Estimation of fibre trapping from refiner loadability measurements

Tom Lundin, Pedro Fardim

Laboratory of Fibre and Cellulose Technology Åbo Akademi University, Turku/Åbo, Finland

Warren Batchelor

Australian Pulp and Paper Institute Monash University, Victoria, Australia

Laboratory of Fibre and Cellulose Technology

http://www.abo.fi/fak/tkf/tra

Motivation

- Successful pulp fibre treatment in a refiner requires:
 - Sufficient loadability of fibre (network), which implies:
 - 1. Trapping of fibre(floc)s by refiner bar edges
 - 2. Working of these into the gap between rotor and stator bar surfaces
 - 3. Release of treated fibres

Goal of our investigation

- To develop a method by which relative changes in fibre trapping can be estimated as refining conditions change, *e.g.*:
 - Pulp consistency (c, %)
 - Rotational speed (n, 1/min)
 - Crossing Edge Length (CEL, m/rev)
 - Fibre length (softwood and hardwood)
 - Bar edge wear (wear/rounding of the leading bar edge)

Contemporary refining theories

- Machine Parameters:
 - Specific Edge Load (SEL):
 - Average energy per unit length of crossing bar edges, (J/m)
 - Specific Surface Load (SSL), accounting for bar widths:
 - Average energy per unit area of crossing bars, (J/m²)
 - Modified Edge Load (MEL)
 - Modified Specific Surface Load (MSSL)
- Machine and Fibre Impact Parameters:
 - C-factor
 - Probability of <u>single</u> fibre trapping in terms of fibre, bar and groove dimensions, (impacts/fibre), (J/impact)
- None considers fibre trapping

Fibre trapping concept

- Refiner action characterisation based on fibre trapping and treating parameters:
 - The fraction of bars that traps fibres
 - Bar coverage, f
 - The number of fibres trapped
 - Fibre mat thickness at point of refiner loading, g_0

Our concept of fibre trapping

- Available data (refiner loadability trials):
 - Refiner total and net power, P_{Tot} & P_{Net} (kW)
 - Gap between rotor and stator, g (mm)
- Key concept:
 - The number of trapped fibres will determine the refiner loading point, where fibres begin to take up strain, g_0
 - Average bar coverage *f* will be proportional to applied refiner net power

ProLab[™] refining station

- ProLab[™] refiner
 - Power 30 kW
 - Consistency 1-7 %
 - Pulp flow 50-120 L/min
 - Feed pressure 0.5-6 bar
 - Conical fillings
 - LM-type: 52 m/rev
 - Rotor $Ø_{\min / \max}$ 46 / 130 mm
 - Speed
 - Rotational 600-4500 1/min
 - Peripheral 5-14 / 10-27 m/s
 - SEL 0.1-6^{*} J/m
 - SEC 10-45* kWh/t

*Depending on fillings and type of pulp

Experimental

- Finnish dry-lap reinforcement pulp
 - ECF-bleached
 - 2.44 mm average length-weighted fibre length
 - 0.183 mg/m average coarseness

Experimental

• Refiner loadability trial

The state of the second s

Laboratory of Fibre and Cellulose Technology

Experimental

• Loading at 600, 1500, 2250, 3000, 4000 rpm

Trial	Gap	Cons.	SEC
(#)	(mm)	(%)	(kWh/t)
1	1.2-min-1.2	1	~0
2	1.2-min-1.2	2	~0
3	1.2-min-1.2	3	~0
4	1.2-min-1.2	4	~0
5	1.2-min-1.2	4	283
6	1.2-min-1.2	5	~0
7	1.2-min-1.2	6	~0

4.6.2007

Data analysis

ARen All And And All All And A

- Method
 - 1. Fitting a linear no-load function and subtracting the no-load power at each gap $P_{nl} = a + bg$
 - 2. Fitting the net power data
 - 3. Determination of g_0 : solve
 - 4. Calculation of strain
 - 5. Estimation of bar coverage, f

$$P_{nl} = a + bg$$

$$P_{net} = ce^{-g/g_t}$$

$$ce^{-g/g_t} = 0.01(a + bg)$$

$$\varepsilon = (g - g_0)/g_0$$

$$P_{net} \propto f$$

4.6.2007

Results- Raw Data

RIA HILL

al Att Chan the state of the

5 %, 1500 rpm (10.2 m/s)

Laboratory of Fibre and Cellulose Technology

Results- No-load subtraction and

and the second second second

Shew and the shew the shew the states

fitting 5%, 1500 rpm

4.6.2007

Results- Conversion to strain

A Real and a state of the state

5%, 1500 rpm

Laboratory of Fibre and Cellulose Technology

Results

Long Medium (LM)-type fillings,

Laboratory of Fibre and Cellulose Technology

Results- Effect of consistency on strain

1500 rpm (10.2 m/s)

Conclusions

- Refiner loadability a function of
 - Pulp consistency
 - Rotational speed
- Sensitivity to consistency grows with rpm
 - Low rpm: ~equal loadability at 2-6 %
 - Good loadability (5-10 m/s & 1-6 %)
 - Good loadability at 600 rpm: thicker fibre mats fibre flocculation effects predominant (at the low shear rates)

Fibre trapping – bar coverage

- High rpm: impaired loadability, especially 1-4 %
 - Poor loadability (20-27 m/s) at 1-2 %
 - Limited loadability at 3-4 %

Conclusions

 Gap at loading point increased with pulp consistency at higher rpm's (>2250/15 m/s)

– Measure of the amount of trapped fibre layers

A STATE ARE ATTACK AND A STATE AND AND AND A STATE AND

- Refiner bars possess a (maximum) intrinsic capability of trapping fibres at a given speed
 - Of same order in the range 1500-4000 rpm (10-27 m/s) while not affected by fibre flocculation
- Applied fibre strain proportional to pulp consistency

 Proportional to, and a measure of, refiner bar coverage
- Laboratory refining trials imply that SEL is an insufficient control parameter if pulp consistency varies

Acknowledgments

- The Research Institute of the Åbo Akademi Foundation
- The international doctoral programme, PAPSAT

