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Abstract

Turbines in farm operation are subject to adverse operatingcon-
ditions when operating in the wake of one or more upstream tur-
bines. The stability of a turbine wake is important in this con-
sideration, where an understanding of instability mechanisms
could yield performance gains. Owing to the scale of large wind
farms, axisymmetric models are often employed to model per-
formance. In this study we use actuator Navier–Stokes methods
to produce three and two-dimensional axisymmetric wakes of
a wind turbine and compute instability modes directly from a
direct numerical simulation (DNS). For axisymmetric compu-
tations, modes are axisymmetric only, and three dimensional
wakes consider three dimensional instability modes. An ax-
isymmetric base flow was found to be less stable than an equiv-
alent three dimensional computation, and all cases studiedbe-
tween Reynolds numbers of 300 and 3000 were found to be
stable. Similar mode shapes between two and three dimensional
computations were found for least stable modes at the Reynolds
numbers considered.

Introduction

Horizontal axis Wind turbines (HAWT) are increasingly de-
ployed in farm configurations to minimize total installed cost
of energy. Thus, increasing emphasis is being placed on the
wake region of a turbine, as this forms the inflow condition for
many turbines downstream of the leading rotor(s).

The higher turbulence intensity and lower flow speeds of a tur-
bine wake are undesirable for wind farms. Higher turbulence
intensity contributes to a lower fatigue life of a turbine. Lower
flow speeds reduce energy output. For low freestream turbu-
lence intensity, leading turbine wakes travel further intothe
wind farm and more strongly influence flow for downstream
turbines. Study of the Vindeby offshore wind farm in [4] found
that the effects of a turbine wake on fatigue loading were similar
to a wind direction that was incident over land. Another study
in [12] concluded that wake effects were more prominent for
turbines when ambient turbulence intensity was low. A studyin
[2] found similar outcomes.

Findings that the turbulence generated by a turbine can havesig-
nificant effects motivates studies of turbine wakes. The wake of
an individual N-bladed turbine was first described by Joukowski
in [9] as a system of N+1 helical vortices, with N helical tip
vortices and one single hub vortex. The model for the heli-
cal tip vortices was later used by Widnall in [14] which was the
first successful study of the stability for helical vortex filaments.
Widnall’s work identified that the system was least stable to
long wave disturbances, particularly those that moved stream-
wise adjacent elements of the filament closer together. These
findings have been reproduced in more sophisticated computa-
tions such as those by Walther in [13], as well as by methods
that include a model for the turbine in [7]. The findings have
also been observed experimentally in [3]. More recent works
have also tried to integrate observations for instability growth
rates into estimates for the wake length of a turbine in [3].

A common practice to excite the long and short wave instabil-
ities in a helical vortex filament is to prescribe a set of har-
monic disturbances at the blade tip, which may have the un-
intended drawback of only highlighting these mechanisms. The
work presented here avoids harmonic excitement by computing
modes and stability properties by examining flowfields from a
DNS computation of a stable flow. To put the work in context,
results for three-dimensional modes and growth rates are com-
pared to modes that result from an axisymmetric model for the
turbine that is often employed in studies of large wind farms.

Methodology

Optimum Rotor and Problem Definition

Base-flows are computed using an actuator Navier–Stokes
method where body forces are added to a Navier–Stokes solver
to reproduce turbine dynamics. Body forces are determined
from a prediction of turbine loading, usually from tabulated
aerofoil data. The forces are then smoothed locally in the do-
main according to equation 1, withF2D describing the desired
force,d, the orthogonal distance to the blade line andε control-
ling the size over which the forces are applied. A more detailed
description of the method is available in [8].

It should be noted that the actuator line model is one of several
methods to reproduce turbine dynamics using body forces. An
alternative to smoothing the forces in the region of the blades
is to instead smooth over the entire swept area of the blade.
The resulting axisymmetric force description is computation-
ally more efficient as base flows are two-dimensional and there-
fore this method has been used to validate our description ofa
Glauert optimum rotor.
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To model an optimum rotor, rather than specify a turbine ge-
ometry and aerofoil profile, the product of chord and either nor-
mal or tangential coefficient is scaled with the local dynamic
pressure to arrive at forcing,F2D either normal or tangential to
the blade swept area. Blade normal and tangential force coeffi-
cients;cCN andcCT are determined by coupling Blade Element
Momentum theory described in [6] with an inviscid optimum
rotor [5]. An inviscid optimum rotor is produced by optimizing
axial and tangential induction factors (a,a′) given by 3 accord-
ing to optimization conditions in 4.
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Once optimum induction factors are known in accordance with
an optimum Glauert rotor, the local angle of attack,φ can be
determined and therefore the product of chord and either normal
or tangential forcing coefficient described by eq. 7. Here,Ω
denotes the blade rotation rate, tip speed ratio,λ = ΩR/V∞ and
r is the radial distance from the axis of rotation for the blade.
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In our description of the base flow, Prandtl’s tip loss factor, F
is used to account for three dimensional effects at the bladetip
and is given by eq. 8, where the number of turbine blades,B is
three.
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Forcing coefficients for an optimum rotor were applied using
an actuator disc model for the turbine to produce velocity pro-
files at the rotor. The resulting streamwise velocity profiles are
shown in figure 1 which shows a comparison between flow at
the rotor and the inviscid prediction for various Reynolds num-
bers. The agreement is generally within 5% and improves with
increasing Reynolds number. The test was repeated using an
actuator line model, where turbine loading agreed within 5%of
an equivalent disc computation as well.
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Figure 1: Streamwise velocity at the rotor plane for Reynolds
numbers between 2000 and 20000, showing comparison be-
tween the inviscid prediction of streamwise velocity(u) at the
rotor and outcomes from an actuator disc simulation.r denotes
distance radially away from the turbine axis of rotation andR is
the turbine radius. Results agree within 5% and improve with
increasing Reynolds number

Using the actuator line model, with forcing consistent with
a Glauert rotor, base flows have been generated for various
Reynolds numbers, here defined according to the freestream ve-
locity U∞ and the blade radius,R of unity. For all results to
be presented, a turbine design tip speed ratio of 4 was consid-
ered. Computations take place on a computational domain with
a spectral element Navier–Stokes Solver with Fourier modalde-
scription over azimuth described by [1]. The mesh, a merid-

Figure 2: Computational domain showing spectral element
meridional semiplane used for the study. Flow is from left to
right, with Dirchlet velocity inflow and Neuman outflow bound-
ary conditions. Bottom edge of the domain represents the axis
of rotation for the turbine, where an axis boundary condition has
been used. The top boundary is free slip for streamwise velocity
and Dirchlet for radial and azimuthal velocity components

ional semiplane in cylindrical coordinates with Fourier projec-
tion over azimuth consisted of 2593 spectral elements.

For both axisymmetric and three-dimensional computationsthe
element polynomial order was 6, and for three dimensional
cases 16 Fourier modes were employed for a reduced 120 de-
gree wedge domain in azimuth with periodic boundary condi-
tions to model a three bladed rotor. The meridional semiplane
domain is shown by figure 2. Computations are performed in a
rotating reference frame which produces steady wake structures
for three dimensional cases, rather than periodic as tip vortices
rotate at the same speed as the reference frame. The upstream,
radial and downstream lengths are 5, 7 and 7 rotor lengths re-
spectively.

Computations for stability analysis have been carried out for
a turbine at design tip speed ratio of 4 for Reynolds numbers
between 500 and 3000. An example computation for a three-
dimensional flow is given by figure 3 at a Reynolds number of
2000 and serves to highlight helical vortex structures associated
with shed vorticity at the blade root and tip that are of interest
in this study. For a two dimensional computation the helical
vortices become shear layers.



Figure 3: Wake structures from an actuator line computationat
Reynolds number 2000 and tip speed ratio of 4. Blue and red
isosurfaces highlight the helical vortex structures.

Stability Analysis

The stability analysis presented here is based on the residual
algorithm outlined by [11], and uses time history of a point in
space,x for a linearly stable DNS computation where the flow-
field, U is described by limt→∞ u(x,t) = U(x). If the flow is
perturbed with small scale amplitude and evolved forwards in
time, the flow evolution is described by the sum of the first n
eigenmodes in eq 9. For our computations, perturbations arise
from a non equilibrium initial condition.

u(x,t) = U(x)+∑
n

ûn(x)eλnt +c.c. (9)

For a linearly stable flow, and large time since the linear pertur-
bation, the amplitude of all modes except the least stable will
decay. Where only the least stable mode is active,u(x,t) is de-
scribed by only one mode in eq. 9.

The first eigenvalue can be determined from eq 9 using the time
history for the flow velocity at a sample location,ux(t). For two
samples of the flow:ux(t),ux(t +∆t), then:

ux(t) = U(x)+ û1(x)e
λ1(t) (10)

ux(t +∆t) = U(x)+ û1(x)e
λ1(t+∆t) (11)

by using equation 11 it can be shown that the residual,

log
(
∣

∣

∣

ux(t+∆t−ux(t)
∆t

∣

∣

∣

)

is a linear function with slope equal to the

real part of the eigenvalue. Where the leading mode is com-
plex, the residual shows oscillatory behavior. In either scenario
a linear curve fit to the residual indicates growth rate, and pe-
riodicity in the residual is proportional to the imaginary part
of the leading eigenvalue. For computations where the leading
eigenmode is real, mode shapes can be approximated according
to: û(x) = u(x,t +∆t)−u(x,t).

Results and Discussion

Growth rates were found for actuator line computations at
Reynolds numbers ranging between 300 and 2500, as well as
for actuator disc computations at Reynolds numbers between

500 and 2000. As a first consideration, only axisymmetric per-
turbations were considered for the actuator disc computations as
[10] identified that the least stable perturbations were axisym-
metric, however the study was limited to a Reynolds number of
500. Given the three-dimensional nature of the simulationsfor
actuator line cases, the modes arising from such computations
are three-dimensional in nature. A summary of the observed
growth rates for three-dimensional perturbations to an actuator
line computation as well as two-dimensional perturbationsto an
actuator disc computation is shown by figure 4, which identifies
that the axisymmetric wake is less stable than for an equivalent
three dimensional computation.
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Figure 4: Comparison of least stable growth rates for actua-
tor line and actuator disc base flow computations for various
Reynolds numbers.

Eigenvalues for both actuator line and actuator disc compu-
tations show real only eigenvalues at Reynolds numbers be-
low 2000, but periodicity becomes evident in the residual at
Reynolds numbers of 2000 and above, indicating a change in
perturbation structure at these Reynolds numbers. Mode shapes
for these computations are yet to be identified and will be con-
sidered in further work.

Mode shapes were identified for base flow computations where
real only eigenvalues were observed. Given the actuator line
computations are in a rotating reference frame, real only eigen-
values indicate that the least stable mode moves with blade ro-
tation and vortices downstream of the rotor.



Figure 5: Least stable mode shape at Reynolds number 1500
shown using contours of azimuthal vorticity (blue negative, red
positive) over a meridional semiplane for the least stable mode
at Re 1500. Top shows the mode identified for the actuator line
simulation and the bottom shows the actuator disc result forthe
same parameters. Overlaid is black contour lines of azimuthal
vorticity the base flow computation. The rotor is located at the
far left of the figure, and highlighted with a solid line for the
actuator disc computation.

At Reynolds numbers below 2000, mode shapes have been iden-
tified and are consistent with figure 5. For both the actuator line
and disc computations, the least stable modes are best shownac-
cording to azimuthal vorticity contours, and align closelywith
the vortex structure for actuator line computations, or thetip
shear layer in the case of an actuator disc computation. Least
stable modes for actuator line computations, appear as a counter
rotating vortex pair within the tip vortices themselves, and sug-
gest that viscous effects at this low Reynolds number act to
damp out mutual inductance type modes, and instead line vortex
instabilities dominate. Mode shapes for an actuator disc com-
putation appear to be related to the same dynamics, and appear
as a pair of opposing vorticity, but is instead smeared over the
cylindrical sheet of vorticity that produces the shear layer for an
actuator disc computation. Owing to the larger surface areaof
such an arrangement it appears to be more easily disrupted than
for an equivalent actuator line computation.

Conclusions

Two-dimensional and Three-dimensional turbine wake stability
was investigated at low Reynolds number. Stability properties
were estimated from the base flow computation and considered
three dimensional perturbations to an actuator line simulation,
as well as two dimensional perturbations to an axisymmetric
actuator disc simulation. The study found that the two dimen-
sional wake computed by the actuator disc model was less stable
than an equivalent actuator line computation. Flow physicsbe-
tween the two simulations showed similarities, with a counter
rotating azimuthal vortex pair identified for the actuator line
simulation which appeared as a streak like structure over the
shear layer produced by an actuator disc computation. . Further
work will expand the Reynolds numbers under consideration
and also calculate non-axisymmetric perturbations to the two
dimensional wake structure for the actuator disc model.
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