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Abstract

A novel method to estimate pressure fields from pointwise ve-
locity measurements is presented. As opposed to other exist-
ing methodologies, time-resolved full velocity fields are not
required. The methodology is based on a resolvent-based
reduced-order model which requires the mean flow to obtain
physical flow structures and pointwise measurement to calibrate
their amplitudes. The technique is applied to the unsteady flow
around an square cylinder at low Reynolds number. The po-
tential of the methodology is demonstrated through good agree-
ment between the fluctuating pressure distribution on the cylin-
der and the temporal evolution of the unsteady lift coefficient
predicted by the model and those computed by direct numerical
simulation.

Introduction

Fluctuating pressure fields associated to unsteady separations
and vortex shedding may lead to unsteady aerodynamic loads
of concern in multiple engineering applications, such as flight
mechanics, wind engineering, acoustics and dynamic aeroelas-
ticity. The identification of unsteady aerodynamic coefficients
is especially critical if new air vehicle configurations are tested
or if the flight envelope is extended beyond traditional manoeu-
vres [3]. Unsteady aerodynamic models are derived either from
wind tunnel testing or directly from flight test data because un-
steady simulations of realistic configurations are likely to re-
main unaffordable [11]. Besides classical force balance instru-
mentation, non-intrusive strategies to estimate unsteady aero-
dynamic forces from particle image velocimetry (PIV) are also
well-known [6]. These methods are based on combining exper-
imental data with the governing equations in such a way that,
provided with time-resolved velocity fields, a surface or vol-
ume integration of the Navier–Stokes equations can yield the
pressure field, and hence the unsteady pressure forces. A limita-
tion of the methodology is that three-dimensional time-resolved
PIV is required to obtain three-dimensional velocity fields, and
hence recover corresponding pressure fields.

In the present work we employ a methodology to estimate
fluctuating pressure fields, and their associated unsteady aero-
dynamic forces, that is able to overcome the need for time-
resolved three-dimensional velocity fields. Similarly to PIV-
based approaches, the present methodology is also based on
the combination of measurements with the Navier–Stokes equa-
tions. However, instead of employing three-dimensional time-
resolved snapshots of the velocity, the inputs of the method-
ology are the time mean flow and point measurements of the
velocity. (We note that the mean flow field can notionally also
be obtained from experimental point measurements.) The use
of the mean flow is motivated by the resolvent decomposition
of McKeon & Sharma [8]. A Reynolds decomposition applied
to the Navier–Stokes equations reveals that the unsteady mo-
tions are dominated by the properties of a resolvent operator
depending on the mean flow and spatial derivatives. This re-

solvent operator acts a forcing-to-response transfer function at
each temporal frequency, hence the mean flow restricts the pos-
sible unsteady motions that may exist in the flow. A singular
value decomposition (SVD) of the resolvent operator typically
reveals that, at each particular frequency, there is a dominant un-
steady flow structure with amplification ratio greater than other
possible motions.

The feasibility of employing these dominant motions as a ba-
sis for the creation of reduced-order models of the fluctuating
velocity field was recently demonstrated by Gómez et al. [4]
for flow in a rectangular lid-driven cavity. The present work
expands on that theme to include the fluctuating pressure field,
hence allowing estimation of fluctuating forces on an immersed
body, and in addition employs a novel matrix-free time-stepping
algorithm to estimate resolvent SVD modes, allowing them to
be readily calculated in non-trivial flow domains. As for the
method of Gómez et al. [4], amplitudes of resolvent modes used
in the reduced-order model are calibrated using pointwise mea-
surements of the velocity. The new methodology is applied to
the estimation of fluctuating forces imposed by the flow around
an square cylinder.

Description of the methodology

Figure 1 illustrates schematically the construction of the model
employed to estimate the unsteady forces. The time mean flow
u0(x) and a pointwise measurement u(x0, t) of the velocity his-
tory are the inputs, corresponding to the leftmost blocks. In
principle, mean flow and probe information could be obtained
independently either from experiments or simulations. A spec-
tral analysis of the probe signal u(x0, t) identifies the active
frequencies ωi to be explored in the resolvent analysis of the
mean flow. The dominant resolvent modes ψωi,1 arising from
the resolvent analysis corresponding to the active frequencies
are calibrated with the probe signal to obtain the amplitudes co-
efficients aωi,1. A linear combination of the weighted resolvent
modes then provides an approximation of the fluctuating veloc-
ity and associated pressure fields.

Resolvent decomposition

We follow a similar derivation of the resolvent decomposition
as that proposed by [7]. This derivation differs from that by [4]
in that the pressure is explicitly taken into account, instead of
projecting the velocity onto a divergence-free basis. A Reynolds
decomposition is applied to the total velocity û(x, t) = u0(x)+
u(x, t), with u(x, t) being the fluctuating velocity which may be
decomposed as a sum of temporal Fourier modes

u(x, t) = ∑
i

uωi(x)e
−iωit . (1)

The flow is assumed to be statistically steady thus the frequen-
cies ωi are real. A similar decomposition may be applied to the
nonlinear terms, leading to fωi = −(u ·∇u)ωi . These decom-
positions lead to a formulation of the Navier–Stokes equations
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Figure 1: Diagram of the construction of the model. The mean flow and pointwise measurement inputs are on the leftmost blocks.
A fast Fourier transform (FFT) of the probe signal provides the active frequencies ωi to be explored in the resolvent analysis of the
mean flow. The dominant resolvent modes ψωi,1 corresponding to the active frequencies are calibrated with the probe signal to obtain
the amplitudes coefficients aωi,1. A linear combination of the weighted resolvent modes provides an approximation of the fluctuating
velocity and pressure. The fluctuating pressure is included in the fluctuating velocity vector u = (u,v,w, p)T for convenience.

as

u0·∇u0 = −∇p+Re−1
∇

2u0 + f0 (2)
uωi = Hωi fωi , (3)

with Hωi being the resolvent operator of the Navier–Stokes for
each frequency ωi. The mean flow equation (2) corresponds to
ω = 0 and Reynolds stress f0 denotes the interaction of the fluc-
tuating velocity with the mean. The fluctuating pressure aug-
ments the fluctuating velocity vector as u = (u,v,w, p)T so the
resolvent operator imposes the continuity equation

Hω =

(
−iω

[
I 0
0 0

]
−
[

L −∇

∇T 0

])−1 [ I 0
0 0

]
,

(4)
with L being the Jacobian of the Navier–Stokes equations and I
an identity matrix. This operator represents how the fluctuating
velocity uω is driven by nonlinearity fω in Fourier space, hence
it is useful to inspect its amplification properties via a singular
value decomposition (SVD)

Hω = ∑
m

ψω,mσω,mφ
∗
ω,m , (5)

where ψω,m and φω,m are two orthonormal basis termed re-
sponse and forcing modes respectively. The superscript ∗ in-
dicates conjugate transpose and the subscript m indicates the
ordering of the modes, ranked by the amplification given by the
corresponding singular value σω,m under the L2 energy norm.
The key of the resolvent decomposition is the projection on
the nonlinearity onto the forcing modes [8], hence the fluctuat-
ing velocity can be written as a linear combination of response
modes

uω = ∑
m

ψω,mσω,mχω,m , (6)

where the unknown scalar coefficients χω,m are the projection
of nonlinearity onto forcing modes and represent the forcing
driving the velocity fluctuations [4].

Equation (6) is an exact representation of the Navier–Stokes
equation because no assumption other than a statistically steady
flow has been used. On the other hand, it is useful to exploit the
values taken by the amplification σω,m in order to construct a
reduced-order model of the fluctuating velocity. In presence of
a single dominant flow feature such as a centrifugal instability
[4] or a critical layer response [8], the first singular value σω,1
is usually much larger than the second one σω,2, hence, at a par-
ticular frequency ωi, irrespective of the values taken by χω,m, it

can be assumed that the projection of nonlinearity onto the first
response ψω,1 is much larger than onto the rest. As such, the
low-rank properties of the resolvent operator can be employed
to yield a rank-1 model

uω ' ψω,1aω,1 , (7)

where the amplitude coefficients aω,1 = σω,1χω,1 represent the
amount of nonlinearity being amplified. Under this rank-1 as-
sumption, the fluctuating velocity (and pressure) can be ex-
pressed as

u(x, t)'∑
ω

aω,1ψω,1(x)e−iωt , (8)

hence this assumption provides a convenient model in which
the velocity fluctuations at each frequency are parallel to the
first singular response mode corresponding to that frequency.
This rank-1 assumption has proven to be adequate in previous
investigations of pipe, channel and cavity flows [8, 4].

Amplitude calibration

Obtaining resolvent modes ψω,1 can be computationally chal-
lenging in complex three-dimensional geometries even using
time-stepping methods. However, only a small number of
modes corresponding to the relevant or active frequencies in the
flow are computed in practice. In the absence of further infor-
mation, the active frequencies of the flow are identified via a
Fourier analysis of a pointwise measurement of the flow. As
highlighted in figure 1, the probe information can be obtained
independently of the mean flow. Here we provide an extension
of the calibration method developed by [4] to obtain the un-
known amplitude coefficients that close the model (8) by using
directly the same pointwise measurements of the velocity that
have been previously employed for the identification of the ac-
tive frequencies. At a particular spatial location x0, the reduced
order model of the fluctuating velocity satisfies

u(x0, t)'
Nω

∑
i=1

ψωi,1(x0)aωi,1e−iωit . (9)

with Nω representing the number of active frequencies (or dis-
cretized frequency bins) of the flow. Although each scalar com-
ponent of (9) contains Nω unknowns, it can be evaluated at a
number of different time instants Nt > Nω, such that the solu-
tion is amenable to a least-squares approximation. We note that
the spatial structure of the fluctuating velocity is restricted by
the response modes, hence the pointwise calibration of the am-
plitude coefficients serves to capture the temporal behaviour of



the fluctuating velocity. The solution of (9) in a least-squares
sense is given by

A = Ψ
+U(x0, t) (10)

with the 3Nt ×Nω matrix Ψ containing the values of the three
velocity components of the resolvent modes and their complex
conjugates at the spatial location x0 at Nt different times, the
Nω × 1 vector A representing the unknown amplitude coeffi-
cients, and the 3Nt×1 vector U contains the values of the veloc-
ity at the spatial location x0 at different times. The superscript
+ denotes pseudo-inverse. The dimensions of the least-squares
problem (10) are much smaller than that of the SVD compu-
tations and its solution is straightforward. Finally, the least-
squares method employed to fit the amplitudes is optimal in
minimizing the variance. Hence in the case of Gaussian noise,
the method would lead to a zero mean error. As such, sensor
noise in the measurements would not be an issue for the present
method.

Obtaining resolvent modes using time-stepping

The most computationally demanding step in the creation of the
model, depicted in figure 1, is obtaining the resolvent modes.
As such, efficient methods to evaluate the resolvent operator
are essential for the feasibility of the present methodology for
the estimation of aerodynamic forces. We note from equation 4
that the resolvent operator can be evaluated via a shift and in-
version of the Jacobian, hence matrix-free or matrix-forming
methods, typically employed for global stability analysis [10],
can be used to study the resolvent operator.

Although the simplest way to obtain numerically the resolvent
modes is to assemble the resolvent operator and perform a SVD,
this is difficult in practice owing to the massive computational
requirements resulting from the large dimensionality of the op-
erator associated to flows with three non-homogeneous spatial
directions. Thus matrix-free methods are preferred for the study
of these flows. In what follows, we have employed the matrix-
free time-stepping methodology described by Gómez et al. [5]
to obtain the resolvent modes.

Application to the flow around an square cylinder

The flow past a two-dimensional square cylinder may serve as
a model for the flow around a non-trivial bluff body and it is
a good compromise between computational affordability and
complex flow features [6]. Beyond the critical Reynolds num-
ber, the wake becomes unsteady presenting asymmetric vortex
shedding, thus this flow is interesting for the investigation of
unsteady lift and drag forces.

Although the present methodology seems more appealing for
experimental works, the mean flow and pointwise measure in-
puts to the model have been obtained via direct numerical simu-
lation (DNS) using a spectral-element solver [2]. A rectangular
computational domain defined in [−16,20]× [−14,14] has been
discretized with 236 spectral elements. The square cylinder has
a unit side length and its centroid is located at (x,y) = (0,0).
Temporal and spatial convergence has been achieved with a
polynomial expansion of order 11 in each element and using
a second-order temporal scheme with ∆t = 8.5× 10−3. A
constant velocity (u,v) = (1,0) is imposed at the inlet of the
domain, no-slip boundary condition at the cylinder wall and
Neumann boundary conditions are imposed at the outlet. The
Reynolds number based on the cylinder side length D and the
modulus of the inlet velocity is fixed to Re = 100.

The inputs to the model corresponding to the leftmost block in
figure 1, mean flow and a single pointwise measurement of the
velocity, have been obtained via DNS. The probe is located at

Figure 2: Comparison of the fluctuating vorticity fields obtained
from (left) DNS and (right) resolvent-based model via calibra-
tion of the amplitude against probe data. Colored contours rep-
resent ±1/3 of the maximum and minimum vorticity.

a random point in the wake of the cylinder where the shear is
non-zero and it serves to identify a single dominant frequency
ω1 = 0.91, hence only one resolvent mode corresponding to that
frequency needs to be computed. We anticipate that the dynam-
ics of the self-interaction of this mode in this kind of flows may
be relevant due to the flow symmetry [9] thus it is required to
consider the first harmonic ω2 = 2ω1 to predict the fluctuating
drag. However, only a single mode is required for flow domains
without symmetries, e.g., an inclined square cylinder [5].

The iterative time-stepping algorithm described by Gómez et
al. [5] has been employed to obtain the two resolvent modes
required to construct the reduced-order model. The forced lin-
earized Navier–Stokes equations and their adjoint version have
been solved with the same spectral-element solver employed for
DNS. The boundary conditions for each equations are described
by [1], however two set of boundary conditions at the inlet have
been tested for the forced adjoint equations, (i) an extended do-
main [−40,20]× [−14,14] with Dirichlet boundary conditions
and (ii) the same domain employed for the DNS with a non-
physical forcing −m(x)u(x, t) applied at −16 < x < 12 to force
a zero-amplitude of the forcing mode at x =−16. Both bound-
ary conditions have provided similar results, thus the former
has been adopted on account of smaller computational require-
ments.

A comparison of the vorticity fields obtained from DNS and the
resolvent-based model via calibration of the amplitude against
probe data is shown is figure 2. It is remarkable that flow in
the region around the cylinder, and hence the unsteady separa-
tion, is accurately predicted by the model, despite the probe be-
ing located approximately three side lengths from the cylinder.
On the other hand, the structure of the wake far from the cylin-
der present obvious discrepancies. Although the general feature
of vortex shedding is also reproduced, the DNS presents addi-
tional features that the present resolvent-based mode does not
capture, like a consecutive and opposite vertical displacement
of the vortex cores. We presume that the additional dynamics
of the far wake are governed by additional subdominant resol-
vent modes associated with the shear in the wake not considered
in the present model.

The present approach is validated by measuring the unsteady
lift coefficient defined as:

C′l =
∫

δΩc

p(x)n · ey, (11)

where δΩc denotes the boundary of the cylinder, n is the nor-
mal vector around the square cylinder while ey is the unit vector
in the normal direction. At the present value of Re, the contri-
butions of the viscous forces are negligible. Nevertheless, they
could be taken into account using the present methodology. A
good agreement between the temporal evolution of the unsteady
lift coefficient calculated via DNS and predicted by the present
methodology is shown in figure 3.
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Figure 3: Comparison of the temporal evolution of the unsteady
lift coefficient calculated via DNS and predicted by the present
methodology.
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Figure 4: Representation of the fluctuating pressure distribution
along the sides of the cylinder at a random instant calculated via
DNS and predicted by the present methodology. Each cylinder
side acts as a x−axis while their normal direction indicates the
relative value of unsteady pressure at that location.

This results is consistent with the accurate prediction by the
model of the near field around the cylinder shown in figure 2.
To provide further insight, the fluctuating pressure distribution
along the sides of the cylinder at a random instant is represented
in figure 4. The resemblance between the pressure distributions
corresponding to DNS and the resolvent-based model supports
the good agreement between the temporal evolution of the un-
steady lift force. Finally, the same approach has been carried
out using different pointwise measurements. As remarked by
[4], similar results have been obtained provided that the probe
is always positioned at a location where the fluctuating velocity
is significant. As such, care is needed in the selection of the
probe locations, e.g., a probe far from the wake would present a
negligible fluctuating velocity or a probe in the wake centerline
far from the cylinder would only show dynamics corresponding
to the first harmonic frequency ω2. However, this potential
pitfall can be easily overcome by selecting more than one probe
location, as shown by [4]. Furthermore, the locations where
the fluctuating velocity is significant can be inferred from the
spatial structure of the resolvent modes.

Conclusions

A novel method to estimate unsteady aerodynamic coefficients
via pointwise measurements has been presented. The method-
ology requires two inputs (i) the mean flow and (ii) temporal
information from a probe. In principle, both inputs could be ob-
tained either simultaneously or independently. Although we be-
lieve the present methodology is more appealing for experimen-

tal investigations, e.g. using planar time-resolved PIV to obtain
a three-dimensional mean flow and obtain temporal information
at different locations, DNS was employed in the present work
to obtain the mean flow and the pointwise data.

The potential of the present methodology has been demon-
strated by application to an unsteady two-dimensional flow
around an square cylinder at low Reynolds number. The present
approach can predict the fluctuating velocity associated with un-
steady separation and the pressure distribution near the square
cylinder using just the leading response mode. The temporal
evolution of lift coefficient computed from those fields are in
good agreement with those obtained via DNS.
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