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The effect of streamwise-varying steady transpiration on turbulent pipe flow is
examined using direct numerical simulation at fixed friction Reynolds number
Re⌧ = 314. The streamwise momentum equation reveals three physical mechanisms
caused by transpiration acting in the flow: modification of Reynolds shear stress,
steady streaming and generation of non-zero mean streamwise gradients. The
influence of these mechanisms has been examined by means of a parameter sweep
involving transpiration amplitude and wavelength. The observed trends have permitted
identification of wall transpiration configurations able to reduce or increase the
overall flow rate �36.1 % and 19.3 %, respectively. Energetics associated with these
modifications are presented. A novel resolvent formulation has been developed
to investigate the dynamics of pipe flows with a constant cross-section but with
time-mean spatial periodicity induced by changes in boundary conditions. This
formulation, based on a triple decomposition, paves the way for understanding
turbulence in such flows using only the mean velocity profile. Resolvent analysis
based on the time-mean flow and dynamic mode decomposition based on simulation
data snapshots have both been used to obtain a description of the reorganization of
the flow structures caused by the transpiration. We show that the pipe flows dynamics
are dominated by a critical-layer mechanism and the waviness induced in the flow
structures plays a role on the streamwise momentum balance by generating additional
terms.
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1. Introduction

The design of efficient flow control strategies for wall-bounded turbulent flows
aimed at reducing drag or energy expenditure remains one of the most relevant
and challenging goals in fluid mechanics (Spalart & McLean 2011). For instance,
approximately half the propulsive power generated by airliner engines is employed to
overcome the frictional drag caused by turbulent boundary layers; however, the scope
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of this challenge is much broader than aeronautical engineering. Transport of fluids
by pipeline, ubiquitous in industry, nearly always occurs in a turbulent flow regime
for which the energy requirements can be significant. This is even more critical for
long-distance pipelines designed to transport water, petroleum, natural gas or minerals
suspensions over thousands of kilometres. Another example is the interstage pumping
in processing plants, which can consume a significant fraction of the energy used
in the overall process. Consequently, efficient flow control strategies for turbulent
boundary layers could achieve a dramatic impact on modern economies (Kim 2011;
McKeon, Sharma & Jacobi 2013). In the present work, we focus on turbulent pipe
flows.

Kim (2011) indicated that designing efficient flow control strategies requires a deep
understanding of the physical mechanisms that act in wall-bounded turbulent flows,
especially the self-sustaining near-wall cycle (Kim, Moin & Moser 1987; Jiménez &
Pinelli 1999). Its driving mechanism is often understood in terms of the interaction of
fluctuations with the mean shear and operator non-normality (del Álamo & Jiménez
2006; Schmid 2007). As a consequence, recent turbulence reduction control strategies
are often analysed (Kim & Bewley 2007; Kim 2011) or designed (Sharma et al.
2011) with reduction of non-normality in mind. However, recent work has revealed
the importance of the critical-layer amplification mechanism, occurring where the
group velocity of the disturbance matches that of the local mean flow speed, in
asymptotically high-Reynolds-number flow solutions (Blackburn, Hall & Sherwin
2013) and in wall-bounded turbulence (McKeon & Sharma 2010). In this context,
recent experimental findings in high-Reynolds-number wall-bounded turbulent flows
highlight the relevance of other coherent structures that scale with outer variables,
with streamwise length scales of several integral lengths.

These flow structures, known as very large-scale motions (VLSM), were reported by
Kim & Adrian (1999), Guala, Hommema & Adrian (2006) and Monty et al. (2007),
who found that VLSM consist of long meandering narrow streaks of high and low
streamwise velocity that contain an increasingly significant fraction of the turbulent
kinetic energy and shear stress production with increasing Reynolds number. This
fraction can reach values of 50 % of the total Reynolds stress, hence the contribution
of these flow structures to the overall wall drag will be of the utmost importance at
very high Reynolds number. Hutchins & Marusic (2007) observed that these VLSM
can reach locations near the wall, thus flow control strategies applied to the wall
may have a strong influence on these motions. Therefore, control of these VLSM
structures may help achieve a drag increase or reduction in high-Reynolds-number
pipe flow. McKeon & Sharma (2010) and Sharma & McKeon (2013) showed that
the sustenance of these structures may in part be attributed to the critical-layer
amplification mechanism. Consequently, it is important to understand the influence
of flow actuation on the critical layer. VLSM become energetically non-negligible,
in the sense of producing a second peak in the streamwise turbulence intensity, at
friction Reynolds number Re⌧ > 104 (Smits, McKeon & Marusic 2011). Even though
computational experiments are almost unaffordable at these Reynolds numbers, the
behaviour of these structures can be observed in pipe flow experiments at moderate
bulk-flow Reynolds numbers Re = 12 500, as shown by the proper orthogonal
decomposition of PIV data carried out by Hellström, Sinha & Smits (2011) and
Hellström & Smits (2014).

Transpiration control, which is the application of suction and blowing at the wall,
can be used effectively to manipulate turbulent flow. One of the first applications
of transpiration can be found in the seminal work by Choi, Moin & Kim (1994) in
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which they developed an active, closed-loop flow control strategy known as opposition
control, consisting of a spatially distributed unsteady transpiration at a channel wall.
Their transpiration was a function of the wall-normal velocity at a location close
the wall and they were the first to demonstrate that a significant drag reduction
can be achieved by a zero net mass flux transpiration. Sumitani & Kasagi (1995)
investigated the effect of (open-loop) uniform steady blowing and suction in a channel
flow. They applied blowing at one wall and suction at the other, and concluded that
injection of flow decreases the friction coefficient and activates near-wall turbulence,
hence increasing the Reynolds stresses, and that suction has the opposite effect.
Jimenez et al. (2001), in their numerical investigation of channel flows with porous
surfaces, considered a flow control strategy based on active porosity, subsequently
converted to an equivalent to static transpiration, and showed that the near-wall cycle
of vortices/streaks can be influenced by the effect of transpiration. Furthermore, Min
et al. (2006) showed that sustained sublaminar drag can be obtained in a turbulent
channel flow by applying a travelling sinusoidal (varicose) transpiration at certain
frequencies.

Luchini (2008) pointed out that steady streaming induced by the transpiration
plays a major role in the drag reduction mechanism. Hoepffner & Fukagata (2009)
performed numerical simulations of a channel with travelling waves in the axial
direction of wall deformation and travelling waves of blowing and suction in the
streamwise direction. They discovered that the streaming induced by wall deformation
induces an increased flow rate while that produced by travelling waves of blowing
and suction generate a decrease in flow rate (the streaming flow is however not
the only contributor to overall flow rate). Quadrio, Floryan & Luchini (2007)
performed a parametric investigation of low-amplitude steady wall transpiration in
turbulent channel flows, finding both drag-increasing and drag-reducing configurations.
They observed that while the frictional drag was dramatically increased at small
wavenumbers, a reduction in drag was possible above a threshold wavenumber, related
to the length scales of near-wall structures. The drag modifications were explained
by two physical mechanisms: interaction with turbulence, consisting of a reduction
in turbulence fluctuations by extracting turbulent fluid and blowing laminar fluid, and
generation of a steady streaming opposite to the mean flow. Woodcock, Sader &
Marusic (2012) carried out a perturbation analysis of travelling wall transpiration in
a two-dimensional channel, finding that the flux induced by the streaming opposes
the bulk flow. They conjectured that for three-dimensional flows and beyond a certain
transpiration amplitude, the transpiration effects will only depend on the wavespeed.

In the present work we examine the effect of high- and low-amplitude transpiration
in turbulent pipe flow via direct numerical simulation (DNS) at a moderate bulk
flow Reynolds number Re = 10 000, corresponding to friction Reynolds number
Re⌧ = 314. We focus on the effect of steady wall-normal blowing and suction
that varies sinusoidally in the streamwise direction and with both high and low
transpiration amplitudes.

The dataset consists of a wall transpiration parameter sweep in order to assess
the effect of the transpiration parameters on the turbulence statistics and identify
drag increasing and reducing pipe configurations, as well as to permit quantitative
comparisons with previous trends observed in channel flows by Quadrio et al. (2007).
Although the present values of Reynolds number are not sufficient for a clear
separation between all of the scales, we will draw special attention to the influence
of the flow control on VLSM-like structures. As shown by Hellström et al. (2011),
motions corresponding to these large flow structures can be observed even at the
considered bulk flow Reynolds number.
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A resolvent analysis (McKeon & Sharma 2010) will be employed to obtain the
flow dynamics which are most amplified, with and without steady transpiration. This
model-based framework consists of a gain analysis of the Navier–Stokes equations
in the wavenumber/frequency domain, which yields a linear relationship between the
fluctuating velocity fields excited by the nonlinear terms sustaining the turbulence.
This linear operator depends on the mean profile, which is in turn sustained by the
Reynolds stresses generated by the fluctuations. This framework has been already
successfully employed in flow control by Luhar, Sharma & McKeon (2014), who
modelled opposition control targeting near-wall cycle structures. Sharma & McKeon
(2013) employed the same framework to recreate the behaviour of complex coherent
structures, VLSMs among them, from a low-dimensional subset of resolvent modes.
In the present context, the analysis permits the identification of the flow structures
that are amplified/damped by the effect of wall transpiration and how their spatial
functions are distorted by the transpiration. We expand on this information in § 6.1
of the following.

The adoption of this critical layer framework in turn leads to an analysis of the flow
in the Fourier domain. Dynamic mode decomposition (DMD) (Rowley et al. 2009;
Schmid 2010), which works to pick out the dominant frequencies via snapshots from
the DNS data set, is its natural counterpart. In § 6, a DMD analysis on the simulation
data will also be carried out to identify the most energetic flow structures at a given
frequency and provide additional insight into the flow dynamics.

2. Direct numerical simulations

A spectral element–Fourier DNS solver (Blackburn & Sherwin 2004) is employed
to solve the incompressible Navier–Stokes equations in non-dimensional form

r · û = 0, (2.1)
@tû + û · rû = �rp + Re�1

r
2û + f , (2.2)

where Re = UbD/⌫ is the Reynolds number based on the bulk mean velocity Ub, the
pipe diameter D and a constant kinematic viscosity ⌫, û = (u, v, w) is the velocity
vector expressed in cylindrical coordinates (x, r, ✓), p is the modified or kinematic
pressure, f = ( fx, 0, 0) is a forcing vector. A pipe with a periodic domain of length
L = 4pR, where R is the pipe’s outer radius, has been considered. No-slip boundary
conditions for the streamwise and azimuthal velocity are applied at the pipe wall;
transpiration in the wall-normal direction is applied to the flow by imposing the
boundary condition,

v(x, R, ✓) = A sin(kcx), (2.3)

which represents steady sinusoidal wall-normal flow transpiration along the streamwise
direction with an amplitude A and a streamwise wavenumber kc. In addition, kc must
be an integer multiple of the fundamental wavenumber in the axial direction 2p/L to
enforce a zero net mass flux over the pipe wall. A sketch of the configuration is shown
in figure 1. The constant streamwise body force per unit mass fx is added in (2.2)
to ensure that the velocity and pressure are streamwise periodic. (A simple physical
equivalent is a statistically steady flow of liquid driven by gravity in a vertical pipe
which is open to the atmosphere at each end.) The body force fx is calculated on the
basis of a time-average force balance in the streamwise direction between the body
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FIGURE 1. (Colour online) Physical domain and transpiration boundary condition.

force exerted on the volume of fluid in the pipe and the traction exerted by the wall
shear stress, thus

⇢fxLpR2
= ⌧w2pRL, (2.4)

with ⌧w being the mean wall shear stress. Equivalently, it can be shown that

fxR
2U2

b
=

✓
u⌧

Ub

◆2

=

✓
Re⌧

Re

◆2

, (2.5)

where u⌧ = (⌧w/⇢)1/2 is the friction velocity, and Re⌧ = u⌧ R/⌫ is defined as the friction
Reynolds number. The low-Re Blasius correlation (Blasius 1913) for turbulent flow in
a smooth pipe

Re⌧ = 99.436 ⇥ 10�3Re7/8, (2.6)

is employed to estimate the body force fx from (2.5). In the present work, Re⌧ = 314
was set on the basis that for the zero-transpiration case, Re = 10 000; consequently
while Re⌧ and fx are constants for the remainder of this examination, Re takes on
different values for different transpiration parameters. This is a direct indication of
the drag-reducing/increasing effect resulting from transpiration. In order to alleviate
this difference in Re, we will employ an alternative outer scaling with the Reynolds
number based on the smooth pipe bulk mean velocity Us

b,

Res =
Us

bD
⌫

(2.7)

independently of whether the transpiration is applied or not. The fact that Res is
constant will be exploited later in comparing controlled and uncontrolled pipe flows
via the streamwise momentum equation.

The spatial discretization employs a two-dimensional spectral element mesh in a
meridional cross-section and Fourier expansion in the azimuthal direction, thus the
flow solution is written as

û(x, r, ✓ , t) =

X

±n

ûn(x, r, t)ein✓ . (2.8)

Note that the boundary conditions in (2.3) preserve homogeneity in the azimuthal
direction, so this Fourier decomposition still holds for a pipe with wall-normal
transpiration. The time is advanced employing a second-order velocity-correction
method developed by Karniadakis, Israeli & Orszag (1991). The numerical method,
including details of its spectral convergence in cylindrical coordinates, is fully
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described in Blackburn & Sherwin (2004). The solver has been previously employed
for DNS of turbulent pipe flow by Chin et al. (2010), Saha et al. (2011, 2014,
2015a,b), and validated against the Re⌧ = 314 smooth-wall experimental data of den
Toonder & Nieuwstadt (1997) in Blackburn, Ooi & Chong (2007). We use a mesh
similar to that employed for the straight-pipe case of Saha et al. (2015b), also at
Re⌧ = 314. The grid consists of 240 elements in the meridional semi-plane with
an 11th-order nodal shape functions and 320 Fourier planes around the azimuthal
direction, corresponding to a total of approximately 1.1 ⇥ 107 computational nodes.
For transpiration cases in which the flow rate is significantly increased, a finer
mesh consisting of 1.6 ⇥ 107 degrees of freedom has been additionally employed.
Simulations are restarted from a snapshot of the uncontrolled pipe flow, transient
effects are discarded by inspecting the temporal evolution of the energy of the
azimuthal Fourier modes derived from (2.8) and then statistics are collected until
convergence. Typically, 50–100 wash-out times (L/Ub) equivalently to approximately
5000–10 000 viscous time units are required for convergence of the statistics.

In what follows, we will use either the Navier–Stokes equations (2.2) non-
dimensionalized with the smooth pipe bulk velocity Us

b, i.e. with Reynolds number
Res independently of the transpiration, or non-dimensionalized with wall scaling. This
viscous scaling is denoted with a + superscript.

3. Flow control results

The independent effects of the two transpiration parameters, A and kc, are
investigated first. The range of parameters are similar to that employed by Quadrio
et al. (2007) in a channel. Simulations consisting of a parameter sweep while
maintaining the other fixed have been carried out at Re⌧ = 314. Following the
classical Reynolds decomposition, the total velocity has been decomposed as the sum
of the mean flow u0 and a fluctuating velocity u, which reads

û(x, r, ✓ , t) = u0(x, r) + u(x, r, ✓ , t), (3.1)

with the mean flow obtained by averaging the total flow in time and the azimuthal
direction as

u0(x, r) = lim
T!1

1
T

Z T

0

1
2p

Z 2p

0
û(x, r, ✓ , t) dt d✓ . (3.2)

For simplicity in the notation in what follows, we will use h i to denote an average
in time and azimuthal direction. Hence, u0(x, r) = hûi.

Note that the streamwise spatial dependence of the mean flow permits a non-zero
mean in the wall-normal direction, hence u0(x, r) = (u0, v0, 0). Turbulence statistics
additionally averaged in the streamwise direction are denoted with a bar

ū0(r) =
1
L

Z L

0
u0(x, r) dx. (3.3)

In terms of flow control effectiveness, here we define drag-reducing or drag-increasing
configurations as those that reduce or increase the streamwise flow rate with respect
to the smooth pipe. Mathematically,

1Q =

Z R

0
1ū0r dr

Z R

0
ūs

0r dr

⇢
< 0 drag-increasing,
> 0 drag-reducing,

(3.4)
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FIGURE 2. Transpiration effect on the flow rate by changing (a) wavenumber kc at
constant amplitude A+ = 0.7 and (b) amplitude A+ at constant wavenumber kc = 2.

where 1u0 = (ūc
0 � ūs

0), being c and s superscripts to denote controlled and smooth
pipe, respectively. Figure 2(a) shows the percentage variation of the flow rate induced
by transpiration with different wavenumber kc at constant amplitude A+ = 0.7,
equivalent to 0.22 % of the bulk velocity. A large drag increase is observed at
small wavenumbers and it asymptotically diminishes until a small increase in flow
rate is achieved for kc ' 9. This small drag reduction slowly lessens and it is observed
up to kc = 40.

Figure 2(b) shows the transpiration influence on the flow rate by increasing
the amplitude A+ at a constant wavenumber kc = 2. A drag increase from zero
transpiration up to A+ = 4 is observed. The maximum increase is achieved between
A+ = 1 and A+ = 2. In agreement with the conjecture posed by Woodcock et al.
(2012), increasing the amplitude beyond A+ = 4 does not significantly change the
value of the drag increase.

3.1. Comparison with channel flow
We compare our flow control results with the steady streamwise transpiration study of
Quadrio et al. (2007) in a channel. The variation of the mean friction coefficient 1Cf
with respect to the smooth pipe is employed to assess the drag reduction/increase. The
mean friction coefficient is defined as

Cf =
2⌧w

⇢U2
b
. (3.5)

Given that the mean wall shear stress is fixed, the mean friction coefficient variation
can be expressed solely as function of the ratio between the smooth and controlled
pipe bulk velocities, hence

1Cf =
1

(1 + 1Q)2
� 1, (3.6)

in which the definition of 1Q in (3.4) is employed. Note that negative values of
1Cf correspond to drag reduction. Figure 3 shows the comparison of the variation
of the friction coefficient versus transpiration wavelength at fixed amplitude A+ = 0.7
in pipe and channel flow. Low- and high-Re results are presented for the channel
case. Similar behaviour is observed, in which a drag reduction can be achieved in
both channel and pipe flows. The maximum friction variation is smaller for the pipe
than for the channel. In addition, the rate at which the friction coefficient increases
with wavelength is higher for the channel than for the pipe. We note that the manner
in which parameters are varied differs between the two studies: while Quadrio et al.
(2007) fixed the bulk velocity to arrange a constant bulk Reynolds number during the
parameter sweep, here we maintained a constant friction Reynolds number Re⌧ . It is
also worth noting that because of the obvious difference in geometry, identical results
are not expected.
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FIGURE 3. Comparison of the variation of the friction coefficient versus transpiration
wavelength at fixed amplitude A+ = 0.7. Solid circles, pipe flow at Re⌧ = 314 (present
results); open circles, channel flow at Re⌧ = 400 (Quadrio et al. 2007); squares, channel
flow at Re⌧ = 180 (Quadrio et al. 2007).

4. Turbulence statistics

4.1. Constant transpiration amplitude
The effect of transpiration is evident in the behaviour of the mean velocity
characteristics. Figure 4(a) shows the effect of changing the transpiration wavenumber
kc at a small constant amplitude A+ = 0.7 on the mean streamwise velocity ū0(r)
compared to the smooth pipe. In addition, dashed lines for the linear sublayer
and fitted log law (den Toonder & Nieuwstadt 1997) are shown as reference. In
agreement with figure 2(a), we observe reduced flow rates in figure 4(a) for kc < 8
with a small increase occurring around kc = 10. Two interesting features are noticed.
First, the viscous sublayer is only linear for y+ < 1, instead of y+ < 5. Since the
mean wall-shear ⌧w is constant, all the profiles must collapse as y+ = (R+ � r+)
approaches zero. In other words, the value of @u0/@y at the wall is the same for all
cases considered.

Second, the outer-layer of all the profiles are parallel, suggesting that the log layer
region can be expressed as

ū+

0 = 2.5 ln(y+) + 5.4 + 1T+, (4.1)

with the transpiration factor, 1T arising in a similar way as the roughness factor of
Hama (1954), or the corrugation factor of Saha et al. (2015b). However, we note that
the present Reynolds number may not be sufficiently high for the emergence of a
self-similar log law in the overlap region. Although there is not a well-defined log
layer at such low Re, we refer to it as log layer for convenience. The present results
suggest what will happen at a greater Re. Figure 5 shows a defect velocity scaling of
the mean profiles. A collapse of the mean velocity profiles is observed in the outer
layer, hence Townsend’s wall similarity hypothesis (Townsend 1976) appears to apply
in the present low amplitude transpiration cases.

Figure 4(b,c) show the influence of the transpiration on the turbulent intensities,
presented as root mean squares. At this small amplitude, the transpiration mainly
affects the location and value of the maximum turbulent intensities and all profiles
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FIGURE 4. (Colour online) Comparison of profile data for the smooth-wall pipe
(solid line) and pipe with transpiration at constant amplitude A+ = 0.7 and different
wavenumbers kc: (a) mean flow normalized by Ub, with dashed lines for linear sublayer
and fitted log law; (b) axial turbulent intensity; (c) radial turbulent intensity; (d) Reynolds
shear stress.

collapse as y+ approaches the centreline, indicating that small amplitude transpiration
does not alter the turbulent activity in the outer layer. Note that the peak in the
axial turbulence intensity correlates with a reduction in the shear at the same
wall-normal location in all the cases, which is apparent in the main velocity profiles
in figure 4(a).

Figure 4(d) shows that the influence of small amplitude transpiration on the
Reynolds shear stress ⌧uv = hucvci. We observed that the transpiration influence on ⌧uv

is only significant at small wavenumbers and, as with the turbulent intensities, small
amplitude transpiration does not change the outer layer of the profile.

Despite the significant changes observed in the mean streamwise velocity profiles
in figure 4(a), the variation in Reynolds shear stress in figure 4(d) are small, hence
it is inferred that additional effects related to steady streaming and non-zero mean
streamwise gradients play a major role in the momentum balance.
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FIGURE 5. (Colour online) Defect velocity law for profile data of the smooth-wall pipe
(solid line) and pipe with transpiration at constant amplitude A+ = 0.7 and different
wavenumbers kc. A collapse of all the mean velocity profiles is observed in the outer
layer hence small amplitude effects do not alter the turbulent activity in the outer layer.

4.2. Constant transpiration wavenumber
The effect of changing the amplitude A+ at a constant forcing wavenumber kc = 2
in the mean streamwise velocity u0 is shown in figure 6(a). For A+ < 2, results are
similar to those observed for small amplitudes. At A+ = 2 the flow rate is dramatically
decreased and the log layer region is reduced compared to the small amplitude cases.
At A+ = 4 the parallel log layer region is not existent. This large amplitude can
significantly increase the mean velocity in the outer layer. Similarly, we observe
that large amplitude transpiration shifts the location of maximum turbulent intensities
towards the centreline, as seen in figure 6(b,c). We can state that large amplitudes
A+ > 2 can influence the turbulent activity in the outer layer. Figure 6(d) shows that
high amplitudes have a similar effect on the shear stress and how a high amplitude
A+ = 4 can dramatically reduce the Reynolds shear stress and shift the location of
the maximum towards the centreline.

These tendencies in A+ and kc suggest that very high values of the transpiration
amplitude combined with high wavenumber kc can lead to significant drag-reducing
configurations. This has been confirmed through the investigation of a static
transpiration case with an amplitude A+ = 10 and wavenumber kc = 10, yielding
an increase in flow rate of 1Q = 19.3 %. This case will be investigated in detail in
the next section.

5. Streamwise momentum balance

As previously mentioned, we have inferred from figures 4 and 6 that the changes
in Reynolds stress are not enough to explain the changes in the mean velocity profile;
additional effects related to steady streaming and non-zero mean streamwise gradients
could play a major role in the momentum balance. Here we analyse the streamwise
momentum balance in order to identify these additional effects. The axial momentum
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FIGURE 6. (Colour online) Comparison of profile data for the smooth-wall pipe (solid
line) and pipe with transpiration at constant wavenumber kc = 2 and different amplitudes
A+: (a) mean flow normalized by Ub, with dashed lines for linear sublayer and fitted log
law; (b) axial turbulent intensity; (c) radial turbulent intensity; (d) Reynolds shear stress.

equation averaged in time and azimuthal direction for a pipe flow controlled with
static transpiration is

fx +
1
r

@

@r

✓
�r⌧ c

uv � ruc
0v

c
0 + rRe�1

s
@uc

0

@r

◆
+ Nx = 0, (5.1)

with Nx being the sum of terms with x-derivatives, representing the non-homogeneity
of the flow in the streamwise direction (Fukagata, Iwamoto & Kasagi 2002).

Nx =
@(uc

0uc
0)

@x
+

@hucuci

@x
� Re�1

s
@2uc

0

@x2
. (5.2)

where h i denotes averaging in time and the azimuthal direction. Equation (5.1) for a
smooth pipe yields

fx +
1
r

@

@r

✓
�r⌧ s

uv + rRe�1
s

@us
0

@r

◆
= 0. (5.3)
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Since the body force fx and Reynolds number Re�1
s have the same value in (5.1) and

(5.3), these two equations can be subtracted and integrated in the wall-normal direction
to give

Re�1
s 1u0(x, r) =

Z r

0
1⌧ r0dr0

+

Z r

0
uc

0v
c
0r0 dr0

+

Z r

0
N

0

x r0 dr0, (5.4)

in which Nx has been previously integrated with respect to the wall normal direction
to yield N 0

x . This equation can be additionally averaged in the axial direction to
identify three different terms playing a role in the modification of the mean profile

1ū0(r) = RSS + ST + NH, (5.5)

where

RSS(r) =
�Res

L

Z L

0

Z r

0
1⌧ r0 dr0 dx, (5.6)

ST(r) =
�Res

L

Z L

0

Z r

0
uc

0v
c
0r0 dr0 dx, (5.7)

NH(r) =
Res

L

Z L

0

Z r

0
N

0

x r0 dr0 dx. (5.8)

The first term RSS represents the interaction of the transpiration with the Reynolds
shear stress, and its behaviour can be inferred from the turbulence statistics shown in
figures 4(d) and 6(d). The second term ST is associated with the steady streaming
produced by the static transpiration. As briefly mentioned in the introduction, this
term defined in (5.7) consists of an additional flow rate due to the interaction of the
wall-normal transpiration with the flow convecting downstream (Luchini 2008). This
term can be alternatively understood as a coherent Reynolds shear stress. The velocity
averaged in time and azimuthal direction defined in (3.2) can be decomposed into a
mean profile ū0(r) and a steady deviation from that mean velocity profile u0

0(x, r)

u0(x, r) = ū0(r) + u0

0(x, r). (5.9)

Taking into account this decomposition, the integrand of the steady streaming term
now reads

uc
0v

c
0 = ūc

0v̄
c
0 + ūc

0v
c
0
0
+ v̄c

0uc
0
0
+ uc

0
0vc

0
0, (5.10)

and its axial average is reduced to

1
L

Z L

0
uc

0v
c
0 dx =

1
L

Z L

0
uc

0
0vc

0
0 dx, (5.11)

since v̄c
0 must be zero because of the continuity equation. Hence, the steady streaming

term ST is generated by coherent Reynolds shear stress induced by the deviation
of the velocity from the axial mean profile. We highlight that the substitution of
the decomposition (5.9) in the Reynolds decomposition in (3.1) leads to a triple
decomposition, in which the deviation from the mean velocity profile plays the role
of a coherent velocity fluctuation.
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FIGURE 7. (Colour online) Radial distribution of the Reynolds shear stress generated by
the fluctuating velocity ⌧uv and the deviation velocity uc

0
0vc

0
0: (a) case I, large drag decrease

(A+, kc) = (10, 10); (b) case II, small drag decrease (A+, kc) = (0.7, 10); (c) case III, drag
increase (A+, kc) = (2, 2).

The third term NH defined in (5.8) corresponds to the axial non-homogeneity in the
flow induced by the transpiration. It consists of non-zero mean streamwise gradients
generated by the transpiration. Because of the low amplitudes considered in previous
works (Quadrio et al. 2007), this last term has not been isolated before and has been
implicitly absorbed in an interaction with turbulence term that accounts for both ST
and NH terms.

Finally, we note that the identity derived by Fukagata et al. (2002) (FIK identity)
could be alternatively employed for our analysis. However, the difference in bulk
flow Reynolds numbers between uncontrolled and controlled cases favours the present
approach.

5.1. Representative transpiration configurations
The relative importance of the three terms acting in the transpiration is investigated
by inspecting three representative transpiration configurations in terms of drag
modification. Table 1 lists the contributions to the change in flow rate of these
configurations: (i) the largest drag-reducing case found (1Q = 19.3 %) consisting
of a large amplitude and transpiration wavenumber (A+, kc) = (10, 10), (ii) a small
drag-reducing case (1Q = 0.4 %) induced by a tiny amplitude at a large wavenumber
(A+, kc) = (0.7, 10), and (iii) a large drag-increasing case (1Q = �36.1 %) with small
wavenumber and amplitude (A+, kc) = (2, 2).

We first compare the Reynolds shear stress generated by the fluctuating velocity ⌧uv

and the shear stress arising from the deviation velocity uc
0
0vc

0
0. The radial distributions

of the three different cases are showed in figure 7. We observe that the streaming or
coherent Reynolds shear stress is dominant close to the wall and opposes the Reynolds
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FIGURE 8. (Colour online) Radial distribution of the different terms in (5.5) to the
streamwise momentum balance. Solid line 1ū0(r); — · — Reynolds shear stress term
RSS; – – steady streaming terms ST; · · · · · · non-homogeneous terms NH. (a) Case I, large
drag decrease (A+, kc) = (10, 10); (b) case II, small drag decrease (A+, kc) = (0.7, 10);
(c) case III, drag increase (A+, kc) = (2, 2).

A+ kc 1Q (%)
R

RSS (%)
R

ST (%)
R

NH (%)

(I) Large drag reduction 10 10 19.3 28.4 �20.4 11.3
(II) Small drag reduction 0.7 10 0.4 1.5 �1.7 0.6
(III) Drag increase 2 2 �36.1 11.2 �29.6 �17.7

TABLE 1. Contributions to the change in flow rate of different transpiration configurations
based on integration of (5.5) (

R
denotes integration in the wall-normal direction).

stress generated by the fluctuating velocity. Far from the wall, the Reynolds stress is
governed by the fluctuating velocity.

Figure 8 shows the radial profile of the different contributions to the mean profile
and figure 9 the corresponding mean profiles of the cases considered. Figure 8(a)
corresponds to the drag-decrease case (A+, kc) = (10, 10). It can be observed that
the contributions to the increase in flow rate are caused by a large reduction of
Reynolds shear stress (28.4 %) and the streamwise gradients produced in the flow
at such large amplitude and wavenumber (11.3 %). However, these contributions
are mitigated by the opposite flow rate induced by the steady streaming (�20.4 %).
Figure 8(b) corresponds to a low-amplitude static transpiration A+ = 0.7 at the same
axial wavenumber as case (b), yielding a very small reduction in flow rate. Similarly,
the effect on the Reynolds shear stress (1.5 %) and the non-homogeneity effects
(0.6 %) contribute to increase the flow rate while the streaming produced is opposite
to the mean flow, but of a lesser magnitude (�1.7 %). Figure 8(c) represents the
drag-increase case (A+, kc) = (2, 2). As opposed to the two previous cases, the main
contribution to the drag is caused by a large steady streaming in conjunction with a
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FIGURE 9. (Colour online) (a) Streamwise mean profile. (b) Mean wall shear along the
axial direction.

large non-zero streamwise gradients opposite to the mean flow. Although the decrease
in Reynolds stress is significant and favourable towards a flow rate increase, the sum
of the other two terms is much larger. In terms of the variation of mean profile, we
observe a similar behaviour in all cases: there is a decrease in the mean streamwise
velocity profile close to the wall induced by the streaming term or coherent Reynolds
shear stress. Within the buffer layer, the difference in mean velocity decreases until
a minimum is achieved and then it increases to a maximum in the log layer region.
A smooth decrease towards the centreline is then observed.

Streamlines and kinetic energy of the two-dimensional mean velocities u0(x, r) are
shown in figure 10. Preceding the analysis of the flow dynamics, we observe that
blowing is associated with areas of high kinetic energy while suction areas slow down
the flow. Despite the large amplitudes employed, we observe an apparent absence of
recirculation areas in these mean flows. Figure 9(b) shows the mean wall shear along
the axial direction. Only a very small flow separation occurs in the large drag decrease
(A+, kc)= (10, 10). Hence, flow separation effects are not associated with the observed
drag modifications.

5.2. Flow control energetic performance
As stated by Quadrio (2011), a flow control system study must always be accompanied
with its respective energetic performance analysis in order to determine its validity in
real applications. The control performance indices in the sense of Kasagi, Hasegawa
& Fukagata (2009) are employed here to assess the energy effectiveness of the
transpiration. We define a drag-reduction rate as

W = (Pc � Ps)/Ps, (5.12)

where P is the power required to drive the pipe flow and the subscripts c and s
refer again to controlled and smooth pipe. The index W can also be interpreted as
the proportional change in the power developed by the constant body force fx as a
consequence of the transpiration. Note from (5.12) and (5.13) that the drag-reduction
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FIGURE 10. (Colour online) Two-dimensional mean flow: streamlines and normalized
kinetic energy for each different case (white to blue): (a) reference case, smooth pipe;
(b) drag-reducing case (A+, kc) = (10, 10); (c) neutral case (A+, kc) = (0.7, 10);
(d) drag-increasing case (A+, kc) = (2, 2).

rate W is equivalent to the flow rate variation 1Q. The power required to drive the
flow is given by the product of the body force times the bulk velocity

P = fxpR2LUb. (5.13)

A net energy saving rate S is defined to take into account the power required to
operate the flow control

S = (Ps � (Pc + Pin)) /Ps. (5.14)

The mean flow momentum and energy equation are employed to obtain the power
required to apply the transpiration control, as also done by Marusic, Joseph & Mahesh
(2007) and Mao, Blackburn & Sherwin (2015). The power employed to apply the
transpiration control reads

Pin =

Z 2p

0

Z L

0

✓
1
2
v0(x, R)3

+ p(x, R)v0(x, R)

◆
dxR d✓ , (5.15)

with v0(x, R) = A sin(kcx). The first term in the integral represents the rate at which
energy is introduced or removed as kinetic energy in the flow through the pipe wall.
This term is exactly zero because the change of net mass flux is zero and the velocity
is sinusoidal, imposed by the transpiration boundary condition in (2.3). The second
term represents the rate of energy expenditure by pumping flow against the local
pressure at the wall. Finally, the effectiveness of the transpiration control is defined
as the ratio between the change in pumping power and power required to apply the
transpiration control, which reads

G = (Ps � Pc)/Pin. (5.16)

Note that the net power saving can be alternatively written as

S = W(1 � G�1), (5.17)
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A+ kc W G S

(I) Large drag reduction 10 10 0.19 1.02 0.004
(II) Small drag reduction 0.7 10 0.04 0.21 �0.014
(III) Drag increase 2 2 �0.36 �3.73 �0.46

TABLE 2. Flow control energetic performance indices. Here W represents the drag
reduction rate, G the effectiveness of the transpiration control and S the net energy saving
rate.

which indicates that an effectiveness G higher than one is required for a positive
power gain. As reported by Kasagi et al. (2009), typical maxima for active feedback
control systems are in the range of G ⇠ 100 and S ⇠ 0.15 and for predetermined
control strategies, such as spanwise wall-oscillation control in a channel (Quadrio &
Ricco 2004) or streamwise travelling transpiration in a channel (Min et al. 2006), a
range of 2 . G . 6 and 0.05 . S . 0.25 was found.

The resulting flow control energetic performance indices are listed in table 2. Note
that the change in pumping power rate W is equivalent to the flow rate variation 1Q.
Despite the large drag reduction produced by the configuration (A+, kc)= (10, 10), the
net energy saving rate is marginal and the small drag reduction caused at (A+, kc) =

(0.7, 10) has an effectiveness less than one, with a net energy expenditure. The case
(A+, kc) = (2, 2) is interesting, as it shows a high effectiveness in decreasing the
flow rate and has the potential to relaminarize the flow at lower Re⌧ . For instance,
a reduction in flow rate 1Q = �36 % at Re⌧ = 115 could reduce the critical bulk flow
Reynolds below Re < 2040 and thus achieve a relaminarization of the flow. Finally, we
remark that the particular case (A+, kc)= (10, 10) is probably not the globally optimal
configuration for steady transpiration and net energy saving rates and effectiveness in
the range of typical values for the flow control strategies reported by Kasagi et al.
(2009) might be possible, if the full parameter space was considered.

6. Flow dynamics

As a first step in establishing a relationship between changes in flow structures and
drag reduction or increase mechanisms, this section describes how the most amplified
and energetic flow structures are affected by the transpiration.

6.1. Resolvent analysis
The loss of spatial homogeneity in the axial direction is the main challenge when
incorporating transpiration effects into the resolvent model. One solution is to employ
the two-dimensional resolvent framework of Gómez et al. (2014). This method
is able to deal with flows in which the mean is spatially non-homogeneous. The
dependence on the axial coordinate x is retained in the formulation, in contrast with
the classical one-dimensional resolvent formulation of McKeon & Sharma (2010).
However, the method leads to a singular value decomposition (SVD) problem with
storage requirements of order O(N2

r N2
x ), with Nr and Nx being the resolution in

the radial and axial directions, respectively, as opposed to the original formulation
which was of order N2

r . Consequently, the two-dimensional method is not practical
for a parameter sweep owing to the large computational effort required. In the
following we present a computationally cheaper and simple alternative based on a
triple decomposition of the total velocity.
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Based on the decompositions in (3.1) and (5.9), the total velocity is decomposed
as a sum of the axial mean profile, a steady but spatially varying deviation from the
axial profile and a fluctuating velocity

û(x, r, ✓ , t) = ū(r) + u0(x, r) + u(x, r, ✓ , t). (6.1)

The fluctuating velocity is expressed as a sum of Fourier modes. These are discrete
since the domain has a fixed periodic length and is periodic in the azimuth:

û(x, r, ✓ , t) = ū(r) + u0

l(r)e
ilx

+

X

(k,n,!) 6=(l,0,0)

uk,n,!(r)ei(kx+n✓�!t)
+ c.c., (6.2)

where k, n and ! are the axial, azimuthal wavenumber and the temporal frequency,
respectively. Note than a complex-conjugate must be added because û is real.

Without loss of generality, we have assumed that the deviation velocity can be
expressed as a single Fourier mode with axial wavenumber l. As a consequence of
the triadic interaction between the spatial Fourier mode of the deviation velocity and
the fluctuating velocity, there is a coupling of the fluctuating velocity at (k, n,!) with
that at (k ± l, n, !) (see appendix A). Similarly, the nonlinear forcing terms generated
by the fluctuating velocity are written as f k,n,! = (u · ru)k,n,!.

Taking (6.1) into account, it follows that the Fourier-transformed Navier–Stokes
equation (2.2) yields the linear relation

uk,n,! = Hk,n,!( f k,n,! + Ck,n,!uk±l,n,!) (6.3)

for (k, n, !) 6= (0, 0, 0) and (k, n, !) 6= (±l, 0, 0), where Ck,n,! is a coupling operator
representing the triadic interaction between deviation and fluctuating velocity. The
triadic interaction can be considered as another unknown forcing and it permits
lumping all forcing terms as

gk,n,! = f k,n,! + Ck,n,!uk±l,n,!, (6.4)

hence the following linear velocity–forcing relation is obtained

uk,n,! = Hk,n,!gk,n,!. (6.5)

The resolvent operator Hk,n,! acts as a transfer function between the fluctuating
velocity and the forcing of the nonlinear terms, thus it provides information on which
combination of frequencies and wavenumber are damped/excited by wall transpiration
effects. Equation (6.6) shows the resolvent Hk,n,!. The first, second and third rows
corresponds to the streamwise, wall-normal and azimuthal momentum equation,
respectively:

Hk,n,!(r)

=

2

4
i(ku0 � !) � Re�1(D + r�2) @ru0 0

0 i(ku0 � !) � Re�1D �2inr�2Re�1

0 �2inr�2Re�1 i(ku0 � !) � Re�1D

3

5
�1

,

(6.6)

with

D = �k2
� (n2

+ 1)r�2
+ @2

r + r�1@r. (6.7)
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FIGURE 11. Diagram of the new triple-decomposition-based resolvent model. The mean
velocity profile is sustained in the (k, n, !) = (0, 0, 0) equation via the Reynolds stress
f0,0,0 and the interactions with deviation velocity. Similarly, the deviation velocity is also
sustained via the forcing fl,0,0 and interactions with the mean flow in the (k, n,!)= (l, 0, 0)
equation. The original model of McKeon & Sharma (2010) is represented by the subset
within the dashed border.

The physical interpretation of the present resolvent formulation is the same as
that of the original formulation (McKeon & Sharma 2010). Figure 11 presents the
new resolvent formulation (6.5) by means of a block diagram. The mean velocity
profile is sustained in the (k, n, !) = (0, 0, 0) equation via the Reynolds stress
f0,0,0 and interactions with deviation velocity. Similarly, the deviation velocity is also
sustained via the forcing fl,0,0 and interactions with the mean flow in the mean flow
equation corresponding to (k, n, !) = (l, 0, 0). The deviation velocity drives the
triadic interactions generated via the operator Ck,n,! and, closing the loop, the mean
profile restricts how the fluctuating velocity responds to the nonlinear forcing via the
resolvent operator Hk,n,!. We note that it is relatively straightforward to generalize
the block diagram in figure 11 if the deviation velocity is composed of multiple axial
wavenumbers, or even frequencies.

We highlight that this formulation represents the exact route for modifying a
turbulent flow using the mean profile u0. Despite the non-homogeneity of the flow
in our present cases of interest, the operator Hk,n,! is identical to that developed by
McKeon & Sharma (2010) for one-dimensional mean flows and thus it only depends
on the axial mean ū(r); the deviation velocity does not appear in the resolvent, but
it does appear in the mean flow equation. Also note that the equation of continuity
enforces the condition that the mean profile of wall-normal velocity v0 is zero in
all cases. Hence, the modification of the mean profile ū0 is sufficient to analyse
the dynamics of the flow. We recall that McKeon et al. (2013) used a comparable
decomposition in order to assess the effect of a synthetic large-scale motion on the
flow dynamics.

Following the analysis of McKeon & Sharma (2010), a SVD of the resolvent
operator

Hk,n,! =

X

m

 k,n,!,m�k,n,!,m�
⇤

k,n,!,m (6.8)

delivers an input–output amplification relation between response modes  k,n,!,m
and forcing modes �k,n,!,m through the magnitude of the corresponding singular
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value �k,n,!,m. Here the subscript m is an index that ranks singular values from largest
to smallest. The nonlinear terms gk,n,! can be decomposed as a sum of forcing modes
to relate the amplification mechanisms to the velocity fields,

gk,n,! =

X

m

�k,n,!,m�k,n,!,m, (6.9)

where the unknown forcing coefficients �n,!,n represent the unknown mode interactions
and Reynolds stresses. The decomposition of the fluctuating velocity field is then
constructed as a weighted sum of response modes

u(x, r, ✓ , t) '

X

(k,n,!)6=(l,0,0)

�k,n,!,1�k,n,!,1 k,n,!,1ei(kx+n✓�!t), (6.10)

in which the low-rank nature of the resolvent, �k,n,!,1 � �k,n,!,2, is exploited (McKeon
& Sharma 2010; Sharma & McKeon 2013; Luhar et al. 2014). The low-rank nature of
the resolvent operator has been computationally confirmed for each of the base flows
considered but omitted for brevity. We also note that this assumption is not required;
in principle any number of singular response modes can be taken into account to
improve the above resolvent decomposition.

A numerical method similar to that developed by McKeon & Sharma (2010)
is employed for the discretization of the resolvent operator Hk,n,!. Following the
approach of Meseguer & Trefethen (2003), wall-normal derivatives are computed using
Chebychev differentiation matrices, properly modified to avoid the axis singularity.
Note that instead of projecting the velocity into a divergence-free basis, here the
divergence-free velocity fields are enforced by adding the continuity equation as
an additional column and row in the discretized resolvent (Luhar et al. 2014). The
velocity boundary conditions at the wall are zero Dirichlet. The velocity profile inputs
of the four cases subject to study were shown in figure 9.

6.2. Fourier analyses and DMD
It may be observed in (6.10) that the energy associated with each Fourier mode uk,n,!

is proportional to its weighting �k,n,!,1�k,n,!,1, under the rank-one assumption. The
resolvent analysis yields the amplification properties in (k,n,!) but it does not provide
information on the amplitude of nonlinear forcing �k,n,!,1.

As briefly exposed in § 1, a snapshot-based DMD analysis (Rowley et al. 2009;
Schmid 2010) is carried out on the DNS data in order to unveil the unknown
amplitudes of the nonlinear forcing terms �k,n,!,1. DMD obtains the most energetic
flow structures, i.e. the set of wavenumber/frequencies (k, n, !) corresponding to the
maximum product of amplitude forcing and amplification. As shown by Chen, Tu &
Rowley (2012) and Mezić (2013), the results from a DMD analysis of statistically
steady flows such as those considered are equivalent to a discrete Fourier transform
of the DNS data once the time mean is subtracted. This is confirmed if values of
decay/growth of the DMD eigenvalues are close to zero. Hence, the DMD modes
obtained are marginally stable, and can be considered Fourier modes. The norms of
these modes indicates the energy corresponding to each set of wavenumber/frequencies
and can unveil the value of the unknown forcing coefficients �k,n,!,1 (Gómez et al.
2015).

To avoid additional post-processing of the DNS data in the DMD analysis, we
directly employ two-dimensional snapshots with Fourier expansions in the azimuthal
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direction, obtained from the DNS based on (2.8). Given an azimuthal wavenumber n,
two matrices of snapshots equispaced in time are constructed as

U1
=
⇥
ûn(x, r, t1) ûn(x, r, t2) . . . ûn(x, r, tNs�1)

⇤
, (6.11)

U2
=
⇥
ûn(x, r, t2) ûn(x, r, t3) . . . ûn(x, r, tNs)

⇤
. (6.12)

The size of these snapshot matrices is NrNx ⇥ Ns � 1 with Ns being the number of
snapshots employed. DMD consists of the inspection of the properties of the linear
operator A that relates the two snapshot matrices as

AU1
= U2

; (6.13)

the linear operator A is related to Koopman theory. To obtain the eigenvectors of
A, we employ the DMD algorithm based on the SVD of the snapshot matrices
developed by Schmid (2010). This algorithm circumvents any rank-deficiency in the
snapshot matrices and it provides a small set of eigenvectors ordered by energy norm.
The dataset consist of 1200 DNS snapshots equispaced over O(40) wash-out times
L/u0(R).

We anticipate that because of the discretization employed in the DMD analysis,
the Fourier modes obtained are two-dimensional and can contain multiple axial
wavenumbers k. A spatial Fourier transform in the axial direction can be carried out
in order to identify the dominant axial wavenumber k of a DMD mode.

In the following, we employ the resolvent analysis and DMD to address how the
most amplified and energetic flow structures are manipulated by the transpiration. This
is the first step in establishing a relation between the changes in flow structures and
drag reduction or increase mechanisms.

6.3. Amplification and energy
We focus on the effect of transpiration on large-scale motions. Hence, the broad
parameter space (k, n, !) is reduced by taking into consideration findings from the
literature. As discussed in detail by Sharma & McKeon (2013), VLSMs in pipe flows
can be represented with resolvent modes of lengths scales (k, n) = (1, 6) and with a
convective velocity c = 2/3 of the centreline streamwise velocity. This representation
is based on the work of Monty et al. (2007) and Bailey & Smits (2010), which
experimentally investigated the spanwise length scale associated with the VLSM and
found to be of the order of the outer length scale, n = 6. Hence, we consider only
the azimuthal wavenumber n = 6.

Reference values of the amplification are provided in contours in figure 12(a), which
show the distribution of resolvent amplification log10(�k,6,!,1) for the smooth pipe in
a continuum set of (k, !) wavenumbers for n = 6. We observe a narrow band of high
amplification caused by a critical-layer mechanism (McKeon & Sharma 2010). This
critical-layer mechanism can be described by examining the resolvent operator. The
diagonal terms of the inverse of the resolvent matrix in (6.6) read

hii = [i(ku0 � !)u + Re�1
r

2u]
�1, (6.14)

thus, for a given value of the Laplacian, there is a large amplification if the wavespeed
c = !/k matches the mean streamwise velocity, i.e. c = u0. That means that flow
structures that travel at the local mean velocity create high amplification. Furthermore,
we note that straight lines that pass through the origin in figure 12 correspond to
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FIGURE 12. (Colour online) Distribution of amplification log10(�k,6,!,1) and energy peak
frequencies: (a) reference, smooth pipe; (b) case I, large drag decrease (A+, kc) =

(10, 10); (c) case II, small drag decrease (A+, kc) = (0.7, 10); (d) case III, drag increase
(A+, kc) = (2, 2). Symbols denote peak frequencies corresponding to the most energetic
two-dimensional DMD modes with k = 0, 1, 2, 3 dominant wavenumber. Dashed lines
indicate the wavespeed corresponding to the centreline velocity ūc(R) for each case.

constant wavespeed values. The wavespeed corresponding to the centreline velocity
is indicated by a dashed line.

Turning first to figure 12(a), the symbols represent the dominant wavenumber and
the frequency corresponding to the four most energetic DMD modes at n = 6. The
value of the energy corresponding to each the four modes is similar and omitted. As
explained by Gómez et al. (2014), a sparsity is observed in energy as a consequence
of the critical layer mechanism in a finite length periodic domain; only structures
with an integer axial wavenumber, ki = 1, 2, . . . can exist in the flow because of the
finite length periodic domain with length L = 4pR. This fact creates a corresponding
sparsity in frequency. For each integer axial wavenumber ki there is a frequency !i

for which the critical layer mechanism occurs, i.e. !i = kic = kiu0(rc), with rc being
the wall-normal location of the critical layer. This energy sparsity behaviour is clearly
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(a) (b)

(c) (d )

FIGURE 13. (Colour online) In each of the four blocks, the upper diagram represents
each transpiration configuration. Below, isosurfaces of 50 % of the maximum/minimum
streamwise velocity are represented corresponding to (top) the DMD mode with dominant
wavenumbers k = 1 and n = 6 (red squares in figure 12), (middle) the DMD modes axially
filtered at k = 1 and (bottom) resolvent mode associated with k = 1 and n = 6 at the
same frequency: (a) reference, smooth pipe; (b) case I, large drag decrease (A+, kc) =

(10, 10); (c) case II, small drag decrease (A+, kc) = (0.7, 10); (d) case III, drag increase
(A+, kc) = (2, 2).

observed in the reference case, as shown in figure 12(a), in which the peak frequencies
are approximately integral multiples of the fundamental. Thus, they are approximately
aligned in a constant wavespeed line.

We also observe that, for a given k, the frequencies corresponding to the peaks
of energy differ from the most amplified frequency. As observed by Gómez et al.
(2015), this is related to the major role that the non-linear forcing �n,!,n maintaining
the turbulence plays in the resolvent decomposition (6.10). Nevertheless, we observe
that the frequency corresponding to the most energetic modes can be found in the
proximity of the high amplification band.

Furthermore, the fact there is only one narrow band of amplification indicates a
unique critical layer and that each frequency corresponds to only one wavenumber.
This result is confirmed through the similar features exhibited by the most energetically
relevant flow structures, arising from DMD of the DNS data, and the resolvent modes
associated with the same frequency and wavenumber. For instance, figure 13(a)
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presents a comparison of the DMD and resolvent mode corresponding to k = 1
(red square in figure 12(a)). We observe that both DMD and resolvent modes present
a unique dominant wavenumber k = 1 with a similar wall-normal location of its
maximum/minimum velocity. The DMD analysis makes use of two-dimensional DNS
snapshots based on the Fourier decomposition in (2.8) and so it permits multiple axial
wavenumbers. Hence, the DMD modes are not constrained to one unique dominant
axial wavenumber. This does not apply to the resolvent modes, which only admit
one wavenumber k by construction of the model. This uniqueness of a dominant
streamwise wavenumber in the most energetic flow structures of a smooth pipe flow
has also been observed in the work of Gómez et al. (2014). In addition, figure 13(a)
presents DMD modes axially filtered to k = 1 to ease comparisons with the resolvent
modes. We consider it most appropriate to show the axial velocity because it is the
energetically dominant velocity component in these flow structures. In addition, the
flow structures corresponding to positive and negative azimuthal wavenumber n = ±6
have been summed; a single azimuthal wavenumber necessarily corresponds to a
helical shape.

Figure 12(b) represents the amplification results of case I, corresponding to large
drag decrease with (A+, kc) = (10, 10). The effect of transpiration on the flow
dynamics is significant; two constant-wavespeed rays of high amplification may be
observed. One of the wavespeeds is similar to that corresponding the critical layer
in the reference case while the second is much faster, almost coincident with the
centreline velocity. Also the amplification in the area between these two constant
wavespeed lines is increased with respect to the reference case. Hence, multiple
axial wavenumber k could be amplified at each frequency. This is confirmed in
figure 13(b), which shows that the DMD mode features waviness corresponding
to multiple wavenumbers. Although the dominant axial wavenumber k = 1 can be
visually identified, other wavenumbers corresponding to interactions of this k = 1 with
the transpiration wavenumber kc = 10 are also observed. The waviness in figure 13(b)
is steady; it does not travel with the k = 1 flow structure. This has been confirmed
via animations of the flow structures and it was expected as a result of the steady
transpiration.

As mentioned before, the resolvent modes arise from a one-dimensional model
based on a (k, n, !) Fourier decomposition hence they only contain one axial
wavenumber k. As such, a single resolvent mode cannot directly replicate the
waviness. However, it provides a description of the dominant wavenumber flow
structure. Nevertheless, the axially filtered DMD mode in figure 13(b) presents a
similar structure to the resolvent mode. Similarly to the reference case, the wavespeed
based on the dominant wavenumber of the DMD modes are aligned in a constant
wavespeed line near the high-amplification regions, as seen in figure 12(b).

Figure 12(c) shows that the small transpiration (A+, kc) = (0.7, 10) does not have
a significant influence on the flow dynamics. The main difference with respect to the
reference case is that the amplification line is slightly broader in this case. Consistent
with this result, the DMD mode in figure 13(c) shows a tiny waviness corresponding
to other wavenumbers. Similarly to the previous cases, the resolvent mode replicates
the dominant axial wavenumber flow structure.

The amplification and energy results corresponding to the drag-increase case
(A+, kc) = (2, 2) are shown in figure 12(d). We observe that, in agreement with
the decrease of bulk velocity, the transpiration slows down the flow dynamics; the
wavespeed corresponding to the critical layer is slower than in previous cases, i.e. a
steeper dashed line in figure 12(d). In addition, the critical layer is broad in contrast
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to the reference case, indicating that multiple axial wavenumbers could be excited.
As such, the DMD mode in figure 13(d) shows a dominant axial wavenumber
k = 1 which interacts with others in order to produce two steady localized areas of
fluctuating velocity. These clusters are located slightly after the two blowing sections,
which corresponding to the high-velocity areas in figure 10(d). As in previous cases,
the resolvent mode at k = 1 captures the same dynamics of the filtered DMD mode.

7. Discussion and conclusions

The main features of low- and high-amplitude wall transpiration applied to pipe flow
have been investigated by means of DNS at Reynolds number Re⌧ = 314. Turbulence
statistics have been collected during parameter sweeps of different transpiration
amplitudes and wavenumbers. The effect of transpiration is assessed in terms of
changes in the bulk axial flow.

We have shown that for low-amplitude transpiration the mean streamwise velocity
profile follows a velocity defect law, so the outer flow is unaffected by transpiration.
This indicates that the flow still apparently obeys Townsend’s similarity hypothesis
(Townsend 1976), as usually observed in rough walls. Hence, low-amplitude
transpiration has a similar effect as roughness or corrugation in a pipe. On the
other hand, high-amplitude transpiration has a dramatic effect on the outer layer of
the velocity profile and the log layer region is substituted by a large increase in
streamwise velocity.

We have observed that a transpiration configuration with a small transpiration
wavenumber leads to long regions of suction in which the streamwise mean velocity
is significantly reduced and the fluctuating velocity can be suppressed. In contrast, a
large transpiration wavenumber can speed up the outer layer of the streamwise mean
profile with respect to the uncontrolled pipe flow, even at small amplitudes.

These trends in amplitude and wavenumber have permitted the identification of
transpiration configurations that lead to a significant drag increase or decrease. For
instance, we have shown that a wall transpiration that combines a large amplitude
with a large wavenumber creates a large increase in flow rate.

A comparison with the channel flow data of Quadrio et al. (2007) revealed that
application of low-amplitude transpiration to the pipe flow leads to similar quantitative
results.

The obtained turbulence statistics showed that the changes in Reynolds stress
induced by the transpiration are not sufficient to explain the overall change in the
mean profile. An analysis of the streamwise momentum equation revealed three
different physical mechanisms that act in the flow: modification of Reynolds shear
stress, steady streaming and generation of non-zero mean streamwise gradients.
In addition, a triple decomposition of the velocity based on a mean profile, a
two-dimensional deviation from the mean profile and a fluctuating velocity, has
been employed to examine the streamwise momentum equation. This decomposition
showed that the steady streaming term can be interpreted as a coherent Reynolds
stress generated by the deviation velocity. The contribution of this coherent Reynolds
stress to the momentum balance is important close to the wall and it affects the
viscous sublayer, which is no longer linear under the influence of transpiration.

The behaviour of these terms has been examined by selected transpiration cases of
practical interest in terms of drag modification. For all cases considered, the steady
streaming terms opposes to the flow rate while the change in Reynolds shear stress are
always positive. This concurs with the numerical simulations of Quadrio et al. (2007),
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Hoepffner & Fukagata (2009) and the perturbation analysis of Woodcock et al. (2012).
In addition, we have observed that the contribution of non-zero mean streamwise
gradients is significant. This contribution can be negative for small transpiration
wavenumbers; the turbulent fluctuations are suppressed in the large areas of suction,
favouring non-homogeneity effects in the axial direction.

A description of the change in the flow dynamics induced by the transpiration
has been obtained via the resolvent analysis methodology introduced by McKeon &
Sharma (2010). This framework has been extended to deal with pipe flows with an
axially invariant cross-section but with mean spatial periodicity induced by changes
in boundary conditions. The extension involves a triple decomposition based on mean,
deviation and fluctuating velocities. This new formulation opens up a new avenue
for modifying turbulence using only the mean profile and it could be applied to
investigate the flow dynamics of pulsatile flows or changes induced by dynamic
roughness.

In the present investigation, this input–output analysis showed that the critical-layer
mechanism dominates the behaviour of the fluctuating velocity in pipe flow under
transpiration. However, axially periodic transpiration actuation acts to delocalize the
critical layer by distorting the mean flow, so that multiple wavenumbers can be excited.
This produces waviness of the flow structures.

The resolvent results in this case are useful as a tool to interpret the dynamics
but are less directly useful to predict the effects of transpiration, since transpiration
feeds directly into altering the mean flow, which itself is required as an input to the
resolvent analysis. This limitation partly arises owing to the use of steady actuation,
since low-amplitude time-varying actuation directly forces inputs to the resolvent
rather than altering its structure (see figure 11).

The critical layer mechanism concentrates the response to actuation in the wall-
normal location of the critical layer associated with the wavespeed calculated from
the frequency and wavenumber of the actuation. This leads us to believe that, within
this framework, dynamic actuation may be more useful for directly targeting specific
modes in localized regions of the flow.

DMD of the DNS data confirmed that the transpiration mainly provides a waviness
to the leading DMD modes. This corrugation of the flow structures is steady
and corresponds to interactions of the critical-layer-induced wavenumber with the
transpiration wavenumber. As such, this waviness is responsible for generating steady
streaming and non-zero mean streamwise gradients, which it turns modifies the
streamwise momentum balance, hence enhancing or decreasing the drag.

Finally, a performance analysis indicated that all the transpiration configurations
considered are energetically inefficient. In the most favourable case, the benefit
obtained by the drag reduction induced by the transpiration marginally exceeds
the cost of applying transpiration. Nevertheless, this is an open-loop active flow
control system. A passive roughness-based flow control system able to mimic the
effect of transpiration would be of high practical interest. Hence, we remark that
experience gained through this investigation serves to extend this methodology
towards manipulation of flow structures at higher Reynolds numbers; this is the
subject of an ongoing investigation.
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Appendix A. Triadic interaction induced by the deviation velocity

Without loss of generality, we write the deviation velocity as a single Fourier mode
with l axial wavenumber. Then the triple decomposition reads

û(x, r, ✓ , t) = ū(r)|{z}
A

+ u0

l(r)e
ilx

| {z }
B

+

Cz }| {X

(k,n,!) 6=(l,0,0)

uk,n,!(r)ei(kx+n✓�!t)
+ c.c. (A 1)

As an example, we substitute this decomposition in the nonlinear terms û@xû

û@xû = A@xA + A@xB + A@xC + B@xA + B@xB + B@xC + C@xA + C@xB + C@xC, (A 2)

since @xA = 0 we obtain

û@xû = A@xB + A@xC + B@xB + B@xC + C@xB + C@xC. (A 3)

Next, we study which terms are orthogonal to the complex exponential functions
corresponding to (k, n, !) 6= (0, 0, 0) and (k, n, !) 6= (l, 0, 0). Thus,

(A 4)

As a consequence of the triadic interaction between the spatial Fourier mode of the
deviation velocity and the fluctuating velocity, there is a coupling of the fluctuating
velocity at (k, n, !) with that at (k ± l, n, !). This interaction generates the new terms
B@xC and C@xB. These two terms are represented by the coupling operator Ck,n,! in
the resolvent formulation (6.4). Note that the term A@xB is included in the deviation
equation (k, n,!)= (l, 0, 0) while the term B@xB contributes to the mean flow equation
(k, n, !) = (0, 0, 0) as coherent Reynolds stress.
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