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a b s t r a c t

Boundary perturbations are considered as flow control forcing and their distributions are optimised to sup-

press transient energy growth induced by the most energetic disturbances in the domain. For a given control

cost (square integration of the control forcing), the optimal control calculated from the proposed optimisa-

tion algorithm is proved to be unique. For small values of control cost, a sensitivity solution is obtained and

its distribution indicates the sensitivity of perturbation energy on boundary control. For larger control cost,

the distribution of the optimal control approaches the stablest mode of a direct-adjoint operator and tends

to be grid-to-grid oscillatory. A controllability analysis is further conducted to identify the uncontrollable

component of perturbations in the domain. This work underpins the recently thriving linear feed-back flow

control investigations, most of which use empirically distributed control actuators, in terms of choosing the

location and magnitude of the control forcing and evaluating the maximum control effect. Two case stud-

ies are conducted to demonstrate the proposed algorithm; in a stenotic flow, the optimised wall boundary

control is observed to suppress over 95% of the transient energy growth induced by the global optimal ini-

tial perturbation; in the Batchelor vortex flow, the optimal inflow control can effectively suppress the spiral

vortex breakdown induced by the development of initial perturbations.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Perturbations to a base fluid flow can be classified into three broad

ategories: initial perturbation, external forcing and boundary per-

urbation, which can be modelled as the initial condition, body force

nd boundary condition of the linearised Navier–Stokes (NS) equa-

ions, respectively, provided that the magnitude of the perturbation

s small enough. The calculation of the most energetic distribution of

hese perturbations has been extensively studied in both local and

lobal frameworks [1–5].

The initial perturbations can be in the form of random perturba-

ions, most unstable eigenmodes or optimal initial perturbations. The

uid dynamics community have devoted much effort to calculating

he most unstable mode in asymptotically unstable flows or the opti-

al initial perturbation in stable/weakly unstable flows. In unstable

ows the evolution operator for initial perturbations has eigenvalues

ith positive real parts corresponding to unstable eigenmodes (grow

n magnitude with time). For stable/weakly unstable flows, where all

he eigenmodes may decay in the large-time limit, non-normality

f the evolution operator for initial perturbations produces optimal
∗ Corresponding author. Tel.: +4401913342515.
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erturbations which can be expanded as a linear combination of

he stable eigenmodes and exhibit transient energy growth before

ventually decaying. The optimal initial perturbation and its associ-

ted energy growth can be obtained through singular value decom-

osition of the evolution operator or eigenvalue decomposition of a

irect-adjoint operator [4,6,7].

For flow behaving as an “amplifier”, which is globally stable but

as locally unstable regions, an initial perturbation study does not

apture the full dynamics—even though transient energy growth can

e observed as the perturbation passes the unstable region, the flow

eturns to the unperturbed state after the perturbation is convected

ut of the domain. To these perturbation “amplifiers”, a temporally

ontinuous perturbation is required to keep the unstable region per-

urbed and model effects of ubiquitously existing noise. Both bound-

ry perturbations and external forcing can be used to continuously

erturb the flow [8,9]. The optimal external forcing can be obtained

y singular value decomposition of the resolvent [1,10] and the op-

imal boundary perturbation can be obtained by singular value de-

omposition of the evolution operator, eigenvalue decomposition of

he direct-adjoint operator or optimisation of the final perturbation

nergy [11].

The counterpart of calculating the most energetic perturbation

nd its outcome is to control or suppress the development of per-

urbations. Such a suppression can be achieved by modifying the

http://dx.doi.org/10.1016/j.compfluid.2015.08.018
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base flow profile to be less sensitive to perturbations, or introduc-

ing control whose development cancels the objective perturbation

[12–14]. The suppression of perturbation growth, e.g. transient en-

ergy growth induced by the optimal initial perturbation, can be

achieved by means of boundary control. Such control investigations

involve the interaction of at least two types of perturbations: an

initial perturbation (and its outcome) in the domain as the control

objective and the boundary perturbation as the control variable. To

control the growth of a given perturbation, e.g. the optimal initial per-

turbation, an open-loop control algorithm has been developed in a lo-

cal framework, where the spatial variation of the control perturbation

is fixed and the time sequence is calculated [15]. To control develop-

ments of unknown perturbations, linear feed-back control based on

reduced-order modelling has received considerable attention most

recently to control instabilities or transient responses in asymp-

totically unstable flow and convectively unstable flow respectively

[16–19]. Most of these feed-back control investigations focus on the

temporal variation of the control signal produced by actuators whose

spatial locations are determined empirically.

In the present work, we concentrate on the spatial location of

the boundary control, which is optimised to minimise the energy of

perturbations stemming from any of the types of perturbations dis-

cussed above. Adopting the optimal initial perturbation and its out-

come as the control objective, the computed optimal boundary con-

trol indicates the sensitivity of the most energetic component of a

random noise to the control and therefore can be used to choose lo-

cations of actuators and magnitude of the control forcing in feed-back

control studies. A controllability analysis is further conducted by re-

laxing the constraint on control cost, to predict the uncontrollable

component of the objective perturbation.

We then demonstrate the proposed algorithms in two case stud-

ies. A wall bounded stenotic flow is adopted as the first example and

the wall-normal boundary perturbations are optimised to suppress

transient energy growth of the global optimal initial perturbation.

Then the Batchelor vortex flow is considered as the second example,

and the inflow control is optimised to suppress spiral vortex break-

down induced by the development of initial perturbations.

2. Optimisation methodology

2.1. Governing equations

Starting from the incompressible NS equations

∂tU = −U · ∇U − ∇P + Re−1∇2U , with ∇ · U = 0,

where P is the modified or kinematic pressure, U is the velocity vector

and Re is the Reynolds number; the flow field can be decomposed as

the sum of a base flow and a perturbation i.e. (U , P) = (ū, p̄) + (u, p).

Then the evolution of small perturbations is governed by the lin-

earised NS (LNS) equations

∂t u = −ū · ∇u − (∇ū)T ·u −∇p + Re−1∇2u, with ∇ · u = 0.

(1)

As (1) is linear, one can further decompose the perturbation field

into spanwise Fourier modes in Cartesian coordinates or azimuthal

Fourier modes in cylindrical coordinates, each of which will evolve

independently, provided that the base flow is homogeneous in the

spanwise or azimuthal direction. In the following, we will typically

be dealing with (u, p)m, with m denoting the spanwise/azimuthal

wave number. To keep notations reasonably compact we implic-

itly adopt Fourier decomposition for the perturbation field, and

only introduce its spanwise/azimuthal Fourier mode index m when

required.
.2. Definition of operators

For clarification, we firstly introduce scalar products

a, b) =
∫
�

a · b dV and [e, f ] =
∫
∂�

e · f dS,

here a and b are defined on the spatial domain �, e and f are defined

n the “control boundary” ∂�, which refers to the segment of the

oundary where the control perturbation is introduced, and τ is a

nal time.

On the control boundary, a boundary-normal Dirichlet-type con-

ition, denoted as uc(x, t), is imposed. Here x represents the spa-

ial coordinates on the control boundary. To reduce the dimension of

c(x, t) after temporal-spatial discretisation, we decompose the tem-

oral and spatial dependence as

c(x, t) = c(x) f (t,ω), with 0 ≤ t ≤ τ, and x ∈ ∂� (2)

here c(x) is the spatial dependence to be optimised and f(t, ω) is

prescribed temporal dependence function in which ω is a circular

requency [9,11]. The choice of f(t, ω) will be discussed in detail in the

ollowing case studies. We note that the magnitude of the control can

e evaluated by the integration of the spatial dependence, i.e. Ec =
c, c], which can be interpreted as the control cost.

To describe the development of the boundary perturbation, we

efine an evolution operator N satisfying

cτ = N c,

here ucτ is the velocity vector of the response flow field to the

oundary perturbation at time τ . This operator corresponds to the

ntegration of (1) with initial condition u|t=0 = 0 and boundary con-

ition as specified in (2) on the control boundary.

Similar as discussed in [9], A dual operator of N is defined such

hat

N c, b) = [c,N ∗b]. (3)

learly this dual operator projects a velocity vector defined on the

omputational domain to a vector defined on the control boundary.

he action of this dual operator on a velocity vector u∗
τ can be calcu-

ated as

∗u∗
τ = n ·

∫ τ

0

(p∗n − Re−1∇nu
∗) f ∗(t,ω) dt, (4)

here n is a unit outward normal on the control boundary, f∗(t, ω) is

he adjoint operator of f(t, ω) satisfying [ f (t,ω)c, e] = [c, f ∗(t,ω)e],

nd p∗ and u∗ are adjoint velocity and adjoint pressure, respec-

ively. The adjoint variables are obtained by integrating the adjoint

quations

∂t u∗ = ū · ∇u
∗ − ∇ū · u

∗ − ∇p∗ + Re−1∇2u∗, with ∇· u∗ = 0,

(5)

ackwards from t = τ to t = 0 after initiating the adjoint velocity

s u∗
τ and implementing zero Dirichlet conditions on the control

oundary [9].

.3. Lagrangian functional

For a flow perturbed by both initial and boundary perturba-

ions, the contribution of initial and boundary perturbations to the

nal velocity vector can be decomposed as a consequence of the

inearisation:

τ = uiτ + ucτ ,

here ucτ = N c is the response of the flow field to the boundary per-

urbation while uiτ is the transient outcome of a given initial pertur-

ation at t = τ and is considered to be a known velocity vector. The

inetic energy of the controlled flow field at t = τ is

= (uτ , uτ ) = (u , u ) + [2N ∗u + N ∗N c, c],
iτ iτ iτ
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here the first term after the second equality is the energy of the un-

ontrolled outcome of the initial perturbation and the second term is

function of the control perturbation. Note that the dual relationship

3) is used to obtain this expression.

Taking into account the constraint on the control cost, we define a

agrangian functional to minimise,

= E + λ(Ec − [c, c]), (6)

here the first term is the total controlled energy and the second

erm is a constraint on the magnitude of the control. In the second

erm, λ is a Lagrangian multiplier and Ec can be interpreted as the

ontrol cost. This constraint on the magnitude of the control pertur-

ation can be recovered by setting the first variation of the Lagrangian

unctional with respect to λ to zero.

Taking the first variation of the Lagrangian with respect to the con-

rol perturbation, we have

L(δc) = [2N ∗uiτ + 2N ∗N c − 2λc, δc]. (7)

ollowing the definition of a Gateau differential of a Lagrangian func-

ional (see e.g. [15]), the gradient of the Lagrangian functional with

espect to the control perturbation, denoted as ∇cL, can be evaluated

s

cL = 2N ∗uiτ + 2N ∗N c − 2λc. (8)

learly this gradient is a function of the uncontrolled transient re-

ponse uiτ , the control boundary perturbation c and an Lagrangian

ultiplier λ. The value of λ at the minimiser of the lagrangian func-

ional can be obtained by setting this gradient to zero, so

= [N ∗uiτ + N ∗N c, c]

[c, c]
. (9)

e see that when the control cost Ec is small, c is small, and the mag-

itude of N c is small compared with uiτ . Therefore for sufficiently

mall control cost, the second and third terms on the right side of (8)

re negligible compared with the first one. By removing these two

erms, we see that the optimal control c is parallel with N ∗uiτ but

ith an opposite direction:

= −N ∗uiτ

√
Ec/[N ∗uiτ ,N ∗uiτ ]1/2.

n the following, this solution will be denoted as the sensitivity solu-

ion, since its distribution represents the sensitivity of the perturba-

ions in the domain on boundary control, as similarly documented in

ase flow modification studies [12–14]. Such a solution can be used

o choose the location of actuators in feed-back control. We note that

he calculation of the sensitivity solution only requires a solo integra-

ion of the adjoint equations (the action of N ∗ on uiτ ).

.4. Optimisation procedure

As presented above, the optimisation of the control forcing at a

iven control cost involves the computation of the minimiser of a La-

rangian functional, and the integration of the linearised NS equa-

ions and the adjoint equations. The optimisation procedures can be

ummarised as follows.

1. Initialise the adjoint Eq. (5) with u∗(τ ) = uiτ , which can be the

outcome of the optimal initial perturbation, and integrate back-

wards to calculate N ∗uiτ through (4).

2. Initialise c using random noise and integrate the LNS Eq. (1) to

obtain N c.

3. Integrate the adjoint Eq. (5) to obtain N ∗N c.

4. Substitute N ∗uiτ and N ∗N c into (8) to calculate ∇cL.

5. Calculate the search direction P(∇cL) as presented in Appendix A

and evolve the result using the LNS Eq. (1) to obtain NP .
6. Calculate the optimal step length αopt following the procedure

outlined in Appendix A, and update c and N c from step k to k + 1

along direction P,

c̃
k+1 = ck + αoptP, and N c̃

k+1 = N ck + αoptNP .

7. Scale the updated results in step 6 to satisfy the constraint on con-

trol cost:

k+1 = β c̃
k+1

and N ck+1 = βN c̃
k+1

with β =
(

Ec

[c̃
k+1

, c̃
k+1

]

)1/2

.

8. Repeat steps 3–7 until the solution c converges.

.5. Uniqueness of the optimal boundary perturbation

In this section, we demonstrate that the Lagrangian functional de-

ned in (6) has only one minimiser at each given value of control cost

c even though this function is not convex, and therefore the opti-

al control obtained from the calculation procedure in Section 2.4 is

nique.

At the equilibrium state where the gradient ∇cL vanishes, we have

∗uiτ + N ∗N c − λc = 0. (10)

ere λ can be considered as a function of c defined in (9). Evaluating

he second variation of the Lagrangian functional with respect to c at

his equilibrium state, we obtain

2L(δc) = 2[N ∗Nδc, δc] − 2λ[δc, δc].

ere the joint operator N ∗N is self-adjoint, and therefore when this

perator is discretised to form an N × N matrix, with N denoting the

imension of the discretised velocity variable, this matrix has N real

nd non-negative eigenvalues and N orthogonal eigenvectors. We de-

ote the eigenvalue and eigenvector pair of this matrix as λi and vi

i = 1, . . . , N), where 0 ≤ λ1 ≤ λ2, . . . , λN and vi is normalised so that

vi, vi] = 1. Therefore the eigenvectors vi form a complete base on R
N

nd the variation of c can be projected onto this basis as

c =
N∑

i=1

aivi.

hen we have

2L(δc) =
N∑

i=1

2a2
i (λi − λ).

f λ ≥ λN, δ2L ≤ 0, and this equilibrium state is a maximum; if

≤ λ1, δ2L ≥ 0, and this equilibrium state is a minimum; if λ1 <

< λN, the sign of δ2L is undetermined, and this equilibrium state is

n inflection point.

To illustrate that there is only one solution of c satisfying λ(c) ≤ λ1,

e first decompose N ∗uiτ and c as a linear summation of the eigen-

ectors of N ∗N ,

∗uiτ =
N∑

i=1

bivi and c =
N∑

i=1

civi,

nd substitute them into (10) to reach

i + λici = λci with 1 ≤ i ≤ N. (11)

Considering the constraint on control cost, i.e. Ec − [c, c] = 0, we

ave
∑N

i=1 c2
i

= Ec. Then we define a function

(σ ) =
N∑

i=1

b2
i

(σ − λi)2
− Ec. (12)

ombining (11) and (12), we see that λ is the root of function F(σ ).

his function is monotonic for σ ∈ (−∞, λ1] with F(−∞) = −Ec < 0

nd F(λ ) = ∞ > 0. Therefore the function F(σ ) has only one root in
1
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Fig. 1. Illustration of λ as a function of the minimum, maximum and inflection points of the Lagrangian functional.
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the range ∈ (−∞, λ1] and this root is λ. Therefore for a given control

cost Ec, λ is unique. From (11), we see that this unique value of λ
corresponds to a unique sequence of ci and so a unique solution of c.

It is observed in (12) that as Ec increases, λ is closer to λ1 and the

weight of v1 in the optimal perturbation, c1 = b1/(λ − λ1), increases

in magnitude faster than other ci. When Ec → ∞, λ → λ1 and c →
c1v1. Since v1 is discretisation-dependent and its spatial distribution

is highly oscillatory, it can be expected that the optimal perturbation

converges more slowly at higher values of control cost Ec.

It is noted that for λ ∈ (−∞, λ1] there is singularity in (12) if b1 =
0. At this singular condition, define a reduced version of functional

F(σ ) as

Fr(σ ) =
N∑

i=2

b2
i

(σ − λi)2
− Ec.

This reduced function Fr is also monotonic for σ ∈ (−∞, λ1]. Then

two possible solutions of λ ∈ (−∞, λ1] and its associated c can be

derived:

(i) λ = λ1 with ci = bi

λ1 − λi

for 2 ≤ i ≤ N and c2
1 = −Fr(λ1).

(ii) λ < λ1 with ci = bi

λ − λi

for 2 ≤ i ≤ N and c1 = 0.

If Fr(λ1) ≤ 0, solution (i) is a valid solution while solution (ii) is

not, because for solution (ii), F(λ) = Fr(λ) < Fr(λ1) ≤ 0 and the con-

straint on control cost is broken. If Fr(λ1) > 0, solution (i) is not

valid since c2
i

< 0 while solution (ii) is valid, since there exists λ <

λ1 satisfying −Ec = F(−∞) < F(λ) = 0 < F(λ1) = Fr(λ1). Therefore

even when the singularity associated with b1 = 0 exists, there is still

only one minimum point for the Lagrangian functional in the range

λ ∈ (∞, λ1].

In summary, there is only one solution of λ in the range (∞, λ1],

and correspondingly the Lagrangian functional has only one min-

imiser for any given control cost while analogously it can be demon-

strated that this Lagrangian functional has only one maximiser and

potentially some inflection points, as illustrated schematically in

Fig. 1.

2.6. Controllability analysis

As discussed above, an optimal boundary perturbation minimis-

ing the transient energy growth exists at a given control cost. In this

section, we relax the constraint on control cost and calculate the op-

timal control across all values of the control cost. This “global” opti-

mal control evaluates the controllability of the perturbations in the

domain by boundary forcing. If partitioning the transient response

to an initial perturbation into two parts: one that can be suppressed

by boundary perturbations and the other that is out of the reach of

boundary control and cannot be controlled regardless of the distribu-

tion and magnitude of the control, then the maximum control effect,

which completely suppresses the first part, can be achieved by this

“global” optimal control.

As discussed in Section 2.5, assume that the operator N ∗N is dis-

cretised into a N × N matrix. The eigenvalues and eigenvectors of this

matrix are denoted as λi and vi, where 1 ≤ i ≤ N. Then the eigenvec-

tors vi can be projected from the control boundary ∂� to the compu-

tational domain � by integrating LNS equations to reach orthogonal
ectors Nvi,

Nvi,Nv j) = [N ∗Nvi, v j] = λi[vi, v j] =
{
λi, i = j
0, i 	= j

ince the dimension of the boundary perturbations is

maller than that of its response field, this orthogonal space

Nv1, Nv2, . . . , NvN) defined in � does not form a complete

asis. Therefore the transient response field to be controlled can be

ecomposed as

iτ =
N∑

i=1

diNvi + uout

here uout denotes the component of uiτ that cannot be projected

o this incomplete space and thus is uncontrollable by boundary

erturbations.

The energy of uout quantitatively describes the controllability of

iτ using boundary perturbation control. The energy associated with

his uncontrollable component is

g = (uout , uout) = minc

(
uiτ − (uiτ ,N c)

(N c,N c)
N c, uiτ − (uiτ ,N c)

(N c,N c)
N c

)

= minc

(
(uiτ , uiτ ) − [N ∗uiτ , c]2

[N ∗N c, c]

)
.

ere the subscript g indicates that the controlled total energy,

eached at the “global” optimal control — over all the values of

ontrol cost or without constraint on the magnitude of the control

erturbation.

Since there is no constraint on the control cost, the total energy Eg

an be considered as the objective functional to minimise. The gradi-

nt of Eg with respect to c is

cEg = 2
[N ∗uiτ , c]2

[N ∗N c, c]2
N ∗N c − 2

[N ∗uiτ , c]

[N ∗N c, c]
N ∗uiτ . (13)

imilarly as presented in Section 2.4, the global optimal control cg

an be obtained. The magnitude of this control can be evaluated by

he control cost Ecg = [cg, cg].

Setting ∇cEg to zero, we notice that the distribution of this

global” optimal perturbation can be analytically expressed as

N ∗N )−1N ∗uiτ . N ∗N is a self-adjoint operator with real eigenvalues,

nd when acting on a perturbation vector, its largest eigenvalue (and

he corresponding most energetic eigenmode) presents the dominant

mplification effect. However, when its inverse, i.e. (N ∗N )−1, acting

n a perturbation, the smallest eigenvalue (and the corresponding

east energetic eigenmode) of N ∗N becomes dominant. We note that

s a continuous operator, N ∗N does not have a least energetic eignen-

ode. However when N ∗N is discretised, this eigenmode can be

alculated, even though it is discretisation-dependent and becomes

ore spatially oscillatory as the discretisation is refined. Therefore

e expect that the “global” optimal perturbation will converge slowly

nd is spatially highly oscillatory.

It is worth noting that the optimal perturbation cg is also the equi-

ibrium state of L at control cost Ec = Ecg and corresponds to λ = 0.

s the resolution increases, λ1 → 0, and cg tends to be parallel with

1, inducing poor convergence. This analysis also suggests that the

ontrol cost Ec should not exceed Ecg, since any extra cost does not

ontribute to suppressing the transient effects.
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Table 1

Convergence of λN with respect to both mesh and the

tensor product polynomial order P for the stenotic

flow at Re = 400, ω = 0 and τ = 4.43.

Mesh P λN

A 3 7.97994 × 104

A 4 8.00318 × 104

A 5 8.00358 × 104

A 6 8.00361 × 104

A 7 8.00361 × 104

A 8 8.00361 × 104

B 6 8.00361 × 104

C 6 8.00361 × 104
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. Case 1—steady stenotic flow

In this section, we test the methodology introduced above in the

ontext of an open, wall-bounded flow: stenotic flow. The geometry

f the stenotic flow is introduced in Section 3.1, a convergence test is

onducted in Section 3.2 and then the optimal wall-normal bound-

ry perturbation is calculated to optimally suppress the transient en-

rgy growth induced by the global optimal initial perturbation and

he controllability analysis is also conducted by relaxing constraint

n the control cost in Section 3.3. The optimal initial perturbation and

ts outcome are adopted as the control objective because they are also

he focal of feed-back control of noise developments. It will be shown

hat while the boundary transpiration is applied without restriction

ll along the outer wall of the domain, in practice the optimal bound-

ry perturbation is highly localised near the stenotic contraction.

.1. Problem description

As shown in Fig. 2, the stenosis has a 75% co-sinusoidal occlusion

nd a length which is twice the upstream pipe diameter, D. We adopt

cylindrical coordinate system with its origin at the centre of the

tenosis throat. The (axial, radial, azimuthal) position coordinates are

z, r, θ ). Velocities are normalised by the bulk flow speed u of the

pstream Hagen–Poiseuille flow, and the length scale adopted is the

pstream pipe diameter D, giving D/u as the time scale, and Reynolds

umber Re = uD/ν, as used in a previous work [20]. Hereafter in this

ase study we adopt dimensionless variables based on these normal-

sations. We consider the Reynolds number Re = 400 for which the

ase flow is asymptotically stable; the same Reynolds number was

he main focus of attention in the transient growth study in [21]. At

e = 400, the maximum energy growth of initial perturbations, 8.94

104, occurs for a dimensionless time horizon τ = 4.43 at azimuthal

avenumber m = 1 [21]. In the remainder of this section, m = 1 is

dopted and the outcome of the related global optimal initial pertur-

ation at t = 4.43 is considered as the control target uiτ . The optimal

nitial perturbation is normalised such that the initial state energy is

ut=0, ut=0) = 1 and therefore the uncontrolled final state energy is

uiτ , uiτ ) = 8.94 × 104.

.2. Discretisation and convergence test

Spectral elements employing piecewise continuous nodal-based

olynomial expansions within mapped-quadrilateral elemental sub-

omains are adopted for spatial discretisation of the axisymmetric

eometry in the meridional semi-plane, coupled with a Fourier de-

omposition in azimuth. Since the azimuthal velocity for the base

ow is zero, a complex mode for perturbations with azimuthal

avenumber m can be further decomposed to a pair of modes [22].

Time integration is carried out using a second-order-time

elocity-correction scheme. Details of the discretisation and its con-

ergence properties are given in [23]. The same numerics are used

o compute base flows and the actions of the LNS and adjoint opera-

ors. The temporal dependence function f(t, ω), which eliminates the
patial discontinuities at t = 0 and t = τ is defined as

f (t,ω) = (1 − e−t2

)(1 − e−(t−τ)2

) cos (ωt). (14)

herefore the adjoint operator f ∗(t,ω) = f (t,ω). This function is

urely real since we have decomposed the complex mode to a pair

f modes with restricted symmetry. This time-dependence function

ith τ = 10 and ω = 5 is illustrated in Fig. 3, where we see that it ef-

ectively sets the boundary perturbation uc to zero at the beginning

nd end of the computation. Therefore the boundary conditions and

nitial conditions are compatible for both the LNS equations and the

djoint equations [9].

As a convergence test we calculate λN, i.e. the largest eigenvalue

f N ∗N . Three structured grids, denoted as “A”, “B”, “C” , are tested.

esh “A” consisting of an array of (streamwise × vortical) 187 × 9

lements is illustrated in Fig. 4. Meshes “B” and “C” are denser in z

nd y directions compared with “A”, consisting of arrays of 219 × 9

nd 187 × 11 elements, respectively.

On the inflow and outflow boundaries, zero-Dirichlet and com-

uted Neumann conditions are used for velocity and pressure respec-

ively in both forward and backward integrations. On the solid wall,

ptimal control and zero Dirichlet conditions are used for the velocity

omponents in the forward and backward integrations respectively

hile the pressure condition is a computed Neumann type for both

ntegrations [24]. On the axis, boundary conditions depend on the

zimuthal wave number m and solution variable, and these are zero-

irichlet or zero-Neumann [23]. The initial condition for the forward

ystem is set to zero while the backward integration is initialised by

he outcome of the forward integration [9].

Convergence of λN with respect to the tensor-product polynomial

rder P in the spectral element mesh is presented in Table 1. We see

hat the result has converged to five significant figures at P = 5 for

esh “A” and is insensitive to further mesh refinement. In the fol-

owing calculations, mesh “A” is adopted with P = 5.

The variation of λN with ω is presented in Fig. 5(a) for τ =
.43, where we see λN reaches a maximum at ω = 7.5. The cor-

esponding profiles of eigenvectors, which are optimal wall-normal
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Fig. 4. Spectral element mesh for the stenotic flow: (a) overall mesh (note use of expanded radial scale), and (b) mesh around the contraction section (true aspect ratio).
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Fig. 5. (a) Variation of the largest eigenvalue λN , i.e. the gain of the optimal boundary perturbation, with temporal frequency ω at τ = 4.43 and (b) profiles of vN , i.e. the optimal

boundary perturbation, at ω = 0 and ω = 7.5 for the stenotic flow. The perturbation for z ∈ [−5,−2]
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Fig. 6. Contour of control effectiveness J, as defined in (15) at various control costs and

frequencies for the stenotic flow.
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boundary perturbations that generate maximum energy growth over

τ , are shown in Fig. 5(b). Since the optimal wall-normal boundary

perturbation is concentrated in the contraction section, we have trun-

cated the range of z represented from [−5, 70] to [−2, 4] in order to

better illustrate the distribution of the perturbation.

3.3. Results

To demonstrate the proposed optimisation method, we calculate

the boundary perturbation that minimises the transient effect of the

global optimal initial perturbation obtained at Re = 400, correspond-

ing to m = 1 and τ = 4.43 with energy growth G = 8.94 × 104 [21].

The effectiveness of using boundary perturbations to control the

transient effect can be modelled as

J = (uiτ , uiτ ) − E

Ec
, (15)

where the numerator is the transient energy suppressed by the con-

trol and the denominator is the control cost (see Fig. 6).

Comparing with Fig. 5(a), we notice that the control effectiveness

is not as sensitive to the frequency as the gain of boundary pertur-

bations. It is also observed that the effectiveness drops for increas-

ing control cost. At the smallest value of Ec considered, the control

effectiveness reaches 108. This is because when the control is small

enough, the effectiveness can be approximated as 2(N c, uiτ )/Ec,

where N c and uiτ take advantage of the amplification of the base

flow to boundary and initial perturbations respectively, resulting in a

large value of control effectiveness. The solution converges slowly for

Ec > 104 and at this range of Ec, the effectiveness has dropped signifi-

cantly compared with that at low levels of Ec. Therefore higher values

of Ec have not been examined.

The control cost at which the energy E is minimised at a fixed fre-

quency ω can be obtained from the controllability analysis, as shown

in Fig. 7(a). It is noted that the control cost to cancel as much tran-

sient energy as possible varies with the frequency dramatically and

the minimum control cost is obtained around ω = 5. The transient
ffect that cannot be controlled by boundary perturbations, repre-

ented as Eg, are not sensitive to the frequency and therefore we de-

ne a variable to denote the global effectiveness of control as

g = (uiτ , uiτ ) − Eg

Ecg
, (16)

hich evaluates the ratio of suppressed transient energy and the con-

rol cost (see Fig. 7(b)).

In the following we focus on two cases: one with ω = 5, which

s indicated from the controllability analysis as the “global” optimal

requency and the other with ω = 0, which corresponds a steady
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Fig. 7. (a) The control cost at various frequencies obtained from controllability analyses and (b) global control effectiveness from controllability analyses, defined in (16), for the

stenotic flow.
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Fig. 8. Distribution of the optimal boundary perturbations to the stenotic flow at (a) ω = 0 and (b) ω = 5.
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Fig. 9. Energy history of the controlled and uncontrolled evolution of the global optimal initial perturbation to the stenotic flow at (a) ω = 0 and (b) ω = 5.
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oundary control except at the beginning and end of the time horizon

onsidered.

The optimal perturbations at ω = 0 are plotted in Fig. 8(a). To

ompare the distribution of optimal perturbations at various con-

rol costs, the perturbations are normalised so that [c, c] = 1. We see

hat at small values of control cost Ec, the optimal perturbation al-

ost overlaps with the sensitivity solution, which is parallel and op-

osite with N ∗uiτ , as expected. At higher values of Ec, the weight

f v1, i.e. the least energetic mode whose distribution is grid de-

endent, increases in the optimal boundary perturbation, and there-

ore results in a more oscillatory profile. cg is the optimal perturba-

ion calculated from controllability analyses corresponding to control

ost Ecg = 1.52 × 104. This global optimal solution across all values of
ontrol costs is also highly oscillatory and the energy distribution

preads from the contraction segment to the downstream segment.

he same results for ω = 5 is shown in Fig. 8(b), where the global

ptimal solution cg corresponds to Ecg = 1.36 × 103.

The evolution of energy for both controlled and uncontrolled con-

itions is illustrated in Fig. 9, where we see that the transient effect

s suppressed significantly by the boundary perturbations and under

he control of cg, over 95% of the transient energy growth is cancelled.

We note that the controlled energy can be decomposed as

uit , uit) + 2(uit , uct) + (uct , uct), where uit and uct are the pertur-

ations at time t induced by the initial perturbation and boundary

ontrol, respectively. The first term is the uncontrolled energy, the

econd one denotes the interaction of the control and the objective
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Fig. 11. Contours of azimuthal vorticity for outcome of the optimal initial perturbation to the stenotic flow at t = τ = 4.43. (a) without control; (b, c) with control cg at ω = 0 and
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perturbation, and the last one is induced by the control. Considering

that the control reduces the total energy, the second term is nega-

tive, while the last one is positive. The control effect depends on the

balance of the last two terms, as illustrated in Fig. 10. We see that

when Ec increases from 10 to 100, both terms (the interaction term

is reversed to be positive) rise to values significantly larger than the

uncontrolled energy, and therefore the control effect is realised by

the difference of two large terms. At Ecg, the interaction term is much

larger than the control induced term, indicating that the control ef-

fect becomes more efficient than the Ec = 10 and 100 cases.

The final outcomes of the controlled and uncontrolled flow field

are presented in Fig. 11. Clearly under the optimal control cg obtained

at ω = 0 and ω = 5, the final perturbation has spread to a larger space

owing to the continuous control perturbation, which keeps the close

downstream region of the contraction section perturbed. Neverthe-

less, the total energy is dramatically lower than that of the uncon-

trolled perturbation.

4. Case 2—Batchelor vortex flow

In this section, we implement the optimal control methodology

in the context of an open unbounded flow, the Batchelor vortex flow.

The mathematical model and stability characteristics of the Batchelor

flow are introduced in Section 4.1; a convergence test is conducted in

Section 4.2; and then the optimal inflow-normal boundary perturba-

tion is calculated to suppress the transient energy growth induced by

the global optimal initial perturbation, and direct numerical simula-

tions (DNS) are conducted to study the control effects on spiral vortex

breakdown in Section 4.3.
.1. Problem description

The Batchelor vortex can be represented in cylindrical coordinates

z, r, θ ) as [25]

¯(r) = a + e−r2

, v̄(r) = 0, w̄(r) = q/r(1 − e−r2

),

here a denotes the external non-dimensional free-stream axial

elocity. The streamwise velocity maximises at r = 0 and reduces

onotonically in the radial direction, while the azimuthal velocity

aximises at r = 1.12, which can be considered as a measurement

f the vortex core. It has been noted by [26] that the translation and

nversion of the axial velocity ū(r) do not affect the instability of the

atchelor vortex: they only affect the frequency but the growth rates

emain unchanged. Therefore to simplify the model, a = 0 is adopted

hroughout this study. The parameter q is the swirl strength and for

< 2.31 the Batchelor vortex is unstable in the inviscid limit [27,28].

n this work we adopt q = 0.8 in order to energise the helical instabil-

ties which initiate the spiral vortex breakdown [29,30]. In this case,

he Reynolds number is defined as Re = ūR0/ν, where ū is the di-

ensional velocity excess in the core of the vortex, R0 is a measure-

ent of the radius of the vortex core and ν is the kinematic viscosity.

n this case study, the Reynolds number is set to Re = 1000 in the in-

erest of balancing values of practical interest against computational

ost.

.2. Discretisation and convergence test

The numerical method is the same as used in Section 3. Be-

ause the azimuthal velocity in the base flow is non-zero, the
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Fig. 12. Spectral subdomains for the Batchelor vortex.

Fig. 13. Contour of control effectiveness J, defined in (15), at various control costs and frequencies for the vortex flow at azimuthal wavenumbers (a) m = 1 and (b) m = 2. The

Reynolds number Re = 1000, swirl strength q = 0.8 and final time τ = 30 are used here and in all the following plots.
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Table 2

Convergence of G and λN with respect to the polyno-

mial order P at Re = 1000, ω = 0, m = 3 and τ = 30.

P G λN

3 1.5956 × 108 3.0376 × 104

4 1.5748 × 108 3.9649 × 104

5 1.5561 × 108 4.0465 × 104

6 1.5527 × 108 4.0683 × 104

7 1.5509 × 108 4.0734 × 104

8 1.5498 × 108 4.0745 × 104
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erturbation is complex. Therefore we adopt a complex temporal de-

endence function f(t, ω),

f (t,ω) = (1 − e−t2

)(1 − e−(t−τ)2

)eiωt . (17)

e see that the adjoint operator f ∗(t,ω) = f (t, −ω). Clearly the real

art of this function is the same as that used in the stenotic flow. This

ime-dependence function sets the boundary perturbation uc(x, t)

o zero at the beginning and end of the computation to eliminate

patial discontinuity at the beginning of the forward and backward

ntegrations [9].

The computational domain and boundaries are illustrated in

ig. 12. On the inflow boundary, Dirichlet-type control and zero

irichlet conditions are used for the velocity components in the for-

ard and backward integrations respectively while the computed

eumann conditions are used for pressure boundary conditions in

oth integrations. On the far-field boundary, zero-Dirichlet and com-

uted Neumann conditions are used for velocity and pressure respec-

ively in both forward and backward integrations. On the axis, bound-

ry conditions depend on the azimuthal wave number as discussed in

23]. The outflow boundary deserves some special concerns. Since the

eveloping of helical structures around the outflow boundary intu-

tively excludes the choice of zero-Dirichlet velocity condition for the

orward integration, we adopt the combination of conditions for the

orward and adjoint systems as presented in [11]. The initial condition

or the forward system is set to zero while the backward integration

s initialised by the outcome of the forward integration [9].

As a convergence test we calculate the optimal initial pertur-

ations and optimal inflow boundary perturbations which induce

argest energy growth over a fixed time interval τ = 30, which will

e used as the defaulted value of final time in this section. The con-

ergence of G (the largest energy growth induced by the optimal ini-

ial perturbation) and λN with respect to the polynomial order P used

n the polynomial expansion in each spectral element is presented in

able 2. We see that at P = 5, both G and λ have converged to within
N
olerance 0.01. In all the following calculations in this case, we adopt

= 5, the same as used in the case of stenotic flow.

.3. Results

The optimal inflow perturbations are calculated to minimise the

ransient energy growth of the optimal initial perturbations associ-

ted with the helical instabilities of the Batchelor vortex. Two az-

muthal wavenumbers, m = 1 and m = 2, are considered. The tran-

ient energy growth induced by the optimal initial perturbation is

= 9.02 × 103 for m = 1 and G = 1.53 × 107 for m = 2 for the com-

utational domain and parameters considered (τ = 30, q = 0.8 and

e = 1000). We note that the transient growth at m = 2 is much

igher than that at m = 1. This is consistent with previous local sta-

ility studies, which revealed that the Batchelor vortex is much more

nstable at m = 2 than at m = 1 (the maximum growth rate rises

rom around 0.17 at m = 1 to 0.31 at m = 2 in the inviscid limit)

26]. The initial perturbation is normalised to have unit energy and

herefore the uncontrolled final state energy is E = 9.02 × 103 and

= 1.53 × 107 for m = 1 and m = 2, respectively.

The effectiveness of using boundary perturbations to control the

ransient effects is illustrated in Fig. 13. The solution converges slow

or Ec > 102 and at this range of Ec, the effectiveness has dropped

ignificantly compared with that at low levels of Ec. Therefore higher
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Fig. 14. Distribution of the optimal inflow control to the vortex flow at (a) m = 1 and (b) m = 2 with ω = 0. “real” and “imag” denote the real and imaginary parts of the inflow-

normal perturbation, respectively. The thick dashed lines represent the vortex radius r = 1.12.
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Fig. 15. Energy history of the controlled and uncontrolled evolution of the global optimal initial perturbation to the vortex flow at (a) m = 1, Ec = 10 and relative initial perturbation

energy l = 10−6 and (b) m = 2, Ec = 100 and l = 10−8. “lns” represents the results of linearised evolution and “dns” denotes the nonlinear evolution obtained from DNS.

Fig. 16. Contours of azimuthal vorticity in linearised evolution of perturbations to the vortex flow at t = τ = 30. (a, b) Uncontrolled and controlled evolution at m = 1; (c, d)

uncontrolled and controlled evolution at m = 2. To verify the control effects, the same contour levels are used in the controlled and uncontrolled cases.
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Fig. 17. Iso-surfaces of “λ2” −0.5 and −0.001 in DNS of the Batchelor vortex flow initially perturbed by the optimal initial perturbation. (a, b) uncontrolled and controlled evolution

at m = 1, Ec = 10 and l = 10−6; (c, d) uncontrolled and controlled evolution at m = 2, Ec = 100 and l = 10−8.
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alues of Ec are not tested. We see that the effectiveness drops for

ncreasing control cost and maximises at ω = 0. Therefore in the fol-

owing we focus on the steady control perturbation with ω = 0.

The optimal perturbations at ω = 0 are plotted in Fig. 14. To

ompare the distribution of optimal perturbations at various con-

rol costs, the perturbations are normalised so that [c, c] = 1. We see

hat at small values of control cost Ec, the optimal control overlaps

ith the direct solution as expected. As the control cost increases,

he weight of v1 becomes more dominant in the optimal control and

herefore results in a more spatially oscillatory profile, similarly as

bserved in the stenotic flow case (see Fig. 8).

The controlled and uncontrolled evolutions of the optimal ini-

ial perturbations are illustrated in Fig. 15, where we see that the

ransient effect is suppressed significantly by the boundary pertur-

ations. Nonlinear evolution of the controlled and uncontrolled flow

s also investigated by DNS of the base flow initially perturbed by

he optimal initial perturbation with relative energy level l (ratio

etween perturbation energy and base flow energy) and plotted in

ig. 15 to compare against the linearised evolution. We see that the

ptimal control suppresses the transient energy growth significantly

n both linearised and nonlinear calculations and the growth in DNS

oes not reach the optimal growth in the linearised evolution owing

o the nonlinear saturation.

The final outcomes of the controlled and uncontrolled flow field

n linearised developments are presented in Fig. 16. We see that dur-

ng the linearised evolution, the perturbations are convected down-

tream and amplified to form spiral structures. Under the control of

ptimal boundary perturbations, the magnitude of the spiral struc-

ures are significantly weakened.

The control effects and the relevance of the development of per-

urbations to spiral vortex breakdown are further studied as re-

ealed in Fig. 17. To illustrate the structures of the vortex, we adopt

so-surfaces of the intermediate eigenvalue of the velocity gradient

ensor, “λ2” [31]. We see that without control, the optimal initial per-

urbations develop into spiral arms, but under the optimal inflow

oundary control, the spiral structures are effectively suppressed.

. Conclusion

An optimisation of boundary control to minimise the energy

rowth of a given perturbation in the domain is presented in order to

nderpin the design of feed-back control laws, in terms of choosing

he location of actuators and predicting the maximum control effect

hat can be expected. The optimal initial perturbation and its out-

ome are adopted as the control objective since the optimal initial

erturbation is the most energetic component of a random noise and

herefore also the target for feed-back control.
A Lagrangian functional consisting of the controlled transient

nergy and a constraint on the control cost is built. The gradient of

his Lagrangian functional is formulated as an explicit function of

he boundary perturbation and a conjugate gradient method is used

o calculate the search direction. Owing to the linear nature of the

overning equations, an optimal step length exists and can be calcu-

ated by an extra integration of the LNS equations. It is analytically

resented that at a given control cost, a unique optimal boundary

ontrol exists. At small enough control cost, a sensitivity solution

an be obtained after a solo integration of the adjoint equations

ithout iterative optimisations. The distribution of this sensitivity

olution can be interpreted as the sensitivity of perturbations in the

omain on the control. As the control cost increases, this optimal

olution approaches the stablest eigenmode of a direct-adjoint

perator and tends to be grid-to-grid oscillatory, which cannot be

enerated by physical actuators.

After optimising the boundary control based on fixed values of

ontrol cost, a controllability analysis is conducted by relaxing the

onstraint on control cost. The obtained “global” optimal control re-

eals the magnitude and distribution of the uncontrollable compo-

ent in the objective perturbation.

It is observed that without constraint on control cost, over 95%

f the transient energy growth can be suppressed and this value is

elatively insensitive to the temporal frequency of the boundary per-

urbations in the case study of a stenotic flow. In the investigation of

nother case, the Batchelor vortex, we observe that the spiral break-

own initialised by the helical instabilities are effectively suppressed

y the inflow-normal boundary control in DNS.
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ppendix A. Search direction and optimal step length

In the optimisation process, we adopt the (Fletcher–Reeves) con-

ugate gradient method to calculate the search direction at step k as

˜(∇cL)k = (∇cL)k, for k = 0;
˜(∇cL)k = (∇cL)k + ((∇cL)k, (∇cL)k)

((∇cL)k−1, (∇cL)k−1)
P(∇cL)k−1 for k>0.

he search direction can be decomposed into two parts, one is par-

llel to c and the other is normal to c. The first part does not change

http://dx.doi.org/10.13039/501100000923
http://dx.doi.org/10.13039/501100000266
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the distribution of c and can be removed. To simplify the formulation

in the calculation of the optimal step length outlined below, we use

only the second part as the search direction,

P(∇cL)k = P̃(∇cL)k − [P̃(∇cL)k, ck]

[ck, ck]
ck.

The optimal step length αopt is the step length α that minimises

E(ck+1) = [2N ∗uiτ + N ∗N ck+1, ck+1] + (uiτ , uiτ )

where

ck+1(α) = (ck + αPk)

(
Ec

[ck + αPk, ck + αPk]

)1/2

.

Therefore E can be expressed as a function of α:

E(ck+1(α)) = (a6 + a2α)(1 + a1α2)1/2 + a3 + a4α + a5α2

1 + a1α2

+ (uiτ , uiτ ) (A.1)

where

a1 = [P,P]/Ec, a2 = 2[N ∗uiτ ,P], a3 = (N c,N c),

a4 = 2(N c,NP), a5 = (NP,NP), a6 = 2[N ∗uiτ , c].

The superscript k is omitted hereafter for clarification.

At the optimal value of α, dL/dα = 0. Through standard algebraic

manipulations, we obtain

c4α
4 + c3α

3 + c2α
2 + c1α + c0 = 0, (A.2)

where

c0 = a2
4 − a2

2, c1 = −4a1a3a4 + 4a4a5 + 2a1a2a6,

c2 = (2a1a3 − 2a5)
2 − 2a1a2

4 − a1a2
2 − a2

1a2
6,

c3 = 2a1(2a1a3a4 − 2a4a5 + a1a2a6), c4 = a2
1

(
a2

4 − a1a2
6

)
.

The roots of (A.2) are the eigenvalues of a Hessenberg matrix

=

⎡
⎢⎣

0 0 0 −c0/c4

1 0 0 −c1/c4

0 1 0 −c2/c4

0 0 1 −c3/c4

⎤
⎥⎦.

The eigenvalues of C are calculated via Schur factorisation and de-

noted as α1 ∼ α4. Considering −∞ is also a candidate of the optimal

step length, we set α5 = −∞. Substitute α1 ∼ α5 into (A.1) and com-

pare the corresponding values of E. Then the step length that pro-

duces the minimum value of E is the optimal step length αopt.
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