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An investigation of topological features of the velocity gradient field of turbulent channel
flow has been carried out using results from a direct numerical simulation for which
the Reynolds number based on the channel half-width and the centreline velocity was
7860. Plots of the joint probability density functions of the invariants of the rate of
strain and velocity gradient tensors indicated that away from the wall region, the fine-
scale motions in the flow have many characteristics in common with a variety of other
turbulent and transitional flows: the intermediate principal strain rate tended to be
positive at sites of high viscous dissipation of kinetic energy, while the invariants of the
velocity gradient tensor showed that a preference existed for stable focus/stretching and
unstable node/saddle/saddle topologies. Visualization of regions in the flow with stable
focus/stretching topologies revealed arrays of discrete downstream-leaning flow structures
which originated near the wall and penetrated into the outer region of the flow. In all
regions of the flow, there was a strong preference for the vorticity to be aligned with the
intermediate principal strain rate direction, with the effect increasing near the walls in
response to boundary conditions.

1. Introduction
Turbulence modelling remains the major challenge in our ability to predict turbulent

flows. Model development has been slow because it seems that different models are
needed for different flows, as the large-scale features of the turbulence appear to be flow-
dependent. A major motivation for the development of large-eddy simulations has been
the belief that although large structures may vary from flow to flow, at smaller scales the
features should be less flow-dependent and more amenable to modelling. This belief in
the fine-scale universality of turbulent flows is supported by evidence from recent investi-
gations, as outlined below. Universal fine-scale features, if they can be identified, should
potentially be of greater utility in construction of sub grid-scale models than assumptions
concerning statistical isotropy of turbulent fluctuations at high wavenumbers.

A number of recent studies of the properties of the velocity gradient and rate of strain
fields from direct numerical simulations of turbulent and transitional flows have pro-
duced results which indicate a number of common features of the fine-scale motions in a
variety of flow geometries, despite different large-scale motions. Authors have typically
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presented combinations of statistical analyses and flow visualizations based on one or
more realizations from the simulations.

Ashurst et al . (1987) studied a simulated incompressible isotropic turbulent flow with
Taylor microscale Reynolds number Reλ = 83 and a homogeneous incompressible shear
flow with similar Reynolds number. The isotropic flow was forced into a state of statistical
equilibrium (‘driven’) by adding energy at low wavenumbers. In both flows, they found
that on average the intermediate principal strain rate tended to have a positive value
which increased as the local viscous kinetic energy dissipation rate on which the sample
was conditioned rose, with the ratios of principal strain rates λ1, λ2, λ3 approaching
3:1:−4 at higher conditioning levels. In addition, they found that the vorticity ω tended
to align with the intermediate principal strain rate direction e2, based on a study of the
probability density function (PDF) of the cosine of the angle between their directions.

Vincent & Meneguzzi (1991) studied a simulation of driven isotropic turbulence with
Reλ � 150. Again, the intermediate principal strain rate was positive at approximately
two-thirds of the grid points. Vortex ‘tubes’ were observed, with a typical diameter in-
termediate between the Kolmogorov and Taylor microscales and length of the order of
the integral scale of the flow (similar observations have been published by She, Jack-
son & Orszag 1990). The highest rates of strain in the flow were seen in the vicinity
of the vortex tubes, with the eigenvectors of the most positive and negative principal
strain rates (e1 and e3) perpendicular to the vorticity which thus tended to align with
the intermediate principal strain rate direction e2. Vortex tubes were also observed by
Ruetsch & Maxey (1991) in results from a simulation of driven isotropic turbulence with
Reλ � 60. In a study of sites of kinetic energy dissipation in the flow, they found that
the bulk of the dissipation occurred in regions of moderate dissipation which surrounded
the vortex tubes and that the most intense dissipation was observed between tubes
where the induced strain rate fields of the tubes overlapped. In a more recent paper,
Vincent & Meneguzzi (1994) reported that most vortex tubes found in their simulation
of homogeneous turbulence evolved from shear layers by an instability mechanism, during
the influence of transverse straining. The sites of highest dissipation were in the vicinity
of, but outside, vorticity tube cores. In a study of alignment properties in a simulation
of decaying homogeneous turbulence, Vincent & Meneguzzi found that the tendency for
alignment of the vorticity with the intermediate principal rate of strain direction occurred
before the roll-up of the vortex sheets into tubes.

In a study of transitional Reynolds number inhomogeneous shear flows, Chen et al .
(1990) presented results from simulations of time-developing compressible and incom-
pressible mixing layers with Reynolds numbers (based on the velocity difference and the
initial vorticity thickness) of 1600 and 3000 respectively. Chen et al . introduced the use
of flow visualization based on classification of local flow topologies and demonstrated
that for the mixing layers there was a correspondence between visualization based on
physical quantities such as enstrophy on the one hand, and on topological classification
on the other. Examination of scatter plots of the second and third invariants of the rate
of strain tensor showed that the intermediate principal strain rate again tended to be
positive, especially when the local rate of turbulent kinetic energy dissipation was high.
Flow visualization showed that regions of high enstrophy and high dissipation tended to
be associated in these flows, although the incompressible mixing layer contained stream-
wise counter-rotating vortices with high enstrophy but relatively low dissipation. The
work of Sondergaard et al . (1991) extended the range of flows to include time-developing
compressible and incompressible plane wakes with Reynolds numbers of 300 and 500;
the two additional flows also showed a tendency for the intermediate principal strain
rate to be positive where dissipation was high. In that paper, properties of the local
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alignment between the vorticity vector and the principal rate of strain directions for the
mixing layers were studied and it was shown that the vorticity tended to align with the
intermediate principal strain rate direction at sites of high dissipation. Scatter plots of
the second and third invariants of the velocity gradient tensor showed that of the four
possible local flow topologies there tended to be a preference for stable focus/stretching
and unstable node/saddle/saddle in all the flows (we present a more extensive discussion
of tensor invariants and flow topologies below). Soria et al . (1994) studied the topology
of plane mixing layers computed from laminar as well as turbulent initial conditions.
They found that virtually all of the dissipation was accomplished by intermediate- and
fine-scale motions characterized by two positive principal rates of strain.

Finally we mention the experimentally based study of Tsinober, Kit & Dracos (1992),
where results for alignment effects in grid-generated and boundary layer turbulence were
presented. In both cases the propensity for alignment between the vorticity and the inter-
mediate rate of strain eigenvector was observed. As in the studies of Ashurst et al . (1987)
and Vincent & Meneguzzi (1994), this conclusion was based on an examination of the
PDFs of the cosines of the angles between the vorticity and the principal strain rate
directions.

The picture which has begun to emerge from these studies is that for a variety of turbu-
lent and transitional flows with differing large-scale structure, much of the kinetic energy
dissipation occurs in regions which surround elongated structures with high enstrophy.
In all cases for which alignment results have been presented, it has been found that the
vorticity ω tends to align with the intermediate principal strain rate direction e2. In
addition, the intermediate principal strain rate λ2 is positive on average. Jimenez (1992)
suggested a kinematic model which would indicate that this strain–vorticity geometry
should occur in the neighbourhood of a local maximum of vorticity and Burgers’ stretched
vortex solution was used to illustrate the point. Although this model describes a flow
situation in which the observed geometry can occur it does not explain the tendency for
turbulent flows to evolve to such a state. The observed preference for two of four possi-
ble local flow topologies in the fine-scale motions of inhomogeneous shear flows remains
unexplained and it is unknown if this preference is common to other flows or at higher
Reynolds numbers.

In this paper, we examine results from one realization of a direct numerical simulation
of an incompressible turbulent channel flow with Reynolds number based on the centreline
mean flow speed and the channel half-width of 7860. This expands the range of flow
types to include situations in which the presence of a wall has an effect. In addition, flow
visualization based on topological classification of the velocity gradient tensor has been
used to examine features of the turbulent boundary layer.

2. Classification of local flow topology
The flow pattern at each point in the flow may be assessed from the viewpoint of an

observer travelling with the local velocity of the flow. For such an observer, each point is
a critical point (that is, the local streamlines have indeterminate slope) and the topology
can be categorized using critical point terminology (Perry & Chong 1987).

2.1. Invariants of the velocity gradient tensor and flow topology
The velocity gradient tensor A = ∇u with Cartesian components Aij = ∂uj/∂xi may
be decomposed into the symmetric rate of strain tensor S with Cartesian components
Sij = (Aij + Aji)/2 and the skew-symmetric rate of rotation tensor Ω with components
Ωij = (Aij−Aji)/2. The eigenvalues Λ of A are obtained as solutions of the characteristic
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Figure 1. Plot showing the space of tensor invariants Q and R for incompressible flow, with
lines corresponding to constant values of the discriminant D = (27/4)R2 + Q3. The different
regions are labelled according to the terminology of Chong et al . (1990).

equation
Λ3 + PΛ2 + QΛ + R = 0, (2.1)

with the tensor invariants P , Q and R given by

P = −Sii = −tr(A) (= 0 for incompressible flow) (2.2a)

Q = 1
2 (P 2 − SijSji − ΩijΩji) = 1

2{[tr(A)]2 − tr(A2)}, (2.2b)

R = 1
3 (−P 3 + 3PQ − SijSjkSki − 3ΩijΩjkSki) = −det(A). (2.2c)

The topological features of the velocity gradient tensor as a function of position in
(P ,Q,R) space have been detailed by Chong, Perry & Cantwell (1990). The surface given
by

27R2 + (4P 3 − 18PQ)R + (4Q3 − P 2Q2) = 0 (2.3)
divides the space of the invariants into two regions, one where Λ takes one real, two
complex-conjugate values, the other with three real distinct eigenvalues.

For the P = 0 plane to which the rate of strain tensors for incompressible flows are
restricted, the value of the discriminant

D = (27/4)R2 + Q3 (2.4)

determines the nature of the eigenvalues of A. D > 0 gives rise to one real, two complex-
conjugate eigenvalues; D < 0 gives the three real, distinct values, while on the lines
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Q

R

Figure 2. Local flow fields (streamlines) for an observer travelling with the fluid for the topolog-
ical classifications: upper left, stable focus/stretching; upper right, unstable focus/compressing;
lower left, stable node/saddle/saddle; lower right, unstable node/saddle/saddle.

R = ±(2
√

3/9)(−Q)3/2 for which D = 0 there are three real eigenvalues of which two
are equal. A further classification is made according to the sign of R; in the left half of
the (Q,R) plane the real parts of the complex-conjugate eigenvalues or two of the three
real eigenvalues are negative and the critical points of the flow are classified as stable,
while in the right half-plane the real parts of the complex-conjugate or two of the three
real eigenvalues are positive and the critical points are classified as unstable, following
standard terminology. A diagram of the (Q,R) plane for which P = 0 is shown in figure 1,
with labels for the various classifications.

In the terminology of Chong et al ., critical point topologies which fall in the upper left-
hand region of the plane are called stable focus/stretching, the upper right-hand region
unstable focus/compressing, those in the lower left-hand region stable node/saddle/saddle
and those in the lower right-hand region unstable node/saddle/saddle. The shapes of the
local flow fields corresponding to these topologies (the local flow pattern which would be
seen by an observer travelling with a fluid particle) are indicated in figure 2.

2.2. Invariants of the rate of strain tensor

The local topology of any second-order tensor field may be classified in the same way.
In the following, we also discuss the topological features of the local rate of strain tensor
S in terms of its invariants Rs and Qs (Ps = P = 0 due to incompressibility). For this
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2:-1:-1

1:0:-1

3:1:-4
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Figure 3. Lines in (Qs,Rs) space corresponding to different ratios of principal strains λ1:λ2:λ3.
All (Qs,Rs) pairs must fall below the lines corresponding to the ratios 2:−1:−1 and 1:1:−2 as a
consequence of the symmetry of S.

symmetric tensor,

Qs = − 1
2 (SijSji = − 1

2 tr(S2), (2.5a)

Rs = − 1
3SijSjkSki = − 1

3 tr(S3). (2.5b)

Owing to the symmetry of S all eigenvalues must be real, hence in the (Rs,Qs) plane
only classifications for which Ds = (27/4)R2

s + Q3
s ≤ 0 can be obtained. Since the ratios

of the principal rates of strain (eigenvalues of S; λ1, λ2, λ3 in descending order) will be
discussed, we remark here that each set of ratios corresponds to a line in the (Rs,Qs)
plane. If a = λ2/λ1 then

Rs = (−Qs)3/2a(1 + a)(1 + a + a2)−3/2 (2.6)

(note that Qs ≤ 0). Curves corresponding to the principal strain rate ratios λ1:λ2:λ3;
1:1:−2, 3:1:−4, 1:0:−1 and 2:−1:−1 are shown in figure 3. Note also that Qs is propor-
tional to the local rate of kinetic energy dissipation: φ = 2νSijSji = −4νQs, so that
regions with large negative values of Qs are sites of high dissipation. Finally, the three
principal rate of strain directions are orthogonal, again owing to the symmetry of S.

Classical scaling arguments presented by Chen et al . (1990) imply that fluctuating
velocity gradients scale with the square-root of mean flow Reynolds numbers so that Qs

scales with Re and Rs with Re3/2; since the range of length scales of motion in turbulent
flows increases with Reynolds number, fine-scale motion can be said to correspond to
points far from the origin in (Qs,Rs) space.

2.3. Relative importance of rates of strain and rotation
The second invariant of A, Q, is a measure of the relative importance of the straining
and rotational parts of the velocity gradient tensor; where Q is large and positive, the
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Figure 4. Mean velocity profile for the channel flow. The logarithmic-law region is fitted by
the equation U+ = 5.136 + 0.4053−1 ln y+.

enstrophy (square of the vorticity magnitude, twice the second invariant of the rate of
rotation tensor QΩ) −ΩijΩji is large and dominates the strain rate (as expressed by SijSji

or −2Qs); where Q is large and negative the reverse is true. This relative importance may
be expressed graphically by plotting SijSji against −ΩijΩji. Points which lie near the
−ΩijΩji axis are in nearly pure solid-body rotation, points which lie near the SijSji axis
have motions which are nearly pure straining, while ‘sheet-like’ motions where strain rate
and rotation are of the same magnitude (e.g. boundary layer mean flow) map to points
near the 45◦ line where −ΩijΩji = SijSji. See Soria et al . (1994), figure 3.

3. Data set
The data set used for this investigation was one realization (time step) from a direct

numerical simulation of a turbulent channel flow by John Kim (1990, private commu-
nication). The Reynolds number based on the semi-channel width (δ) and the mean
centreline flow speed Uc, Reδ = 7860, while that based on δ and the friction veloc-
ity (u2

τ = ν∂U/∂y|wall), Reτ = 395. The dimensions of the channel were x × y × z =
2πδ × 2δ × πδ or 2482 × 790 × 1241 in wall units (ν/uτ ).

The mean velocity, obtained from a number of realizations, displayed a typical well-
developed turbulent profile with a distinct log-law region, as shown in figure 4, where the
normal coordinate is given in wall units and the mean velocity is normalized with the
friction velocity: U+ = U/uτ . A curve fit for the log-law region (35 ≤ y+ ≤ 150) gave

U+ = 5.136 +
1

0.4053
ln y+. (3.1)

The numerical method used was the same as that employed by Kim, Moin & Moser
(1987), with spatial derivatives obtained from Fourier expansions in the streamwise (x)
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and spanwise (z) directions and Chebyshev expansions in the normal (y) direction (the
derivatives used here were also obtained spectrally). A larger number of grid points was
used in the present simulation, 256×193×192 in the x-, y- and z-directions respectively,
giving a total of approximately 9.5 million points.

The simulation data base from which the present data set was drawn has been examined
in a number of previous papers (Kim 1989; Antonia, Kim & Browne 1991; Antonia et al .
1992; Rodi & Mansour 1993; Kim & Antonia 1993). In particular, Antonia et al . (1992)
presented comparisons between statistics compiled from the data base and those de-
rived from laboratory data. While there were no experimental results specifically for
Reτ = 395, the statistics presented (distributions of longitudinal and normal turbu-
lence intensities, Reynolds shear stress, turbulent energy production) for the simulation
fell between experimentally-derived curves for lower and higher Reynolds numbers (see
figures 4, 5, 8 and 11 of the paper).

Ensemble-average statistics were compiled from the data base and examined in the con-
text of k–ε modelling by Rodi & Mansour (1993). There, the fields for Reτ = 395 were
analysed for resolution. It was found that the ε budget was slightly unbalanced near the
wall (y+ < 5). This slight imbalance is unlikely to have significantly affected the results
presented herein. When the terms in the ε budget were examined in spectral space it was
found that all the terms were well resolved (a decay of two orders of magnitude in the
coefficients). The lack of balance was due to the term 〈(∂2u′

i/∂xj∂xk)(∂2u′
i/∂xj∂xk)〉

which involves the second derivatives of the (fluctuating) velocity. In this case the coef-
ficients dropped two orders of magnitude but more slowly than the other budget terms.
Antonia et al . (1992, p. 584) have also discussed detailed resolution studies for results in
the data base.

Zang (1991) has raised concern about the degree of resolution required in boundary
layer simulations and it seems likely that the extreme near-wall resolution discussed in
his article is required to accurately capture the details of transitional flows with spanwise-
symmetric initial perturbations. The simulation of transition, however, is significantly
different from the simulation of a developed turbulent flow, in which there are contin-
uous, large-amplitude, temporally and spatially random disturbances. In a simulation
of transition with imposed symmetry, vortex structures that arise through instability
are stretched for very long periods of time, leading to very high gradients. In a turbu-
lent simulation the probability of such lengthy periods of stretching being applied to a
particular vortex structure is extremely low. The asymmetry present in developed wall
turbulence acts to quickly reduce the spanwise and wall-normal gradients which require
such high resolution in symmetric simulations of transition. This probably accounts for
the apparent discrepancy between Zang’s findings with regard to resolution requirements
in transitional flows and those required in direct numerical simulation of developed tur-
bulence.

To conclude discussion of resolution in the present data set, we present in figure 5 a
plot of contours of the streamwise component of vorticity near the wall at a section of
the flow. The smoothness of the contours at mesh length scales in this case is significant
because in the spectral computational scheme used for the simulations, a lack of spatial
resolution tends to show up as oscillatory behaviour on the length scale of the mesh.
This is due to the low numerical diffusion of the method. Oscillatory behaviour tends to
be emphasized in plots of higher-order quantities such as vorticity; examples of the oscil-
latory behaviour of under-resolved spectral schemes applied to boundary layer transition
appear in Zang, Krist & Hussaini (1989). On the other hand, mesh-scale smoothness is
not necessarily significant for low-order numerical schemes that are under-resolved, where
smoothness may be due to inherent numerical diffusivity.
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Figure 5. Contours of the streamwise component of vorticity near the wall for one plane
taken from the data set. Computational mesh shown for comparison.

It should be noted that the results considered in the present paper describe the flow
topology near the wall but not at the wall. In order to resolve the topology at the
wall a second-order expansion of the velocity field is required which in turn requires
numerical computation of higher-order derivatives which may be computed from the
present simulation data, but we have not yet carried out such a study. A discussion of
the expansion process and the constraints on the invariants of the higher-order field can
be found in Chong et al . (1990).

In parts of the following discourse, data will be presented in four groups, based on
standard terminology: viscous sublayer (0 ≤ y+ ≤ 5), buffer layer (5 ≤ y+ ≤ 35),
logarithmic-law (35 ≤ y+ ≤ 150) and wake (150 ≤ y+ ≤ 395) regions; these are also
indicated in figure 4.

4. Results: joint probability density plots of tensor invariants
The approach taken in this section was to compute the second and third invariants of

the velocity gradient and rate of strain tensors at each grid point in the flow, then use
the results to prepare approximations to the joint PDFs of the invariants. In addition,
values of SijSji and −ΩijΩji were generated and used to prepare joint PDF estimates.
The velocity gradient tensor A was normalized by U c/δ prior to preparation of the plots
so that all quantities are shown in dimensionless form. The results are shown in figure 6
(one graph of each kind has been prepared in each of the four regions of the flow). The
aspect ratio in each set of plots has been kept the same but the scales changed to reflect
the change in magnitude of the plotted quantities in the four regions of the flow. Since
the relative frequencies in the approximations to the joint PDFs were computed over all
the grid points in each region without correction for grid spacing, it should be noted
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that more weight is given to points closer to the walls as a result of the cosinusoidal
y-direction spacing of collocation points demanded by the Chebyshev expansions used
in the wall-to-wall direction. The plots show half-decade contours of relative frequency
over a four-decade range.

Turning first to the plots of Q vs . R, note that for this flow the values of Q and R for
the mean flow are identically zero everywhere, so that any deviation is a consequence of
turbulent fluctuations. As an indication of the rapid growth and subsequent slower decay
in the magnitudes of Q and R moving away from the wall, we present in figure 7 a plot
of the 90th percentile of Q in each y-plane as a function of y+ for the single realization
analysed. Study of the y-plane-mean values of Q and R showed they stayed close to zero
throughout the flow, as expected.

In the plots of Q vs . R (figure 6a–d), all topologies are observed, but outside the
viscous sublayer a preference for the second and fourth quadrants is apparent, indicating
preference for stable focus/stretching and unstable node/saddle/saddle topologies. This
preference was previously observed in inhomogeneous shear flows (Chen et al . 1990;
Sondergaard et al . 1991; Soria et al . 1994). Moving away from the wall, the preference for
the second and fourth quadrants became somewhat more apparent, while the magnitudes
of the invariants decreased in accordance with figure 7.

Figure 6(e–h) shows plots of Qs vs . Rs in the four regions of the flow. The influence
of the wall can be most clearly seen in figure 6(e); right at the wall the velocity gradients
are, to first order,

Aij =


 0 0 0

∂u/∂y 0 ∂w/∂y
0 0 0


 (4.1)

which produces Qs = −[(∂u/∂y)2 + (∂w/∂y)2]/2 and Rs = 0. This accounts for some
of the shape of figure 6(e); the values of Qs and Rs for the first few planes nearest
the wall fell on vertical lines, with some of the highest dissipations of the flow. Moving
away from the wall, an increasing preference for the rate of strain field to have unstable
node/saddle/saddle topologies (intermediate principal strain rate positive) can be ob-
served. There does not seem to be any particular preference for the set of ratios 3:1:−4
reported by Ashurst et al . (1987) (see figure 3); in the outer region of the flow it would
appear that the ratios 1:1:−2 model the behaviour more closely.

The initially high, then decreasing influence of the wall can also be seen in the plots of
SijSji vs. −ΩijΩji in figure 6(i–l). The values for the mean flow would follow 45◦ lines
and in the viscous sublayer this was closely true for all the points, as would be expected
from a decomposition of (4.1) into symmetric and skew-symmetric parts.

The influence of the wall extended into the buffer layer but is not observed in the outer
region (6g,h), where the PDFs closely resemble plots computed from other inhomoge-
neous shear flows (Sondergaard et al . 1991, Soria et al . 1994). The contours in the joint
PDFs of the strain invariants (6g,h) show a characteristic, nearly straight line, shape
similar to the mixing layer with turbulent initial conditions (Soria et al . 1994, figure 17).
This appears to be associated with flow structures at intermediate scales with invariants
which behave as γ3 + Qγ + R = 0 where γ is the local real eigenvalue. Physically, this
can be interpreted as a locally two-dimensional (tube-like) flow with an out-of-plane rate
of strain (γ) which is approximately constant over the volume of the structures. This
behaviour of the invariants associated with intermediate-scale motions is in contrast to
nearly constant ratios of the principal rates of strain implied by (2.6) which seems to
apply only to the finest-scale regions of the flow with the highest rates of dissipation. It
is interesting that in the outer region, the PDFs indicate that pure rotational motion was
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Figure 6. PDF plots of (a–d); Q vs. R, (e–h); Qs vs. Rs, (i–l); SijSji vs. −ΩijΩji in the
four flow regions: viscous sub-layer (a, e, i), buffer layer (b, f , j ), log-law region (c, g , k), wake
region (d , h, l). The plots show half-decade contours of relative frequency over a four-decade
range. In the plots of Q vs. R and Qs vs. Rs, the line D = (27/4)R2 +Q3 = 0 which divides the
plane into regions where the tensor has purely real and complex-conjugate pair/real eigenvalues

is shown as reference. Velocity gradients have been normalized by Uc/δ.
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Figure 7. Plot of the 90th percentile of Q as a function of y+ from one realization of the flow.
Velocity gradients have been normalized by Uc/δ.

rare. This is in contrast to the observations in the mixing layer by Chen et al . (1990) and
Soria et al . (1994) where streamwise rib vortices were found to be in nearly solid-body
rotation. This behaviour can also be noted in the buffer layer (close to the origin in
figure 6f ).

5. Results: flow structures
In order to gain an understanding of the spatial structure of the turbulence, a number

of plots of flow field quantities were viewed interactively using a graphics workstation.
In figure 8 we present three views of a subset of the flow bounded below by the wall.

In vertical extent, the subset reaches nearly to the centre of the channel; the dimensions
in wall units are: ∆x+ = 670, ∆y+ = 375 and ∆z+ = 640. The view is from upstream
and to the side of the box, near the wall.

In figure 8(a) the plot is of an iso-surface of enstrophy −ΩijΩji. A number of tube-
like structures can be seen, with a general inclination downstream and away from the
wall. Since the highest mean-flow enstrophy occurs at the wall and drops to zero in the
centre of the channel, the surface for the chosen level terminates above the wall. This
characteristic of the flow also explains the distorted sheet-like shape of the surface near
the wall: for the mean flow only one surface would be visible, a plane near and parallel
to the wall; the perturbation enstrophy is apparently manifested as tube-like structures
which begin near the wall and extend away from it, thus resulting in the appearance of
an elastic sheet distorted by protruding tubes. Visualization of vortex lines confirmed
that the tube-like shapes away from the wall contained vorticity aligned with the axes of
the tubes. Very close to the wall, vortex lines extended in the spanwise (z) direction as
expected.

The iso-surface plotted in figure 8(b) is of SijSji, proportional to the local viscous
dissipation of kinetic energy. The contour level was the same as for the enstrophy in
figure 8(a). Near the wall, the shape of the surface was very similar to that for the en-
strophy, in agreement with the PDFs of figure 6(i ,j ). Away from the wall, high enstrophy
and dissipation tended to occur in the same regions of space (on the scale of the length
of the tube-like structures in figure 8a), but definite structure is less easy to discern.
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(9((a)

(b)

(c)

Figure 8. Flow visualization in subset of the flow bounded below by the wall. (a) iso-surfaces
of enstrophy −ΩijΩji, (b) iso-surfaces of viscous dissipation (proportional to SijSji), (c)
iso-surfaces of discriminant D (for R ≤ 0: intensity of stable focus/stretching topology). Box
size in wall units: ∆x+ = 670, ∆y+ = 375 and ∆z+ = 640. Mean flow direction indicated by
arrows.
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In figure 8(c) we present a plot of flow structures which have strong stable focus/
stretching topologies. More specifically, the plot is of an iso-surface of the discriminant
D = (27/4)R2 + Q3 for which the third invariant of the velocity gradient tensor R ≤ 0;
this corresponds to a contour in the upper-left side of the (Q,R) plane (see the contour
lines in figure 1). The structures had tubular shapes; close to the wall the structures
tended to lie parallel to it while away from the wall they tended to align with the
most extensive mean principal strain rate direction (45◦). At some distance from the
wall, the structures with stable focus/stretching topology displayed a high degree of
correspondence to the structures with large enstrophy shown in figure 8(a). We would
like to emphasize, however, that the means of visualization employed here is significantly
different to previous methods derived from the velocity or vorticity field alone. The
flow structures revealed by the discriminant, which involves a balance between rotation
and strain, are distinct from those obtained from contours of enstrophy or dissipation.
This is particularly apparent in the wall region, where the discriminant reveals discrete
structures. In fact, using this method, one can identify individual structures which begin
very close to the wall and extend all the way to the middle of the channel.

A digression concerning the motivation for contour plots based on topological charac-
teristics of the velocity gradient tensor is in order. Chen et al . (1990) demonstrated with
two-dimensional plots based only on topological classification (i.e. the four classes shown
in figure 1) that structures thus revealed were in many ways similar to those shown using
more conventional scalar quantities such as enstrophy and in addition could reveal e.g.
sites where vorticity was being stretched or compressed. That approach had utility for
the flows they investigated, in which many features had large planar extent and could
be dealt with easily using two-dimensional plots. In the channel flow, the turbulence
is more strongly three-dimensional and three-dimensional contour plots based on classi-
fication alone are very difficult to visualize successfully since each point in space must
belong to one of the four topological classes, meaning that a view of zero-threshold con-
tours of any one topology may be of a very complex space-filling object. To overcome
this difficulty, a scalar magnitude was needed which could be assigned to each flow clas-
sification and it was decided to use the discriminant D as a measure of intensity, since
in a model based on the solution of a restricted Euler equation, the discriminant is a
conserved quantity for fluid particles (see § 7). Hence the structures that are revealed
are related to PDFs such as those of figure 6(a–d); points which lie above a contour of
constant D in the second quadrant of a (Q,R) diagram fall inside the structures with
stable focus/stretching topology in figure 8(c). In this way spatial information which
is absent in the PDFs may be recovered. Intensities based simply on radius from the
origin in (Q,R) space revealed the same structures but with slightly different shapes. On
the other hand, a visualization method that is not based on computed contour surfaces
(e.g. a pointwise or ‘fog’ plot) might reveal similar three-dimensional structures based on
topological classification alone: we have not attempted to use such a method here.

Figure 9 presents different views of the structures seen in figure 8(c). Figure 9(a) is
a view from above and slightly downstream of the region which again emphasizes the
fact that each of the structures tended to be a separate entity. Figure 9(b) is a view
across the flow at wall level, which shows that the structures did not reach to the wall
but that those nearest the wall originated in the buffer layer; as in figure 9(a) the change
in alignment from streamwise near the wall towards the most extensive mean principal
strain rate direction can be clearly seen. In figure 9(b) the structures seem to disappear at
about the beginning of the wake region, which was largely a consequence of the contour
level of D chosen for the plot, since at a lower value the structures may be observed at
the centre of the channel.
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(a)

(b)

(c)

Figure 9. View of structures with stable focus/stretching topologies shown in figure 8(c),
looking: (a) from above and downstream, (b) spanwise along the wall, (c) from above (this last
view shows only structures in the outer regions of the flow, using a lower contouring level than
in a and b).



284 H.M. Blackburn, N.N. Mansour and B. J. Cantwell

Figure 10. Structures with stable focus/stretching topology (shaded yellow) showing vortex
lines which run through selected cores. Box size in wall units: ∆x+ = 590, ∆y+ = 190 and
∆z+ = 285.

Figure 11. Structures with stable focus/stretching topology showing vortex lines which run
through the cores, together with overlay of contours of a low-pressure isosurface (thin contour
lines parallel to wall). Data set is the same as for figure 10.



Topology of fine-scale motions 285

To illustrate the shape of the structures near the centre of the channel, we present
in figure 9(c) a view of structures with stable focus/stretching topologies in the top of
the same region as chosen for figures 8, 9(a) and 9(b), looking towards the wall. The
contour level was set at a lower value than for the previous figures and contours were only
drawn in the top two-thirds of the region to prevent confusion with structures nearer the
wall. This shows that, in the outer region of the flow, the structures tended to obtain a
spanwise orientation.

As a consequence of the similarity between structures with stable focus/stretching
topologies and structures with high enstrophy in regions away from the wall (figure 8a,
c), it might be expected that the structures shown in figures 8(c) and 9 would contain
aligned vorticity undergoing stretching. Indeed this was most often the case. To illustrate
this, we concentrate in figure 10 on a smaller subset of the flow than previously shown
(in fact, a subset of the space shown in figures 8 and 9). An iso-contour of D for stable
focus/stretching topologies is shown as a translucent yellow surface. In addition to the
surfaces are shown (thick) vortex lines which were chosen to run through two of the
structures, one near to and predominantly parallel to the wall, the other inclined at
nearly 45◦ to it. The lines were obtained by releasing particle traces in the vorticity
field near the axes of these two structures and integrating up and downstream. It is
evident that the vortex lines tended to be well-aligned and tightly bunched within the
two structures, with divergence of the lines associated with a breakdown of the structure
nearly aligned with the wall.

Another view of this region is shown in figure 11, where we have also overlaid contours
corresponding to an iso-surface of low pressure (thin lines parallel to the wall). It may be
seen that the two structures in which the vortex traces were released were also regions of
low pressure. The correspondence between the shapes of structures was often observed
in other regions of the flow, but was not universal.

6. Results: vorticity alignment
A feature revealed in previous investigations of turbulent flows (Ashurst et al . 1987;

Sondergaard et al . 1991; Vincent & Meneguzzi 1991; Tsinober et al . 1992; Vincent &
Meneguzzi 1994) has been the tendency for alignment between the intermediate principal
strain rate direction and the vorticity, particularly at sites of high viscous dissipation of ki-
netic energy. This alignment has been described as a kinematic effect by Jimenez (1992).
A similar kinematic alignment should occur near the wall in boundary layer flows since
on average the most extensive principal strain rate points downstream, away from the
wall at 45◦ and the most compressive principal strain rate points downstream, towards
the wall at 45◦, leaving the intermediate principal strain rate direction to align spanwise
with the average vorticity.

We present in figure 12 estimates of the PDFs of the angle made between the local
vorticity ω and the three principal strain rate directions e1, e2, e3 (θ1, θ2 and θ3) for all
points in each of the four regions of the flow. While figure 12(a) displays the expected
alignment effect, with the density for θ2 peaking near zero angle, the remaining plots
show that the probability density dropped towards zero at an angle of zero, with the
effect being most marked in the outer region of the flow.

These results may seem at variance with previous numerical and experimental investi-
gations in that they seem to indicate a forced slight misalignment between the vorticity
and the intermediate principal rate of strain direction. This feature, of probability densi-
ties falling to zero, is, however, a consequence of the computation of probability densities
of angle, rather than cosine of angle (R. Sondergaard 1994, private communication). If
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Figure 12. Probability density function (PDF) estimates for the angle made between the
vorticity and the principal strain rate directions. (a) viscous sublayer, (b) buffer layer, (c)
log-law region, (d) wake region.

one is interested in the probabilistic properties of the alignments of two vectors, one, e.g.
the vorticity, with given fixed direction, and the other with random orientation, then
the lengths of the vectors are clearly irrelevant and both may be normalized to unity.
Then the given vector may be fixed with one end at the origin and considered to point
along a coordinate axis; if the random vector also has one end fixed at the origin, the
probability density of finding its other end at any point on the unit sphere is uniform
(value: 1/4π). Using this spherical geometry and elementary calculus, it may be shown
that the probability density of the angle θ between the given vector and the random
vector is sin θ (0 ≤ θ < π/2) while the probability density of the cosine of θ is con-
stant at 1/2 (−1 ≤ cos θ < 1). Thus the fall in values of probability density of θ2 in
figure 12(b,c) near zero angle is an indication of a slight randomness in the orientation of
the intermediate principal strain rate direction with respect to the vorticity, rather than
forced misalignment. The issue of weighting effects inherent in PDFs of transformed
variables has also been raised by Lund & Rogers (1994) in discussion of functions of the
intermediate principal rate of strain λ2.

In figure 13 we present, as an alternative to figure 12, PDFs of the cosine of the angle
made between the local vorticity ω and the three principal strain rate directions e1, e2, e3

(θ1, θ2 and θ3). The high preference for alignment of the vorticity with the intermediate
principal rate of strain direction is shown by the large deviation of the PDF for θ2 from
the value of 1/2 near cosines of ±1. This preference is apparently a robust feature of
turbulent flows in general, and is reinforced near the walls by the boundary conditions
of this flow.
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Figure 13. Probability density function (PDF) estimates for the cosine of the angle made
between the vorticity and the principal strain rate directions. (a); viscous sub-layer, (b); buffer
layer, (c); log-law region, (d); wake region.

7. Discussion
The results obtained here are of particular interest in the way they are related to

results obtained in simulations of other turbulent flows and visualization of boundary
layer flows.

Of considerable significance is the prospect of finding universal features of fine-scale
motions in turbulent flows. Recent investigations of simulations of driven isotropic tur-
bulence (Ashurst et al . 1987; She et al . 1990; Vincent & Meneguzzi 1991; Ruetsch &
Maxey 1991) have indicated a number of common features which we summarize as fol-
lows. The most intense vorticity is concentrated in tube-like structures with lengths of
the order of the integral scale of the flow and typical diameters intermediate between the
Taylor and Kolmogorov microscales. Most of the viscous dissipation in the flow occurs
in annular regions surrounding the tubes and in these regions the intermediate principal
strain rate is positive and aligned with the vorticity (tube axis), indicating stretching of
the vorticity in the tubes. She et al . found that intermediate levels of vorticity tended to
be organized in sheet-like structures. Vincent & Meneguzzi (1994) have indicated that
the vortex tubes form by the rolling up of vortex sheets which themselves evolve from
pancake-like regions of high strain rate.

Our results (e.g. figure 8a) show that away from the wall, regions of intense vorticity
in the channel flow tended also to be organized into tubular-shaped structures with x,y
alignments which ranged in direction from 0◦ to 45◦ to the wall (45◦ being the extensive
principal strain rate direction of the mean flow). Significant z-components of alignment
could also be observed (consistent with the existence of vortex loops), particularly further
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from the wall, although no evidence of a full loop or ring was found in the plots of surfaces
of iso-enstrophy. The tubular shapes became less easy to discern close to the wall since
there the most intense vorticity tends to be directed spanwise, parallel to the wall. PDFs
of the second and third invariants of the rate of strain tensor (figure 6i–l) show that
the intermediate principal strain rate tended to be positive when viscous dissipation was
high at sites away from the wall. These features indicate a degree of similarity at small
scales between the structures observed in driven isotropic turbulence simulations and the
outer regions of the channel flow.

While some explanations for the tendency for alignment between the intermediate
principal strain rate direction and vorticity have been advanced on a kinematic basis
(e.g. Jimenez 1992), dynamical models have also produced this result. The transport
equation for the evolution of the velocity gradient tensor A in incompressible flow is

dAij

dt
+ AikAkj − 1

3 (AmnAnm)δij = Hij , (7.1)

where

Hij = −
(

∂2p

∂xi∂xj
− δij

3
∂2p

∂xk∂xk

)
+ ν

∂2Aij

∂xk∂xk
(7.2)

is a term which links the evolution of the velocity gradient tensor for a fluid particle to
the surrounding flow through cross-derivatives of the pressure field and viscous diffusion.

Setting H = 0 converts (7.1) into a system of ODEs which will be referred to as the
Restricted Euler equations. These equations describe the evolution of the components of
A for a particle moving in the absence of any influence from nearby particles though the
pressure–viscous diffusion term. The only effect of the surroundings is that imposed by
continuity. The behaviour of this system has been studied and it was given linearized,
then asymptotic solutions by Vieillefosse (1982, 1984). Subsequently the Restricted Euler
equations were solved exactly by Cantwell (1992). In this solution, the second and third
invariants R and Q evolve along a trajectory of constant D in the (Q,R) plane (see
figure 1), with R increasing as time proceeds. The invariants and the various components
of A become singular in finite time for all initial conditions apart from those on the
trajectory which leads to the origin, in which case the components of A become singular
as Q and R approach zero. The interesting feature of the Restricted Euler system is
that as the solution evolves towards singularity, the geometry of the gradient tensor is
such that the intermediate principal strain rate is positive and the vorticity is exactly
aligned with the intermediate principal strain rate direction. In this model, the vorticity
alignment is inherent in the dynamics of a single particle.

PDFs of Q vs . R (figure 6a–d) show a number of similarities with scatter plots prepared
from inhomogeneous shear flow simulations, with the most obvious common feature be-
ing the observed preference for stable focus/stretching and unstable node/saddle/saddle
topologies. Unstable node/saddle/saddle topologies tended to have low values of the
discriminant D. In general, there is a tendency for Q and R to lie in a roughly elliptical
region near the origin, with a branch extending into the lower-right quadrant. While at
this stage there is no full theoretical explanation for these trends, they are consistent with
behaviour predicted by the Restricted Euler model (Cantwell 1992) and its extension to
the H �= 0 case (Cantwell 1993).

The use of flow visualization based on invariants of the velocity gradient tensor A
provides a new and unambiguous means for identifying flow structures based directly on
the velocity field, whereas in many other methods the structures observed depend on the
frame of reference of the observer. The invariants Q and R (but not Qs, Rs or QΩ) are
also invariant under affine transformations of the velocity field. The flow visualization
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based on structures with stable focus/stretching topologies (figures 8c, 9–11) provides
some interesting evidence of direct linkage between the inner and outer regions of the
flow, with structures which originate at the outer edge of the viscous sublayer and extend
through the log-law layer in some instances to the outer wake region.

Many, if not all, of the observed structures seem likely to be associated with hairpin
or horseshoe vortices (note e.g. the similarity between figure 10 here and figure 20 of
Kim & Moin 1986, observed at a lower Reynolds number). A more extensive study
of the relationship between the structures and vortex lines is needed to establish this
conclusively. The apparent lack of observations of full loops of stable focus/stretching
topology reaching from the wall region out into the outer region and back to the wall
could be a consequence of either the thresholding obtained by plotting only surfaces of
one value of D or a change in topological classification e.g. to unstable focus/compressing
along the axis of the vortex lines. The lack of such symmetrical features is to be expected
in turbulent boundary layer flows of moderate to high Reynolds numbers, as discussed
by Smith et al . (1991).

The observed close relationship between structures with stable focus/stretching topol-
ogy and elongated regions of low pressure is given added significance by the finding of
Robinson, Kline & Spalart (1988) that elongated low-pressure regions corresponded with
‘vortical structures’ in boundary layers. The implication is that such features may also
be located by searching for regions of stable focus/stretching topology. We note the ap-
parent similarity between the general shape of the structures shown in figures 8–10 here
and those presented in a sketch of ‘vortical structure populations’ by Robinson (1991,
figure 13a).

The relationship to flow visualization based in physical, rather than numerical exper-
iments is not easy to establish, but we also note the apparent similarity between the
observations of structures of stable focus/stretching topology made here and the ex-
perimental results of Head & Bandyopadhyay (1981) obtained in zero-pressure-gradient
smoke tunnels. Their observations suggested that the predominant boundary layer fea-
ture was structures formed from groups of hairpin vortices or stretched vortex loops
‘substantially straight over a large portion of their length and inclined to the surface at a
characteristic angle of something like 45◦’. They suggested in addition that longitudinal
vortex pairs which they observed formed in the wall layers were likely to be associated
with the hairpin vortices observed in the outer region. Our results support this sugges-
tion, since it can be observed in figure 9(a,b) that many of the structures begin in the
wall region, almost parallel to the wall, before turning out into the main flow. Further
experimental evidence for this change in characteristic angle of structures when moving
from the inner to the outer region of the flow has recently been presented by Jovic (1993).

In the ‘attached eddy’ model for wall turbulence first proposed by Townsend (1976)
and subsequently developed by Perry and co-workers (e.g. Perry & Chong 1982; Perry,
Li & Marušić 1991; Perry, Marušić & Li 1994), turbulence statistics for the boundary
layer are calculated on the assumption that the turbulence can be modelled by a random
array or hierarchy of geometrically similar eddies. The basic features of characteristic ‘Λ’
vortices assumed in the later versions of the model are as follows: vortices originate in the
buffer layer and leave two long tails in this zone; the two legs which form the ‘Λ’ shape
protrude into the turbulent wall region are inclined at approximately 45◦ to the mean
velocity and lean downstream. The distance between the two tails of the vortex follows
the Kline scaling of approximately 100 wall units. In broad terms the above description
is in agreement with the shapes and distribution of structures seen in our figures 8–10.
Since the channel half-width here is 395 wall units, an extensive hierarchy of scales is not
to be expected; however the range of scales should increase with Reynolds number. The
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apparent qualitative agreement encourages a review of the assumptions and predictions
of the attached model in relation to the present simulation results.

8. Conclusions
Probability density functions of tensor invariants for the outer regions of the channel

flow showed a similarity to other turbulent flows with apparent preference for stable
focus/stretching and unstable node/saddle/saddle topologies. At sites of high viscous
dissipation of kinetic energy, the intermediate principal strain rate was positive, becoming
more positive, closer to the most extensive principal strain rate, away from the wall.

A novel visualization method, based on thresholding on the discriminant of the velocity
gradient tensor and on the sign of its third invariant, was employed to show structures
with stable focus/stretching topology. This method revealed arrays of discrete tube-like
structures connecting the buffer layer with the outer region of the flow. In the wall
region, the structures were nearly parallel to the wall, acquiring characteristic directions
near 45◦ to the wall followed by a spanwise orientation at their outer limit in the outer
region.

Study of the probability density of angle between the intermediate principal strain rate
direction and the vorticity showed that the two directions tended towards alignment, as
reported in previous studies of other turbulent flows. We have discussed a theoretical
framework within which the dynamics of such effects may be investigated.
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