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Abstract This paper describes a local interpolation method

and proposes its use for the generation of three dimensional

surface meshes. Large displacements from non-linear finite el-

ement analysis may be represented realistically by mapping

a two dimensional adaptive un-structured mesh onto the dis-

placed geometry of the initial coarse finite element mesh. Hence

an interpolated three dimensional surface may be generated

having first order derivative continuity from a relatively coarser

initial mesh. Through the use of adaptive meshes greater reso-

lution is readily achieved in the areas of the surface where it is

most needed i.e. the regions of high displacement variations.

1 Introduction

When considering the use of adaptive meshes for three di-
mensional large displacement finite element analysis the
following aspects have to be taken into consideration. An
efficient way of performing adaptive finite element distretiza-
tion is by using unstructured meshes. Unstructured meshes
when used for adaptive finite element descretizations re-
quire the use of an automatic finite element mesh genera-
tor. The adaptive un-structured finite element mesh gen-
eration for two dimensional domains is computationally ef-
ficient to implement in contrast with a three dimensional
surface meshing implementation.
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Zienkiewicz and Phillips [1] proposed an isoparamet-
ric mapping approach to mesh plane and curved surfaces
where the arbitrarily curved surfaces were first divided into
zones and each zone in the three dimensional space was rep-
resented by a two dimensional isoparametric quadrilateral.
A curvi-linear co-ordinate system ξ and η with values rang-
ing from 1 to -1 at the extremities was defined at the center
of the quadrilateral. The data points P (x, y, z) represent-
ing nodes on the curved surface were generated by using
the shape function associated with the pre-defined bound-
ary nodes of the quadrilateral. Lohner and Parikh [2] used
a similar approach for mapping an unstructured mesh gen-
erated using a two dimensional unstructured mesh genera-
tor to three dimensional surfaces. Lo [4] divided the three
dimensional surfaces into five elementary surfaces i.e. spa-
tial plane, cylinder, cone, sphere and surface of revolution.
Nodes were generated on theses surfaces and triangulation
was performed considering the geometrical properties of
each surface. Rao, Hinton and Ozakca [5] proposed the
use of Coon’s patches for the parametric representation of
surfaces. The surface to be traingulated was divided into
sufficient number of patches then an unstructured mesh
created in two dimensional co-ordinate system was mapped
to a three dimensional co-ordinate system.

The above techniques are based upon the division of a
curved surface into sufficient number of patches or quadri-
lateral or into basic geometrical shapes for transforming a
mesh created in two dimensional co-ordinate system to a
three dimensional co-ordinate system. When dealing with
large displacements of plates and membranes the deforma-
tions are generally in a plane perpendicular to the surface.
Adaptive finite element analysis is used in these cases to ac-
curately determine the final deformed shape of the plate or
membrane. The techniques mentioned above have been for-
mulated keeping in mind the importance of having an accu-
rate representation of the initial curved geometry of plates
and shells. With these methods it is generally assumed
that the final shape of the surface remains unchanged with
respect to the initial shape. Hence these methods do not
provide an efficient route for determining the large displace-
ment response of plates with transverse loading. A three
dimensional surface meshing techinique is presented which
fits a surface through scattered data points in a three di-
mensional space. For data interpolation through a scatter
of data points; the method of inverse distance weighted
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least squares interpolation proposed by Franke and Neil-
son [6] has been used to transform two dimensional adap-
tive meshes to three dimensional co-ordinate system. This
is done with respect to the node displacements obtained
after the first finite element analysis for the initial coarse
finite element mesh.

2 The large displacement

problem for plates and

membranes

Wall panels in a building experiencing an internal gas ex-
plosion or an external blast load may undergo large out of
plane displacements before failure. Similarly the wings of
a high performance aircraft may under go large displace-
ments during its operation. Form-finding constitutes an
important feature in the design of architectural membrane
structures [7]. In these structures, it is important to de-
termine the deformed shape of the plate or the membrane
accurately. The displaced shape may be determined using
highly non-linear finite element analysis schemes such as
dynamic relaxation.

Finite element analysis may be conducted to determine
the displacements in structures. The displacements which
are uniquely determined within the finite element analysis
are the ones associated with the nodes of the finite element
mesh. Generally a greater number of nodes are required to
determine the accurate response within the regions of high
displacements in the structure.

The accuracy of the finite element analysis depends
upon the quality of the finite element mesh used to dis-
cretize the domain. Adaptive finite element analysis tech-
niques provide means for automatically determining the
optimal meshes for finite element problems. The adaptive
h-refinement technique varies the mesh density according
to the local error. The local error is estimated from the
difference in the stress resultants computed from the finite
element analysis and the smoothed stresses. A relatively
coarse mesh is first analysed for adaptive finite element
analysis and then the mesh parameters are computed for
this coarse mesh. These mesh parameters are used to gen-
erate a finer mesh. Thus for an adaptive finite element
analysis the number of elements in the mesh will increase in
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the regions of high stress gradients and remain the same or
reduce (depending upon the type of mesh generation [3]) in
the regions of low stress gradients. Hence from equation 1
the unknown nodal displacements are calculated then these
displacements are translated into strains using equation 2.
The stresses are recovered from the strained state of the
structure using equation 3.

Ku = P (1)

ε = Bu (2)

σ = Dε (3)

Where:

K = The global stiffness matrix for the structure;

u = The vector of unknown displacements at the nodes
of the mesh;

P = The vector of applied loads at the nodes of the mesh;

ε = The strain vector;

B = A matrix which is based upon the geometrical prop-
erties of the mesh;

D = A matrix which is based upon the material properties
of the mesh; and

σ = The stress vector.

From the finite element analysis procedure outlined above
it may may inferred that the error norms, based upon
stresses, also increases the accuracy of the finite element
analysis with respect to displacements.

The geometrically non-linear analysis of a structure with
a coarse mesh for a plate or a membrane results in an out of
plane displacement of the non-restrained nodes of the mesh
under the action of an out of plane applied load. Adaptive
re-meshing of the domain in two dimensional co-ordinate
system would result in a refined two dimensional finite el-
ement mesh. This mesh may then be mapped to form a
refined displacement surface using the nodal co-ordinates
from the coarse mesh. Un-structured meshes may be used
with gradual adaptive refinement, each time using the rela-
tively coarser mesh of the previous iteration, for calculating
a more accurate displacement response of the structure.
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3 Inverse distance weighted least

squares interpolation

Franke and Nielson [6] formulated two interpolation tech-
niques for interpolating a smooth three dimensional sur-
face from a scatter of data points. The second technique
referred to as Method-II in this reference has been used
here since a triangulated domain is already available in the
form of the coarse initial mesh.

Method-II is based upon McLains’s [9] Inverse Dis-
tance Weighted Least Squares Interpolation for large sets
of scattered data. A three dimensional surface is defined
as P = f(x, y, z), which may also be defined as

zi = f(xi, yi), i = 1, . . . , N (4)

Given the data (xi, yi, zi), i = 1, . . . , N a smooth bi-
variate interpolant S is defined which satisfies the condi-
tion S(xi, yi) = zi, i = 1, . . . , N . The interpolant S(x, y)
derives information for interpolation from the data points
lying within a certain radius of influence. The data points
in our case are the nodes of the starting triangular mesh. If
I is defined as an interpolation operator on the equation 4
then the interpolation function S may be written as

S(x, y) = I[z](x, y) (5)

If φj represents a set of basis functions to be used for least
square approximations ie. φj, j = 1, . . .m. The Euclidean
distance of the point of interpolation, (x, y), is defined as

ρi(x, y) =
√

(x − xi)2 + (y − yi)2 (6)

Then according to Mclain the general form of these inter-
polants is

I[z](x, y) =
m
∑

j=1

aj(x, y)φj(x, y) (7)

where aj(x, y), j = 1, . . . , m represent the solution of

mina1,...,am

N
∑

i=1

(

a1φ1(xi, yi) + . . . + amφm(xi, yi) − zi

ρi(x, y)

)2

(8)

The bivariate quadratic proposed by Mclain for inter-
polation is given as below.

I[z](xi, yi) = a1 + a2x + a3y + a4x
2 + a5xy + a6y

2 (9)
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The method proposed by Mclain is global as the in-
terpolant depends on all the data points regardless how
far away these points are from the point of evaluation of
the interpolant. Franke and Nielson in their method have
changed the global aspect of the interpolant to a local one
by approximating aj(x, y) with A[aj](x, y) as long as:

A[aj](xi, yi) = aj(xi, yi)[5pt]i = 1, . . . , N (10)

A radius of influence has also been defined so that the
least square interpolations are only based upon the data
points lying within this radius only. This results in sub-
stantial reduction in the computational load for solving
equation 8. It may be seen from equation 9 that the gen-
erated surface has first order continuity.

4 Mapping unstructured two

dimensional meshes to three

dimensional surfaces

A coarse initial mesh may be created and analysed for out
of plane forces. The nodal points on this mesh act as the
scattered data points in the three dimensional space. Using
the method described in the previous section a fine mesh is
interpolated using the node co-ordinates of the coarse ini-
tial mesh. The mapping of unstructured two dimensional
meshes to three dimensional surfaces is described below is
based upon Franke and Nielson Method-II [6].

Triangulation of a domain may be represented by a set
of vertices Vi = (xi, yi), i = 1, . . . , N . Sets of weight func-
tions Wi, i = 1, . . . , N are defined for these vertices. Each
Wi is a globally defined C1 function with support Si =
⋃

jkl∈Mi
Tjkl where Tjkl denotes the triangles with vertices

Vj, Vk, Vl and Mi = {jkl : Tjkl is a triangle with vertex Vi}.
The weight function Wi and its first-order partial deriva-

tives on E =
⋃

kj∈Ne
ekj, where ekj represent the edge with

vertices Vk and Vj and Ne = {kj : VkVj is an edge of the
triangulation}. Franke and Nielson incorporated a blend-
ing method for triangles for extending the definition to the
interior of each triangles of the mesh. For an edge eij con-
tained within Si having Vi as an end point. A univariate
function Wi along this edge must satisfy the following four
conditions.

Wi(Vi) = 1 (11)

Wi(Vj) = 0 (12)
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(xj − xi)
∂Wi

∂x
(Vi) + (yj − yi)

∂Wi

∂y
(Vi) = 0

(xj − xi)
∂Wi

∂x
(Vj) + (yj − yi)

∂Wi

∂y
(Vj) = 0 (13)

The above conditions may be satisfied by a cubic polyno-
mial and so the following relationship is defined in refer-
ence [6].

Wi((1 − t)Vi + tVj) = (1 − t)2(2t + 1), 0 ≤ t ≤ 1 (14)

Wi on all other edges is defined to be zero and the continu-
ity of first order derivative across edges is maintained. For
maintaining the continuity of first-order derivatives across
the edges, derivatives which are taken normal to the edges
may be defined as a linear function of the derivatives along
the edges.

(yj − yi)
∂Wi

∂x
((1 − t)Vi + tVj) − (xj − xi)

∂Wi

∂y
((1 − t)Vi + tVj)

= (1 − t)

(

(yj − yi)
∂Wi

∂x
(Vi) − (xj − xi)

∂Wi

∂y
(Vi)

)

+t

(

(yj − yi)
∂Wi

∂x
(Vj) − (xj − xi)

∂Wi

∂y
(Vj)

)

(15)

The relationships given above contain neccessary infor-
mation for carrying out interpolation on the edges. The
definition of Wi to the interior of each triangle is extended
with the interpolation method presented Nielson [8] which
proceeds by assuming a predescribed position and slope
on the entire boundary of a triangular element. Subsi-
tuting the edge information the following expression for
(x, y) ∈ Tijk ⊂ Si has been determined by Franke and
Nielson.

Wi(x, y) = b2
i (3 − 2bi) + 3

b2
i bjbk

bibj + bibk + bjbk

{

bj

(‖ei‖
2 + ‖ek‖

2 − ‖ej‖
2)

‖ek‖2
+ bk

(‖ei‖
2 + ‖ej‖

2 − ‖ek‖
2)

‖ej‖2

}

(16)

where bi, bj and bk are the barycentric (area) co-ordinates
of the point (x, y) with respect to the triangle Tijk and
‖en‖, n = i, j, or k represents the length of the edge oppo-
site Vn, n = i, j, or k. The final interpolant is given by

7



G[f ](x, y) = Wi(x, y)Qi(x, y) + Wj(x, y)Qj(x, y)

+Wk(x, y)Qk(x, y), (x, y) ∈ Tijk (17)

The function Q is defined as

Qk(x, y) = zk + ak2(x − xk) + ak3(y − yk)

+ak4(x − xk)
2 + ak5(x − xk)(y − yk) + ak6(y − yk)

2 (18)

and the solution of the following minimisation problem is re-
quired:

minak2,...,ak6

N
∑

i−1i6=k

(

zk + ak2(xi − xk) + . . . + ak6(yi − yk)
2 − zi

ρi(xk, yk)

)2

(19)

where

1

ρi

=
(Rq − di)+

Rqdi

(20)

di is the distance from ith node of the coarse mesh to the
point represented by (xk, yk). The radius of influence Rq

determines the accuracy and efficiency of the method and
is taken as

Rq =
D

2

√

Nq

N
(21)

where D = maxi,j di(xi, yi).
The initial value of Nq was taken as 0.55D. However

this may have to be increased two to three times depending
on the density and the gradation of the mesh in order to
obtain correct interpolation of the three dimensional sur-
face.

Example 1

An initial mesh shown in Figure 1 comprising 21 nodes
and 28 elements was assigned arbitrary displacements at
the central nodes as shown in Figure 2.

A finer uniformly graded mesh was created conforming
to the boundaries of the initial mesh. This mesh comprising
241 nodes and 416 elements, as shown in Figure 3, was
mapped to the three dimensional coarse mesh geometery
represented by Figure 2.

The three dimensional mapped mesh is shown in Fig-
ure 4. The side views of the three dimensional coarse and
refined meshes are shown in Figure 5.
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Figure 1. Example 1: Initial un-disturbed

mesh comprising 21 nodes and 28

elements

                                    

Figure 2. Example 1: Central nodes of the

initial mesh assigned arbitrary

displacements

                                    

Figure 3. Example 1: Fine mesh compris-

ing 241 nodes and 416 elements
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Figure 4. Example 1: Fine mesh compris-

ing 241 nodes and 416 elements

mapped to the three dimensional

geometry.

                                    

Figure 5. Example 1: The side views of the

coarse and refined three dimen-

sional meshes
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Figure 6. Example 2: The coarse and re-

fined three dimensional meshes

                                    

Figure 7. Example 2: The side views of the

coarse and refined three dimen-

sional meshes

Example 2

Figures 6 represents an arbitrary coarse three dimensional
mesh with a cut out and a three dimensional mapping of
a refined mesh over the coarse mesh geometry. The side
elevetions of the coarse and refined meshed surfaces are
shown in Figure 7

Example 3

The initial coarse mesh shown in Figure 8 comprising 21
nodes and 28 elements was restrained at the four corners
and then a distributed out-of-plane load was applied to the
central portion of the mesh. The membrane was analysed
using a dynamic relaxation based non-linear finite element
analysis scheme. The displaced shape after the analysis is
shown in Figure 9.

Adaptive finite element calculation were performed us-
ing the stress resultants obtained from the finite element
analysis. The domain was re-meshed in two dimensional
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Figure 8. Example 3: Initial coarse mesh

comprising 21 nodes and 28 ele-

ments

using the mesh parameters computed within the adaptivity
module. The re-meshed two dimensional domain is shown
in Figure 10.

Using the Franke and Nielson’s inverse distance weighted
least square interpolation the two dimensional re-meshed
domain was mapped over the three dimensional geometry
represented in Figure 9. The adptively generated three di-
mensional surface is shown in Figure 11.

5 Conclusions

For the analysis of wall panels subjected to blast loads,
the analysis of the wings of a high performance aircraft
and form-finding of membrane structures it is important
to compute the displaced surface accurately.

The definition of the generated surface depends upon
the the degree of the availabilty of the data within the
regions of large out of plane deformations. The degree of
availablity of data may be taken as the number of nodes
available within the radius of influence of the surface point
to be plotted.

If the adaptive analysis are based upon h - refinement
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Figure 9. Example 3: The displaced geom-

etry of the initail mesh after non-

linear finite element analysis
                                    

Figure 10. Example 3: two dimensional domain adaptively re-meshed

13



                                    

Figure 11. Example 3: Adaptively gener-

ated three dimensional surface
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then the number of triangular elements would increase au-
tomatically in the vicinity of large out of plane displace-
ments and consequently the definition of the generated sur-
face will receive greater resolution in the regions of large
deformations.

It is therefore anticipated that the three dimensional
mesh mapping strategy discussed above would lead to ef-
ficient modelling of the surfaces generated through large
displacement finite element analysis.
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