases have been investigated.

In § 5.1, the initial pair consisted of two vortices at (Re, q) = (1000, 0.8) which are
inviscidly unstable to helical modes when considered individually. Axial wavenumber
k = 1.7 was investigated since at this wavenumber the asymptotical growth rate for an
individual vortex reaches maxima. Over short time intervals, the optimal perturbation
of the individual vortex have four pairs of spiral structures since this mode has the
most rapid non-normal growth. However, for larger time horizon ⌧ = 27, the optimal
structure converged to a double helical mode with each helical structure consisting
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FIGURE 17. Iso-surfaces of axial vorticity ⇣z = 1 in DNS at (Re, q, k) = (100, 3, 0.75). The
contour lines are associated with the axial velocity. Initial perturbation energy levels are (a)
1 ⇥ 10�8, (b) 1 ⇥ 10�6, (c) 1 ⇥ 10�4 for a vortex pair and (d) 1 ⇥ 10�4 for a single vortex.

of three pairs of vortices. Asymptotic instability analysis of the individual vortices
demonstrate that the m = 3 modes have a larger growth than the m = 4 mode, which
would suggest why this symmetry is selected at larger times.

In § 5.2, the pair consisted of two vortices at (Re, q) = (3000, 2) is investigated and
the streamwise wavenumber is set to k = 0.27 in order to maximize the individual
viscous instabilities. The optimal structure of the initial perturbation of an isolated
vortex at lower values of ⌧ have four pairs of spiral structure which expand outside
of the core region. However, for larger ⌧ the isolated vortex optimal structure only
contains one pair of spirals resembling more of the asymptotic instability. In contrast
to the helically unstable case of q = 0.8 the optimal structure of the vortex pair is a
combination of perturbations in the interaction region between the cores and circular
regions outside of the base flow cores. At shorter time intervals the energy in the



Non-normal dynamics of co-rotating vortex pairs 457

interaction region dominates, but for larger optimal times (⌧ = 30) the energy transfers
more to the circular region in which the vortices rotate. For this case the transient
growth of the co-rotating cortex pair is not significantly different in magnitude to
the isolated vortex. The main significance of the non-normal transient growth is to
provide a rapid growth up to ⌧ < 10 after which time the asymptotic instability starts
to dominate.

In § 5.3, the base flow consisted of a pair of vortices for which (Re, q) = (100, 3),
having relatively high swirl strengths and which are asymptotically stable when
considered individually. Taking axial wavenumber k and time horizon ⌧ as independent
variables, contours of maximum transient energy growth were obtained. Global
maximum transient energy growth of Gmax = 1.45 ⇥ 104 occurs for time horizons
equivalent to the merging phase, around ⌧ ⇡ 39. The spatial distribution of the optimal
initial conditions was similar to the q = 2 study and involved energy in the interaction
region between the two cores and the outer circular regions of the two base flow cores.

Over shorter time horizons the co-rotating vortex pair underwent transient growth
mechanisms similar to that observed for the isolated vortex as discussed by Antkowiak
& Brancher (2004). These mechanisms involved either Orr-type unfolding followed
by an induction of base flow vorticity when k = 0, or through a resonance effect
when k = 0.75 (see also Pradeep & Hussain 2006). However, for longer time horizons
the transient growths significantly exceed those for the isolated vortices, and in the
k = 0 case this was attributed to a rotationally symmetric optimal initial condition that
allowed for continued core-induction while maintaining the symmetry of the base flow
merging system. In contrast, when k = 0.75 we conjecture, based on similarities to
features observed in the (quasi-steady) asymptotic stability investigation of Roy et al.
(2008), that elliptic instability is present before merging occurs.

In §§ 5.2 and 5.3, when the initial vortex flows were asymptotically stable/weakly
unstable, the optimal perturbations for both an isolated vortex and a co-rotating vortex
pair took the form of partial vortex rings. Similar structures of optimal initial
perturbations have been reported in the context of a counter-rotating vortex pair by
Brion, Sipp & Jacquin (2007), who suggested that the optimal perturbations to any
compact distribution of vorticity will have the form of one or several partial vortex
rings around it.

DNS of stable base flow (with Re, q = 100, 3) seeded with the optimal initial
perturbation obtained from the linearized analysis was also undertaken (§ 6). It was
shown that the optimal two-dimensional perturbation at k = 0 induces a dual vortex
meandering, that is, the vortices are driven towards each other and so the vortex
merging is accelerated or driven away from each other so the vortex merging is
delayed, depending on the sign of the initial perturbation. Nonlinear development of
the optimal perturbation at k = 0.75, where the transient growth reaches a global
maximum for the pair system, is observed to drive the vortex pair to break up before
merging.
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