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a b s t r a c t 

We present explicit and implicit large eddy simulations for fully developed turbulent pipe flows using 

a continuous-Galerkin spectral element solver. On the one hand, the explicit stretched-vortex model (by 

Misra and Pullin [45] and Chung and Pullin [14]), accounts for an explicit treatment of unresolved stresses 

and is adapted to the high-order solver. On the other hand, an implicit approach based on a spectral 

vanishing viscosity technique is implemented. The latter implicit technique is modified to incorporate 

Chung & Pullin virtual-wall model instead of relying on implicit dissipative mechanisms near walls. This 

near-wall model is derived by averaging in the wall-normal direction and relying in local inner scaling 

to treat the time-dependence of the filtered wall-parallel velocity. The model requires space-time varying 

Dirichlet and Neumann boundary conditions for velocity and pressure respectively. We provide results 

and comparisons for the explicit and implicit subgrid treatments and show that both provide favourable 

results for pipe flows at Re τ = 2 × 10 3 and Re τ = 1 . 8 × 10 5 in terms of turbulence statistics. Additionally, 

we conclude that implicit simulations are enhanced when including the wall model and provide the 

correct statistics near walls. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Wall bounded flows and particularly pipe flows under fully de-

eloped turbulent conditions have attracted the interest of the

cientific community for decades. Since the pioneering work of

eynolds [53] , it was understood that the flow in pipes undergoes

ransition to turbulence at Reynolds numbers that are commonly

ound in engineering applications such as oil or water pipelines.

he main characteristics of pipe flows have been compiled in by

mits et al. [59] . 

The accurate prediction of turbulence and associated statistic in

ipes has fascinated scientists that study flow structures or design

urbulence models, but also attracted the interest of engineers that

eed to account for energy losses and seek drag reduction tech-

iques in long pipelines. To compute pipe flows and understand its

hysics, scientists have used direct numerical simulations (DNS) for

ow Reynolds numbers and large eddy simulations (LES) for large

eynolds numbers, which would otherwise require an extremely
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ne mesh. The LES approach considers spatial filtering where the

arge structures are resolved, reducing modeling to the small tur-

ulent structures (i.e. small eddies), which are considered to be-

ave in an isotropic fashion (see the monograph by Sagaut [54] ).

iltering enables scale separation: large scales (i.e. large eddies)

o be resolved and small scales (i.e. subgrid-scale or SGS) to be

odelled. While DNS methods enable accurate computations of all

ynamically relevant scales present in the flow with a significant

omputational cost, LES allows affordable computations while pro-

iding accurate computation of scales of engineering relevance (i.e.

arge scales). See [16,54] for a summary of techniques to compute

urbulent flows. 

The constant increase in computational power has enabled sim-

lations of DNS and LES for pipe flows for increasing Reynolds

umbers. Various DNS at moderate Reynolds numbers ( Re τ = 500

o 30 0 0) have been reported [1,11–13,36,39,63] but are low com-

ared to pipe flow experiments and pipe flows of engineering rel-

vance [21,46,48,65] , (e.g. Re τ = 10 3 to 10 5 ). At the time of writ-

ng, the highest Reynolds number LES of turbulent pipe flows is

e τ = 2200 , described by Berrouk et al. [4] . LES for lower Reynolds

umbers have been proposed in [8,15,23,22] . 

https://doi.org/10.1016/j.compfluid.2019.104239
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.104239&domain=pdf
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Explicit LES techniques derive subgrid models by introducing

filtering into the Navier–Stokes (NS) equations to then model un-

resolved terms. Multiple filters and subgrid models have been pro-

posed [54] . In this work, we select the “stretched-vortex model”

(SVM) approach, which has been proposed by Misra and Pullin

[45] and Chung and Pullin [14] , henceforth referred to as SVM . This

model, which will be detailed later, models the unresolved subgrid

vorticity, in each cell, as a superposition of stretched vortices, each

unidirectional and of “cylindrical” type. Extensions of the model to

account for complex physics may be found in [56,57] for smooth

and rough-wall channel flows, in [26,27] for turbulent boundary-

layer flows, in [28] for attached-flow under adverse pressure gra-

dients or more recently in [9,10] for detached flows. 

Alternatively, implicit LES [6,20] use the numerical dissipation

inherited from the numerical scheme (e.g. from upwinding the

non-linear terms or finite element stabilization terms) to account

for subgrid effects and hence do not require an explicit mod-

elling of the unresolved terms. Implicit methods have seen an

increased popularity when combined with high-order numerical

techniques, e.g. [3,17] , which show dissipation and dispersion er-

rors that are confined to high wave number ranges hence lim-

iting the numerically added dissipation to only weakly-resolved

regions [2,19,24,42,47,58] . Among the existing implicit techniques,

the spectral vanishing viscosity (SVV) method (e.g. see [30,34,37] )

introduces an additional dissipative term (only to the highest

wavenumbers) that enhances stability, vanishes in the laminar

limit and provides spectrally accurate solutions (i.e. maintains ex-

ponential convergence in high order methods). 

Explicit and implicit LES techniques may not provide the correct

behaviour near the wall. One possibility is to increase the mesh

resolution near the wall such that DNS solutions are obtained near

walls. This approach has been reported by Chin et al. [12] for pipe

flow but the authors only achieved a reduction of O(10) with re-

spect to fully resolved DNS for Re τ = 10 0 0 . A different approach

considers wall functions to relax the mesh constraint near walls.

As explained by Piomelli and Balaras [51] and Piomelli [50] , there

is a huge potential when using wall models in LES since the num-

ber of required grid points, to fully resolve the inner layer, scales

with streamwise-distance ( z ) based Reynolds number Re z as Re 2 . 4 z .

Wall modelling is therefore a practical necessity to apply LES to

high Reynolds number flows to obtain a weak dependence on Re z .

Both explicit and implicit LES techniques proposed in this work in-

clude wall models. See [7,38,51,60] for reviews of wall models in

LES. 

This work is composed of three contributions. First, we adapt

the stretched-vortex model SVM to a high-order continuous-

Galerkin solver to compute pipe flows. Second, we extend the idea

of distinguishing between near-wall and far-wall regions to im-

plicit LES methods. We use a high-order SVV technique to com-

pute the far region, while the near wall is modelled using SVM ’s

wall model: the virtual-wall model (VWM). To the authors’ knowl-

edge, the combination of SVV and wall modelling has not been at-

tempted before. Third, we compute turbulent pipe flow using both

methods and compare the results for Re τ = 2 × 10 3 and 1.8 × 10 5 

to experimental data. Two main findings are detailed. First, the

SVM is capable of predicting the turbulence statistics accurately

even at high Reynolds numbers and second, the SVV method (no

wall modelling) provides accurate enough statistics but is over-

dissipative if compared to the proposed SVV method with wall-

models. 

The rest of the paper is organized as follows. First, we introduce

the numerical methodology with emphasis on the SVM adapted to

the high-order h / p solver, the SVV technique and the near wall

treatment. Second, we compare results for explicit and implicit

methods to experimental data. We finalize the paper with conclu-

sions. 
e  
. Methodologies 

We start by summarising the h / p high-order technique and then

ncorporate the stretched-vortex model. We additionally provide

etails on the SVV technique and the virtual-wall model). 

.1. High order h / p spectral method using Semtex 

Both explicit and implicit LES techniques described herein have

een implemented in the framework provided by the parallel

alerkin spectral element–Fourier code Semtex [5] . We sum-

arise here the main characteristics to then detail the required

odifications to compute LES flows. The incompressible NS equa-

ions can be written as: 

∂ u 

∂t 
+ N (u ) = −∇ p + ν∇ 

2 u + f , ; ∇ . u = 0 , (2.1)

here u = (u, v , w ) T represents the flow velocity vector, p is the

atio of pressure to fluid density, ν is the kinematic viscosity and f

n arbitrary body force. Eq. (2.1) introduces a general description

or the non-linear terms N ( u ). The baseline “standard” Semtex
ormulation (without turbulence model) uses the skew-symmetric

ormulation: 

 (u ) = 1 / 2 ( (u · ∇) u + ∇ · ( u � u ) ) . (2.2)

his form is preferred for its stability properties, in that it min-

mises aliasing errors as shown by Zang [62] . Additionally, Zang

roposed an alternative skew-symmetric form, which is less ex-

ensive and is obtained when combining the convective form:

 u ·∇) u , and divergence form: ∇ · ( u �u ), on alternate time steps,

uch that after two time steps, the skew-symmetric formulation,

q. (2.2) , is recovered. We favour the alternative form since it pro-

ides stable turbulent solutions at a reduced cost. 

Eq. (2.1) is integrated in time using a stiffly-stable scheme with

oefficients γ 0 , αn and βn , where the non-linear terms are treated

xplicitly while pressure and viscous terms are treated implicitly 

γ0 u 

n +1 − ∑ J−1 
q =0 

αq u 

n −q 

�t 
+ 

J−1 ∑ 

q =0 

βq 

[
N ( u 

n −q ) + f n −q 
]

= −∇ p n +1 + ν∇ 

2 u 

n +1 . 

(2.3)

he resulting equation is separated using an intermediate variable

ˆ 
 into four steps: an explicit non-linear advection, an implicit pres-

ure solve (Poisson equation) and an implicit velocity correction

Helmholtz equation), resulting in the scheme 

γ0 ̂  u − ∑ J−1 
q =0 

αq u 

n −q 

�t 
= −

J−1 ∑ 

q =0 

βq 

[
N ( u 

n −q ) + f n −q 
]
, (2.4)

∇ 

2 p n +1 = − γ0 

�t 
∇ · ˆ u , (2.5)

−∇ 

2 + 

γ0 

ν�t 

)
u 

n +1 = 

1 

ν

(
γ0 

�t 
ˆ u − ∇ p n +1 

)
. (2.6)

ere u 

n denotes the velocity vector evaluated at time t = n �t, for

 ∈ N . The temporal accuracy is determined by the parameter J ,

hich we fix to J = 2 in this work; i.e γ0 = 3 / 2 , α0 = 2 , α1 = −1 / 2 ,

0 = 2 and β1 = −1 , but may be increased to 3 in Semtex . 
The Poisson equation Eq. (2.5) must be equipped with a suitable

eumann boundary condition at inlet and walls [32] 

∂ p 

∂n 

n +1 

= −n · ∂ u 

∂t 

n +1 

− n ·
J−1 ∑ 

q =0 

βq 

(
N ( u 

n −q ) + f n −q + ν∇ × ω 

n −q 
)

(2.7)

here ω = ∇ × u is the vorticity. In summary, the NS momentum

quation Eq. (2.3) can be solved efficiently using four sequential
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teps Eqs. (2.4 –2.6 ). Further details may be found in [5] , and refer-

nces therein. 

We perform a high-order conformal Galerkin discretisation on

he x –y or R − θ plane and couple the resulting scheme with a

ourier discretisation to account for the homogeneous streamwise

 -direction. A complete discussion of the numerical methods for

NS is included in [5] . In the next section, we will introduce the

ecessary modifications to include the SVM , which will require the

odification of the forcing term in Eqs. (2.1) and (2.3) . 

.2. Explicit LES: Stretched-vortex model ( SVM ) adapted to a 

igh-order h / p solver 

We summarise here the main ingredients of Chung & Pullin’s

tretched-vortex model and detail the implementation in Semtex .
We start by considering the decomposition u i (t) = ̃

 u i (t) + u ′ 
i 
(t) ,

here the full-scale velocity u i ( t ) is decomposed into a filtered

esolved-scale velocity ˜ u i (t) and an under-resolved velocity u ′ 
i 
(t)

and similarly for the pressure). Note that we have considered an

mplicit filtering, with the only filtering parameter being the cutoff

ength associated with the local grid-scale �c (to be defined later).

ntroducing the decomposition into the NS equations, Eq. (2.1) , we

btain 

∂ ̃  u 

∂t 
+ ∇ . ( ̃  u � ˜ u ) = −∇ ̃

 p + ν∇ 

2 ˜ u − ∇ . T ; ∇ . ̃  u = 0 , (2.8) 

here the stress tensor T i j = 

˜ u i u j − ˜ u i ̃  u j = 

˜ ˜ u i u 
′ 
j 
+ 

˜ u ′ 
i ̃

 u j + 

˜ u ′ 
i 
u ′ 

j 
, re-

uires modelling. 

The SVM [14,45] , also called stretched-vortex model, is a struc-

ural subgrid model designed to represent the statistical effect of

ubgrid motion by using information from resolved scale quan-

ities [45] . It is assumed that the subgrid vorticity in each cell

omprises a superposition of stretched vortices, each unidirectional

nd of “cylindrical” type. Upon coordinate transformation from the

ortex-fixed frame to the lab-fixed frame, the distribution of ori-

ntations of the vortex structures forms a probability density func-

ion (PDF), which reflects the local anisotropy of turbulence [52] .

xtending the assumption that the ensemble dynamics of subgrid

cale motions are dominated by a vortex aligned with a unit vector

 v (modelled via a delta-function PDF), the subgrid stress tensor is

iven by: 

 i j = (δi j − e i 
v e j 

v ) K. (2.9) 

his stress tensor T , Eq. (2.9) , is expressed in terms of the unit vec-

or, e v , and the subgrid kinetic energy K , which is given by the in-

egral of the subgrid stress energy spectrum E ( k ) as K = 

∫ ∞ 

k c 
E(k ) dk,

here k c = π/ �c is the cut-off wave number. The energy spec-

rum for turbulent incompressible flows E ( k ) is known to have the

symptotic solution of the form of Eq. (2.10) for large wave num-

er k , where ε is the dissipation rate per unit mass and η is the

olmogorov length. This relation was initially obtained using di-

ensional reasoning by Kolmogorov, and later derived from the NS

quations by Lundgren [40] for stretched spiral type vortices, 

(k ) = ε 2 / 3 k −5 / 3 F (ηk ) = κ0 ε 
2 / 3 k −5 / 3 exp 

(
−2 k 2 ν

3 | a | 
)

, (2.10)

here a = e v 
i 
e v 

j 
S i j is the stretching along the subgrid vortex axis

xerted by the resolved scales, and S ij is the resolved strain-rate

ensor. Upon integration of Eq. (2.10) , with respect to k , the subgrid

inetic energy is obtained in terms of a group constant K 

′ 
0 and an

ncomplete gamma function: 

 = 

1 

2 

K 

′ 
0 �

[ 
−1 

3 

, κc 
2 
] 
, 

here �[ s, t] = 

∫ 
t 
∞ 

u s −1 exp (−u ) du Here, K 

′ 
0 = K 0 ε 

2 / 3 λv 
2 / 3 

, λv =
(2 ν/ 3 | a | ) 1 / 2 and κc = k c λv . The approximation of �[ s, t ] and the

valuation of K 

′ are given in [14] . 
0 
The definition of the cut off length �c is based on the

auss–Lobatto points associated to the polynomial order in the

igh-order continuous-Galerkin discretisation, such that �c =
�x �y �z ] 

1 / 3 . Instead of calculating neighbouring points in the

artesian global system ( x, y, z ), they are evaluated in the lo-

al ( i, j, k ) coordinate system of each element, such that: �c;i jk =
(l i +1 l i −1 l j+1 l j−1 l k +1 l k −1 ) 

1 / 6 where 

l i +1 = ((x i +1 ; jk − x i jk )(y i +1 ; jk − y i jk )(z i +1 ; jk − z c;i jk )) 
1 / 3 , 

l j+1 = ((x i ; j+1 ;k − x i jk )(y i ; j+1 ;k − y i jk )(z i ; j+1 ;k − z i jk )) 
1 / 3 , (2.11) 

 k +1 = ((x i j;k +1 − x i jk )(y i j;k +1 − y i jk )(z i j;k +1 − z i jk )) 
1 / 3 , 

here l denotes the local coordinates. Note that this calculation is

erformed only once before the simulation begins, therefore caus-

ng little computation overhead. To clarify the notation and coordi-

ate axis, we include Fig. 1 , where the cylindrical coordinates and

he local system based on Gauss–Lobatto points, used to define the

ubgrid cut-off length, are depicted. 

Additionally, we have tested alternatives to this definition for

he cut off length �c . Instead of using Gauss–Lobatto points, one

ay consider a definition based on the polynomial expansion on

he R − θ plane and distinguish the Fourier z -direction, e.g. �c =
�R −θ�z ] 

1 / 3 = [ A (π/P ) 2 �z ] 
1 / 3 . The last expression is inspired by

29,31] , where A defines the element area in 2D (i.e. the R − θ
alerkin plane), P is the polynomial order of the elements. The ra-

io π / k represents the resolved half wavenumber for a given poly-

omial of order P , see [29,31] and references therein. The simu-

ated statistics obtained when using this last expression were very

imilar to those found when using Gauss–Lobatto points, Eq. (2.11) ,

nd therefore only Gauss–Lobatto results are included hereafter. 

Finally, to implement the turbulence model into the splitting

cheme in Semtex (see Section 2.1 ), we can redefine, in Eq. (2.3) ,

 −→ ̃

 u and p −→ ̃

 p as the filtered large scale velocities and pres-

ures. At each time step the divergence of subgrid stress matrix

. T is computed (see Eq. (2.9) ) and incorporated to the tempo-

al scheme through the forcing term f , see Eq. (2.3) . We treat this

ensor explicitly in time, such that only the non-linear step in the

plitting scheme, Eq. (2.4) , requires modification by setting f = ∇ . T .

.3. Implicit LES: Spectral vanishing viscosity (SVV) 

The main idea behind the spectral vanishing viscosity (SVV)

echnique is to add controlled artificial viscosity only to the high-

st modes in order to provide stabilisation in high order numerical

ethods. This technique does not modify the lowest modes and

ence preserves the spectral accuracy of the method (see [49] or

34] for a detailed explanation). The SVV technique was originally

onceived by Tadmor [61] to regularise the solution (i.e. avoid os-

illatory phenomena) in the inviscid Burgers equation: 

∂ 

∂t 
u (x, t) + 

∂ 

∂x 

[
u 

2 (x, t) 

2 

]
= 0 , (2.12) 

ubject to appropriate initial and boundary conditions. Tadmor in-

roduced in Eq. (2.12) a convolution term that only acts on high

avenumbers, leaving low wavenumbers unchanged. The discrete

orm of the previous Burgers equation with the regularisation term

eads: 

∂ 

∂t 
u N (x, t) + 

∂ 

∂x 

[
P N 

(
u 

2 (x, t) 

2 

)]
= ε

∂ 

∂x 

[
Q N ∗ ∂u N (x, t) 

∂x 

]
, 

(2.13) 

here u N ( x, t ) is the Nth order modal approximation of u ( x, t ), P N 

s a projection operator and 

∗ represents the convolution. In ad-

ition, Q N is a damping function (also called viscosity kernel ) that

ecomes active for high wavenumbers only. In the particular case
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Fig. 1. a) Cylindrical coordinates for pipe simulations and b) detailed view of one spectral element. The local coordinate system ( i, j ) and Gauss–Lobatto points used to define 

the cut-off length are included in the figure. 
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of a Fourier discretisation (i.e. the streamwise z -direction in this

work), the SVV regularisation term becomes: 

ε
∂ 

∂x 

[
Q N ∗ ∂u N (x, t) 

∂x 

]
= −ε

∑ 

P cut ≤| k |≤N 

k 2 ˜ Q k ̃  u k e 
ikx , (2.14)

where k is the wave number, N is the number of Fourier modes

and P cut is the wavenumber for the damping function to become

active. Various definitions for the Kernel ˜ Q k have been proposed

(e.g. Tadmor [61] ) but in this work, we retain the formulation of

Maday [41] and Xu and Pasquetti [64] : 

˜ Q k = exp 

[
− (k − N) 2 

(k − P cut ) 2 

]
, k > P cut . (2.15)

Note that it is necessary to define the cut-off wavenumber P cut and

the spectral viscosity ε. As in Xu and Pasquetti [64] or Koal et al.

[37] , the present implementation uses: P cut = N/ 2 and ε = εSV V ν,

where ε is proportional to the kinematic viscosity ν and εSVV is a

constant that controls the amount of SVV viscosity. 

In the R − θ plane, quadrilateral nodal spectral elements are

used to discretise the pipe. When using two-dimensional tensor

products of one-dimensional Lagrange interpolants through the

Gauss–Lobatto quadrature points, the derivative operator matrices

that construct the diffusion operators are modified via: (i) Trans-

formation to Legendre polynomial space; (ii) factorization with a

diagonal matrix of form: diag [1 + (ε/ν) ̃  Q k ] 
1 / 2 , where ˜ Q k is of the

same form as when considering the Fourier direction, but where

now N is the order of the Gauss–Lobatto Lagrange interpolants

( N = 9 in this work) and k is a Legendre polynomial index; and (iii)

inverse transformation from Legendre polynomial space to physical

space. Refer to [37] for further details. 

As mentioned, the SVV method requires adjustment of the cut-

off wavenumber P cut and the spectral viscosity ε. Various studies

have attempted to derive parameter-free SVV techniques, where

these parameters are computed using different ideas. For exam-

ple, Karamanos and Karniadakis [30] , Kirby and Karniadakis [35] or

more recently or Manzanero et al. [42] have computed the amount

of SVV viscosity using a Smagorinsky model. Additionally, Moura

et al. [30] and also Manzanero et al. [42] analyse the numerical

errors of continuous and discontinuous Galerkin schemes (based

on Von Neumann analyses) to set the cut-off wavenumber P cut .

Despite these efforts and to the authors’s knowledge, there are

no universal parameter-free SVV schemes usable for all Reynolds

numbers and flow conditions, and hence these parameters will be

calibrated in upcoming sections, as in [37,49] . 
.4. Wall modelling: The virtual-wall model (VWM) 

A major challenge for LES of wall-bounded flows is that the tur-

ulent length scales become progressively smaller towards the wall

ue to confinement of the near-wall eddies. In near wall resolved

ES, this is addressed by introducing a very fine uniform mesh near

alls. This enables the capture of near-wall fine scales but requires

 very high computational effort. In wall-modelled LES methods

WMLES), near-wall fine scales are modelled, thus eliminating the

eed for very fine meshes. 

Recent reviews of wall models for LES have been compiled by

arsson et al. [38] and Bose and Park [7] , and update classic re-

iews [51,60] . Larsson et al. explain that WMLES methods may

e categorised in two approaches: hybrid LES/RANS methods and

all-stress models. The former utilises Reynolds Averaged Navier–

tokes (RANS) to model the turbulent behaviour near walls, while

he latter type develops wall-stress models to avoid resolving the

ear-wall region. Additionally, Larsson et al. detail that a drawback

f the hybrid LES/RANS methods is that an “artificial buffer layer”

ith log-layer mismatch may occur leading to artificial physical

tructures that survive into the LES region. Physics-based wall-

tress models do not show artificial layers and have seen increas-

ng popularity during the last decade. The underlying idea of wall-

tress models is that an estimate of the instantaneous wall shear

tress vector can be obtained given an instantaneous velocity at a

ertain distance above the wall. Note that to avoid resolving tur-

ulence in the near-wall region, the wall-model equations must be

xpressed as low-pass filtered or ensemble-averaged. In this work

e employ the ensemble-averaged approach. 

Wall-stress models can be formulated from the filtered form

q. (2.8) , introducing boundary layer approximations (considering

, y and z , the spanwise, wall-normal and streamwise directions),

o obtain the following ODE: 

∂ ̃  u 

∂t 
+ 

∂ ̃  uu 

∂x 
+ 

∂ ̃  u v 
∂y 

+ 

∂ ̃  uw 

∂z 
= −∂ ̃  p 

∂x 
+ ν

∂ 2 ˜ u 

∂y 2 
. (2.16)

rom Eq. (2.16) and assuming exact balance between convection

nd the pressure-gradients, one may obtain the simplest wall

odel: the well known law of the wall where u + ≈ y + for y + � 5

nd u + ≈ ln (y + ) /κ + C for y + � 30 . Other simple models are re-

iewed in [51,60] . 

In this work, we employ the virtual-wall model (VWM) pro-

osed by Chung and Pullin [14] , where an ODE is derived to model

he time variation of instantaneous, filtered wall skin-friction ve-

ocity. The resulting ODE is driven by a forcing term that depends

n the resolved scales at a distance h from the wall. This distance h

s generally smaller that the first wall adjacent mesh element, and
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Fig. 2. Sketched of mesh including the location of the virtual-wall model: a) Shows the virtual wall location with respect to the pipe and b) Provides a detailed view of a cell 

element. The statistics for the model are collected at Gauss–Lobatto points, which are close to the height h 0 . The wall cell height h and the virtual wall location h 0 = 0 . 18 h 

are included in the figure. 
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t  
n our high-order implementation corresponds to the first Gauss–

obatto point (closest to the wall), see Fig. 2 for an illustration. The

WM has been validated for LES of smooth and rough-wall chan-

el flows [56,57] and for fully developed turbulent boundary-layer

ow for both zero pressure gradient [26,27] and attached-flow APG

ases [28] . 

More precisely, Chung and Pullin argued in [14] that the dom-

nant parameter for near wall-modelling is u τ , which can be cal-

ulated by averaging Eq. (2.16) in the wall-normal direction and

elying in local inner scaling to treat the time-dependence of the

ltered wall-parallel velocity. Consequently the notation used here

s particularised to the expectation that the basic flow (and slip

elocity) is aligned with the streamwise z-direction. The resulting

DE describes the local wall-normal velocity gradient η0 = ∂ ̃  u /∂y

r equivalently u 2 τ = νη0 . At the interface between the wall model

nd outer flow region, Chung & Pullin define a slip velocity, thus

roviding the outer LES with slip Dirichlet boundary conditions;

.e. at a lifted virtual wall. 

In this work, the streamwise, wall-normal, and spanwise direc-

ions are set as x ; y ; z directions; the adaptation to cylindrical pipe

oordinates will be introduced later for simplicity. As in SVM , we

ntroduce an ODE for the wall-normal shear stress at the wall: 

˜ u | h 
2 η0 

∂η0 

∂t 
+ 

∂ < ̃

 uu > 

∂x 
+ 

∂〈 ̃  uw 〉 
∂z 

+ 

1 

h ̃

 u v 
∣∣∣

h 

= −∂ ̃  p 

∂x 

∣∣∣
h 

+ 

ν

h 

(
∂ ̃  u 

∂y 

∣∣∣
h 

− η0 

)
, (2.17) 

 

 | h 0 = u τ

(
1 

κ
log ( h 

+ 
0 + B ) 

)
(2.18) 

ith u 2 τ = νη0 . Here 〈 ̃  φ(x, z, t) 〉 = h −1 
∫ ˜ φ(x, y, z, t) dy denotes the

patial average in the wall normal direction, see further details in

14] . Note that in our notation z denotes the streamwise compo-

ent and not x as in [14] . Let us note that the Kármán-like parame-

er κ in Eq. (2.18) is not chosen a priori but evaluated dynamically

uring the course of the simulations. Eq. (2.18) may be rewritten

s 

dη0 

dt 
= �(t) η0 (γ − η0 ) , (2.19) 

here �( t ) and γ ( t ) are defined as 
(t) = 

2 ν

hw | h ;

γ (t) = − h 

ν

(
∂〈 ̃  uu 〉 
∂x 

+ 

∂〈 ̃  uw 〉 
∂z 

+ 

1 

h ̃

 u v 
∣∣∣

h 

+ 

∂ ̃  p 

∂x 

∣∣∣
h 

)
− ∂ ̃  u 

∂y 

∣∣∣
h 

, (2.20) 

he formal analytic solution to Eq. (2.19) may be found in [14] : 

1 

η0 (t) 
= 

I(t) 

η0 (0) 
+ I(t) 

∫ t 

0 

�(s ) 

I(s ) 
ds, (2.21) 

nd 

(t) = exp 

(∫ t 

0 

�(s ) γ (s ) ds 

)
. (2.22) 

or the purposes of solving the ODE, the function �( t ) and γ ( t )

an be considered functions of time sourced from information sup-

lied by the LES at y = h . Eq. (2.21) is approximated to first order

o obtain Eq. (2.23) in our implementation 

1 

η0 (t) 
= 

1 

η0 (0) 
exp ( −t�( 0) γ ( 0) ) − 1 

γ (0) 
( 1 − exp ( −t�( 0) γ ( 0) ) ) . 

(2.23) 

e adapt the ODE Eq. (2.20) to cylindrical coordinates, such that

 –y represents the cross-section of the circular pipe, with radius R

nd azimuthal angle θ and z runs along the longitudinal stream-

ise direction, see Fig. 1 , to obtain: 

(t) = 

2 ν

hw | R −h 

; γ (t) = − h 

ν

(
∂〈 ̃  ww 〉 

∂z 
+ 

1 

R 

∂〈 ̃  wu θ 〉 
∂θ

+ 

(
1 

R 
− 1 

h 

)˜ wu r 

∣∣∣
R −h 

+ 

∂ ̃  p 

∂z 

∣∣∣
R −h 

)
− ∂ ̃  w 

∂r 

∣∣∣
R −h 

− ˜ w | R −h 

R 
, 

(2.24) 

here u r and u θ denote the radial and azimuthal flow directions. 

The slip velocity is calculated locally and dynamically through

 τ
2 = νη0 (where η0 is obtained by solving Eq. (2.21) ), which re-

uires the ability to apply the time- and space-varying Dirichlet

oundary conditions. It has been found that the wall-normal veloc-

ty (even when considering roughness [57] ) is three to four orders

f magnitude smaller than the wall-parallel slip velocity; thus, the

ertical velocity at the virtual wall is omitted in our simulations. 

Finally, as proposed in [14,27,56,57] , the spatially averaged

erms, in Eq. (2.24) , can be approximated by sampling resolved and
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Fig. 3. SVM at Re τ = 1 . 8 × 10 5 : a) Flow solution isocontours of streamwise velocity at a) sectional pipe ( R − θ ) plane and b) longitudinal planes ( R − z) along the pipe; a) 

and b) show 11 contours ranging from 0 to 1. 
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modelled quantities (when available); for example, using the ap-

proximation: 

∂〈 ̃  u i u j 〉 
∂x j 

≈ ∂ ̃  u i u j | h 
∂x j 

= 

∂ ̃  u i | h ̃  u j | h 
∂x j 

+ 

∂T i j 

∂x j | h . (2.25)

Note that when subgrid scales are modelled (as in the stretched

vortex SGS model), we typically use the right hand side of

Eq. (2.25) and compute the subgrid terms using Eq. (2.9) . How-

ever, when using implicit LES (see Section 2.3 ), these subgrid terms

are not modelled and are not available. One possibility to close the

wall model is to use the definition of T ij from the stretched vor-

tex SGS model, even when the model is not active (in the mo-

mentum equation Eq. (2.8) ). A second option is to approximate

〈 ̃  u i u j 〉 ≈ ˜ u i | h ̃  u j | h and neglect under-resolved fluctuations close to

the wall such that T i j = 0 . We use the last option, which is less

costly, after having tested both possibilities and observing only mi-

nor differences. 

2.4.1. Summary of the virtual-wall model 

Three main steps are required to compute the slip boundary

condition for LES: 

1. The friction velocity u τ is calculated locally and dynamically

over the time-step, making use of the relation u 2 τ = νη0 ,

where η0 is obtained by solving Eq. (2.21) . The input to the an-

alytic function, Eq. (2.21) , is supplied by the outer LES (at dis-

tance h from walls). 

2. With an updated u τ , now known at every point on the wall, a

local slip velocity is calculated using Eq. (2.24) and is supplied

to the outer LES as the boundary conditions at the lifted virtual

wall (at distance h 0 ). 

3. With the boundary condition at each grid point on the virtual

wall now known, one time-step of the LES equations is then

performed using Semtex , Eq. (2.3) . 

In terms of assumptions, inputs and interactions, we can sum-

marize the framework as follows. The VWM assumes inner-scaling

in calculating the friction velocity and slip velocity; it is in this way

that the wall model is designed to be optimal for high Reynolds

number flow, where such scaling is clearly identified. Operating

on smooth walls, the model requires two empirical values: the

log-linear profile intersect, h + ν and virtual wall height, h 0 = 0 . 18 h,

where h = �r is the height of the first wall-adjacent cell. We have

not found noticeable differences when varying h 0 , which is consis-

tent with the numerical tests of SVM [14] . To clarify the notation

introduced in this last section, we provide a sketch of mesh, in

Fig. 2 , and include the height of the first mesh element h (adja-

cent to the wall) where the statistics necessary for the wall model
re collected. Additionally, at height h 0 = 0 . 18 h, we depict the lo-

ation of the lifted virtual wall (almost overlapped to the physical

all). In practice, since the solver has a nodal structure, the statis-

ics are collected at the first Gauss–Lobatto points at the edge of

he first cell (at a distance h ). 

.5. Mesh resolution and post-processing 

The computational domain is set to have dimensions ( R; θ ;

 z ) = (0.5; 2 π ; 2 π /0.4 ∼ 15.7) and uses approximately 1.5 M

ode points. Using a cylindrical formulation, we take the stream-

ise z -direction as the Fourier direction and use 320 z -planes.

ach plane consists of 48 elements, as shown in Figs. 1–3 . Ele-

ents are organized into four layers in the radial R -direction, with

he two outer-most layers having 16 elements around the circum-

erential θ-direction. Along with the 320 z -planes and 9th order

olynomials (P = 9), we aim to have an effective grid size ratio of

 r : d z = 1 : 4 , based on our previous experience [14,45,57] in us-

ng the SVM . We use the same mesh for explicit and implicit LES

omputations. 

The Reynolds numbers selected for the simulations are cho-

en based on the existence of available experimental data. These

eynolds numbers based on the pipe radius and friction veloc-

ty are varied from Re τ = 2 × 10 3 to Re τ = 1 . 8 × 10 5 . Defining the

e D = u b D/ν, where u b is the bulk velocity and D denotes the pipe

iameter. The corresponding bulk Reynolds numbers are Re D =
 . 18 × 10 4 and 1.65 × 10 8 , respectively, according to Blasius’ corre-

ation. In this work, the mesh does not change with Reynolds num-

er, and hence increasing Reynolds number corresponds to increas-

ng under-resolution. Taking the first inner Gauss–Lobatto point

s reference length (see Fig. 2 ), we compute the non-dimensional

esh sizes of ( �r + = �y + ; �θ+ ; �z + ) = (12.1; 31.6; 196.4) and

 �r + = �y + ; �θ+ ; �z + ) = (1208.5; 3163.7; 19667.8) for the low

nd high Reynolds numbers, respectively. The mesh and instanta-

eous stream-wise velocity are shown in Fig. 3 for Reynolds num-

er Re τ = 1 . 8 × 10 5 . 

To compute flow statistics, raw data is first averaged over the

tream-wise direction (Fourier direction). Then, the stream-wise-

veraged data is sampled at forty evenly spaced points, defined

adially from the pipe center to the virtual wall. Should one of

hese sample points not coincide with a knot point of the Gauss–

obatto–Legendre basis functions, a two-dimensional interpolation

s carried out. This sample is referred to as a “ray”. Sixteen of such

ays are sampled around the circumferential direction with equal

ngular spacing, and subsequently averaged to obtain the final pro-

les. 
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Fig. 4. Chung & Pullin model ( SVM ): Comparison of turbulence statistics for pipe flow at Re τ = 2 × 10 3 and 1.8 × 10 5 ; a) mean streamwise velocity; b), c) and d) streamwise, 

azimuthal and radial Reynolds stresses, respectively. 

Fig. 5. Chung & Pullin model ( SVM ): Comparison of turbulence statistics for pipe flow at Re τ = 2 × 10 3 and 1.8 × 10 5 . Effect of including subgrid fluctuations in (a) azimuthal 

and (b) radial Reynolds stresses. 
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. Results and discussion 

Experimental data used for comparison in following sections

as been extracted from published work. McKeon et al. [43] sup-

lied mean streamwise data for a large range of Reynolds number

e D = 31 × 10 3 to 18 × 10 6 . Streamwise fluctuations are provided

y Hultmark et al. 2012 [25] at Re τ = 1985 and 98 187. Azimuthal

nd radial Reynolds stresses are available at Re τ = 2 × 10 3 , from

hin et al. [11] , and radial Reynolds stresses for Re D = 6 . 4 × 10 6 

ave been extracted from Zhao and Smits 2007 [66] . These experi-

ents cover the two Reynolds numbers simulated in this work and

nable comparison for streamwise, azimuthal and radial statistic.

f  
ote that in what follows the radial distance to the wall is denoted

y + We present results for two relatively high Reynolds numbers

e τ = 2 × 10 3 and 1.8 × 10 5 . First, we include results issued from

he SVM . Second, we study the spectral vanishing viscosity results

ith and without wall models. 

.1. Explicit LES: Stretched-vortex model 

Fig. 4 compares SVM to experimental data. We observe general

greement for both Reynolds numbers Re τ = 2 × 10 3 and 1.8 × 10 5 .

dditional Reynolds numbers may be found in the Ph.D. thesis of

he second author [55] . The mean streamwise velocity distributions

ollow the log distribution and agree well with the experimental
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Fig. 6. No model: No explicit or implicit model is included. The simulation is stable when using the alternate skew-symmetric for Re τ = 1 . 8 × 10 5 ; a) mean streamwise 

velocity; b), c) and d) streamwise, azimuthal and radial Reynolds stresses, respectively. 

Fig. 7. SVV model: Comparison of turbulence statistics for pipe flow at Re τ = 2 × 10 3 and 1.8 × 10 5 ; and calibration of SVV parameters. 
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data. The Reynolds stresses also agree remarkably well with ex-

perimental data. The stresses depicted in Fig. 4 include the sub-

grid contribution that are computed in a post-processing step and

added to the solution (resolved-scales), following ˜ u i u j = ̃

 u i ̃  u j + T i j ,

see Eq. (2.8) . These stresses follow the experimental data once the

under-resolved fluctuations, are included into the resolved-scales.

To discern the effect of the post-processing step, we depict in

Fig. 5 the azimuthal and radial stresses with and without the sub-

grid contributions. It is noticeable that the resolved stresses curves

are low compared to the experiments but once the subgrid correc-

tion are included, the results agree well with experiments. Let us

note that including the under-resolved (or subgrid) contributions is

only possible when using explicit subgrid models. This procedure

will not be performed when using implicit LES using SVV, since

the subgrid information is not available. 
.2. Implicit LES: SVV without wall model 

Before activating the spectral vanishing viscosity model, we per-

orm a preliminary simulation without any turbulence model at

he highest Reynolds number Re τ = 1 . 8 × 10 5 . When using the al-

ernate skew-symmetric form in the given grid, we find that the

imulation is stable, which is a beneficial consequence of using a

kew-symmetric form. Note that when using other forms to dis-

retise the non-linear terms, e.g. convective form, the simulations

ere unstable. 

The “no-model” result (using the alternative skew-symmetric

orm but without explicit or implicit subgrid modelling) is de-

icted in Fig. 6 , together with the previous result using the SVM

xplicit model for comparison. It can be seen that when we do not

nclude any model, the statistics are very different from the ex-
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Fig. 8. SVV model: Comparison of turbulence statistics for pipe flow at Re τ = 2 × 10 3 and 1.8 × 10 5 ; a) mean streamwise velocity; b), c) and d) streamwise, azimuthal and 

radial Reynolds stresses, respectively. 

Fig. 9. WALL-SVV: Comparison of turbulence statistics for pipe flow at Re τ = 2 × 10 3 and 1.8 × 10 5 ; a) mean streamwise velocity; b), c) and d) streamwise, azimuthal and 

radial Reynolds stresses, respectively. 
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Fig. 10. Comparison of Reynolds shear stresses < u R 
′ w 

′ > for pipe flow at Re τ = 2 × 10 3 and 1.8 × 10 5 ; a) Chung & Pullin model ( SVM ) and b) WALL-SVV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Friction factor f with Reynolds number based on bulk velocity: Chung & 

Pullin model ( SVM ), SVV, WALL-SVV and experimental result of McKeon et al. [44] . 
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periments. These results may seem counter-intuitive since, when

running implicit LES simulations, typically one may think that a

stable solution with minimal numerical dissipation should provide

the best result, but this is not the case. Here, the stable sim-

ulation with minimal numerical dissipation (i.e. “no-model” us-

ing the alternative skew-symmetric form) does not provide accu-

rate results, which suggests that additional subgrid dissipation is

necessary. Similar observations for turbulent flows using implicit

LES methods with compressible discontinuous-Galerkin formula-

tions (using skew-symmetric forms as stabilising mechanism) have

been reported by Flad and Gassner [18] . Indeed, stable simulations

do not guarantee accuracy in under-resolved turbulence, and addi-

tional dissipation is required to account for the missing physics of

the subgrid scales. 

We now simulate cases including the SVV model. The SVV

method requires adjustment of two parameters: The SVV viscos-

ity, εSVV , and cut-off wave-number, SVV NM 

acting on R − θ planes

and SVV Z in the streamwise direction. These values are calibrated,

for each Reynolds number, by adjusting the mean streamwise ve-

locity to the log distribution. We illustrate the calibration of the

SVV constants (without wall modelling) in Fig. 7 . Note that only

some selected simulations are retained here. 

For the high Reynolds number, we observe, in Fig. 7 , that the

combination εSV V = 10 0 0 ν with SV V NM 

= P/ 4 and SV V Z = F F T / 4

provides good results. All the other curves are obtained by varying

both the SVV viscosity or the cut-off wave-numbers and provide

incorrect mean statistics. Additionally, for the low Reynolds num-

ber, we show the effect of varying εSVV from 5 ν to 15 ν (i.e. in-

creased by a factor of 3). We observe a significant effect, which is

comparable to keeping the SVV viscosity to 5 ν and including wall

modelling (see Section 3.3 ). 

Once the mean is adjusted, no other tuning is necessary to ob-

tain the depicted Reynolds stresses. Fig. 8 compares the implicit

SVV model with experiments. We observe very good agreement

for both Reynolds numbers and a clear improvement over the “no-

model” method shown previously in Fig. 6 . With the SVV method,

the Reynolds stresses agree well with experiments. We remind the

reader that despite that subgrid contributions cannot be included,

in the post-processing step (when using implicit subgrid models)

the curves match remarkably well with the experiments. This indi-

cates that more scales are resolved when using the implicit model

than when using the explicit SVM LES technique. Finally, let us

note that some oscillations may appear near walls for the stream-

wise and azimuthal Reynolds stresses. If necessary, these oscilla-

tions can be damped by increasing the numerical damping through

the parameter SVV for the streamwise stresses and SVV for the
Z NM 
zimuthal stresses. However, in our results we have preferred to

inimise these values and allow for mild oscillations. 

.3. Implicit LES: SVV with wall model 

In this section, we incorporate the virtual-wall model (VWM) to

he implicit SVV simulations and compare the results to the previ-

us SVV simulations without wall modelling. Fig. 9 shows com-

arisons for the SVV with and without wall modelling, labeled

ALL-SVV and SVV, respectively. It can be seen that for fixed SVV

arameters, both perform relatively well and that the SVV (with-

ut wall model) provides similar fluctuating quantities but higher

ean streamwise distributions. Reynolds stresses are almost iden-

ical. For completeness, in Fig. 10 we compare the Reynolds shear

tresses < u R 
′ w 

′ > issued from the SVV with wall modelling to the

VM . We observe that both provide good results when compared

o experimental data. 

Additionally, we compute the friction factor 

f = 

− dp 
dz 

D 

1 ρW 

2 
, 
2 
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Fig. 12. Snapshots of streamwise velocity for pipe flow at Re τ = 1 . 8 × 10 5 ; showing 11 contours ranging from 0 to 1. 

Fig. 13. Near wall snapshots of streamwise velocity for pipe flow at Re τ = 1 . 8 × 10 5 . Showing 11 contours ranging from 0.2 to 1. 
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here dp 
dz 

is the pressure drop per unit length, D is the diameter

f the pipe, ρ is the fluid density and W is the streamwise flow

elocity averaged over the cross-sectional area of the pipe. We de-

ict the results for the three LES models in Fig. 11 and observe rea-

onable agreement with the experimental results of McKeon et al.

44] and that the SVV without wall modelling over-estimates the

riction factor, behaviour which is corrected when using wall mod-

lling. Note that, for the Chung & Pullin model ( SVM ), two ad-

itional friction factors for Reynolds numbers Re τ = 2 × 10 6 and

 × 10 7 have been included in the figure. Details for these addi-

ional computations may be found in the PhD thesis of the second

uthor [55] . 

Finally, to clarify the influence of wall modelling, we compare

he instantaneous flow fields using the SVM explicit model and the

VV model without and with wall modelling, in Fig. 12 . We ob-

erve that SVM ( Fig. 12 (a)) and WALL-SVV ( Fig. 12 (b)) provide very

imilar flow field distributions and comparable boundary layer

hickness. However, the SVV without wall modelling ( Fig. 12 (c))

hows a thicker boundary layer, which translates into a lower

ean streamwise curve in Fig. 9 . To recover a similar velocity dis-

ribution, one should increase the SVV viscosity ( εSVV ) by a fac-

or of 3 (see previous Fig. 8 ), which results in a more dissipative

imulation. For completeness, we depict the near wall region for

he same three cases in Fig. 13 . Fig. 13 (a) and (b) show a non-zero

treamwise velocity at the slip wall, when using near-wall mod-

lling, while zero velocity at walls is observed when using the SVV

odel without wall modelling, Fig. 13 (c). These last figures show

ow the use of high-order polynomials (e.g. P = 9 here) helps re-

olving turbulent features even when selecting very coarse mesh

lements. 

We have observed that including a wall model when computing

mplicit LES, has limited influence in the Reynolds stresses but no-

iceable variations in the mean streamwise velocity. These results
uggest that wall models help to distinguish between the bulk dis-

ipation and near wall dissipation and that these do not necessary

eed to be similar. Finally, including the wall model, when using

mplicit LES, enables lower artificial SVV viscosity, hence provid-

ng accurate results with diminished dissipation (when compared

o implicit simulations without wall models). 

. Conclusions 

We have introduced explicit and implicit large eddy simulation

echniques in the high-order h / p spectral solver Semtex to com-

ute fully developed turbulent pipe flows at two Reynolds num-

ers Re τ = 2 × 10 3 and Re τ = 1 . 8 × 10 5 . Both methods, stretched-

ortex model ( SVM ) by Chung & Pullin and the spectral vanish-

ng viscosity (SVV) provide accurate statistics at both Reynolds

umbers considered. Particularities of each model are summarised

ere: 

• To retrieve the Reynolds stresses accurately the explicit LES

method requires the inclusion of the under-resolved subgrid

fluctuations, retrieved from the explicit subgrid model (see

Section 3.1 ), which is performed in a post-processing step. 
• The implicit SVV method provided accurate results for the

Reynolds stresses even if its implicit nature does not provide

access to the subgrid stresses (which cannot be included a pos-

teriori). 
• The implicit SVV method requires calibration of the SVV con-

stants, which in this work is performed by matching the mean-

streamwise velocity. The Reynolds stress values were not sen-

sitive to the constants of the SVV model and are in reasonable

agreement with values obtained in experiments. 
• The addition of a wall model into the implicit SVV scheme

shows enhanced accuracy and enables lower levels of artificial

dissipation, which in turn provides a less dissipative bulk flow. 
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• The study suggests that including wall-modelling can be more

important in simulating high-Re wall-bounded flows than the

specifics of the subgrid scheme used for large eddy simulations.

Explicit and implicit LES using wall models do not resolve vis-

cous length scales near the wall but show promise in being capa-

ble of capturing the outer flow structures. These may include very

large-scale motions [33] comprising structures with streamwise ex-

tent of order 5–10 pipe diameters. We conclude that both explicit

and implicit methods are well suited to simulate circular flows in

fully-developed turbulent regimes. 
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