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Instability in a Precessing Cylinder Flow
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Abstract

Direct numerical simulation (DNS) results for flow inside a
spinning, precessing cylinder of fluid corresponding to a previ-
ous experimental study are presented and analysed in relation to
experimental results and weakly nonlinear theory based on triad
interaction of inviscid Kelvin modes. The simulation outcomes
agree well with the experimental results both qualitatively and
quantitatively, and additional processing reveals more in-depth
support for the weakly nonlinear theory than could be demon-
strated in the experiments. Additionally, numerical results pro-
vide meridional and azimuthal mean flow data.

Introduction

In rotating flows, conservation of angular momentum can lead
to oscillatory behaviour; in a rotating frame of reference, this
behaviour can be couched in terms of a balance between in-
ertial and Coriolis forces. In cylindrical containers of rotating
fluid, the (linear) inviscid eigenmodes (Kelvin modes) and res-
onant frequencies of this phenomenon are readily predicted [4].
Provided Reynolds numbers are sufficiently high, the inviscid
Kelvin modes are a reasonable approximation to the set of vis-
cous eigenmodes of the basic state of solid-body rotation. The
simplest of these are relatively easy to excite and observe ex-
perimentally [3, 11].

Even with quite small disturbance amplitudes, a rich variety
of more interesting behaviours have been observed experimen-
tally, such as ‘resonant collapse’ which can produce disordered
and/or turbulent states [9, 11]. However, prior to the onset of
these complicated states, it is also possible to observe appar-
ently structured motions, leading to conjecture that many of
these phenomena arise through nonlinear interaction between
vibration modes of the basic state. McEwan [12] speculated
that the resonant collapse of inertia wave modes was caused by
nonlinear interactions of triads of waves, since this mechanism
was known to exist for ocean-surface and stratified waves. This
is usually modelled by a weakly nonlinear approach in which
the linear eigenmodes are given amplitudes that evolve nonlin-
early. However, Manasseh [10] was unable to explain experi-
mental observations of inertia wave breakdown by use of non-
linear triad theory alone. Experiments by Fultz, Malkus, McE-
wan and Kobine [3, 8, 11, 5] had all shown the presence of an
azimuthal mean flow during excitation of inertia waves. The
possibility that a mean flow could ‘tune’ or ‘detune’ the modes
led to heuristic inclusion of a mean flow in a triad theory e.g.
[6, 7]. Through careful experimental design, it is possible to
precisely target particular combinations of modal resonances,
especially if the Kelvin modes are assumed as a basis set. One
such set of theoretical and experimental investigations [6, 7, 13]
forms the basis of the numerical modelling work that we de-
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Figure 1: Schematic of experiment. Turntable rotates at rate
Ω2, cylinder of fluid rotates relative to turntable at rate Ω1. Af-
ter solid body rotation of fluid in cylinder is achieved, nutation
angle θ rises from zero to a fixed maximum value.

scribe below.

The experimental setup is illustrated in figure 1: a cylinder of
fluid, height H and radius R, spins about its axis at one rotation
rate Ω1 relative to a turntable with rotation rate Ω2. After solid
body rotation is achieved inside the cylinder, its axis is tilted
through angle θ. For tuned rotation rate pairs, weakly nonlinear
theory ([6], valid for small nutation angles) predicts an instabil-
ity mechanism based on a coupling of Kelvin modes.

In the case principally considered here, θmax = 1◦, Ω1 = 1.18,
Ω2 = −0.18 and Re = (Ω1 +Ω2 cosθ)R2/ν = 6500, while the
Rossby number Ro=Ω2 sinθ/(Ω1+Ω2 cosθ) =−0.0031. The
cylinder aspect ratio was chosen as H/R = 1.62, which is tuned
to excite a weakly nonlinear resonance between the primary
driven Kelvin mode with azimuthal wavenumber m = 1 and two
other modes which have azimuthal wavenumbers m = 5 and 6
(radial and axial structures discussed below), as outlined in [6].

Computational method

We use a cylindrical-coordinate formulation of a nodal spectral
element–Fourier method for the incompressible Navier–Stokes
equations [2], expanded to solve in a reference frame rotating at
angular velocity ΩΩΩ = ΩΩΩ1 +ΩΩΩ2. Thus the equation set for solu-



Figure 2: Spectral element mesh of the meridional semi-plane
for a cylinder of height:radius ratio H/R = 1.62.

tion (steady and dynamically insignficant centrifugal terms can
be expressed as the gradient of a scalar and so may be absorbed
into the pressure term) is

∂tuuu+uuu ···∇∇∇uuu+2ΩΩΩ×uuu+dΩΩΩ/dt × xxx = ρ
−1

∇∇∇p+ν∇
2uuu, (1)

∇∇∇ ···uuu = 0, (2)

and the mesh remains fixed. Since the angular velocity ΩΩΩ is the
vector sum of the turntable and cylinder motor rotations, we can
choose to solve either in a frame of reference aligned with the
cylinder axis (where the cylinder rotates in it, so the cylinder
walls move with respect to the reference frame), or in a frame
of reference fixed to the cylinder, such that the walls appear
fixed. A useful implementation check is that the flow dynamics
should be identical, modulo a solid-body rotation, regardless of
which choice is taken; we confirm that this is indeed the case
for our code. The results presented below were computed in
the cylinder axis frame of reference, so the initial basic state is
solid-body rotation.

The mesh has 192 spectral elements covering the meridional
semi-plane, as shown in figure 2, and 128 data planes (64
Fourier modes) in azimuth. Local mesh refinement is concen-
trated near the walls to resolve boundary-layer structure. Sixth-
order tensor-product nodal basis functions are used in each ele-
ment, giving at total of 7081 independent mesh nodes for each
data plane and 906 368 nodes in total. We have checked this
resolution is adequate to resolve flows for the parameters em-
ployed.

Dynamical behaviour

The initial state is solid-body rotation, representing steady-state
flow in the cylinder with θ = 0. The simulation is then initiated
with a smooth (cosine-taper top-hat profile) increase in θ up to
θmax = 1◦ over 1/10th of a cylinder rotation period, i.e. over
0.1T where T = 2π/Ω1.

The dynamics of the flow are illustrated in figure 3, which
shows the evolution of flow kinetic energy density partitioned
into the 64 azimuthal Fourier modes included in the simulation.
The dominant energy resides at m = 0, which is dominated by
(axisymmetric) solid-body rotation. Within of order 20 cylinder
rotation periods, the flow settles to a quasi-steady three-dimen-
sional state with the non-axisymmetric component dominated
by Fourier mode m = 1 (driven directly by the precession at
frequency Ω2 in m = 1) with higher modes directly slaved to
Fourier mode pair m = 0,1 through nonlinear coupling.

Soon after 100T , an instability can be observed. Kinetic ener-
gies in Fourier modes m = 5 and m = 6 rise above their quasi-

Figure 3: Temporal dynamics of flow kinetic energy E parti-
tioned into azimuthal Fourier modes (azimuthal wavenumber
index m).

steady values, with an initial phase of linear growth lasting un-
til approximately 170T when nonlinear saturation sets in with a
corresponding drain of energy from Fourier mode m = 1. This
triadic interaction (m = 1,5,6) is in good agreement with the
predictions of weakly nonlinear theory as outlined in references
[6, 13].

Following initial saturation, behaviour apparently approaches a
limit-cycle state, with approximate period Tavg = 34.6T , with
all non-axisymmetric modes participating. This large-timescale
behaviour is observed experimentally, and is also predicted by a
refined weakly nonlinear theory, as set out in [7]. We note that
such large-timescale quasi-periodicity has also been observed
in earlier experiments, e.g. for breakdown types C and G of [9].

Each cycle contains a phase where azimuthal modes m = 5
and 6 grow exponentially by approximately two orders of mag-
nitude before saturation and collapse. Their growth occurs at
the expense of energy in m = 1. Again, these features — the
azimuthal wavenumbers participating, and exponential growth
— lend support to the idea that a weakly nonlinear interaction
drives the instability.

Spatial structure

An examination of spatial structure on the cylinder mid-plane at
a time when three-dimensional features were most evident was
presented by Lagrange et al. [6, Fig. 2]. Their data were ob-
tained via particle image velocimetry, using laser sheet lighting
in a plane normal to the turntable axis, at cylinder mid-height
(z = 0). We note that the background solid-body rotation was
subtracted from the data prior to post-processing to obtain es-
timates of axial vorticity as reproduced here in figure 4 (a) —
also that owing to practical restrictions, they were unable to
resolve near-wall boundary layer structure. Azimuthal struc-
tures dominated by m = 6 are clearly seen. For comparison we
show in figure 4 (b) an equivalent data extraction from our DNS
for a time of approximately 340T . This also shows dominance
by m = 6 at this location, and also evidence of boundary layer
structure near the cylinder walls that could not be resolved in
experimental PIV measurements. Weakly nonlinear theory [6]
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Figure 4: A comparison of contours of axial vorticity extracted
at cylinder mid-height when azimuthal modes m = 5 and 6 are
active. (a): experiment [6], (b): DNS. The only structure visible
at this location is for azimuthal wavenumber m = 6, in agree-
ment with predictions of weakly nonlinear theory [6].

(a) (b)

Figure 5: Contours of axial velocity in the meridional semiplane
for (a) m = 5, (b) m = 6.

predicts that at this mid-height location, axial vorticity should
only appear for m = 6, in good agreement with both experiment
and DNS.

Weakly nonlinear theory also predicts that the axial structure of
the axial velocity component for the (inviscid) Kelvin modes in-
volved in the coupling should have one half-wavelength m = 5
and two for m = 6. Figure 5 shows contours of axial veloc-
ity component in the meridional semiplane for the (real part of)
Fourier mode m = 5 and the (imaginary part of) Fourier mode
m = 6. The observed axial parities and boundary conditions
(no-slip) imply that to a good degree of approximation, the ax-
ial velocity matches the prediction at each radial location. The
presence of only a single dominant maximum in the radial struc-
ture of each mode also agrees with the nonlinear theory for the
resonance condition for which the problem is tuned.

Figure 6, for t ≈ 340T , illustrates an overturning flow inside the
cylinder. This feature has been noted in previous experiments,
e.g. Manasseh (1992) [9]. At this stage it is not completely clear
if this overturning is directly connected to the instability.

Figure 7 shows details of the temporal evolution of Fourier-
modal kinetic energies in modes m = 1 and 5 during the last
long-timescale oscillation shown in figure 3. The key new fea-
ture here is the temporal evolution of the disturbance azimuthal
flow w, which is the integral over the meridional semi-plane of
swirl velocity component obtained after the background solid-

Figure 6: Instantaneous sectional streamlines with contours of
out-of-plane velocity in a plane orthogonal to the tilt direction.

Figure 7: Detail showing kinetic energies at azimuthal
wavenumbers m = 1 and 5, together with normalised distur-
bance azimuthal flow rate w.

body rotation has been subtracted, normalised by the outer wall
speed Ω1R. Unlike the modal energies, w is shown on a linear
scale, and note that it is negative, i.e. retrograde. The fact that
this disturbance flow varies by only of order 10% from its mean
value over the large-scale period while the energy E5 varies by
over two orders of magnitude and E1 by only about a factor
of two, suggests that the azimuthal flow is most strongly cou-
pled to m = 1. We note that according to both our related pro-
gramme of experimental measurement [1] and further simula-
tions conducted at lower Reynolds number, the azimuthal mean
flow (’geostrophic flow’) arises even in the absence of instabil-
ity.

Effect of nutation angle variation

For the chosen geometry and rotational speeds, we can vary nu-
tation angle θ, which appears in the weakly nonlinear theory [7]
through the Rossby number. The theory (and experiments) sug-
gests that there exists a critical Rossby number below which no
instability exists, though of course some energy must exist in all
non-zero azimuthal Fourier modes when θ > 0.

In order to study this aspect we have varied nutation angle over
the range 0.2◦ ≤ θ ≤ 1.1◦. The outcomes are summarized in
figure 8, which shows kinetic energy at m = 5 in the long-
time limit. The minimum recorded angle for which significant



Figure 8: Long-time kinetic energy in azimuthal wavenumber
m = 5 as a function of nutation angle at Re = 6500. Solid line
and dots shows mean value, dashed/shaded region shows enve-
lope.

energy existed in m = 5 was θ = 0.5◦, the maximum steady
value occurred for θ = 0.8◦, with increasingly significant oscil-
lations appearing for θ > 0.8◦, as may be observed e.g. in fig-
ures 3 and 7. Thus the minimum recorded Rossby number for
which instability was observed in the numerical work to date
is Ro = Ω2 sin(0.5◦) = −0.0017, in good agreement with both
theory and experiment [7, Fig. 10].

Conclusions

Our numerical study of the experiments of Lagrange et al. [6]
has given good support to the weakly nonlinear theory cited in
that work and detailed in later references [7, 13], and also helps
serve to validate our numerical method which will form the ba-
sis for further work to deal with the mechanics of catastrophic
collapse. That work will be supplemented by an allied pro-
gramme of experimental measurements, also described in the
present volume [1].
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