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a b s t r a c t

Semtex enables direct numerical simulation (DNS) of the incompressible Navier–Stokes equations by
coupling continuous-Galerkin nodal spectral element–Fourier spatial discretisation with semi-implicit
temporal integration via a time-splitting scheme. Transport of a scalar quantity may be included. The
analyst has a choice of Cartesian or cylindrical coordinate systems. Domain geometries and solutions
may be two-dimensional with spectral element decomposition of arbitrary planar shapes, or made
three-dimensional by extrusion along a spatially homogeneous direction in which Fourier expansions
are employed. For three-dimensional solutions, MPI may be used to support parallel execution. Various
body forces, including Boussinesq buoyancy and Coriolis terms may be added to the momentum
equation to simulate e.g. the effects of stratification and thermal expansion or reference frame rotation.
Parallel decomposition is performed in the Fourier dimension only, and two-dimensional elliptic
systems in the plane are solved for the spectral element discretisation using direct (Cholesky) or
iterative (conjugate-gradient) methods. Semtex includes a suite of additional tools for generating initial
conditions and model configurations, for post processing and for analysis of model output.
Program summary
Program Title: Semtex
Program Files doi: http://dx.doi.org/10.17632/65mz2szz5t.1
Code Ocean Capsule: https://doi.org/10.24433/CO.2589809.v1
Licensing provisions: GPLv2
Programming languages: C++, C, Fortran77
External routines: BLAS, LAPACK, yacc/ bison, (optionally) MPI
Nature of problem: Two- or three-dimensional incompressible Navier–Stokes in cylindrical and periodic
Cartesian geometries with optional body forces. Two- or three-component velocity fields.
Solution method: Continuous Galerkin nodal spectral element–Fourier spatial discretisation with semi-
implicit time-splitting-based temporal integration of the nonlinear, viscous and pressure gradient
terms in the Navier–Stokes equations via a projection method.
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1. Introduction

Following its inception in the mid-1980s [1] the spectral
element method has proven to be a highly popular approach
for the modelling of incompressible and low-Mach-number flows
within a variety of engineering and geophysical problems. These
methods balance the exponential (‘spectral’) convergence of er-
rors associated with global collocation methods (e.g. Fourier or
Chebyshev pseudospectral methods) with the geometric flexi-
bility of traditional low-order finite element methods. This is
typically achieved via the use of high-order tensor-product poly-
nomials with compact support within each element and Jacobi-
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polynomial-based quadrature rules both for defining and
integrating these polynomials [2–4]. The spectral element method
resulted from embedding these high-order approaches within the
framework of more traditional finite element techniques [e.g. 5];
a key idea is that spectral element methods are finite element
methods.

The spectral element–Fourier spatial discretisation is well-
suited to the solution of incompressible flow problems in
cylindrical and Cartesian geometries in which at least one ho-
mogeneous direction exists. Variations of the spectral element
methodology for Cartesian coordinates which incorporated
one-dimensional Fourier expansions appeared soon after the
original description of the spectral element method [6–9].
Subsequently this treatment was elaborated to include cylindrical
coordinates, with demonstration of full spectral convergence in
all directions [10].
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Fig. 1. Example three-dimensional spectral element–Fourier meshes in Cartesian
(left) and cylindrical (right) geometries as used in Semtex. Parallel domain
decomposition is applied in the Fourier (periodic) dimension only.

A velocity-correction projection method is used for solving
for the elliptic pressure and viscous terms at intermediate steps
[11–13], while parallel domain decomposition is applied across
the Fourier dimension only, so that the spectral element elliptic
operators are solved without the need for parallel communica-
tions.

Principal features of Semtex:

• Cartesian or cylindrical coordinate formulations;
• Edge-conforming quadrilateral nodal tensor-product Gauss–

Lobatto–Legendre-based two-dimensional spectral element
shape functions in the (x, y) plane;

• Fourier expansions in z coordinate as required;
• DNS of the incompressible Navier–Stokes equations with

(spatial domain/number of components): two-dimension-
al/two-component (2D2C), two-dimensional/three-compo-
nent (2D3C), three-dimensional/three-component (3D3C)
velocity fields and first-, second- or third-order fractional-
step time integration;

• Optional MPI-based parallel solutions of three-dimensional
problems, made concurrent across two-dimensional Fourier
modes;

• Optional coupled solution of scalar advection–diffusion
equation;

• A range of user-definable forcing terms for the Navier–
Stokes equations including rotating reference frame accel-
erations and Boussinesq buoyancy;

• Fast direct solver for continuous-Galerkin treatment of two-
dimensional elliptic equations;

• Pseudospectral, non-dealiased evaluation of nonlinear prod-
uct terms with skew-symmetric form as default;

• A built-in function parser based on yacc/bison for evalu-
ation of user-defined constants, initial conditions, boundary
conditions and forcing terms;

• A range of adjunct utility programmes for pre- and post-
processing;

• An extensive user guide.
• Automated compilation system based on cmake.

The remainder of this manuscript details the formulation and
use of Semtex for incompressible Navier–Stokes flows in a variety
of geometric and physical configurations. Section 2 briefly dis-
cusses the spectral element–Fourier discretisation of Semtex, as
well as the formulation of the solver. For more detailed discus-
sion the reader is referred to standard texts on the underlying
methods [2–5]. Section 3 introduces the specific capabilities of

Semtex including various non-standard forcing terms, boundary
conditions, geometric specifications and additional stand alone
utilities for pre- and post-processing of data files. In Section 4 we
present some example applications of Semtex for the purposes of
validating against previously published results and exploring the
capabilities of the code to model more exotic flow regimes. Finally
a brief review of the capabilities and limitations of Semtex will be
presented in Section 5.

In Sections 3 and 4, descriptions will be given as to how
to set various model configuration parameters within Semtex.
Generally speaking, these are specified within an ASCII ‘session’
input file for a given model run. A session file includes all relevant
information for a given model configuration, including solver
parameters, model geometry, boundary and initial conditions.
A full description of session file information is included in the
Semtex user guide, which is supplied with the code distribution.

2. Discretisation

The foundation of the spectral element method as imple-
mented in Semtex is the discretisation of the two dimensional
planar domain Ω ∈ R2 into a set of contiguous edge-conforming
quadrilateral elementsΩe, and the use of nodal Legendre cardinal
functions (Lagrange interpolants) within each element in order to
construct a polynomial function space with C0 continuity across
element boundaries [2–4].

2.1. Element-level operations

The Legendre cardinal functions for a polynomial of degree N
are defined on the standard one-dimensional region r ∈ [−1,+1]
as

hi(r) =
1

N(N + 1)
(1 − r2)
(ri − r)

L′

N (r)
LN (ri)

, (1)

where ri, 0 ≤ i ≤ N are the Gauss–Lobatto–Legendre (GLL)
quadrature nodes within the canonical domain, LN (r) is the N th

degree Legendre polynomial and L′

N (r) its derivative. The set of
Lagrange interpolants and associated GLL nodes for N = 6 are
shown in Fig. 2. Such Lagrange basis functions, each of which
is unity at one GLL node and zero at the others, are commonly
referred to as nodal basis functions [3, § 2.3.4.2]. The proper-
ties of Legendre polynomials are documented in [14]; related
quadratures and derivatives in Appendix B of [2]; computational
algorithms for Gauss–Lobatto–Legendre quadrature nodes and
weights (often referred to as the zeros zi and weights wi of the
quadrature scheme) are discussed in Appendices B and C of [3].

While the basis functions are not themselves Legendre poly-
nomials, they share the asymptotic approximation characteristics
of those functions owing to the choice of GLL quadrature nodes
[15, § 5.4.3]. We note that if one wishes to integrate the Lagrange
interpolants (1) over the standard region one has the choice of
using the same number of GLL nodes (and quadrature weights) as
used to define the polynomials, or more (to increase the accuracy
of the estimate), or even to use the standard Gauss points. Semtex
uses simple ‘equal-order’ GLL quadrature, with the quadrature
points at the nodes of the shape functions as indicated in Fig. 2.
This choice has a number of convenient outcomes which stem
from the fact that hi(rj) ≡ δij where δij is the Kronecker delta
function.

From the one-dimensional basis functions (1) we next move
to constructing two-dimensional elements and examine local
elemental operations. The representation of functions in each
quadrilateral element is spanned by a set of two-dimensional
basis functions constructed as tensor-product combinations of
equal-order Lagrange interpolants such that

ψij(r, s) = hi(r)hj(s), 0 ≤ i, j ≤ N, (2)
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Fig. 2. Legendre polynomial cardinal functions and Gauss–Lobatto points for
polynomial degree N = 6 (note that the number of points is N + 1).

Fig. 3. Creation of two-dimensional elemental basis functions as tensor products
of one-dimensional basis functions. Note that these functions can be partitioned
into those with only interior support (shown within dashed line) and those with
some exterior support.

where the canonical or standard region of the element is given
as Ω

e
= [−1,+1] × [−1,+1], see Fig. 3. A significant feature of

these basis functions (which carries over from the one-dimen-
sional functions of Fig. 2) is that they can be partitioned into
two sets: those which are zero all around the exterior boundary
(i.e. with only interior support) and those which are non-zero
on at least one element edge (i.e. with partial exterior support)
[see3, § 3.1.1.1].

In what follows, pairs of integers such as i, j or p, q may be
taken as row and column indices within rectangular elements.
Sometimes for convenience, we need a single index over the
entire set of unknowns in an element, e.g. k = jN + i.

A standard finite element approach which allows non-
rectangular quadrilateral elements to be obtained, and with that,
the possibility of unstructured meshes, is the adoption of isopara-
metric mapping of element shapes and shape functions [5, Ch. 3].
To achieve this, the (x, y) positions of the external (r, s) nodes
of each element are first computed based on a proportional
mapping of arc length along the appropriate side in (x, y) space. In
Semtex these sides may be defined as straight lines, circular arcs,
or splined curves. Subsequently the (x, y) positions of internal
nodes are generated via bilinear interpolation (a Coons patch).
Interpolation of geometric positions and basis functions within
an element in (x, y) space is carried out using the basis functions
defined on the master (r, s) domain. This idea is demonstrated in
Fig. 4. Formally, local coordinates r = (r, s) within each element
e may be transformed to global coordinates xe = (xe, ye) via
the isoparametric mapping using the discrete elemental nodal
coordinates xeij and continuous basis functions

xe(r, s) ≈

N∑
i=0

N∑
j=0

xeijhi(r)hj(s). (3)

From this it follows that one may approximate spatial partial
derivatives within elements as e.g.

∂xe

∂r
≈

N∑
i=0

N∑
j=0

xeij
dhi(r)
dr

hj(s), (4)

Fig. 4. The idea of (isoparametric) mapping between local elemental physical
(xe, ye) space and master (r, s) space.

∂xe

∂s
≈

N∑
i=0

N∑
j=0

xeijhi(r)
dhj(s)
ds

. (5)

In the following we refer to these partial derivatives of phys-
ical global coordinates with respect to standard coordinates as
‘inverse partials’.

Likewise, we can continuously approximate any variable
within an element using the basis functions; e.g. for the field
variable u defined at the nodes i, j

ue(r, s) ≈

N∑
i=0

N∑
j=0

ue
ijhi(r)hj(s) (6)

and its partial derivatives, e.g.

∂ue

∂r
=

N∑
i=0

N∑
j=0

uij
dhi(r)
dr

hj(s). (7)

We are usually principally interested in approximating these par-
tial derivatives at element nodal points, say rp and sq. The deriva-
tives at the nodal points can be interpreted as a two-dimensional
derivative operator matrix D

Dpi =
dhi(rp)
dr

, (8)

whose values are readily found using the properties of Lagrange
interpolants [e.g. 14, 25.3.2]. Evaluation of partial derivatives with
respect to master element coordinates (r, s) at nodal points, such
as those in (4) and (5) is then (considering the nodal values of
variables within each element to be stored as a two-dimensional
array) efficiently accomplished via matrix–matrix pre- or post-
multiplication with either the matrix D or its transpose DT using
e.g. BLAS routine dgemm.

However, one often requires partial derivatives of variables
with respect to the physical coordinates (x, y), for which the chain
rule is invoked, e.g. ∂u/∂y = ∂u/∂r × ∂r/∂y+ ∂u/∂s× ∂s/∂y. For
these one must construct ‘forward partials’ such as ∂r/∂y. Since
(again via chain rule)

dx =

[
dx
dy

]
=

[
∂x
∂r

∂x
∂s

∂y
∂r

∂y
∂s

][
dr
ds

]
= J dr, (9)

dr = J−1dx = |J|−1adj(J) dx where |J| = det(J) = ∂x/∂r ×

∂y/∂x− ∂x/∂s× ∂y/∂r is the determinant of the Jacobian matrix
J and adj(J) its adjunct. The partial derivatives in (9) can be
approximated at any point in an element using e.g. (4). But since
also (chain rule once more)

dr =

[
dr
ds

]
=

[
∂r
∂x

∂r
∂y

∂s
∂s

∂s
∂y

][
dx
dy

]
, (10)
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forward partial terms may be found using the definition of the
adjunct and by equating [3, § 4.1.3.4][
∂r
∂x

∂r
∂y

∂s
∂s

∂s
∂y

]
=

1
|J|

[
∂y
∂s −

∂x
∂s

−
∂y
∂r

∂x
∂r

]
. (11)

We now have the means to compute both forward and inverse
partial derivatives at nodal locations within each element, and
with that, the ability to approximate terms of PDEs cast in phys-
ical spatial coordinates.

Next, consider the task of finding the unit outward normal
vector n along the edge of an element, say one for which r =

r(x, y) = const, i.e. the edge is a contour line of r . Then the
direction of n is readily found as ∇r = (∂r/∂x, ∂r/∂y).

The integral of a variable over an elemental domain Ωe is
approximated using GLL quadrature and the Jacobian of the map-
ping between Ωe and Ω

e
, e.g.∫

Ωe
u(x, y) dxdy =

∫
Ω

e
u(r, s)|J|(r, s) drds

≈

N∑
i=0

N∑
j=0

uij|J|ijwiwj, (12)

wherewi,wj are quadrature weights. Similar considerations apply
to approximation of the integral of a variable along the edge of
an element.

The approximation (12) is sometimes interpreted as the con-
traction of the product of the elemental unknowns uk (con-
sidered as a single-index vector) with its ‘mass matrix’ M as∑N2

k=0 Mkkuk = |J|ijwiwjuij where, conveniently, for equal-order
GLL quadrature and the nodal basis, M is a diagonal matrix.

2.2. Temporal discretisation of the Navier–Stokes equations for DNS

To help establish motivation for the treatment of global opera-
tions with spectral element approximations, consider the incom-
pressible Navier–Stokes equations for the velocity field u(x, t)

∂tu + u · ∇u = −∇P + ν∇2u + f , ∇ · u = 0, (13)

where, for a fluid of constant density ρ0, P ≡ p/ρ0 and ν = µ/ρ0
is the constant kinematic viscosity of the fluid whose (dynamic)
viscosity is µ, while f (x, t) represents body force per unit mass. In
what follows, the nonlinear terms are sometimes given the brief
notation N (u) = u · ∇u; we note also the continuum-variable
equivalence (which relies on the incompressibility constraint
∇ · u = 0) N (u) = ∇·(uu), where uu is a dyadic. Starting from
a given initial condition u(x, 0) the equation set (13) must be
integrated forwards in time.

Temporal integration in Semtex is handled using a ‘stiffly-
stable’ [16] approximation for the derivative of scalar variable
u at time level (n + 1), based on backwards differencing in
time

∂tu(n+1)
≈ (∆t)−1

K∑
q=0

αqu(n+1−q) (14)

where ∆t is a constant time step and αq are a set of weights.
For K = 1, the method is the backwards (or implicit) Euler
approximation with α0 = 1 and α1 = −1. The approximation
(14) has an error O(∆t)K+1; Semtex can be run with K = 1,
2, or 3, producing successively smaller errors but carrying the
penalties of reduction of the region of stable integration in the
complex plane as K increases, and the requirement to store more
time levels u(n−q) in order to reach u(n+1). For K ≤ 2, (14) is
A-stable [17, § 8.5.4]; the default value in Semtex is K = 2.

Substituting (14) into (13) produces a stiffly-stable time in-
tegration scheme for the incompressible Navier–Stokes equa-
tions [3,11, § 8.2.3.5];

u∗
= −

K∑
q=1

αqu(n+1−q)

−∆t
K−1∑
q=0

βq[N (u(n−q)) − f (n−q)
],

(15)

∇
2P (n+1)

= (∆t)−1
∇ · u∗, (16)

u∗∗
= u∗

−∆t∇P (n+1), (17)

∇
2u(n+1)

−
α0

ν∆t
u(n+1)

= −
u∗∗

ν∆t
, (18)

where the weights αq are those introduced in (14), and weights
βq are those for explicit polynomial-based extrapolation of values
from time levels (n − q) to time level (n + 1). Semtex uses equal-
order approximations for velocity and pressure variables; it is a
PN–PN scheme. From the explicit-update step (15) we note the
requirement for multi-level storage of u(n−q) and [N (u(n−q)) −

f (n−q)
] if K > 1, along with an expectation of CFL-type instability

if ∆t is made too large. However, the viscous update (18) is
implicit in time, so there is no problem with diffusion-related
conditional instability of the time-splitting method.

A subtlety of this integration scheme as outlined in [11] is the
use of the identity ∇

2u = ∇(∇ · u)− ∇ × (∇ × u) when forming
‘high-order’ boundary conditions for the pressure-Poisson equa-
tion (16) from the Navier–Stokes equations (13). This leads to
the following approximation for a computed-Neumann pressure
boundary condition at time level (n+1), on any boundary where
the pressure is not otherwise available:

∂nP (n+1)
≈ −n ·

K−1∑
q=0

[
βqN (un−q)

+ν∇ × ∇ × u(n−q)
+ ∂tu(n−q)]. (19)

With introduction of this boundary condition, the overall level of
accuracy for the scheme is the same as for (14). The scheme is
categorised as one of a class of rotational-form velocity-correction
fractional-step projection methods by [12,13], who provide de-
tailed discussion of stability and convergence properties. See
also [3, § 8.3.2].

Semtex also allows advection of a scalar variable c , in which
case the Navier–Stokes equations are augmented by the
advection–diffusion equation

∂tc + u · ∇c = α∇
2c, (20)

where α is the diffusion coefficient of species c. Evolution of c
is handled by a straightforward extension to (15)–(18) with an
explicit update step for advection of c included in (15) and an
implicit treatment for diffusion of c included in (18).

As alluded to above, there are various ways of forming the
advection terms besides the non-conservative forms u · ∇u and
u · ∇c; in a continuum setting these are exactly equivalent to
the conservative forms ∇·(uu) and ∇·(uc). However, the two
formulations are not exactly equivalent in the discrete setting.
In fully spectral DNS codes, it is well known that the ‘skew-
symmetric’ form [u · ∇u + ∇·(uu)]/2 has favourable properties
in implicitly reducing aliasing errors when such products are
formed [18] and that the cheaper ‘alternating’ form [19] in which
the two alternatives are used on successive time steps performs
almost as well. Semtex provides the alternating skew symmetric
construction as the default, with full skew symmetric and non-
conservative forms as options. No explicit dealiasing is employed,
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Fig. 5. A two-dimensional mesh that tessellates Ω as the union of conforming
isoparametrically mapped elements Ωe .

and time-integration in Semtex is quite robust to the effects of
spatial under-resolution—see [20] for a discussion of the sources
of aliasing errors and explicit dealiasing in the context of spectral
element methods.

We note that the set of operations (15)–(18) amounts to up-
dates (15) and (17) that may be computed locally on an element-
by-element basis using the methods introduced in Section 2.1,
together with solution of scalar elliptic equations: (16) is a Pois-
son equation for pressure, while (18) can be taken as a sequence
of Helmholtz equations for the components of u (and optionally,
c). These elliptic equations are global in nature; in Semtex they
are solved via continuous-Galerkin method of weighted residuals
(MWR), a standard finite-element technique.

2.3. Global operations for solution of elliptic PDEs

With the details of element basis functions, their derivatives
and integrals now defined, and motivated by the temporal split-
ting (15)–(18) of the Navier–Stokes equations, we turn to dealing
with assemblies of elements, basis functions and how these are
used to solve global elliptic PDEs on the domain Ω = ∪Ωe, with
boundary Γ which has unit outward normal n, see Fig. 5.

Consider solving a Helmholtz problem ∇
2u − λ2u = f in Ω ,

where λ is a real constant and f may be a function of space;
successively setting λ and f to zero, this equation also becomes
a model for dealing with Poisson and Laplace equations. The
solution and its expansion in terms of basis functions is taken
to be continuous across element boundaries. For a continuous
(Bubnov–)Galerkin MWR solution, the elliptic PDE is multiplied
by a weight function w drawn from the same basis set as the
approximation for u, integrated over the domain Ω , and then
treated using integration by parts to produce the ‘weak form’ of
the PDE [5],∫
Ω

(
∇u ·∇ w + λ2uw

)
dΩ =

−

∫
Ω

fw dΩ +

∫
ΓN

hw dΓ (21)

where h ≡ ∂nu ≡ n · ∇u on parts ΓN of Γ on which Neumann
boundary conditions are applied. The weight function is taken as
w = 0 on parts of the boundary ΓD where Dirichlet boundary
conditions are to be applied (where the values of ug ≡ g are
supplied), thus ‘lifting’ the associated nodal values and shape
functions out of the solution. Two key features of (21) are that
the differentiability requirement on the solution (and shape func-
tions) is reduced from two to one (formally they must reside
in H1), and that the first integral is symmetric in u and w, a

feature that carries over to the corresponding discrete statement
(Helmholtz matrix).

To create a discrete form of (21) we commence by approxi-
mating u(x) by a sum over a set of global basis functions Nj(x)
multiplied by discrete coefficients uj where j are global function
and solution variable indices and

u(x) ≈

Q∑
j=1

ujNj(x)

=

P∑
j=1

ujNj(x) +

Q∑
j=P+1

ujNj(x) (22)

where the partition P < j ≤ Q specifies the set of lifted functions
that satisfy (known) Dirichlet boundary conditions, and we need
to solve for the unknowns uj, 1 ≤ j ≤ P . The same set of functions
N is used to expand w and without loss of generality we can
specify wj = 1, 1 ≤ j ≤ P with wj = 0 for P < j ≤ Q . Inserting
(22) into (21) gives the set of equations
Q∑
j=1

uj

∫
Ω

[∇Nj ·∇ Ni + λ2NjNi] dΩ ≡

Q∑
j=1

Hijuj

= −

∫
Ω

fjNjNi dΩ +

∫
ΓN

hjNjNi dΓ , (23)

where Hij is a global-system Helmholtz matrix. Terms of the form∫
∇Nj ·∇ Ni dΩ are typically referred to as ‘stiffness matrix’

contributions, while those of the form
∫
NjNi dΩ are typically

called ‘mass matrix’ contributions, both names reflecting their
origins in the solid mechanics community.

A graphical representation of (23), and how it may be rear-
ranged for solution, is presented in Fig. 6, see also [3, § 4.2.4.2].
We reiterate that Q is the number of global variables for a scalar
field; the number of unknowns, P , is potentially lower, since there
may be a number of locations at which Dirichlet data ug are
supplied on the boundary partition ΓD.

To this point the set of global basis functions Ni has been
left unspecified. Now, finite element concepts are re-introduced,
using a set of edge-conforming elements to tessellate the domain,
Ω = ∪Ωe, as indicated in Fig. 5, and isoparametric mappings
of the elemental basis functions (2). The ‘global’ basis functions
possess only comparatively local support, either, for functions
that have only interior support within a single element, entirely
confined within an element, or, for those with partial exterior
support, spanning a small number of elements which mate along
edges or at vertices. This idea is illustrated for a pair of one-
dimensional elements in Fig. 7, and, for a pair of two-dimensional
elements, in Fig. 4.14 of [3].

Another key finite element idea is that integrals across the
whole domain Ω may be written as the sum of local integrals
within elements, i.e.∫
Ω

() dΩ =

Nel∑
e=1

∫
Ωe

() dΩe, (24)

where this summation is often called an ‘assembly’ operation,
or, again reflecting origins in solid mechanics, a ‘direct stiff-
ness’ summation. To carry it out in discrete form requires that,
at least for global solution nodes uj that are shared between
elements, we have a single global numbering scheme. These con-
cepts are discussed at some length in [3, § 4.2] and more briefly in
[2, § 4.5.1]. We note in passing that Semtex uses Reverse Cuthill–
McKee ordering [21] of element-boundary global node numbers
in order to minimise the bandwidth of the assembled global
Helmholtz matrix Huu indicated in Fig. 6.
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Fig. 6. The global Helmholtz equation (23) and how it may be rearranged for solution. The lower panel indicates that the global Helmholtz matrix Huu is (banded,
possibly block-diagonal) Cholesky, and that, for nodal spectral elements and equal-order GLL integration, the global mass matrix Muu is, like equivalent elemental
mass matrices, diagonal. Here, the index i traverses unknown variables and associated shape functions, while j traverses weight functions.

Fig. 7. Illustrating, on a pair of one-dimensional elements, that shape functions
N may either have support confined within a single element (dashed line), or
extending across two mating elements (solid line).

Elemental contributions to the global Helmholtz matrix may
be written

He
ab =

∫
Ωe

[∇Nb ·∇ Na + λ2NbNa] dΩe

≡

∫
y

∫
x
[∇xyNb ·∇xy Na + λ2NbNa] dxedye

but we wish to compute these on the standard domain Ω
e
. This

requires that we re-introduce the Jacobian of the isoparametric
mapping (9) along with the original tensor-product elemental
shape functions (2), producing

He
ab =

∫ 1

−1

∫ 1

−1
[J−1

∇rsψb · J−1
∇rsψa|J|+

λ2ψbψa|J|] drds, (25)

where gradients ∇rs are approximated using the derivative op-
erator matrices D and DT defined in (8) and integrals are ap-
proximated using GLL quadrature. For details, consult [3, § 4.1],
[22] or [23].

We note that in taking the weak form of the original PDE
on the domain Ω , boundary integral terms (those on ΓN ) arose.
The same considerations apply in taking the global assembly,
however, the contributions across element edges are assumed to
cancel out within the domain owing to the fact that the element-
edge unit outward normals n exactly oppose one another along
mating edges, leaving only the global domain boundary terms
that appear in both (21) and (23). Again, this is a standard finite
element idea.

So far we have not discussed solution of the global Helmholtz
equation (23). In Semtex there are two possibilities. The first

is direct solution based on Cholesky decomposition, but us-
ing element-level static condensation [a.k.a. Schur complement
method or substructuring, see3, § 4.2.3] as well as bandwidth
minimisation in order to reduce the size of the assembled matrix
Huu which is used to first compute element-boundary values, fol-
lowing which back-substitution is used to find element-internal
values. The second option uses iterative Jacobi- (i.e. diagonal-
)preconditioned conjugate gradient techniques in which tensor-
product forms are used to save operation counts [3, § 4.1.6]. For
either option, the contribution of Hugug to the right-hand-side
vector is made using element-level operations and summation.
The direct method can often provide faster solution, but at the
cost of increased memory requirements compared to the iterative
method. Since the pressure Poisson equation is poorly condi-
tioned, iterative solution for the pressure step (16) is almost
always inadvisable unless an effective pre-conditioner is avail-
able. On the other hand, the viscous Helmholtz equations become,
owing to the term α0/(ν∆t) in (18), increasingly diagonally
dominant and hence well-conditioned as viscosity falls, so that
for high Reynolds number solutions, the iterative approach to the
viscous solve may be both faster and cheaper in terms of memory
requirements than direct solution.

2.4. Spectral element–Fourier discretisation

The treatment until this point has concentrated on two-di-
mensional domains and discretisations. As indicated in Section 1
and Fig. 1, Semtex can simulate flows in three-dimensional do-
mains that are obtained by extrusion of two-dimensional do-
mains along an orthogonal direction in which the solution is
taken as periodic. Such flows are sometimes referred to as 2 1

2 -
dimensional. In these cases, Fourier expansions are used in the
out-of-plane direction, and the solution may, if required, be car-
ried out in parallel across the resulting two-dimensional complex
Fourier modes. If the length of the domain in the z direction is Lz
we have, with β = 2π/Lz and Fourier mode index k

ûk(x, y) =
1
2π

∫ Lz

0
u(x, y, z) exp(−ikβz) dz,

u(x, y, z) =

∞∑
k=−∞

ûk(x, y) exp(ikβz), (26)

where in practice only a finite number of Fourier modes ûk are
used, and, since the data u are real, the Fourier data ûk are
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Fig. 8. Hard scaling (speed-up for problem of a fixed size) relations for Fourier-
parallel DNS of a turbulent pipe flow obtained at two different supercomputer
facilities. Speed up is approximately linear with number of processes until
communications overheads become dominant.

conjugate-symmetric about k = 0, and only modes with k ≥ 0 are
retained. Hence, the number of complex modes is half the number
of planes of real data, and a real-complex FFT based on [24]
is used to effect the transformation to and from Fourier space.
With the relationship above, the following hold for derivative
operations in a Cartesian coordinate system

∂ ûk

∂z
≡ iβk ûk,

∂ 2̂uk

∂z2
≡ −β2k2 ûk, (27)

where the operations can be done on a mode-by-mode basis ow-
ing to the linearity of the Fourier transform and of differentiation.
From the second of these, and again for a Cartesian coordinate
system,

∇
2̂uk ≡

∂ 2̂uk

∂x2
+
∂ 2̂uk

∂y2
− k2β 2̂uk

≡∇
2
xŷuk − k2β 2̂uk. (28)

For three-dimensional simulations, the Navier–Stokes equa-
tions are dealt with in Fourier-transformed space for most of
the steps (15)–(18). The exception is during the formation of the
nonlinear product terms N (u), which, as noted in Section 2.2,
are computed without dealiasing; to reduce operation counts the
associated variables are inverse-transformed to physical space,
derivatives and products are formed, with the results finally
forward transformed back to Fourier space. In parallel operations,
such ‘pseudospectral’ operations require intra-process rearrange-
ment of data, followed by block transposes which are carried
out using an all-to-all exchange in MPI. Some of the details are
outlined in [25]. The nature of speed up which can be obtained
in parallel operations is indicated in Fig. 8; while specific out-
comes are problem- and machine-dependent, the speed up which
Semtex obtains is typically approximately linear with number of
processes until transpose blocks become small enough that com-
munications overheads dominate proceedings. In general, this
saturation threshold increases with the number of elements and
planes of data in the problem being computed.

Depending on the set of pressure boundary conditions se-
lected, it is possible that the global pressure Poisson matrix for
mode k = 0 can be singular. In this case, the pressure is set to
zero for this mode at the highest globally numbered node in the
domain, thus constraining the pressure field and removing the
singularity.

2.5. Formulation for cylindrical coordinates

Problems set in cylindrical coordinate systems naturally have
periodicity in the azimuthal direction and so are well suited to
2 1

2 -dimensional computations with Fourier expansions in the
azimuth, where, for an azimuthal periodic angle of 2π , β =

1. Nonetheless, such coordinate systems possess a geometric
singularity at the axis, which requires care when undertaking nu-
merical approximations. The reader is referred to [26,27] for the
component form of the incompressible Navier–Stokes equations
in cylindrical coordinates.

In [10] the approach adopted in Semtex to dealing with the
issue of geometric singularity is described in detail. Essentially, it
involves a relatively straightforward extension to the treatment
outlined above, which relies for success on the observation that
whenever possibly singular terms arise on the axis, they are un-
problematic owing either to mode index or boundary conditions
applied to the Fourier mode in question. The key changes to the
exposition above are (a) when dealing with the viscous substep
(18) the complex radial and azimuthal velocity variables are
coupled, but in a way that decouples the cylindrical-coordinate
form of the Helmholtz equations [28], (b) multiplication of the
Navier–Stokes equations by radius, which leads to symmetry of
the weak form of the elliptic equations and (c) an appropri-
ate choice of Fourier-mode-dependent axial boundary conditions
for the various velocity components and pressure. As explained
in [10] these three techniques, when used in combination with
a Galerkin MWR treatment and the standard spectral element–
Fourier basis, are sufficient to produce exponential convergence
of the method as applied to the three-dimensional Navier–Stokes
equations.

As outlined in [10, § 3.4], computation of forcing terms as-
sociated with the cylindrical equivalent of the pressure Poisson
equation (16) required some further consideration. In cylindrical
coordinates, with the radius-premultiplied Navier–Stokes equa-
tions, and with Fourier-transformed variables, the forcing terms
for Fourier mode k in (16) become

(∆t)−1(∂zrû∗

k + r∂r v̂∗

k + v̂∗

k + ikŵ∗

k ), (29)

where, here, z and r are axial and radial coordinates in the
meridional semi-plane (equivalent to x and y coordinates in the
Cartesian treatment) and u, v and w are respectively axial, radial
and azimuthal components of velocity. It may be seen that the
two final terms here do not include the radius, so these might
become non-zero at the cylindrical axis. In fact, v̂∗

0 , because it
may include contributions from nonlinear product terms result-
ing from cross-axial flows allowed in Fourier mode k = 1, can
remain finite at the axis. Further, the axial boundary condition
applied for the axisymmetric pressure, ∂ p̂0/∂n = 0, allows this
forcing term to have an effect, so it needs to be retained in the
MWR computation. The outcome is that the forcing (29) causes
no problem provided that this feature of the formulation is recog-
nised and, in creating the weighted-residual form of (29), radius
is not premultiplied into the quadrature weights. (If radius is pre-
multiplied in, a division by radius will then be required in forming
the MWR equivalent of (29), leading to problems with terms like
v̂∗

0 that might legitimately be non-zero at the axis.) Elsewhere in
the code, however, it is quite appropriate and non-problematic
to use radius-premultiplied quadrature weights in order to save
operations. The Semtex implementation accounts for these issues
when computing solutions to the cylindrical-coordinate forms of
(15)–(18).

In Section 4.1 we will show that the resulting method retains
spectral accuracy in all coordinate directions for three-dimen-
sional Navier–Stokes solutions, indicating that the problem of
geometric singularity at the axis has been overcome. We note
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that it is very straightforward for the analyst to select solution in
cylindrical coordinates since the option is fully incorporated into
the solvers; in the most basic cases, all that is needed is to set the
flag CYLINDRICAL=1 in the <TOKENS> section of the associated
session file (see Section 3.1). If the cylindrical axis lies along a
domain boundary, axis boundary conditions are indicated in the
session file and the appropriate type (homogeneous Dirichlet or
Neumann) is selected automatically depending on the variable
and Fourier mode, see e.g. Section 4.3.

3. Operational features

The Semtex distribution is supplied with instructions for com-
pilation of executable files; the user has the choice of in-source
compilation via make, or out-of-source compilation via cmake.
These instructions are provided in a README file in the top-level
Semtex directory. We recommend taking the cmake option in the
first instance. The key executables are dns, for DNS of the incom-
pressible Navier–Stokes equations, and elliptic, a stand-alone
solver for elliptic PDEs. If an MPI distribution is detected, Fourier-
parallel versions of these two solvers, dns_mp and elliptic_mp,
will also be compiled. In addition, the Semtex distribution comes
with a set of (serial-only) utilities for pre- and post-processing of
simulation results. A user guide, which gives in-depth explanation
of session files and other supporting files types, utilities, and
solver options, is supplied in the doc subdirectory.

Flow simulations in Semtex may be either two-dimensional,
with number of z-planes, N_Z = 1, or three-dimensional (N_Z ≥

4). For two-dimensional simulations, either two or three velocity
components may be chosen (e.g. an axisymmetric swirling flow
simulation would employ a cylindrical coordinate system, a single
plane of data described in two spatial coordinates, and three
velocity components). For three-dimensional simulations, three
velocity components are required.

3.1. Solver switches and user-defined variables

The values of various pre-defined Semtex solution switches
and user-defined constants may be set at run time in the <TO-
KENS> section of a session file. In general, each line of this section
is of the form token = expression where the expression is a
string which is parsed to generate a numeric value that is stored
internally in a lookup table. Each token thus evaluated is used to
either set specific solver flags (if the token string has a predefined
significance within Semtex) or may be re-used within the session
file in the setting of boundary conditions, forcing terms, or initial
conditions. The reader is referred to the user guide for further
details.

3.2. Forcing terms

Semtex allows for the inclusion of various forcing terms f (x, t)
in the Navier–Stokes equations (13) including:

• Constant, f
• Spatio-temporal, +a(x)α(t)
• Sponge region, −m1(x)(u − u0)
• Drag, −m2(x)(u/|u|)|u(x, t)|2
• Selective frequency damping [29], −χ (u − ū)
• Steady and unsteady Coriolis, −2Ω×u−(dΩ/dt)×x−Ω×

(Ω × x)
• Boussinesq buoyancy −βT (c − cref)g

Spatio-temporal, sponge region and drag forces may be specified
via analytic functions using standard mathematical syntax within
the <FORCE> section of a session file. These are evaluated by the
yacc-based function parser included in Semtex.

<FORCE>
SPATIOTEMP_ALPHA_X = cos(x)*step(t,10)
SPATIOTEMP_ALPHA_Y = -sin(z)*step(t,10)
SPATIOTEMP_ALPHA_Z = -cos(y)*step(t,10)

</FORCE>

For a complete description of the various forcing terms avail-
able in Semtex we refer the reader to § 4.12 of the user guide
included in the distribution.

3.3. Boundary and initial conditions

In addition to the high-order pressure boundary condition
(19) and axial boundary conditions required for cylindrical ge-
ometries [10], boundary conditions must also be applied to the
velocity and temperature fields. In the x and y directions these
are typically Dirichlet/Neumann or inflow/outflow conditions. For
outflow conditions, one common choice is an approximation to a
stress-free boundary condition obtained by setting ∂nu = ∂nv =

∂nw = p = 0, while another, more robust, possibility is formu-
lated as in [30]. These boundary conditions may be tagged within
the <BCS> section of a session file as D (Dirichlet), N (Neumann),
H (high-order pressure condition), O (outflow [30]), and A (axial,
see e.g. [10] and Section 4.3). For example:

<BCS NUMBER=1>
1 w 4

<D> u = sin(TWOPI*x) </D>
<D> v = 1.0 </D>
<N> c = 0.0 </N>
<H> p </H>

</BCS>

assigns, to the boundary tagged as w, Dirichlet boundary condi-
tions for the u and v velocity components as 0.0 and 1.0 respec-
tively, a homogeneous Neumann condition to the temperature c ,
and specifies the use of the high-order boundary condition for
pressure p. Periodicity does not formally constitute a boundary
condition and hence is not dealt with in the <BCS> section; in the
(x, y) plane, periodicity is, instead, specified in the <SURFACES>
section of a session file. Periodicity occurs naturally in the out-of-
plane (z) direction owing to the adoption of Fourier expansions,
and requires no explicit specification by the analyst.

As for the forcing terms, initial conditions may be specified via
analytic functions. For example a two-dimensional Taylor vortex
flow field may be initialised as

<USER>
u = -cos(PI*x)*sin(PI*y)
v = sin(PI*x)*cos(PI*y)

</USER>

3.4. Utilities

In addition to an incompressible Navier–Stokes solver and a
stand-alone elliptic solver, the Semtex distribution also includes
a suite of utilities for pre/post-processing and analysis. These
include

addfield Compute additional fields such as kinetic energy
or enstrophy from the prognostic fields supplied in
Semtex .fld output files.

integrate Compute the global integrals of scalar variables in a
given .fld file via GLL quadrature.

sem2tec Generate a binary Tecplot-format .plt file from a
given output file for visualisation, which can also be
read in by ParaView and VisIt.
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meshpr Output the mesh geometry.
enumerate Generate a global node numbering (a .num file).

compare Generate a .fld file from user-defined analytical
functions to be supplied as initial conditions, or op-
tionally subtract the analytical functions from data
in a given .fld file.

convert Convert .fld file formats, extract a specific num-
bered dump from a catenated .fld file.

probe Probe a .fld file at a set of spatial locations.
calc Command-line-driven calculator based on the Sem-

tex function parser.

For the complete set of Semtex utilities refer to § 2.5 and Ch. 6 of
the user guide.

4. Applications

All Semtex models are described to the solver in a session file,
which details the relevant boundary and initial conditions, mesh
geometry and model parameters for a given configuration. The
name of this file is passed to the Semtex executable as an input ar-
gument at run time. Prior to running a given model in Semtex the
mesh global numbering file session.num must be generated via
the enumerate utility. Optionally, an initial condition (restart)
file session.rst may also be generated e.g. via the compare
utility, or as a result of a previous run: if this file is not present,
all variables are initialised to zero values.

4.1. Kovasznay flow within an offset cylindrical domain

Kovasznay [31] provided a non-trivial two-dimensional, two-
component steady solution of the Navier–Stokes equations, as
follows:

u = 1 − exp(λx) cos(2πy),

v = (2π )−1λ exp(λx) sin(2πy),
p = (1 − exp λx)/2,

where λ = Re/2 − (Re2/4 + 4π2)1/2, Re ≡ 1/ν. When consid-
ered in cylindrical coordinates, however, this can be re-cast as a
three-dimensional, three-component solution. As outlined in [10]
and illustrated in Fig. 9, if the axis of the cylindrical domain is
offset from the x-axis as used by Kovasznay and in addition the
domain is rotated in azimuth by angle θ , a non-rational multiple
of π , all components of the cylindrical-coordinate form of the
Navier–Stokes equations are energised, and the problem becomes
an excellent test case for cylindrical-coordinate Navier–Stokes
solvers.

The two test case meshes examined in [10] are provided
in session files cylkov1 and cylkov2 in the Semtex distribu-
tion. As shown in Fig. 10, errors of the computed steady-state
solution reduce exponentially fast in the asymptotic limits of
increased spectral element and Fourier resolution until double-
precision machine-noise limits are reached, thus demonstrating
the anticipated spectral spatial convergence properties.

4.2. Transition and decay of a Taylor–Green vortex

The temporal evolution of kinetic energy dissipation ϵ for a
freely decaying Taylor–Green vortex initial condition in a periodic
box with side lengths Lx = Ly = Lz = 2π has been widely used
to validate methods to solve the incompressible Navier–Stokes
equations [see e.g.32,33]. With initial condition

u = + sin(x) cos(y) cos(z), (30)

v = − cos(x) sin(y) cos(z), (31)

Fig. 9. The two-dimensional analytical solution of the Navier–Stokes equations
provided by Kovasznay [31], considered in a cylindrical geometry.
Source: From [10].

Fig. 10. Demonstrations of spectral convergence for the cylindrical-coordinate
Kovasznay test case illustrated in Fig. 9.
Source: From [10].

w = p = 0. (32)

and with ν = 1/1600, the equivalent Reynolds number Re =

1600 [32]. The kinetic energy dissipation is computed as ϵ =

−dE/dt where

E =
1
2V

∫
V
u · u dV (33)

for computational volume V = LxLyLz . A Semtex session file
for simulation for this problem is provided as TG1600; a grid
of 32 × 32 spectral elements is used in the (x, y) plane, with
tensor product shape functions of order N × N = 7 × 7 in each
element, and 256 planes of data (i.e. 128 Fourier modes) are used
in the z direction. The spatial resolution is approximately 2563.
The simulation is carried out with 3rd-order time integration
(J = 3, token N_TIME=3) and time step ∆t = 0.0025 (token
D_T $=$ 0.0025).

The initial condition is specified in the <USER> section of the
session file

<USER>
u = sin(x)*cos(y)*cos(z)
v = -cos(x)*sin(y)*cos(z)
w = 0
p = 0

</USER>

and an initial condition file (TG1600.rst) was generated using
the compare utility. Following completion of the simulation in
which output dumps were concatenated into a single file at every
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Fig. 11. Temporal evolution of kinetic energy dissipation ϵ for a Taylor–Green
vortex initial condition. Solid line: 5123 reference data [33], open symbols:
Semtex results.

50 time steps, the kinetic energy was computed in post process-
ing using the addfield utility and integrated over the domain
volume using the integrate utility. Subsequently the dissi-
pation was estimated using central differencing. The outcome
is shown in Fig. 11, with results from a 5123 Fourier-spectral
reference simulation [33] shown for comparison.

4.3. Oscillatory flow past a sphere

Heat or mass transfer from spherical particles in oscillatory
flow is found in applications such as combustion and spray dry-
ing. This problem was investigated in [34] where an isolated
sphere with uniform surface concentration of scalar c was con-
sidered in a flow with rectilinear far-field oscillation. In the fol-
lowing, we briefly describe the workflow for solving this problem
using Semtex. The configuration for this case is provided in the
session file sphere05.

The computational domain represents a sphere of diameter
D = 1 placed at the centre of a cylindrical domain with axial,
radial coordinates (x, r) as shown in Fig. 12(a). The associated
velocity variables are (u, v). The three segments of the domain
boundary which do not intersect the sphere represent the far-
field boundary while the fourth is the cylindrical coordinate axis.
The domain extents are xmax/D = ±50 and rmax/D = 50, which
are large in order to reduce interference of the far-field boundary
on the flow dynamics near the sphere. Fig. 12 shows a sample
mesh where spectral elements with N = 8 are used to discretise
the domain. An extremely fine radial mesh near the sphere was
used to capture the dynamics at low oscillation amplitudes and
high Re.

The hydrodynamics of the flow is characterised via the am-
plitude ratio A/D with A being the amplitude of freestream
fluid displacement and Reynolds number Re = UmaxD/ν where
Umax = ωA is the maximum freestream velocity and ω is the
frequency of rectilinear oscillations. The governing equations
(13) and (20) are solved in cylindrical coordinates (by setting
token CYLINDRICAL=1) and the flow is assumed axisymmetric. A
passive scalar c representing mass concentration or temperature
is added to the system, and this is non-dimensionalised with
respect to its maximum value, cmax, located at the sphere wall.

No-slip boundary conditions are specified for the velocity at
the sphere wall and, at the far-field boundary, u = Umax cosωt ,
v = 0. At the axis, the appropriate boundary conditions are [10]
∂nu = v = ∂nc = ∂np = 0 where n is the axis-normal direction
(but note: these values are set internally by the solver). The
viscosity (KINVIS) is set to Umax/Re and the species diffusivity
α is assumed to be equal to the kinematic viscosity (by setting
token PRANDTL=1). The boundary conditions are specified in the
<BCS> section of the session file as:

Fig. 12. (a), spectral element mesh (left) and GLL nodes (right) for oscillatory
flow past a sphere. A close-up view of the mesh near the sphere is shown in
(b).

<BCS NUMBER=3>
1 f 4

<D> u = UMAX*cos(OMEGA*t) </D>
<D> v = 0.0 </D>
<D> c = 0.0 </D>
<H> p </H>

2 a 4
<A> u </A>
<A> v </A>
<A> c </A>
<A> p </A>

3 w 4
<D> u = 0.0 </D>
<D> v = 0.0 </D>
<D> c = 1.0 </D>
<H> p </H>

</BCS>

where f is the BC tag used for the farfield boundary, a for the axis
and w for the sphere wall. UMAX and OMEGA are specified in the
<TOKENS> section. Simulations can be initialised with zero veloc-
ity and scalar field and the time-averages of the field variables are
collected by setting the token AVERAGE=1 and integrating over a
long time. Fig. 13 shows the time-averaged scalar concentration
at x/D = 0 for various Re where it can be seen that as Reynolds
numbers decrease, the time-averaged concentrations asymptote,
as expected, towards an analytical solution for Stokes flow.

4.4. Turbulent pipe flow

Turbulent pipe flow of Newtonian fluid is a canonical problem
of fluid dynamics and has been studied for many decades owing
to its relevance in a wide range of applications. Owing to the
presence of two homogeneous directions, pipe flows may be sim-
ulated in Semtex using either Cartesian or cylindrical coordinate-
based discretisations. In the following we briefly discuss the
Cartesian-coordinate simulations of [35,36]; for cylindrical-
coordinate simulations of turbulent pipe flows consult [37,38].
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Fig. 13. Time-average concentration profiles for oscillatory flow past a sphere
plotted at x/D = 0 for A/D = 0.05 and Re = 20–100 and Pr = 1.
Source: Reproduced from [34].

Fig. 14. A spectral element mesh used to simulate turbulent pipe flow [35,36].
Spectral element boundaries are shown on the left and grid nodes for 12th-order
tensor-product element interpolation functions are shown on the right. Fourier
expansions are used in the pipe-axial direction.

The configuration to solve the flow in Cartesian coordinates
is provided in the session file pipe323 in which the pipe cross-
section is discretised using the spectral elements and Fourier
expansions are used in the axial direction. Pipe length Lz is
implied via the token BETA; Lz = 2π/BETA. Sufficient mesh reso-
lution is required in the axial, azimuthal and the radial directions;
guidelines for wall-resolving spectral element mesh designs are
discussed in [39]. Fig. 14 shows a cross-section of a Semtex pipe
mesh discretisation.

Flow is driven by a constant body force f ; this allows the
pressure to be periodic in the pipe-axial direction as required
for Fourier expansions. For a given time-average friction Reynolds
number Reτ = u∗R/ν (where u∗

= (τw/ρ)1/2 and R is pipe radius)
the required axial body force per unit mass is [38]

fz = 2Re2τν
2/R3.

This is set in the <FORCE> section via the expression
CONST_Z=FFZ, with the value FFZ pre-calculated in the
<TOKENS> section according to the above formula and with Reτ =

323.89.
Simulations can be initialised with a laminar velocity profile

perturbed using the noiz utility to add white noise in the ini-
tial conditions, as is often required to help initialise turbulent
flow simulations. During simulation, the energy in the Fourier

Fig. 15. Contours of instantaneous axial velocity on a cross section from DNS
of turbulent pipe flow at Reτ = 323 [35,36].

Fig. 16. Comparison of the mean axial velocity profiles from a Semtex simulation
of turbulent pipe flow at Reτ = 323 (solid line, [36]) plotted in wall units and
compared to experimental measurements of [40] at Reτ = 314 (open circles)
and DNS data of [41] at Reτ = 360 (filled circles).

wavenumbers k > 0 grows for a turbulent flow, and once sat-
urated to a statistically steady state, these values fluctuate with
simulation time, indicating a non-axisymmetric unsteady flow. At
this stage, the total viscous force per unit length also fluctuates
somewhat about the mean value π/4× fz . This can be confirmed
from the integral of the viscous forces over the wall reported in
the pipe323.flx file at every IO_HIS steps. Semtex writes the
integral of the viscous and pressure forces in the pipe323.flx
file only for the wall group defined in the <GROUPS> section
(consult Chs 2 and4 of the user guide).

Fig. 15 shows contours of instantaneous axial velocity ex-
tracted at a pipe cross-section after the flow has become sta-
tistically stationary; a range of eddy length scales may be seen.
After saturation, the time-averages of flow field variables can be
collected to file pipe323.avg by setting the token AVERAGE to
1, 2 or 3 as desired until the averages become time-invariant,
which takes approximately twelve to fifteen mean-flow transit
times of the domain. Subsequently the results are also averaged
in the axial and azimuthal directions to further reduce statistical
variation and then presented as functions of distance from the
wall. Fig. 16 shows the mean axial velocity profile predicted
by Semtex compared with experimental measurements and DNS
results obtained using another code.
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Fig. 17. Schematic of experimental setup for examination of flow in a precessing
cylinder [42,43]. The cylinder spins steadily in a tilted gimbal mounted on a
rotating turntable.

4.5. Instability within a precessing cylinder

As a final demonstration we present results for the triadic
resonance of modes in a rotating, precessing cylinder [42,43]. The
physical system under consideration is illustrated schematically
in Fig. 17. The system is forced by the Coriolis term as given in
Section 3.2 with Ω = Ω1 +Ω2, where Ω1 is the angular velocity
of the cylinder and Ω2 is the angular velocity of precession.

The cylinder rotation rate Ω1 = |Ω1| sgn(Ω1 · ẑ) is taken as
positive and the turntable rotation rate Ω2 = |Ω2| sgn(Ω2 · ẑ)
may have either sign. The system is described by four dimension-
less groups which may be taken as the precessional nutation (tilt)
angle α, the cylinder aspect ratio Γ = H/R, the nondimensional
angular frequency ratio ωF = Ω1/(Ω1 + Ω2 cosα) and the
Reynolds number Re = Ω1R2/ν. A session file associated with
the computations of [43] for α = 3◦ is supplied as PreCyl03;
as outlined in [43] the simulation is carried out in the gimbal
(precessing) frame of reference in which Ω is steady in time and
a steady basic state may be computed using selective frequency
damping (see Section 3.2). In this frame of reference the cylinder
rotates steadily at rate Ω1, and this rotation component is thus
dealt with in the <BCS> section of PreCyl03. The DNS was run
in a cylindrical geometry with 16 × 12 elements of order N×N =

6 × 6, and 64 Fourier modes in the azimuthal direction.
The basic state, dominated by the m = 1 azimuthal Fourier

mode, is associated with a three-dimensional overturning circula-
tion in the cylinder. Following deactivation of selective frequency
damping, weakly nonlinear interactions between this mode and
higher harmonics leads to the parasitic growth of these higher
modes as shown in Fig. 18, [43, Fig. 5], whereby they draw energy
from the basic state via a triadic-resonance instability, which
saturates at later times owing to viscous and nonlinear effects.
In the gimbal frame of reference, this instability manifests as a
Hopf bifurcation.

The Coriolis acceleration term for rotation component Ω2
(which appears steady in the gimbal frame) and selective fre-
quency damping forcing terms are specified within the session
file as:

<FORCE>
CORIOLIS_UNSTEADY = 0

CORIOLIS_OMEGA_X = OMEGA2*cos(THETA_MAX)
CORIOLIS_OMEGA_Y = 0.0
CORIOLIS_OMEGA_Z = OMEGA2*sin(THETA_MAX)

SFD_DELTA = SFD_PERIOD/TWOPI
SFD_CHI = (1-heav(t-SFD_T1))*0.1

</FORCE>

Fig. 18. Evolution of azimuthal Fourier modal energies with time for Γ = 2.667,
ωF = 0.735, α = 3.0◦ and Re = 4778 for flow in a precessing cylinder developing
from a quasi-steady basic state. [43]. T1 is the cylinder rotation period and ESBR
is the kinetic energy of solid-body rotation. Energies in the leading azimuthal
modes during an exponential growth phase (inset) reflect a triadic resonance
instability.
Source: From [43].

Fig. 19. (a) an instantaneous snapshot of a triadic resonance instability wave
within a precessing cylinder, visualised in ± perturbation axial vorticity and (b)
an isosurface of (de-trended) time averaged kinetic energy perturbation (grey)
and vortex core of the basic state (red). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
Source: From [43].

Following attainment of an approximately steady basic state
(prior to t = 0 in Fig. 18) selective frequency damping is
deactivated via a Heaviside function so as to allow for the free
evolution of higher modes through triadic resonance processes.

When considered in the cylinder frame of reference rather
than the gimbal frame, DMD analysis [44] of simulation snapshots
samples during the exponential growth phase of Fig. 18 shows a
clear relationship between azimuthal Fourier indices of the DMD
modes and their temporal frequencies that is consistent with a
generalised triadic resonance mechanism for the instability [43].
The group velocity of the set of parasitic DMD modes is the same
as that of the basic state as observed in the cylinder frame. Fig. 19
shows the nature of the instability as it grows within the cylinder.
While the instability wave has a complicated spatio-temporal
structure, the envelope of time-average kinetic energy (after de-
trending for exponential growth) is steady and maintains a fixed
relationship to the core of the basic state.

5. Discussion and conclusions

This article reviews the technical formulation and practical ca-
pabilities of the Semtex model for the direct numerical simulation
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of the incompressible Navier–Stokes equations. The code is well
suited to the simulation of flows within physical domains with
one homogeneous dimension, which may be configured as either
cylindrical or Cartesian geometries. For problems in such domains
Semtex may exhibit significant performance improvements over
traditional three dimensional codes due to the exact nature of
differential operators in Fourier space, and the computational
efficiency with which Fourier transforms may be applied.

Details are provided as to the modelling capabilities of Semtex,
including the various forcing terms, boundary conditions and
geometries that may be incorporated into model configurations.
Examples are provided demonstrating these capabilities for a
variety of physical problems, ranging from model validation tests
to complex flows driven by temporally or spatially varying body
forces. We also discuss the various additional utilities provided
as part of the Semtex distribution for the generation of initial
conditions and the analysis of model output.
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