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Outline
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• Linearised Navier–Stokes equations and temporal behaviour
• Introduce the adjoint Navier–Stokes equations
• Optimal perturbations and optimisation methodology
• Optimal initial (IC) perturbations
‣ Optimisation approach
‣ Eigenvalue approach
• Optimal inflow boundary (BC) perturbations
‣ Optimisation approach
‣ Eigenvalue approach
• Applications

Emphasis on analogies 
and equivalences

Q. What are optimal perturbations?

A. Perturbations that lead to largest kinetic energy growth at finite times.

Q. Why care about optimal perturbations?

A. Extremely large growth can indicate bypass transition to turbulence.

Q. Why worry about optimal inflow boundary perturbations?

A. Because inflow advection is an obvious way for disturbances to enter domain.



Temporal behaviour of 
linearized Navier–Stokes

operators
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(Linearized) Navier–Stokes
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Substitute

Expand

Split into an equation for base flow and an equation for perturbation:

is not necessarily steady in time.

LNSE

Domain 
Base flow

Boundary

Likewise for pressure: .
Decompose as where is a small/linear perturbation to                    .base flow



Shorthand notations for LNSE
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so, symbolically we may just deal with evolution of the velocity: 

Pressure is a constraint field tied to velocity through .

Recall

and arrive at the linear evolution equation or . LNSE

For evolution over time interval τ we use the state transition operator .

equivalently

This may be applied by integrating (time stepping) the LNSE

integrate forwards = apply LNSE = 

Large-time (asymptotic) linear stability
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unit circle

Spectrum of 

left-half plane
(stable)

Spectrum of 

and           have directly related eigensystems since

The eigensystem expansion assumes
or equivalently

Supposing is an eigenvector of with corresponding eigenvalue 

i.e. is also an eigenvector of and the corresponding eigenvalue is .

.the most unstable eigenvalues of 
It is more convenient numerically to search for dominant eigenvalues of than

Either set gives the large-time behaviour.



Timestepper approach to eigensystems
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4. Calculate eigensystem of H in k × k subspace (e.g. LAPACK).
5. If converged, stop and project back to full space, else discard oldest 

vector in T, carry out one more integration of M, go to step 2.

Outer loop: based on repeated application of operator M on an initial vector. 

Implicitly-restarted Arnoldi method (ARPACK) gives similar performance.

2. QR factorize matrix T

3. Calculate (k×k) Hessenberg matrix H from R

1. Generate a Krylov subspace T of dimension N × k (where N >> k) 
by repeated application of M via inner loop:

integrate forwards

We can find dominant eigenvalues of an operator without constructing it.

Examples of large-time (eigenmodal) instability
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Jackson JFM 182 (1987)

2D instability of steady cylinder wake

base flow real part of leading mode imag part of leading mode

Barkley & Henderson JFM 322 
(1996)

3D instability of 2D time-periodic cylinder wake
Mode A Mode B

Blackburn PF 14 (2002)

3D instability of 2D time-periodic 
cylindrical cavity flow

m = 6 mode



Transient growth from initial conditions
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The linearized Navier–Stokes operator is in general non-
symmetrical – this is easy to see in the case of parallel 
shear flows where the base flow U=(U(y),0,0). 

It follows that the eigenmodes of the problem are non-orthogonal and it turns out 
that even if all modes are stable a perturbation can produce (perhaps very large) 
algebraic energy growth at short times, as opposed to exponential decay.

Focus changes from long-time growth to transient growth though ultimately we still 
expect to see exponential (eigensystem) behaviour as t → ∞.

Perturbation vorticity

(Base flow)

For mode shapes, non-
orthogonality means

Transient growth (from ICs) 101
10

Perturbation vorticity evolution, optimal IC

Space

Ti
m

e

Envelope
vs

evolution

Growth scales with Re

Bypass transition



Optimisation toolkit
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Adjoint variables and operators
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��

�

n

Short form
�tu

� + L�u� = 0

Integration by parts �  Adjoint NSE (ANSE)
��tu

� = +U · �u� ��U · u� ��p� + Re�1�2u� � · u� = 0with

where

For unsteady problems (NSE) we have also to consider the temporal domain, say [0, τ] 
so the overall domain is Ω × [0, τ] and now

Starting from Linearised Navier–Stokes equations (LNSE)
Short form

with

u�
0

�tu
� + L�u� = 0

integrate backwardsNB:

For steady applications, the adjoint variable v* and
operator A* are defined such that

where (a, b) =
�

�
a · bdV on domain

and where v and v* have ‘compact support’ in    . 



Boundary conditions
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Compact support allowed IBP without regard to space-time 
boundary conditions. 

��

�

n

Re-introducing terminal, boundary conditions:

Apply IBP to

Exchange order of integration and apply divergence theorem
Volume integrals involving 

terminal conditions

Surface integral involving boundary conditions

Barkley, Blackburn & Sherwin, 
IJNMF 57, 2008.

As far as possible we will choose terminal and boundary conditions to suit us.

(a, b) =
�

�
a · bdV �a, b� =

� T

0

�

�
a · bdV dtRecall

Two optimal energy functionals
14

The two kinds of optimisations we consider:
1. Initial flow perturbation u’0 that produces maximum kinetic energy growth 

at time τ.

2. Boundary flow perturbation u’c that produces maximum kinetic energy gain at 
time τ.

Optimisation in both cases is constrained: solutions have to obey LNSE.

Final energy
Boundary energy

Gain

��

�

nWe need definitions for boundary integrals:

where D is a representative length.

Final energy
Initial energy

Growth



Constrained optimisation
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we will construct an augmented/Lagrangian functional

for which we will find extrema. 
Constrains solutions 

to satisfy LNSE

We have converted a constrained optimisation problem into an unconstrained 
optimisation problem – but with more variables.
We allow arbitrary variations of the Lagrangian with respect to all the variables 
and ensure that all gradients are simultaneously zero.

Generalising the kinetic energy functionals to be optimised as

plays the role of a Lagrange multiplier.

The standard tool for this job is the Gateaux differential 

which identifies the directional derivative of L with respect to arbitrary variation in 
variable q.

Noack et al, Springer, 2011.Gunzburger, SIAM, 2003.

Optimal INITIAL perturbations

16



Calculus of variations for optimal ICs
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i.e.

In each case we use

Set boundary perturbations to zero, and seek the initial perturbation       that 
provides maximum energy growth for a given time horizon τ.

removed using zero BCs

Optimisation approach for initial perturbation
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At convergence we have IC      that maximizes                               subject to constraints.

Solve by optimization iteration:

 (e.g. Schmid 2007)
u�

0

optimization
update integrate forwards

�tu
� + L�u� = 0

integrate backwards

random IC

Evolution equations

Terminal condition

Optimality condition

Calculus of variations gave four outcomes:

The ‘optimisation update’ could be steepest descent or other appropriate method.



Eigenvalue approach for initial perturbation
19

If LNSE and ANSE are always satisfied, 

equivalently , meaning M*0 is the operator adjoint to M0

with respect to the inner product ( , ).
So now

Barkley, Blackburn & Sherwin, 
IJNMF 57, 2008.

which is maximised when      is the eigenvector of joint symmetric operator        
corresponding to the largest eigenvalue.  This eigenvalue is G.

Now compare

obtained by forward integration of LNSE
obtained by backward integration of ANSE

Recall

Compute eigensystem by timestepping
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To be able to solve the eigensystem of              we need only to be able to apply the 
operator to a vector.

Solve by Krylov method with inner loop: integrate forwards

�tu
� + L�u� = 0

integrate backwards

This means we can compute optimal initial conditions via either optimisation-
based or eigensystem solvers – great for bootstrapping new codes!

The only issue then is relative performance - with most of the work being in time-
integration as the inner loop is basically identical in each case.

But first we’ll look at some outcomes.

Generates Krylov sequence

Same outer loop as for 
instability solution, different 
inner (operator) loop.



Steady, stable, stenotic flow
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Re = 400 k = 1

Re = 400

Base flow

Optimal
initial

Optimal
max

Global optimum, 
Re=400: 

Gmax=8.9×104, k=1.

Optimal max – axial 
velocity isosurfaces

Relative performance
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This suggests that the eigensystem approach is generally preferable when 
computing optimal initial conditions.
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Optimal BOUNDARY perturbations
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Calculus of variations for optimal BCs
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Set the initial condition u’0 = 0 and compute a boundary perturbation uc on part of 
domain boundary, xc, that maximizes the kinetic energy gain at fixed τ.

Separation-of-variables approach:
where f (t, ω) is a prescribed function of time and ω is a parameter (frequency).

Looking for an optimal spatial 
distribution of BC disturbance. 

Simplification where

General where

Optimisation is specific to the 
particular choice made for f (t, ω). 
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Optimal BOUNDARY perturbations
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choose 

choose 

Applying the tools:

Optimisation approach for boundary perturbation
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Evolution equations

Terminal condition

Optimality
 condition

Analogous to approach for optimal initial condition:

optimization
update

�tu� Lu = 0
integrate forwards

�tu
� + L�u� = 0

integrate backwards



Eigenvalue approach for boundary perturbation
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obtained by forward integration of LNSE
obtained during backward integration of ANSE

Now compare

If LNSE and ANSE are always satisfied, 

equivalently

which is maximised when      is the eigenvector of joint operator        
corresponding to the largest eigenvalue.  This eigenvalue is K.

So now

i.e.

Analogous to approach for optimal initial condition.

Compute eigensystem by timestepping
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To be able to solve the eigensystem of              we need only to be able to apply the 
operator to a vector.

Solve by Krylov method with inner loop: integrate forwards

�tu
� + L�u� = 0

integrate backwards
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Again, analogous to approach 
for optimal initial condition



Example: Steady stenotic flow, Re = 400
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Mao, Blackburn & Sherwin, JFM 
705, 2012.
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Optimal inflow 
perturbation

Steady stenotic flow, Re = 400, m = 1, τ = 6.71
30

Mao, Blackburn & Sherwin, JFM 
705, 2012.

Axial 
velocity,

normalised 
at each 

time

Azimuthal
vorticity

Axial velocity 
at t = τ = 6.71

Outcome of 
boundary 

perturbation

Axial velocity 
resulting from 

optimal IC

Outcome of 
initial 

perturbation
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• Timestepper approach to linear systems involving LNSE.  Krylov 
methods for eigensystem solutions – cheaper than direct methods.

• Eigenmodal (large-time) vs transient growth (finite time) growth from 
initial conditions.

• Optimal growth (ICs) vs optimal gain (BCs).

• Tools for calculus of variations: Gateaux differential, adjoint variable 
and operators, integration by parts.

• Optimal transient growth via optimisation or eigensystem methods.

• Optimal transient gain via optimisation or eigensystem methods.

• Close relationship between optimal growth and gain outcomes.

Summary


