
Journal of Computational Physics 231 (2012) 3389–3405
Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Adapting the spectral vanishing viscosity method for large-eddy
simulations in cylindrical configurations

K. Koal a,⇑, J. Stiller a, H.M. Blackburn b

a Institute of Fluid Mechanics, Technische Universität Dresden, 01062 Dresden, Germany
b Department of Mechanical and Aerospace Engineering, Monash University, Vic 3800, Australia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 17 March 2011
Received in revised form 23 August 2011
Accepted 10 January 2012
Available online 20 January 2012

Keywords:
Large-eddy simulation
Spectral vanishing viscosity
Cylindrical coordinates
Spectral element method
Pipe flow
0021-9991/$ - see front matter � 2012 Elsevier Inc
doi:10.1016/j.jcp.2012.01.014

⇑ Corresponding author. Tel.: +49 351 46338092;
E-mail addresses: kristina.koal@tu-dresden.de (K
During the last decade the spectral vanishing viscosity (SVV) method has been adopted
successfully for large-eddy-type simulations (LES) with high-order discretizations in both
Cartesian and cylindrical coordinate systems. For the latter case, however, previous studies
were confined to annular domains. In the present work, we examine the applicability of
SVV in cylindrical coordinates to flows in which the axis region is included, within the set-
ting of an exponentially convergent spectral element–Fourier discretization. In addition to
the ‘standard’ SVV viscosity kernel, two modified kernels with enhanced stabilization in
the axis region are considered. Three fluid flow examples are considered, including turbu-
lent pipe flow. The results, on the one hand, show a surprisingly small influence of the SVV
kernel, while on the other, they reveal the importance of spatial resolution in the axis
region.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The spectral vanishing viscosity (SVV) method was introduced by Tadmor [1] as a concept for stabilising Fourier spectral
approximations of hyperbolic conservation laws. The main idea is to define a viscosity in spectral space that reaches a max-
imum at high wave numbers, but which vanishes for wave numbers below a resolution-dependent threshold. In this way
stabilization is achieved through damping at fine length scales without degrading the convergence properties of the under-
lying discretization. Maday et al. [2] applied the SVV approach to Legendre spectral methods and introduced a smooth vis-
cosity kernel, which was commonly adopted by subsequent researchers. Karamanos and Karniadakis [3] incorporated the
method into a modal spectral element discretization of the incompressible Navier–Stokes equations and employed it for
LES of turbulent channel flow. Xu and Pasquetti [4] adapted the SVV technique to the nodal spectral element method and
investigated the importance of SVV parameters in applications to high-Reynolds number flows. Following these works, sev-
eral researchers advocated SVV as a tool for LES, pointing out its conceptual simplicity and inherent spectral accuracy [5–10].
In particular this preservation of spectral convergence when the flow is well resolved renders SVV an attractive technique for
LES when turbulent, transitional or laminar zones may co-exist.

Our motivation to explore the SVV technique emerged from studies of electromagnetic stirring of metal and semiconduc-
tor melts. Depending on the applied magnetic field, the flow may be turbulent only in a part of the container, or throughout
the whole volume [11]. Although the degree of turbulence can be considerable, the flow tends to preserve a transitional char-
acter. Since most container configurations in stirring applications have rotational symmetry, we are interested particularly in
an SVV formulation that is suitable for cylindrical coordinates. To our knowledge, Serre and co-workers are the only group to
. All rights reserved.
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have considered a corresponding approach to cylindrical coordinate configurations [8–10]. They incorporated the SVV tech-
nique into a Chebychev–Fourier spectral method and employed it to investigate turbulent rotor–stator flows including heat
transfer. However, these studies were confined to annular domains and thus the results do not guarantee applicability to
problems that include the axis. As will be shown below, the approach proposed in [8] is characterized by a loss of azimuthal
SVV stabilization near the axis for any resolved mode and, as a result, non-physical accumulation of small scale structures
may occur in this region.

The objective of this paper is to provide a validation of SVV for axisymmetric geometric configurations that may include
the core region and to investigate possible remedies for near-axis accumulation. To that end, we first briefly recapitulate in
Section 2 the principles of SVV in the setting of the one-dimensional diffusion equation. Following this, a detailed description
is provided for development of SVV in a nodal spectral element–Fourier method for three-dimensional incompressible flows
in cylindrical coordinates. We note that the underlying numerical method into which SVV was incorporated has previously
demonstrated spectral convergence properties for direct numerical simulation (DNS) of flows in cylindrical coordinates
where the axis is included [12]. In addition to the ‘standard’ SVV viscosity kernel, two modified kernels with enhanced sta-
bilization in the axis region are introduced. In the following sections the SVV approach is applied to three different flow prob-
lems. As a first step, the spectral convergence of the method and the different kernels is verified in Section 3 by means of
Kovasznay flow, as in the previous treatment [12]. Further assessment is based on LES of turbulent pipe flow at
ReD = 10,000 and the turbulent flow driven by a travelling magnetic field in a cylinder (Sections 4 and 5). In both these cases
DNS serves as reference. In particular, we want to assess how far modifications of the SVV kernel or adaptions of the spatial
resolution affect the flow characteristics near the axis. Finally, in Section 6, we summarize the main results and provide con-
cluding remarks.

We note that while we have here focused on problems set in domains with a cylindrical geometry as well as coordinate
system, the underlying discretization supports more general axisymmetric geometries. Additionally it will deal with three-
dimensional Cartesian geometries which possess a homogeneous direction.
2. SVV spectral element–Fourier method

We consider the incompressible unsteady Navier–Stokes equations
@t~uþ N
!ð~uÞ ¼ �q�1rpþ mr2~uþ q�1~f ;

r �~u ¼ 0;
ð1Þ
where ~u represents the velocity, p the pressure, q and m the density and kinematic viscosity of the fluid, and, if any exists,~f
the volume force. The nonlinear advection term N

!ð~uÞ can be composed in a number of ways which are equivalent for con-
tinua, but have different properties in discrete form. Here, the skew-symmetric form i.e. N

!ð~uÞ ¼ ð~u � r~uþr �~u~uÞ=2 is em-
ployed for robustness.

The equations, expressed above in coordinate-free form, are subsequently written in cylindrical coordinate component
form and discretized using a nodal spectral element method in the meridional (z,r) semi-plane and a Fourier spectral method
in the azimuthal (u) direction. Time integration is based on a second order velocity correction scheme with implicit treat-
ment of diffusion. For details of the method and demonstration of its exponential convergence properties when imple-
mented as a DNS technique we refer to [12].
2.1. Principles of the spectral vanishing viscosity method

To recap the principal ideas of the SVV method we start with the one-dimensional diffusion equation
@tu ¼ m@x@xu with x 2 ½0;2p�: ð2Þ
Solution periodicity is assumed at the limits of the domain. When the Fourier method is used for spatial discretization, the
scalar u is decomposed in its complex Fourier modes ûk by
uðx; tÞ ¼
X1

k¼�1
ûkðtÞ expðikxÞ: ð3Þ
The exact forward and inverse Fourier transform require an infinite number of modes (cf. (3)), however, only a finite number
of modes are retained in practice. Taking further into account the identity @x exp(ikx) = ikexp(ikx), the discretized diffusion
Eq. (2) can be written in Fourier space as
@tûk ¼ �mk2ûk with � N 6 k 6 N; ð4Þ
where N and �N denote the wave numbers of the highest considered mode and its complex-conjugate counterpart,
respectively.
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As mentioned in Section 1, the idea underlying SVV is to add a spectral viscosity term that reaches its maximum at the
highest wave numbers, but vanishes for wave numbers below a resolution-dependent threshold. This is achieved by aug-
menting the diffusivity by the term ebQ k on the right hand side of (4):
@tûk ¼ �ðmþ e bQ kÞk2ûk with � N 6 k 6 N; ð5Þ
where e is the maximum amplitude of the spectral viscosity and bQ k is a modal shape function, referred to as the SVV kernel.
The multiplication with bQ k in spectral space corresponds to a convolution with Q in physical space. The SVV-stabilized dif-
fusion equation thus reads in physical space
@tu ¼ m@x@xuþ e@xðQ � @xuÞ; ð6Þ
with the convolution operator ⁄.
Besides the above described restriction to a finite number of modes, the conjugate-symmetric property of the Fourier

transform of real variables may be exploited, so that only the positive-k modes are required. Consequently, the modal
SVV kernel bQ k has only to be defined for positive wave numbers 0 6 k 6 N. Following Maday et al. [2] most authors have
adopted the kernel given by
bQ k ¼ bQ ðkÞ ¼ exp � ðN � kÞ2

ðM � kÞ2

 !
; M < k 6 N ð7Þ
and bQ k ¼ 0 for 0 6 k 6M, where M is the mode above which SVV is applied. Fig. 1 shows this kernel for N = 31 and various M.
When a nodal spectral element method is applied to the one-dimensional diffusion Eq. (2), the computational domain is

split into elements and a polynomial expansion of the scalar u with a nodal function basis is employed within each element.
Without loss of generality, we restrict the following derivation to the one-element case in the standard interval Xs = [�1,1].
Furthermore, homogeneous boundary conditions — either Dirichlet or Neumann conditions — are presumed. Using the La-
grange cardinal functions hi, 0 6 i 6 P with the Gauß–Lobatto–Legendre (GLL) quadrature points xi as an expansion basis, the
projection of the scalar is given by
uðx; tÞ �
XP

i¼0

uiðtÞhiðxÞ; ð8Þ
where ui is the scalar value at point xi and P the polynomial order of the GLL-Lagrange basis. With _uiðtÞ ¼ duiðtÞ=dt and
h0iðxÞ ¼ dhiðxÞ=dx the Galerkin weak formulation of (2) then reads
Z

Xs

XP

j¼0

_ujhj

 !
hi dX ¼ �

Z
Xs

XP

j¼0

ujh
0
j

 !
h0i dX ð9Þ
or in matrix–vector notation
XP

j¼0

Mij _uj ¼ �
XP

j¼0

Lijuj; ð10Þ
where M and L are respectively the mass and stiffness (also referred to as Laplacian) matrices with
Mij ¼
Z

Xs
hihj dX and Lij ¼

Z
Xs

h0ih
0
j dX for 0 6 i; j 6 P: ð11Þ
Fig. 1. Standard SVV kernel magnitude (7) as a function of wave number k.
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Owing to use of GLL quadrature on the underlying nodal points, the mass matrix is diagonal, with the leading diagonal con-
taining the quadrature weights xi and the stiffness matrix can be calculated by
Lij ¼
XP

l¼0

xlDliDlj; ð12Þ
where D is the GLL differentiation matrix in one-dimensional space. See [13] for more detail.
When incorporating SVV into the nodal spectral element method, two aspects must be considered. First, the GLL–La-

grange basis is not hierarchical, i.e. it does not have the property that smaller length scales are associated with increasing
mode index. Projection into a suitable modal space is required before a spectrally vanishing viscosity can be adjoined to
(9). This projection can be realized in various ways, e.g. by a mapping from nodal space to Legendre spectral space, or
to the space of Jacobi-modal basis functions as employed for the hp form of the spectral element method (another hierar-
chical basis). In the present work we have restricted consideration to the Legendre polynomial space. The associated pas-
sage matrix T from physical to modal space is variously referred to as a discrete polynomial transform (DPT) matrix or a
generalized Vandermonde matrix. See [14] Appendix A for details of how T may be computed. The second consideration is
that the stiffness matrix L is symmetric, positive semi-definite, and it is required that SVV stabilization preserves these
properties.

In order to satisfy both requirements, Xu and Pasquetti [4] proposed a symmetric form, where the SVV kernel is split by
root extraction. Subsequently the kernel is applied to the standard differentiation matrix by counterposing it between the
DPT matrix T and its inverse T�1. Thus, the modified differentiation matrix is given by
Dsvv ¼ T�1diag 1þ e
m
bQ k

� �1=2
TD; ð13Þ
where bQ k are the coefficients of the SVV kernel in (Legendre–) modal space which are defined in the same manner as pre-
sented in (7). The only difference is that, here, the polynomial order P replaces the highest Fourier wave number N.

As outlined above, the incorporation of SVV into the nodal spectral element is not quite so straight-forward as for the
Fourier method, and has no simple direct counterpart in physical space equivalent to a global convolution. However, the
principles are quite similar in each setting. In both cases — for the Fourier method as well as for the nodal spectral element
method — augmentation of the diffusion equation with SVV involves only slight changes to the solution algorithm. In the
first case, only the value mk2 has to be modified for each mode, while in the second, the standard GLL differentiation matrix
employed for diffusion operators has only to be manipulated once, during preprocessing. Consequently, the computational
cost of either a direct solve or one PCG-type iteration step remains unchanged while additional damping is applied at small
length scales, and this, together with the fact that the formal convergence properties may be unaltered, makes SVV an attrac-
tive method.

2.2. SVV for three-dimensional flow equations in cylindrical coordinates

As seen above, SVV influences exclusively the diffusion term of a differential equation. In the incompressible unsteady
Navier–Stokes Eq. (1), this term reads in cylindrical coordinates
mr2~u ¼ mD~u� m
r2

0
v þ 2@uw

w� 2@uv

264
375; ð14Þ
where
D � @z@z þ
1
r
@rr@r þ

1
r2 @u@u ð15Þ
and ~u = (u,v,w)T are the velocity components in axial, radial and azimuthal direction (z,r,u), respectively. After Fourier dis-
cretization in the azimuthal direction, diagonalization with mapped variables ~vk ¼ v̂k þ iŵk and ~wk ¼ v̂k � iŵk and symme-
trization by multiplication with r (see [12]) we arrive at
m½rr2~u��k ¼ m

@zr@z þ @rr@r � k2

r

� �
ûk

@zr@z þ @rr@r � ðkþ1Þ2
r

� �
~vk

@zr@z þ @rr@r � ðk�1Þ2
r

� �
~wk

2666664

3777775 ð16Þ
with �N 6 k 6 N. As mentioned at the beginning of this section, a two-dimensional nodal spectral element method is applied
in the meridional directions. Here, we restrict the derivation to one arbitrary quadrilateral spectral element Xe. Using several
elements requires a global assembly, for example described in [13]. The expansion basis used for the meridional discretization
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of ûk; v̂k, and ~wk are tensorial products of the Lagrange cardinal functions hi. Thus, the discretized Galerkin weak formulation
of the viscosity term (16) reads
m

DT
z MeDz þ DT

r MeDr � k2

r

� �
ûk

DT
z MeDz þ DT

r MeDr � ðkþ1Þ2
r

� �
~vk

DT
z MeDz þ DT

r MeDr � ðk�1Þ2
r

� �
~wk

266664
377775; ð17Þ
where the matrices Dz and Dr represent the derivatives of the basis functions in axial and radial directions. The diagonal mass
matrix Me contains the quadrature weights multiplied by the radius and the Jacobian of the mapping from the arbitrary ele-
ment Xe to the two-dimensional standard element Xs = [�1,1] 	 [�1,1]. Finally, the entries in ûk; ~vk, and ~wk represent the
coefficients of ûk; ~vk, and ~wk at the quadrature points. For further details we refer to [12 and 13].

Following [4,8] we now employ a diagonal SVV tensor, where each coordinate direction is provided with its own intensity
and its own kernel. Since diagonalization and symmetrization are linear operations, SVV stabilization can be introduced di-
rectly in (17). Thus, the SVV-enhanced diffusion term reads
m

Dsvv

z

� �T MeDsvv

z þ Dsvv

r

� �T MeDsvv

r � k2

r 1þ eu
m
bQ u;k

� �� �
ûk

Dsvv

z

� �T MeDsvv

z þ Dsvv

r

� �T MeDsvv

r � ðkþ1Þ2
r 1þ eu

m
bQ u;k

� �� �
~vk

Dsvv

z

� �T MeDsvv

z þ Dsvv

r

� �T MeDsvv

r � ðk�1Þ2
r 1þ eu

m
bQ u;k

� �� �
~wk

266664
377775: ð18Þ
Here, bQ u;k realizes the spectral damping in azimuthal direction and the superscript svv of the both differentiation matrices
Dz and Dr indicates their modification in the following way: Owing to the use of quadrilateral elements, the tensorial struc-
ture of the expansion basis can be exploited for an efficient evaluation of the derivatives, which can be expressed as a series
of the one-dimensional operations. In particular, the differentiation matrices for a two-dimensional domain can be con-
structed using the GLL differentiation matrix of the one-dimensional standard domain, which can be augmented by SVV
as shown in (13). Since we always use the same polynomial order in both spectral element directions, an identical SVV
parameterization is applied in the axial and the radial direction. Therefore, only two parameters control the spectral vanish-
ing viscosity in the spectral element planes, which we call henceforth Mzr and ezr. Accordingly, the SVV parameters in Fourier
direction are called Mu and eu.

2.3. Kernel modifications in azimuthal Fourier direction

At this point it should be noted that in Cartesian coordinates each wave number k is associated with a unique wave
length, which is given by k = 2pL/k, where L represents a geometric length scale. Hence, waves of length k are uniformly
damped according to the spectral viscosity e bQ ðkÞ. In cylindrical coordinates, this relation is still valid for the radial and axial
directions. For the azimuthal direction, however, the wave length is given by k = 2pr/k, i.e. for a fixed wave number the
length varies linearly with the radial position. Consequently, the effect of the azimuthal spectral viscosity eu

bQ uðkÞ to the
fluid flow depends on the radial position. To clarify this we introduce bQ u;k with
bQ u;k ¼ bQ uðkðk; rÞÞ ¼ bQ u
2pr
k

� �
: ð19Þ
Since only the ratio of k and r is required, (19) is equivalent to
bQ u;k ¼ bQ u
2pr�

k�

� �
; ð20Þ
Fig. 2. Standard SVV kernel Qs as a function of wave number k and nondimensional wave length k⁄ with N = 31, M = 16.
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with nondimensional wave length k⁄ = k/R and radius r⁄ = r/R, where R is any reference radius. In the present work, the max-
imum radius of the spatial domain is always chosen as reference. For the standard kernel, which is referred to as Qs in the
following, Fig. 2 shows a comparison of the bQ u;k and bQ u;k for N = 31 and M = 16. Clearly the threshold wave length
k�M ¼ 2pr�=M, above which bQ u;k vanishes, becomes infinitely small for r approaching zero. Since the corresponding r and z
scales are virtually independent from the radial position, the SVV operator becomes strongly anisotropic near the axis. For-
mally, this property reflects the anisotropy of the numerical grid in a consistent manner. However, due to the nonlinear nat-
ure of the underlying equations, processes at different length scales and coordinate directions are coupled to each other. For
example one can imagine a fine elongated structure that is aligned with the axis and initially resolved, but becomes unre-
presentable on the grid as a consequence of being tilted into another direction. This effect could induce an accumulation of
small structures near the axis and, indeed such behaviour appeared in our studies and will be detailed below.

A promising approach to avoid the described mechanism is to filter out length scales that are not uniformly resolved (i.e.
below the resolution limit of the radial and axial directions). Within the SVV framework, a natural realization of this concept
is to mitigate the anisotropy of the SVV operator by modifying the azimuthal kernel in order to restore its stabilizing function
in the axis region. From a physical point of view this suggests that waves of equal length experience the same attenuation
independent from their radial position. However, this superficially attractive feature is accompanied by the presence near
the axis of steep gradients in wave number space, which would destroy the spectral convergence of the overall approach.
Therefore, we consider as compromise the following two modifications of the azimuthal SVV kernel, which are both smooth
in wave number space:


 Qm1: Radial scaling of the spectral viscosity activation mode M.
bQ m1
u;k ¼ exp � ðN � kÞ2

ðMr� � kÞ2

 !
ð21Þ
for M r⁄ 6 k 6 N. Here, the nondimensional radius r⁄ is used, because N, M and k are integer values and possess no dimension.

 Qm2: Radial shifting of the shape function.
bQ m2
u;k ¼ exp �ðN �Mð1� r�Þ � kÞ2

ðMr� � kÞ2

 !
ð22Þ
for M r⁄ 6 k 6 N �M(1 � r⁄) and bQ ð2Þu;k ¼ 1 for k > N �M(1 � r⁄).
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Fig. 3. Modified SVV kernels Qm1 and Qm2 as functions of wave number k or nondimensional wave length k⁄ with N = 31, M = 16.



K. Koal et al. / Journal of Computational Physics 231 (2012) 3389–3405 3395
Fig. 3 shows the modified kernels as a function of wave number k and wave length k. In comparison to the standard kernel
Qs, the modifications Qm1 and Qm2 introduce an enhancement of the spectral viscosity near the axis in comparison to the
standard kernel Qs. However, in both cases the viscosity still disappears for any finite wave length if r goes to zero.

In the following sections we present three incompressible flow problems to highlight different aspects of SVV in cylindri-
cal configurations and influence of the above described kernel modifications: a three-dimensional laminar flow to study the
convergence properties of the SVV kernels, turbulent pipe flow, which is a classical test case to examine LES configurations in
cylindrical coordinates, and, finally, a turbulent flow in a closed cavity driven by an electromagnetic volume force.
3. Convergence study

To verify the spatial convergence properties of the SVV kernels we consider the (steady) Kovasznay flow. Originally de-
fined for two-dimensional Cartesian coordinates [15], the exact solution of this flow can be adopted as a test case for cylin-
drical coordinates [12] using
u ¼ 1� expðkzÞ cosð2p½r cosðuþ hÞ þ D�Þ;

v ¼ 1
2p

k expðkzÞ sin 2p½r cosðuþ hÞ þ D�ð Þ cosðuþ hÞ;

w ¼ � 1
2p

k expðkzÞ sin 2p½r cosðuþ hÞ þ D�ð Þ sinðuþ hÞ;

p ¼ 1
2
ð1� expðkzÞÞ;

ð23Þ
where k ¼ Re=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re=42 þ 4p2

q
with the Reynolds number Re. The introduction of the parameters D and h enables an arbi-

trary offset and an arbitrary rotation about the cylinder axis, as illustrated in Fig. 4. An offset D – 0 leads to a flow that
crosses the axis and a rotation h, which is a non-rotational multiple of p, ensures that both the real and the imaginary parts
of all modes are exercised.

For the convergence tests, similar to those of [12] but here with SVV kernels also included, we use D = 0.1, h = 0.75 and
Reynolds number Re = 40. The computational domain is divided into 2(N + 1) meridional semi-planes corresponding to the
complex Fourier modes. Each semi-plane is discretized with a non-orthogonal grid consisting of seven spectral elements;
Fig. 5 shows the spectral element grid and the internal mesh nodes for polynomial order P = 6. Furthermore, Dirichlet bound-
ary conditions are applied on all exterior (non-axial) domain nodes. For each interpolation order (P,N), the exact velocity
field is supplied as initial condition. The problem is then integrated forwards in time to steady state. Finally, the error is
determined by computing the maximum deviation of the steady state from the exact solution. Here, the axial velocity u com-
ponent is used as reference; the other two components behave similarly.

We have performed two different studies in order to investigate the convergence properties of the SVV stabilization
separately for the spectral element method and the Fourier method. In the first, we have validated the SVV implementation
in the meridional directions: the polynomial order of the spectral elements is varied between P = 2 and P = 18, while a
constant number of Fourier modes, namely N = 24, is maintained in azimuthal direction. This ensures that the error is
dominated by the spectral element discretization at low P, while the azimuthal direction is fully resolved. Fig. 6 (a) shows
error plotted against P both with and without SVV. As demonstrated by previous authors, SVV somewhat reduces the rate of
convergence, but exponential/spectral convergence is preserved. SVV parameters are computed as in [4] as follows: Mzr = P/2
and ezr = 1/P. Alternative parameterizations, e.g. with Mzr ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
P þ 1
p

and ezr = 1/(P + 1) as in [7], gave similar results.
Fig. 4. Streamlines of the cylindrical Kovasznay flow for Re = 40.



Fig. 5. Spectral element mesh adopted for the meridional semi-plane in convergence testing with Kovasznay flow, showing collocation points for P = 6.

−14

−12

−10

−8

−6

−4

−2

 0

 0  5  10  15

lo
g 

|| 
u 

−
 u

ex
ac

t |
| ∞

P

(a)

w/o SVV
SVV, Qs

−14

−12

−10

−8

−6

−4

−2

 0

 0  10  20  30  40

lo
g 

|| 
u 

−
 u

ex
ac

t |
| ∞

N 

(b)

w/o SVV
SVV, Qs
SVV, Qm1
SVV, Qm2

Fig. 6. Convergence results for Kovasznay flow with or without using SVV. In azimuthal direction the kernel versions Qs, Qm1 and Qm2 are tested. In (a),
the polynomial order P of the spectral elements varies while azimuthal resolution is kept constant, with N = 24. In (b) the number of Fourier modes N
increases for fixed spectral element shape function order P = 14.

3396 K. Koal et al. / Journal of Computational Physics 231 (2012) 3389–3405
In the second study, a fixed spectral element polynomial order P = 14 is used, and the number of azimuthal Fourier modes
is varied. We have examined the standard SVV kernel Qs and its variations Qm1 and Qm2, which were introduced in the
previous section. The SVV parameters are scaled as above, i.e. Mu = N/2 and eu = 1/N. Fig. 6 (b) presents a summary of these
results: the standard kernel Qs behaves as for the previous study where P was varied, i.e. the adoption of SVV with this kernel
reduces the rate of convergence, but convergence remains exponential. In comparison to Qs, the modified kernels further
reduce the convergence rate. This can be explained by the fact that in these cases the number of stabilized modes increases
with decreasing radial position. Thus, the overall effect of SVV is stronger than in the standard case. When Qm1 is applied,
this effect is marginal, because bQ m1

u;k is similar to bQ u;k even for small radii, as illustrated in Figs. 2 and 3 of the previous sec-
tion. The second variation, Qm2, also achieves spectral convergence, but at a significantly lower rate. This is not surprising
when we consider that Qm2 introduces considerably more diffusion in the core region.

4. Turbulent pipe flow

The second example deals with turbulent pipe flow at Reynolds number Re = UbulkD/m = 10,000. We wish to assess
whether the SVV technique enables stable LES in cylindrical configurations that include the axis, and which aspects are rel-
evant to obtaining reliable results. For all simulations we consider a pipe with diameter D = 2R = 1 and length L = 2pD, which
is adequate at this Reynolds number [16]. No-slip boundary conditions are imposed at the wall while periodicity is employed
in the streamwise direction. Our assessment is based on first and second-order statistics. DNS data serves as reference, which
we first validate using experimental data.

4.1. Comparison of DNS and experimental data

The DNS grid consists of 320 semi-planes (i.e. N = 159) in the azimuth and 30 	 8 spectral elements with P = 10 in the
axial and the radial direction (Fig. 7). When designing the mesh, we have employed rules of thumb for for near-wall reso-
lution in DNS supplied by Piomelli [17]. We have retained a strategy which has been found successful in previous spectral-
element-based DNS and wall-resolving LES [14,16]: the first element covers the laminar sublayer and another one the buffer
layer, where turbulent energy production is greatest. A geometric progression with a stretching factor of 1.2 is then used to
reach the centre of the pipe.



Fig. 7. Spectral element boundaries for DNS of turbulent pipe flow.
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Fig. 8. DNS and experimental data for turbulent pipe flow, Re = 10 000. Comparison of mean flow (left) and rms (u0þ , stream-wise; v 0þ , wall-normal)
velocity fluctuation profiles (right) resulting from simulation and LDA measurements [18].
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In order to help build confidence in the veracity of the DNS results, we compare the mean flow and the fluctuations in
stream-wise (axial) and wall-normal (radial) direction with experimental data from den Toonder and Nieuwstadt [18]
who carried out laser Doppler anemometer (LDA) measurements in a recirculatory pipe flow facility. Fig. 8 presents the
time-averaged streamwise velocity U and the rms values u0 and v0 of the axial and radial velocity fluctuations in viscous units,
i.e. the velocity components are scaled with the wall friction velocity us: U+ = U/us, u0þ = u0/us and v 0þ = v0/us. The correspond-
ing coordinate in wall-normal direction is given by r+ = (R � r)us/m. Generally, the computed results are in good agreement
with the experimental results, and with similar DNS results presented in [16]. We note that the experimental data for rms
values seem unreliable close to the wall.

4.2. Construction of LES grids

To generate a wall-resolving LES grid, the DNS grid is coarsened approximately by a factor of three in each direction: In
the azimuth 96 semi-planes (N = 47) are used. The domain is divided into 10 spectral elements in the streamwise direction.
The discretization in the radial direction was not so straightforward as for the other two directions, since this direction has
been discretized using only three elements. We have proceeded as follows: the size of the element at the wall is trebled
compared to the DNS, giving a near-wall wall-normal resolution of r+ � 0.9, sufficient to capture the viscous sublayer. The
remaining space is occupied by two elements with a stretching factor of 1.5. In summary, the element extents in the
wall-normal direction, starting from the wall, are Dr1 = 0.045, Dr2 = 0.182 and Dr3 = 0.273. Fig. 9 shows the resulting spectral
element grid 1. The polynomial order in the axial and the radial direction was retained from the DNS, i.e. P = 10. Further,
the size of the time step could be doubled so that the overall computational cost for the LES was approximately 0.5% that
of the DNS.1 In order to study the influence of radial grid refinement we further introduce two variations. In the first case, grid
2, the radial size of the two inner layers of elements is changed to Dr2 = Dr3 = 0.2225. For the second variation, grid 3, the axis
elements of the original grid are divided into two elements, where the size of the innermost layer corresponds to the DNS
resolution at the axis such that Dr3 = 0.160 and Dr4 = 0.113. Other grid parameters remained unchanged.

4.3. SVV parameter study using the standard kernel Qs

First we examine the influence of SVV parameters when the standard kernel Qs is applied. Starting with the spectral vis-
cosity activation modes Mzr = P/2 = 5 and Mu = (N + 1)/2 = 24, the SVV amplitudes ezr and eu were increased independently
from 3m to 20m. Notice that the amplitudes must scale with m for dimensional reasons. The dependence from P and N respec-
tively is not explicitly indicated, because these parameters were not modified. Fig. 10 illustrates the outcome of this variation
for ezr = eu = 5m, 10m, and 20m. For smaller amplitudes the simulations were unstable. One observes that the LES results are
generally in very good agreement with the DNS reference data. Moreover, the mean flow as well as the rms profiles are
1 Simulations were performed on a SGI Altix 4700 at ZIH/TU Dresden.



Fig. 9. Spectral element boundaries for LES of turbulent pipe flow.
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Fig. 10. Mean flow (left) and rms velocity fluctuation profiles (right) for turbulent pipe flow, when ezr and eu are varied and LES grid 1 is used. In all three
spatial direction the standard SVV kernel Qs is applied. The spectral viscosity activation wave numbers are held constant at (Mzr = 5, Mu = 24) and the DNS
results serve as reference.

 0

 5

 10

 15

 20

 1  10  100

U
+

r+

DNS
Mzr = 7, Mϕ = 36
Mzr = 5, Mϕ = 24
Mzr = 3, Mϕ = 12

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 1  10  100

u’
+

, v
’+

r+

u’+

v’+

Fig. 11. Mean flow (left) and rms velocity fluctuation profiles (right) for turbulent pipe flow at various activation wave numbers Mzr and Mu using LES grid 1
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almost unaffected by the parameter variation. Only the streamwise fluctuations increase slightly for higher amplitudes. The
best agreement is received with the smallest stable amplitude, namely ezr = eu = 5m.

Subsequently, the activation wave numbers Mzr and Mu were varied, with fixed SVV amplitudes ezr = eu = 5m. These results
are presented in Fig. 11. Here, the effect of parameter variation is more evident. With increasing activation wave numbers,
the mean flow and the wall-normal fluctuations profiles agree somewhat better with the reference data, whereas the
streamwise fluctuations profiles get closest to the reference curve for Mzr = 5 and Mu = 24. However we note here that
the parameter combination Mzr = 7 and Mu = 36 showed first signs of numerical instability in terms of temporarily increasing
divergence energy of the velocity field. Therefore, the ‘optimal’ parameter configuration for this test case was provided by
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Mzr ¼ 5; Mu ¼ 24; and ezr ¼ eu ¼ 5m: ð24Þ
We are aware that the present parameter study is not universally valid, but a trend is apparent: the best results were
obtained for high activation modes and small SVV amplitudes, as long as these parameters ensured a stable calculation. Sim-
ilar observations were made in previous SVV studies (see e.g. [5]).
4.4. Near-axis behaviour

When we take a closer look at developments near the pipe axis (see Fig. 12) a non-physical increase of fluctuation be-
comes evident in this region, especially for high activation wave numbers. A possible explanation for this is given by the mu-
tual disappearance of SVV stabilization with decreasing radius, allowing small-scale structures to accumulate in the core
region. To investigate this effect in more detail, azimuthal wave number spectra for various radii were computed for the
DNS as well as the LES calculations. The azimuthal spectra were determined by first computing the kinetic energy of Fourier
transformed, instantaneous velocity fields. These instantaneous fields were averaged in axial direction, followed by an aver-
aging in time, for which up to 40 independent snapshots were used. Finally, local spectra were extracted at different radial
positions.

Fig. 13 presents a comparison between DNS and LES spectra for r = 0.01, 0.1, 0.25 and 0.45, corresponding to 2%, 20%, 50%
and 90% of R, respectively. At the outer two radial positions, the DNS and LES spectra agree well with each other. The stronger
decay of the LES spectrum for modes k J 30 is attributed to the augmented viscosity on these modes. In case of r = 0.1, this
effect of SVV is still apparent. However, in comparison to DNS, a higher energy level is observed at higher wave numbers. In
the lower range, k [ 10, the correspondence of both spectra is still good. In contrast, at the smallest radial position r = 0.01,
the energy level of the LES is approximately one order of magnitude larger than the DNS results at all wave numbers. This
observation suggests that there may be insufficient dissipation of turbulent kinetic energy in the centre of the pipe. At this
point it is worth noting that the azimuthal wave length of the largest structures near the axis, e.g.
kmaxðr ¼ 0:01Þ ¼ 2pr
1
¼ p

50
;

approximately corresponds to the smallest resolved scales in the outer region
kminðr ¼ RÞ ¼ 2pR
N
¼ p

47
:

This implies that turbulent structures transported from the outer regions to the centre are not adequately dissipated and
hence appear to accumulate in the core region.
4.5. Influence of kernel modification in azimuthal direction

Next we consider the modified azimuthal kernels Qm1 and Qm2. We have again chosen the parameter set according to
(24). Generally, the results are almost identical to those obtained with Qs. In particular, neither Qm1 nor Qm2 manage to
diminish the overshoot of turbulent kinetic energy near the axis as displayed in Fig. 14. Closer examination of the azimuthal
spectra for Qm2 reveals an improvement for smaller radii such as r = 0.1 (Fig. 15). However, in the immediate vicinity of the
axis, at r = 0.01, kernel Qm2 (as well as Qm1) fails to control an accumulation of energy at low wave numbers. As argued
above, for small radii all azimuthal modes correspond to small length scales. On the other hand, those scales cannot be rep-
resented in the spectral element directions (z,r), whose discretization is relatively coarse at the axis. Hence, one may pre-
sume that the nonlinear redistribution of energy between the different coordinate directions and corresponding velocity
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components cannot be captured properly. This suggests that a local refinement of the spectral element grid near the axis
would improve redistribution.
4.6. Radial grid refinement in axis region

In order to verify this hypothesis, we have performed additional LES calculations with two further spectral element grids
that are modified accordingly. An illustration of all three grids were given in Fig. 9. In contrast to grid 1, the radial size of the
two inner layers of elements is equal in grid 2 and for grid 3 an additional element layer is introduced at the axis.
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Fig. 16 presents the influence of the radial resolution on the mean flow and the rms values of axial and radial velocity
fluctuations. The LES were performed with the standard kernel Qs and, as above, the SVV parameter configuration (24) is
used. One initially observes that the grid modifications do not degrade the overall good agreement with the DNS data. Closer
examination of the near-axis region (Fig. 17) reveals that the use of grid 2 diminishes the accumulation of turbulent kinetic
energy in this region. The introduction with grid 3 of near-axis radial element resolution equivalent to that used in DNS pre-
vents the non-physical increase of fluctuations. In order to study the influence of the local refinement in more detail, energy
spectra of the latter case are displayed along with the DNS data in Fig. 18. In comparison to the results obtained with Qs and
the original grid (cf. Fig. 13), the radial refinement in the core region removes the energy overshot at smaller radii r 6 0.1. For
the outer radii of the pipe, the spectra remain unchanged, since the grid modification does not affect this region. Hence, the
hypothesis stated above is validated in the sense that a proper choice of the spectral element resolution is able to suppress
near-axis axis instability, even though the standard SVV kernel Qs is used.

5. Flow driven by a travelling magnetic field

As third test case we consider the flow driven by a travelling magnetic field (TMF) in a closed, non-conductive cylindrical
cavity with aspect ratio one, i.e. height H is twice the radius R. The body force is given by
~f ¼ F
.m2

2R3

r
R

� �2
~ez;
where
F ¼ rxB2jR5

4.m2
is the nondimensional forcing parameter, r is electric conductivity, x is angular frequency, j is axial wave number and B is
the induction of the magnetic field. DNS of the resulting turbulent flow were presented in [11] for F = 1 	 106 and 4 	 106.
This corresponds approximately to 8Fc and 32Fc, where Fc = 120,400 is the critical force parameter [19]. Here we use the DNS



−10

−9

−8

−7

−6

−5

−4

−3

 1  10  100

lo
g 

(E
k)

k

r = 0.45
r = 0.25
r = 0.10
r = 0.01
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Fig. 19. DNS results for the flow induced by an eight-times supercritical travelling magnetic field (TMF). From left to right: Contours of axial mean velocity
from �750 to 750 with step 75, contours of radial mean velocity from �500 to 500 with step 50, contours of turbulent kinetic energy from 0 to 110000 with
10000, and instantaneous vortices visualized with second invariant of the velocity gradient tensor (k2 = �1.5 	 107). Dashed contour lines indicate negative
values.
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for F = 1 	 106 as the reference case. Fig. 19 depicts the components of the axial and radial mean flow U and V, the distribu-
tion of turbulent kinetic energy K ¼ ðu02 þ v 02 þw02Þ=2 and a typical snapshot of the vortex structures using the k2-criterion
according to [20]. All quantities presented in this Section have been nondimensionalized using the radius and the kinematic
viscosity as primary scales such that velocity, time, and coordinates are scaled with m/R, R2/m, and R, respectively.

As can be deduced from Fig. 19, the base flow is dominated by a toroidal roll that moves fluid upwards at the rim and
returns it along the centre of the cylinder. However, due to strong fluctuations, the mean flow is of little relevance for the
instantaneous picture. The vortices cover the major part of the domain and show a rather random orientation. However,
the evolution over a time span reveals a preference of axial orientation in the centre, whereas azimuthal vortices tend to
prevail near the rim. On average, turbulence amounts to nearly 50% of the total kinetic energy [11]. Hence, this flow provides
an interesting supplemental test case in support of the results obtained for turbulent pipe flow.

5.1. Applied DNS and LES grids

The DNS and LES grids used for this study are displayed in Fig. 20. The DNS is performed on a non-equidistant rectangular
grid of 25 	 50 elements with a polynomial degree of P = 7 and 256 semi-planes in the azimuth. For LES two different grids
are used. Both grids have in common, that the number of semi-planes is reduced to 48 and that the meridional grid is coars-
ened to 5 	 10 spectral elements, whereas the polynomial degree is retained at the same value as for the DNS. The size of the
wall-nearest axial and radial elements is increased slightly such that the viscous sublayer is captured with z+ and r+ < 0.3. The



Fig. 20. Spectral element grids used for the simulations of the TMF driven flow.

Fig. 21. Axial mean velocity (left) and turbulent energy profiles (right) z = �0.5 for the TMF test case using various SVV parameter combinations. Here, LES
grid 1 and, in all spatial direction, SVV kernel Qs is used. DNS results of [11] serve as reference. For K, a magnification of the core region (r 6 0.1) is displayed
in the embedded diagram.

Fig. 22. Instantaneous vortex structures for the eight-times supercritical TMF driven flow computed either with LES grid 1 (left) or with LES grid 2 (right).
The vortices are displayed for the same value, k2 = �1.5 	 107, as the DNS snapshot in Fig. 19.
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crucial difference between LES grids 1 and 2 lies in the near-axis radial extents of the inner spectral elements. In the first
case, a constant stretching factor of 2.11 is used for all elements, including those nearest the walls. Hence, elements near
the axis are extremely large. For LES grid 2, the size of the inner elements is determined independently from the outer



Fig. 23. Axial mean velocity (left) and turbulent energy profiles (right) z = �0.5 for the TMF test case using either grid 1 or grid 2. The SVV parameters are
Mzr = 4, Mu = 12, and ezr = eu = 5m.
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elements using a moderate stretching factor of 1.2 such that a higher resolution at the axis is provided. In both cases, the size
of the time step is doubled. Consequently, LES costs about 0.3% of the equivalent DNS.

5.2. SVV parameter variation using the standard SVV kernel Qs

First, a parameter study was performed to investigate the influence of the SVV parameters on grid 1. Starting with a sim-
ilar parameter set for the pipe flow, namely
Mzr ¼ ðP þ 1Þ=2 ¼ 4; Mu ¼ ðN þ 1Þ=2 ¼ 12; and ezr ¼ eu ¼ 5m; ð25Þ
the SVV magnitude is increased up to 50 and, independently, the activation modes Mzr and Mu are reduced to 2 and 6,
respectively. Fig. 21 summarizes the outcome of this study, presenting the profiles of U and K at z = �0.5, where the axial
mean velocity approximately reaches its maximum. At first glance, the results look very similar. As for the pipe flow out-
comes, LES profiles show a remarkable agreement with the corresponding DNS data and the variation of the SVV parameters
does not qualitatively change the results. Closer examination near the axis again reveals an accumulation of turbulent energy
in case of LES. As illustration of these artifacts, the left side of Fig. 22 presents a snapshot of the instantaneous vortices, when
grid 1 and the SVV parameter set (25) is used. One observes small vortex tubes in the core region that are aligned with the
axis. These structures have no counterpart in the DNS.

5.3. Influence of SVV kernel modification or grid variation

As for the pipe flow, we have carried out simulations with the modified SVV kernels as well as with the modified LES grid
(grid 2) with the aim of preventing near-axis accumulation of turbulent energy. As before, the use of Qm1 or Qm2 in azi-
muthal direction does not produce improvement. However, improved grid design ensures sufficient dissipation in the core
region, as one may observe in Fig. 23. The vortex tubes observed in the simulation with LES grid 1 almost completely dis-
appear when LES grid 2 is employed (see right side of Fig. 22).
6. Conclusions

The motivation for this work was to prove the capability of the spectral vanishing viscosity method for large-eddy sim-
ulations of flow problems in cylindrical coordinates that include the axis region. We first presented the principles of SVV
with focus on application to a spectral-element–Fourier method for three-dimensional incompressible fluid flows. In partic-
ular, we have shown that the scales are not damped uniformly in the azimuthal direction, when the standard SVV kernel (Qs)
introduced by Maday [2] is used. To mitigate this imbalance, which is seen as a possible cause of the observed near-axis
instabilities, we have proposed two modifications of the standard kernel. These two variations relied on geometric consid-
erations, where either the activation mode is down-scaled with decreasing radius or the whole shape function is shifted to-
wards the lower modes.

To study the accuracy and stabilization of the standard SVV and its modifications, we have considered three different flow
configurations. First, we examined convergence properties of all SVV kernels using the laminar Kovasznay flow. These tests
revealed that the two proposed modifications Qm1 and Qm2 of the SVV kernel preserve the spectral convergence as well as
the standard version Qs. Subsequently, we performed LES of turbulent pipe flow and a supercritical flow driven by a travel-
ling magnetic field. In general, the application of SVV stabilized the simulations and provided results in good agreement with
the reference data. However, an accumulation of small-scale fluctuations near the axis was detected for both test cases.
Neither variation of SVV parameters nor the use of one of the remaining kernel modifications could prevent this effect. Closer
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examination of azimuthal energy spectra revealed an increase of energy over the whole spectrum in the immediate vicinity
of the axis independent of the SVV kernel employed. A comparison of the resolved azimuthal length scales in the outer and
inner regions of the cylinder suggested that the redistribution of energy between the different spacial directions is not cap-
tured properly in the original LES grids. Hence, we have presumed that a local refinement of the spectral element grid would
recover this mechanism. Indeed, proper choice of the grid prevented the accumulation of small-scale fluctuations near the
axis. While such a local grid refinement helps to restore numerical stability, it is not motivated by any physical reason and,
hence, should be constrained to a minimum. Our results suggest that using a nearly uniform (but possibly different) reso-
lution for the radial and axial directions in the core region is sufficient to control the axis instability. This observation needs
to be justified for other configurations. Finally, the question about the generic choice of the optimal SVV parameters still re-
mains open and should be addressed in more detail in further research. Nevertheless, we can conclude that the spectral van-
ishing viscosity method is a reliable tool for the stabilization of LES when using high-order discretization methods.
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