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Semtex Dog
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Source code and user guides (installation instructions) http://www.users.monash.edu.au/~bburn/semtex.html

Semtex Dog



Design of Semtex and Dog
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1. Equal-order quadrilateral 2D elements, no adaptation or mortar patching;
2. Flat 1D storage for field variables, operators to manipulate them.
3. One variety of timestepping (stiffly stable/backward differencing);
4. Continuous Galerkin for elliptic sub-problems, with direct solution the norm;
5. 2D and 2½D: can do 3D flows in geometries that are extruded 2D assuming 

Fourier expansions in homogeneous direction;
6. Incompressible flows in Cartesian and cylindrical coordinates;
7. 2D element shape functions are tensor products of Lagrange interpolants 

through Gauss–Lobatto–Legendre points (makes mass matrices diagonal);
8. Equal-order for velocity and pressure spaces ‘PN–PN’;
9. A simplified XML-like description for session files, inbuilt function parser.

1. UNIX philosophy (a bunch of command-line tools rather than a big 
package with a GUI).

2. Mild object-oriented API (high-level extensions are not very hard).
3. Do just a few things well (it’s not too big to understand).
4. Use a small number of standard libraries (BLAS, LAPACK, MPI, ARPACK).
5. Public domain (GNU licence).

General

Specific

Some practical issues and guidance
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1. It is easy to vary the accuracy of solution by changing spectral element order (‘p-refinement’) BUT this 
is only a good idea once you have refined the element length scales adequately (‘h-refinement’).  
Imagine that element sizes need adjustment until there are a minimum of 5 grid points per wave length. 
Once this point has been reached, solutions generally start to exhibit exponential convergence.

2. As for finite element methods, one can ‘readily’ locally refine where needed.
3. As for global spectral methods, continuous Galerkin spectral element methods are generally poor for 

non-smooth problems (e.g. with shocks).  Can be overcome with discontinuous Galerkin methods(?).
4. It is quite easy to tell visually if you do not have enough resolution (especially by computing vorticity or 

otherwise taking derivatives).  This initially seems like a weakness of the method ... but it’s very useful.
5. Related: solutions are guaranteed C0 (continuous) at element boundaries but C1 (continuity of 

derivatives) is only obtained in the limit of resolution.  Usually this is no problem for DNS but tends to 
mean there will be difficulties with methods which are explicitly under-resolved (like LES).  It may be 
possible to overcome this.

6. For problems like stability analysis where accuracy and low dispersion/diffusion is important, spectral 
element methods are generally excellent.

7. The time-splitting we use gives fast execution and allows equal-order interpolation for velocity and 
pressure.  However, solutions are not divergence-free except in the limit of resolution.  Also, it is not 
possible to apply traction boundary conditions (limited to Dirichlet, Neumann and Robin BCs).

8. Time-split used is semi-implicit so there is usually a CFL timestep restriction.
9. As Reynolds numbers increase it often becomes faster (as well as less memory-hungry) to use iterative 

solution methods over direct solution methods for viscous Helmholtz parts of the timestep.

Spectral element methods are GREAT for some problems but are not a panacea.



Semtex and Dog
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1. Quite an amount of overlap with Nektar++ in workflow, concepts, filenames.  So there 
is a session file which is ‘XML-lite’, base flows are called session.bse, eigenvalue 
estimate file is called session.evl, eigenmodes are called session.eig.X.  Etc.

2. One distinction/extra file not used by Nektar++ is a global numbering file called 
session.num.  If it does not pre-exist, it will be automatically computed with a 
‘moderate’ bandwidth optimisation.  However it is good practice to use an enhanced 
optimisation and run the generation utility ‘enumerate’ by hand. e.g. enumerate -O3 
session > session.num.  You will see this done in a number of the examples.

3. As well as examples described in the Dog userguide, there are a number of other 
testcases in the testcases directory.  These are briefly described in testcases/
README file.  Many of the testcases have a testrun script file which includes the 
commands that need to be run to produce the outcomes in the README file.

4. As a Floquet examplar, it is quicker to use the testcases/cylinder3D case than 
the testcases/Floquet/cylinder case – because a base flow restart file is 
supplied in the former.  Discussion in guidedog.pdf is still relevant (mainly, the 
TOKENS Re and BETA differ between the two cases.)

5. Good idea to have at least these Semtex utilities located thru UNIX PATH variable: 
• enumerate
• compare
• dns
• convert (beware of potential conflict with Imagemagick’s convert)
• sem2tec and preplot

Part 1.  Spatial discretisation

6
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finite element/finite volume

Mesh-based solution techniques for PDEs

Spectral element methods

finite difference

i

j

uδ ={

h
uδ ={ p

spectral
methods

uδ ={

h

The idea of spectral (exponential) convergence

Analytical (+steady) test case,
spectral element-Fourier

linear

machine noise level

linear

machine noise level

linear

High-order methods
have exponential

convergence
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Same data
re-plotted

Number of grid points

Spectral
Elements

Grid points per spectral element

(log) Number of grid points

linear

Low-order methods
have algebraic
convergence

Fourier
Modes

Number of Fourier modes



Spectral elements are high-order finite elements

1D shape functions

2D shape
functions

Assembly

Isoparametric mapping

Fourier expansions
for 3D capability

Simple concurrency across
2D Fourier modes
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Lagrange 
interpolants based 
on Gauss–Lobatto 
quadrature points.

Galerkin MWR for elliptic problems

These terms only on Neumann-BC boundaries since w = 0 on Dirichlet boundaries. �

Partition boundary into 
● ΓD, where Dirichlet/essential BCs g are satisfied (and w = 0 is needed since we don’t know ∂nv there)
● ΓN, where Neumann/natural  BCs h are satisfied.

Start the discretisation with global basis functions N.

Satisfy Dirichlet BCs g on ΓD

WLOG let wi = 1.

10

unknown given

Zero on ΓD

Elliptic scalar equations are all like

to be solved inside a bounded domain

n

�
Helmholtz problem

Standard Galerkin method involves multiplying by a weight function w and using IBP on ∇2.

One equation for each global weight wi.



Galerkin MWR for elliptic problems
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We only need the first M rows of this statement, corresponding to the unknown values of u.

Rearrange:

Global Helmholtz matrix Global Mass matrix

Banded symmetric Diagonal

‘Stiffness’ ‘Mass’ ‘Helmholtz’

Equivalent matrix statement:

These are the given
Dirichlet boundary data

Forcing from Neumann BCs
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Another global 
basis function

One global 
basis function

Finite element idea: 
● use global basis functions that have 
local support
● assemble (sum) global basis functions 
from shape functions that are defined on 
sub-domains (elements).

Global ← Local
All statements so far were made in terms of global basis functions (and without considering discretisation).

Low-order finite elements 
typically employ tensor products 
of first- or second-order shape 
functions. 

Spectral elements employ higher-order shape functions that do not suffer from Runge’s phenomenon and 
are guaranteed to improve their match to smooth functions as interpolation order increases.

In almost all other respects, spectral elements are identical to finite elements.



Discretisation of elliptic MWR via finite/spectral elements
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Elemental contributions to global Helmholtz matrix 

To perform quadratures we map to standard region 
[-1, 1] × [-1, 1], with

being the Jacobian of the mapping in each element.

E.g. in 2D, this is .  Entries are typically computed isoparametrically.

In 2D we could write this as

Integrals are approximated via Gauss–Lobatto quadratures.

Elemental 
Helmholtz 

matrix

Partition domain into sub-domains (elements), 
use integral(sum) = sum(integrals).

global   =   sum (local)

Mesh nodes: 
Gauss–Lobatto 

quadrature points.

Still stated using global basis functions.
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Exploiting high-order interpolation

‘Boundary’ element shape 
functions: non-zero on 

element boundary, sum into 
global shape functions.Static condensation (a.k.a. Schur complement decomposition, substructuring)

Based on element Hemholtz matrix partitioning; only boundary nodal values need 
contribute to global Helmholtz matrix.  Reduces size of assembled global matrix if 
direct solution (Cholesky decomposition) is to be used.  Can be used recursively.

Tensor product 

For iterative (PCG) solutions of global matrix problem, reduce number of operations 
required for a elemental matrix-vector product (e.g. from N4 to N3 in 2D) by exploiting 
tensor product structure. 

Then use back-substitution to obtain element-interior nodal values element-by-element.

‘Interior’ element shape 
functions: zero all around 

element boundary. No 
coupling to other 

elements.

Tensor product shape functions.

1D 
Lagrange

interpolants

1D 
Lagrange

interpolants

⊗



3D (or 2½D) using Fourier spanwise
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The Fourier transform commutes with all the linear operators in the Navier–Stokes equations which become

Each of the 2D complex problems can 
be solved on its own, and assigned to a 
single process for time evolution.

If domain is homogenous in z direction we can employ Fourier transforms.

Here N is the number of Fourier modes employed – 
half the number of 2D z-planes of data in physical space.

2D complex Fourier modes

2D real data

The fundamental wavenumber is

The exception is the formation of the 
nonlinear terms which are typically 
evaluated pseudospectrally, involving 
iDFT/DFT pairs and transpose across 
processes by message passing.

The majority of substeps in one timestep are computed in Fourier space.

Cylindrical coordinates – Fourier in azimuth
16

1. Diagonalization: introduce coupled radial + azimuthal velocities to decouple 
viscous terms otherwise present;

2. Symmetrization: multiply momentum equations through by r ;
3. Galerkin MWR for elliptic problems (as we already have done)
4. Careful choice of (mode-dependent) boundary conditions at the axis;

Cylindrical coordinates always present a problem at the axis, which is a singularity.
However, with the introduction of

(and with no other changes), it is possible to obtain spectral convergence in all directions.

This does not necessarily mean that other (CFL-type) problems do not arise.

Slice through a pipe flow DNS: 
no axis artefacts.

linear

machine noise level

Spectral
Elements

linear

machine noise level

Fourier
Modes

Number of Fourier modesGrid points per spectral element

Blackburn & Sherwin
JCP 197 (2004)



Part 2. Temporal discretisation and timestepper methods
applied to eigenvalue (stability) problems
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18

(Linearized) Navier–Stokes

Substitute

Expand

Split into an equation for base flow and an equation for perturbation:

is not necessarily steady in time.

LNSE

Domain 
Base flow

Boundary

Likewise for pressure: .
Decompose as where is a small/linear perturbation to                    .base flow



Temporal discretisation in Semtex
with

With k = 2 the method is A-stable. 

With k = 3 the stable region includes almost whole left-half plane. 

Generally k = 2 provides a good balance between CFL stability and spatio-temporal accuracy. 

or

Hairer & Wanner (2010)

Stability regions
Temporal discretisation uses ‘stiffly stable’ integration.

(k = 1 is backward Euler.)

Generally the region of stability shrinks with increasing k.

1.

2.

3.

+ BC:

4. +BCs as appropriate

Operator splitting to solve at time level (n+1) with error

via explicit extrapolation:

19

Dominant workload per step
1. Nonlinear terms
2. (Linear) elliptic equations (3 or 4)

A black-box view of time stepping the NSE
20

with

Linear operators
Nonlinear
operator

Laziness: p used 
in place of p/ρ 
from now on.

Pressure is not an independent variable in incompressible flows

Nonlinear
operator

Linear
operator

Nonlinear state transition operator

Continuum

Temporal discretisation Tuckerman & Barkley (2000)
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Shorthand notations for LNSE and its EVP
Recall

so, symbolically we may just deal with evolution of the velocity: 

Pressure is a constraint field tied to velocity through .

and arrive at the linear evolution equation or . LNSE

This may be applied by integrating (time stepping) the LNSE

integrate forwards = apply LNSE = 

equivalently

For evolution over time interval τ we use the state transition operator .

If the flow is steady this is 

Assuming a separation-of-variables form 

leads to the eigenvalue problem EVP

22

Large-time (asymptotic) linear stability of steady flow

unit circle

Spectrum of 

left-half plane
(stable)

Spectrum of 

and           have directly related eigensystems since

The eigensystem expansion assumes
or equivalently

Supposing is an eigenvector of with corresponding eigenvalue 

i.e. is also an eigenvector of and the corresponding eigenvalue is .

.the most unstable eigenvalues of 
It is more convenient numerically to search for dominant eigenvalues of than

Either set gives the large-time behaviour.
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Floquet stability (asymptotic)
If the base flow is time-periodic ( with period τ ) 
there are many similarities but some differences.

We want to know how 
(linear) perturbations vary 
from one period to the next.

but now

Again
For periodic analyses, state transition 
operator a.k.a. monodromy operator.

We still have integrate forwards but integration interval is fixed to τ.

These are respectively eigenvalues 
and eigenmodes of          .

This defines a Floquet problem whose solutions are

where     are Floquet multipliers and                are (τ-periodic) Floquet modes.

Quasi-periodic

Synchronous

Period-doubling µ = +1

µ = !1
Note that the problem is now inherently 
discrete-time in nature, so we are only 
concerned with how the multipliers 
relate to (and cross) the unit circle in 
the complex plane.

Note that complex-
conjugate pair multipliers 
imply introduction of a new 
frequency into the solution.
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Timestepper approach to eigensystems

4. Calculate eigensystem of H in k × k subspace (e.g. LAPACK).
5. If converged, stop and project back to full space, else discard oldest 

vector in T, carry out one more integration of M, go to step 2.

Outer loop: based on repeated application of operator M on an initial vector. 

Implicitly-restarted Arnoldi method (ARPACK) gives similar performance.

2. QR factorize matrix T

3. Calculate (k×k) Hessenberg matrix H from R

1. Generate a Krylov subspace T of dimension N × k (where N >> k) 
by repeated application of M via inner loop:

integrate forwards

We can find dominant eigenvalues of an operator without constructing it.
(But: not so good if we want a lot of the spectrum).

This (‘Barkley’) methodology is written up in
Barkley, Blackburn & Sherwin IJNMF 57 (2008).
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Examples of large-time (eigenmodal) instability

2D instability of steady cylinder wake, Re=45

Jackson JFM 182 (1987)

base flow

U

‘real’ part of leading mode

u’

‘imag’ part of leading mode

u’

‘real’ part of leading 
adjoint mode

u’

‘imag’ part of leading 
adjoint mode

u’

Marginally stable with a complex conjugate-pair eigenvalue 
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Semi-complex modes when base flow is 2D2C
is 3D then using Fourier expansions in z it becomes a 2DIf perturbation flow 

complex mode.

Since the LNS and Fourier transformation are both linear, they commute and we
can solve the eigensystems of each Fourier mode as separate problems.

with I.e. timestep each eigensystem using as a given parameter.

Since in fully populated 2D complex modes, 
the result above means that only half the full complex storage is required when the 
base flow is 2D2C.  This saves half the storage and number of operations. 
OTOH the mode has a given spatial orientation.  We recognise that an arbitrary (but 
spatially constant) phase shift in z gives an equally valid result.

Now if the base flow     is 2D2C, it turns out that the 2D complex modes do not need 
to be fully populated.
In this case, modes of the form 

will pass through the LNS and retain the same form in z (homework).
This means they naturally satisfy the requirements for an eigenmode.
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Examples of Floquet instability
3D instability of 2D time-periodic cylinder wake Barkley & Henderson JFM 322 (1996)

Blackburn, Marques & Lopez JFM 522 (2005)
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Examples of Floquet instability
3D instability of 2D time-periodic driven cavity

Blackburn & Lopez JFM 497 (2003)

!h

"h

h

y

x

z

Oscillatory cavity floor
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Part 4:  Linear Navier–Stokes
and initial value (transient) problems

30

Transient growth from initial conditions (IVP)
The linearized Navier–Stokes operator is in general non-
symmetrical – this is easy to see in the case of parallel 
shear flows where the base flow U=(U(y),0,0). 

It follows that the eigenmodes of the problem are non-orthogonal and it turns out 
that even if all modes are stable a perturbation can produce (perhaps very large) 
algebraic energy growth at short/finite times, as opposed to exponential decay.

Focus changes from long-time growth to transient growth though ultimately we still 
expect to see exponential (eigensystem) behaviour as t → ∞.

Perturbation vorticity

(Base flow)

For mode shapes, non-
orthogonality means

Physically this non-orthogonality manifests as the eigenmode shapes 
looking rather similar to one another (see Kim & Bewley ARFM 39, 2007).
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Adjoint variables and operators
��

�

n

Short form
�tu

� + L�u� = 0

Integration by parts ⟹ Adjoint NSE (ANSE)
��tu

� = +U · �u� ��U · u� ��p� + Re�1�2u� � · u� = 0with

where

For unsteady problems (NSE) we have also to consider the temporal domain, say [0, τ] 
so the overall domain is Ω × [0, τ] and now

Starting from Linearised Navier–Stokes equations (LNSE)
Short form

with

u�
0

�tu
� + L�u� = 0

integrate backwardsNB:

For steady applications, the adjoint variable v* and
operator A* are defined such that

where (a, b) =
�

�
a · bdV on domain

and where v and v* have ‘compact support’ in    . 
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Boundary conditions

Compact support allowed IBP without regard to space-time 
boundary conditions. 

��

�

n

Re-introducing terminal, boundary conditions:

Apply IBP to

Exchange order of integration and apply divergence theorem
Volume integrals involving 

terminal conditions

Surface integral involving boundary conditions

As far as possible we will choose terminal and boundary conditions to suit us.

(a, b) =
�

�
a · bdV �a, b� =

� T

0

�

�
a · bdV dtRecall

Typically means using wall-type BCs everywhere.
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Adjoint operator M*, joint operator M*M
Forward LNS operator & variables Adjoint LNS operator & variables

Forward system

This formally establishes that      is the adjoint of     .

If           have compact support on                          then:

Using IBP and divergence theorem,

Energy, space-time inner products:

Adjoint system

34

By appropriate choice of spatial BCs (e.g. zero Dirichlet everywhere) we eliminate terms

Adjoint operator M*, joint operator M*M

and require a constraint between terminal solutions of forward and adjoint systems:

and then we haveLink the solutions together by setting

which is used to transform 

into the eigenproblem I.e: solutions to this eigenproblem 
fulfil the required constraint.
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Transient growth and the SVD
Look for initial condition          that gives maximum energy growth over finite interval τ 
— optimal perturbation for interval τ. 

thenIf

ATA is symmetric positive definite and so has orthogonal eigenvectors, and positive 
real eigenvalues.

The vector x that is most amplified by A is the eigenvector of operator ATA 
corresponding to its maximum eigenvalue σmax2.

The eigensystem of ATA is related to the singular value decomposition (SVD) of A.

where U & V are orthogonal matrices
and Σ (singular values) is diagonal. 
(For simplicity we take A to be N×N). 

or or

where       is the adjoint of      .  

looking for x of unit norm that maximizes ‖Ax‖2.
Considering an analog in linear algebra (with and ) this is like

36

Transient growth and the SVD

The eigenvectors of ATA are V, the right singular vectors of A, while the eigenvectors 
of AAT are U, the left singular vectors of A.   All these vectors have unit norm.  For 
each singular value σi there is a corresponding pair of vectors ui and vi.

The sets of input and output vectors are orthogonal: VT V=I; UT U=I.
This means that we can rank the input vectors V (in the sense of contribution to 
output energy) according to the (squared) singular values Σ2, and each one will map 
to a single output vector in U. This is the property that the eigenvectors had lost.

or orSVD of A

In our problems, the right singular vectors v are initial perturbation flow fields, 
and under the action of M(τ) (LNS state transition) the outcomes are the matching 
left singular vectors u.  The amount of kinetic energy growth is σ2.

The most amplified vector (which achieves optimal growth under the action of A) 
is then vopt corresponding to σmax (i.e. the leading eigenvector), which is mapped 
to its partner left singular vector uopt, scaled by σmax

recall
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Compute eigensystem by timestepping

Solve by Krylov method with inner loop: integrate forwards

�tu
� + L�u� = 0

integrate backwards

We can compute optimal initial conditions via either optimisation-based or 
eigensystem solvers – great for bootstrapping new codes!

The only issue then is relative performance - with most of the work being in time-
integration as the inner loop is basically identical in each case.

Generates Krylov sequence

Same outer loop as for 
instability solution, different 
inner (operator) loop.

To be able to solve the eigensystem of              we need only to be able to apply the 
operator to a vector.

One useful feature of the eigensystem approach is that one can obtain `suboptimal’ 
initial perturbations – no obvious way to do this with the optimisation approach.

38

Transient growth (from ICs) 101
Perturbation vorticity evolution, optimal IC

Space

Ti
m

e

Envelope
vs

evolution

Growth scales with Re

Bypass transition
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Part 5:  Optimisation toolkit

40

Adjoint variables and operators
��

�

n

Short form
�tu

� + L�u� = 0

Integration by parts ⟹ Adjoint NSE (ANSE)
��tu

� = +U · �u� ��U · u� ��p� + Re�1�2u� � · u� = 0with

where

For unsteady problems (NSE) we have also to consider the temporal domain, say [0, τ] 
so the overall domain is Ω × [0, τ] and now

Starting from Linearised Navier–Stokes equations (LNSE)
Short form

with

u�
0

�tu
� + L�u� = 0

integrate backwardsNB:

For steady applications, the adjoint variable v* and
operator A* are defined such that

where (a, b) =
�

�
a · bdV on domain

and where v and v* have ‘compact support’ in    . 
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1. Initial flow perturbation u’0 that produces maximum kinetic energy growth 
at time τ.

Two optimal energy functionals
The two kinds of optimisations we consider:

2. Boundary flow perturbation u’c that produces maximum kinetic energy gain at 
time τ.

Optimisation in both cases is constrained: solutions have to obey LNSE.

Final energy
Boundary energy

Gain

��

�

nWe need definitions for boundary integrals:

where D is a representative length.

Final energy
Initial energy

Growth
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Constrained optimisation

we will construct an augmented/Lagrangian functional

for which we will find extrema. 
Constrains solutions 

to satisfy LNSE

We have converted a constrained optimisation problem into an unconstrained 
optimisation problem – but with more variables.
We allow arbitrary variations of the Lagrangian with respect to all the variables 
and ensure that all gradients are simultaneously zero.

Generalising the kinetic energy functionals to be optimised as

plays the role of a Lagrange multiplier.

The standard tool for this job is the Gateaux differential 

which identifies the directional derivative of L with respect to arbitrary variation in 
variable q.
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Calculus of variations for optimal ICs

i.e.

In each case we use

Set boundary perturbations to zero, and seek the initial perturbation       that 
provides maximum energy growth for a given time horizon τ.

removed using zero BCs

44

Optimisation approach for initial perturbation

At convergence we have IC      that maximizes                               subject to constraints.

Solve by optimization iteration:

 (e.g. Schmid 2007)
u�

0

optimization
update integrate forwards

�tu
� + L�u� = 0

integrate backwards

random IC

Evolution equations

Terminal condition

Optimality condition

Calculus of variations gave four outcomes:

The ‘optimisation update’ could be steepest descent or other appropriate method.
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Eigenvalue approach for initial perturbation

Now compare

obtained by forward integration of LNSE
obtained by backward integration of ANSE

Recall

If LNSE and ANSE are always satisfied, 

equivalently , meaning M* is the operator adjoint to M
with respect to the inner product ( , ).
So now

which is maximised when      is the eigenvector of joint symmetric operator        
corresponding to the largest eigenvalue.  This eigenvalue is G.
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Compute eigensystem by timestepping

Solve by Krylov method with inner loop: integrate forwards

�tu
� + L�u� = 0

integrate backwards

This means we can compute optimal initial conditions via either optimisation-
based or eigensystem solvers – great for bootstrapping new codes!

The only issue then is relative performance - with most of the work being in time-
integration as the inner loop is basically identical in each case.

But first we’ll look at some outcomes.

Generates Krylov sequence

Same outer loop as for 
instability solution, different 
inner (operator) loop.

To be able to solve the eigensystem of              we need only to be able to apply the 
operator to a vector.
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Relative performance

This suggests that the eigensystem approach is generally preferable when 
computing optimal initial conditions.
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Part 6.  Example applications of optimal IVP 
analyses



Backward-facing step, Remax = 500

Perturbation vorticity

(Base flow)

2D global optimum, Re=500: Gmax=63,000, τ=58.

Contours of (log) energy in global 
optimum initial condition.

Contours of (log) energy in the 
outcome, at τ=58.0, with velocity 

vector field.

Asymptotic/global stability: 
Barkley, Gomez, Henderson (2002)

Flow is notorious for its convective 
instability, even (2D) for Re < 800.

right singular vector

left singular vector

⇒ steady 3D.
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Perturbation 
vorticity 

evolution, optimal 
IC

Rec=57.7

Evolution
vs

envelope

Re=50

Re=500

Optimal growth envelopes

Backward-facing step, Remax = 500 (2D)

Local 
convective
 instability
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3D global optimum, Re=500: Gmax=78,100, τ=62, spanwise wavenumber β=0.645.

Contours of (log) energy in the global optimum 
initial disturbance and outcome (right & left SVs): Profile of optimal disturbance

Profile of outcome

3.
73

Backward-facing step, Re = 500 (3D)
51

Spanwise velocity, t
=300

Asymptotic decay
velocity field agrees with 
leading eigenvector of A.

DNS with optimal initial 3D perturbation, Re=500

Vertical velocity, t=
61.9

Spanwise velocity, t=
61.9

Linear asymptotic decay
agrees with leading 

eigenvalue of A.

Perturbed k=1 mode

Time for maximum growth, 
shape of perturbation 

velocity field agrees with 
TG analysis. 

Evolution of Fourier
 mode energies
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2D features

Recall wavelength≃3.73
Post-step bulk velocity=1/3

Time series of
vertical velocity
at x=25, y=0, z=0

Energy spectrum

0.089=1/3×1/3.73

DNS with white noise inflow perturbation, Re=500

Contours of
vertical velocity
on plane y=0.25,
4 instants
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Stenotic flow morphology
54

Simple pulsatile base flow vorticity,  Ured = 10

Simple pulsatile base flow vorticity,  Ured = 2

Steady base flow vorticity (shear layer)

Generic features of stenotic flow: 1. Shear layers
2. Vortex rings

Physiological type pulsatile base flow 
vorticity, carotid artery, Ured = 27.7

Both vortex ring(s) and shear 
layer(s) have significant vorticity.

In general, as reduced velocity increases, a smaller proportion 
of shed vorticity is incorporated into the leading vortex ring. shear layer vortex ring

Parameters: Re and Ured



Nodal spectral element–Fourier discretization (Semtex)
55

Velocity correction scheme, cylindrical coordinates
Blackburn & Sherwin, J Comp Phys 179, (2004)

E.g.: stenosis mesh with 1336 elements, 6th-order tensor-product shape functions

Detail

Approx 200,000 DoF –
operator A has approx
40,000 million entries.

Method gives exponential convergence in all coordinates.

56

Summary of long-time/asymptotic instability results

Floquet instabilities of pulsatile flows: associated with vortex rings 

Instability of steady flow: Rec=722, k=1: associated with jet/shear layer 

Widnall mode
of isolated ring

short periods

Blooming/
bifurcating jet

long periods

(period-doubling)

k = 1
k = 3, 4

Dimensionless period

Re
yn

ol
ds

 n
um

be
r



Transient growth for steady flow
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Radial velocity
r/R = 0.5

Base flow

Perturbation

Normalized pert.

Normalized 
axial velocity

Base flow 
vorticity

Local 
convective
 instability

Transient growth for steady flow (Rec = 722)
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Re = 400 k = 1

Re = 400

Base flow

Optimal
initial

Optimal
max

Optimal max – axial 
velocity isosurfaces

Global optimum, 
Re=400: 

Gmax=8.9×104, k=1.



Pulsatile stenotic flow — transient growth

Pulsatile flow, Re=400, Ured=10: Global optimum Gmax=1.1×1010, k=1.

Extra parameter when base flow varies in time — phase t0 at which the 
disturbance is initiated relative to the base flow (period T).
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Systolic

Transient growth in simple pulsatile flow, t0 = 0
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Re = 400 k = 1

Optimal
max

Re = 400 k = 1

Global 
optimum, 
Re=400: 

Gmax=1.1×1010, 
k=1.

Optimal
initial



Stenotic flow — transient growth, t0 variable
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Physiological flow transient growth, (Rec > 400)
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With thanks to Kim Parker, Imperial.

Carotid artery

Ured=27.7

Re=470 α=5.12

t0 = 0
k  = 1

Re=300, k=1, Gmax ≈ 1×1025, i.e. 
velocity perturbations can 
grow by O(1012) in approx. T/2.



Linear transient growth, Re = 300
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Base flow vorticity

Global optimum disturbance axial velocity

Base flow vorticity

Global optimum disturbance axial velocity

Initial condition, t = 0 At maximum, t = τ

Normalized isosurfaces of axial velocity

shear layer
vortex ring

overturning
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Nonlinear transient growth (DNS), Re = 300
Evolution of Fourier mode 
energies for axisymmetric 

IC seeded with optimal 
disturbance at 10-12 
relative energy level.

Axisymmetric component

3D disturbance

Corresponding animation: 
Isosurfaces of

azimuthal vorticity, ± swirl velocity



Dependence of Gmax on Re for separated flows
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Steady separated shear layer flows investigated 
so far share common behaviour: maximum 

transient energy growth increases exponentially 
with Re (i.e. faster than any power of Re).

In parallel shear flows, maximum transient 
energy growth typically increases only with Re2.


