Determination of Load-Bearing Element Length in Paper using Zero/Short Span Tensile Testing

> Warren Batchelor Australian Pulp and Paper Institute Dept of Chemical Engineering Monash University

Presented at

Paper strength
Effect of drying treatment
Defects in fibres
Load-bearing element

Load-bearing element

NOT a fibre

◆ Fibres can be made up of many elements

- ♦ Joined by kinks etc
- Properties:
 - \bullet Length, l
 - \diamond Cross sectional area, C
 - \blacklozenge Young's modulus, E

Test and Sample Dimensions

Probabilities

- Single load-bearing element in sheet, length, l, angle?
- P_1 : probability that element is gripped by Jaw 1
- *P*₂: probability of element gripped by Jaw 2 if also gripped by Jaw 1
- Assumption: W_{sheet} , L_{sheet} , W_j much greater than l.

 \mathbf{G}

$$P_1 = \frac{l\cos\theta}{L_{sheet}} \frac{W_j}{W_{sheet}}$$

$$P_{2} = 1 - \cos \theta_{19}$$

Load on single fibre

At strain, ε , force on fibre spanning both jaws is $F_f = EC\varepsilon \cos^2 \theta$ and component in loading direction is $F_f = EC\varepsilon \cos^3 \theta$

Average contribution by randomly located, oriented fibre is $F_f P_1 P_2$ or

$$F_{av} = (1 - \overline{f_c}) EC\varepsilon \frac{lW_j}{A} \frac{2}{\pi} \int_0^{\cos^{-1}(G/l)} \left(\cos^4 \theta - \frac{G}{l} \cos^3 \theta\right) d\theta$$

Presented at f_c is fraction 1959 fibres not bearing load due to out of plane curl

Integratin g get

$$F_{av} = (1 - \overline{f_c})EC\varepsilon \frac{lW_j}{A} \frac{2}{\pi} \left[-\frac{1}{12} \left(\frac{G}{l}\right)^3 \sqrt{1 - \left(\frac{G}{l}\right)^2} + \frac{3}{8}\arccos \frac{G}{l} - \frac{7}{24} \frac{G}{l} \sqrt{1 - \left(\frac{G}{l}\right)^2} \right]$$

Use Taylor series expansion obtain :

$$F_{av} = (1 - \overline{f_c}) EC \varepsilon \frac{W_j}{A} \frac{3}{8} \left[l - \frac{32}{9\pi} G \right]$$

Assumption s

G < 0.7l

Random orientatio n

No fibre - fibre bonding

(1)

(2)

Presented at

Comparison between equations 1 and 2

Presented at

Appropring te dingits for a setura syn of Egylor's series approximation

Total force

• For gap, *G*, if have I(G) load bearing elements with $l > 32G / 9\pi$

 \diamond then the total force, *F*, is

$$F(\varepsilon, G) = I(G)(1 - \overline{f_c}) \varepsilon \frac{W_j}{A} \left[\frac{3}{8} \overline{E(G)C(G)l(G)} - \frac{32}{9\pi} \overline{E(G)C(G)G} \right]$$

• where $\overline{E(G)C(G)l(G)}$ is the average of the I(G) elements

Average length of elements

$$\overline{l(0)} = -\frac{32}{9\pi} \frac{F(\varepsilon_{frac}, 0)}{\frac{dF(\varepsilon_{frac}, G)}{dG}} \Big|_{G=0}$$

Presented at

Validity of Assumptions

- Major assumption: *E*(0)C(0)*l*(0) ≈ *E*(0)C(0)*l*(0)

 Test: artificial distributions of fibre properties
- Result: K<1 (always) if longer fibres are stiffer</p>

$\overline{E(0)C(0)}\,\overline{l(0)} = K\overline{E(0)C(0)l(0)}$

Furnish	Relative number of fibres	EC	L	$\overline{E(0)C(0)l(0)}$	$\overline{E(0)C(0)}\overline{l(0)}$	K
Hardwood	0.5	1.0	0.6	0.9	0.875	0.972
	0.5	1.5	0.8			
Hardwood &	0.8	1.0	0.5	1.2	0.96	0.8
softwood	0.2	2.0	2.0			
Presented at		1999 Pape	r Physics C	onference San Diego		

Experimental Method

Five samples

- ◆ Unbleached Eucalypt NSSC pulp*
- ♦ E. globulus kraft pulp- Laboratory pulped, oxygen bleached to kappa no. 17.9*
- ◆ Unbleached brown mixed waste pulp for packaging grades^{*}
- Unbleached *P. Radiata* kraft pulp $#1^*$
- ◆ Unbleached *P. Radiata* kraft pulp #2, 45 kappa**

* Refigerated for up to 1 year before making handsheets. **Collected from pulp mill brown-stock washer. Handsheets made immediately.

Presented at

 Handsheet preparation ◆ British Standard Handsheet machine ◆ Not refined in PFI mill Zero/short span tests ◆ Pulmac zero span tester ◆ Span: 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 mm Fibre length measurements ♦ Kajaani FS 200 Sheet tensile strength

3 Drying Conditions

- 1. Make handsheets; air-dry under restraint

 Labelled never/air dried

 2. Make handsheets; air dry under restraint; reslush; make handsheets; air dry under restraint

 Labelled air/air dried

 3. Make handsheets; oven dry without restraint; reslush; make handsheets; air dry under restraint
 - ◆ Labelled oven/air dried

Zero/short span measurements

 Plotted with residual span of 0.2 mm

 Tensile strength
 Fits of data to obtain load-bearing element length
 Comparison with measured fibre length

Zero/short span results: NSSC Eucalypt

Zero/short span results: E. globulus kraft pulp

Zero/short span results: waste paper

Zero/short span results: P. radiata kraft pulp #1

Zero/short span results: P. radiata kraft pulp #2

Sheet tensile strength under different drying conditions

Fits to zero/short span data

Quadratic
Linear (full data set)
Linear (restricted data set)
No residual span

	Never/Air Dried			A		
	Quad- ratic	Linear (0-0.4mm)	Linear	Quad- ratic	Linear (0-0.4mm)	Linear
Euc NSSC	0.61	0.82	0.97	0.74	0.90	1.02
Euc kraft	0.67	0.92	1.04	0.79	1.00	1.02
Waste	0.63	0.82	1.26	0.73	0.90	1.26
Pine #1	1.00	1.19	1.97	1.33	1.32	2.02
Pine #2	0.89	1.29	1.69	1.26	1.21	1.83
	O	ven/Air Drie	ed			
	Quad-	Linear	Linear	Log	d hoaring	alamant
	ratic	<u>(0-0.4mm)</u>		LUU	u-beuring	element
Euc NSSC	0.69	0.86	0.99	leng	gths (mm)	determined
Euc kraft	0.74	0.96	1.02	by a	lifferent fi	tting method
Waste	0.75	0.92	1.23			
Pine #1	1.75	1.82	1.88	nfaranaa San C		
Pine #2	1.24	1.50	1.71			

Effect of residual span

Average load-bearing element lengths (mm) from fitting zero/short span data using different residual spans

	Never/Air Dried		Air/Ai	r Dried	Air/Oven Dried		
	Residual	No	Residual	No	Residual	No	
	0.2 mm	Residual	0.2 mm	Residual	0.2 mm	Residual	
Euc NSSC	0.61	0.57	0.74	0.62	0.69	0.57	
Euc kraft	0.67	0.57	0.79	0.65	0.74	0.62	
Waste	0.63	0.57	0.73	0.67	0.75	0.65	
Pine #1	1.19	0.97	1.32	1.10	1.82	1.59	
Pine #2	1.29	1.07	1.21	0.99	1.50	1.28	

Presented at

	N	Never/Air Dri	ed	Air/Air Dried			
	Arithme- tic (FS 200)	Load-bearing element length (fit)	Length weighted (FS 200)	Arithme- tic (FS 200)	Load-bearing element length (fit)	Length weighted (FS 200)	
Euc NSSC	0.63	0.61	0.81	0.63	0.74	0.81	
Euc kraft	0.57	0.67	0.71	0.57	0.79	0.71	
Waste	0.61	0.63	1.14	0.63	0.73	1.17	
Pine #1	1.23	1.19	2.19	1.27	1.32	2.21	
Pine #2	1.56	1.29	2.43	1.56	1.21	2.43	
		Oven/Air Dri	ed	~			
	Arithme- tic (FS 200)	Load-bearing element length (fit)	Length weighted (FS 200)	Com elen	parison of 1ent length	load-bear (mm) wit	
Euc NSSC	0.63	0.69	0.81	arith	metic and	length	
Euc kraft	0.57	0.74	0.71	weig	phted fibre	lengths (n	
Waste	0.59	0.75	1.10				
Pine #1	1.18	1.82	2.15				
Pine #2	dat 1.56	1.50	243	ference San I			

 Load-bearing element length approximately the same as arithmetic fibre length for these pulps

 Drying treatment- no effect on average load-bearing element length

Acknowledgements

- Daniel Ouellet, Paprican and University of British Columbia Pulp and Paper Centre
- Russell Allan, Amcor Research and Technology Centre
- Glenda Spencer, Michael Briggs and Geoff Ennis for assistance with the experiments
- Funding from the Commonwealth Government of Australia through the Cooperative Research Centre for Hardwood Fibre and Paper Science