
Genetic Algorithms Coding Primer
A.I. Khan†

†Lecturer in Computing and Information Technology

Heriot-Watt University, Riccarton,

Edinburgh, EH14 4AS, United Kingdom

Introduction

In this article the concept and background theory of genetic algorithm is introduced. The
contents of this article are based on David Goldberg’s book on Genetic Algorithms [1]
and the MSc dissertation of Alan Dunsmore [2].

1 What is a Genetic Algorithm ?

It may be defined as a search algorithm based on the mechanics of natural selection
and natural genetics. It is a combination of the process of survival of the fittest and
structured yet randomized information exchange with some flair of intuitive search. An
admissible design is represented as an individual and a set of such admissible designs
termed as the population. The population of these designs or individuals is allowed to
evolve over a number of generations under the control of the genetic algorithm. In every
generation, a new set of individuals is created using bits and pieces of the fittest of the
old generation; additionally an occasional new part is tried for good measure. While
randomized, genetic algorithm is not a random walk. It efficiently exploits the historical
information to speculate on new search points with expected improved performance.

The central theme of research on genetic algorithm has been robustness, the balance
between efficiency and efficacy necessary for survival in many different environments. De-
signers of artificial systems - both software and hardware, whether engineering systems,
computer systems or business systems can learn considerably from the efficiency, robust-
ness, flexibility, fault tolerance and self-guidance of biological systems. Genetic algorithm
attempts to model the natural process for the evolution of species thus including the de-
sirable features such as robustness, fault tolerance an broad range efficiency in the search
for problems defined in multi-dimensional space.

2 Contemporary Optimisation Methods and Genetic

Algorithm

The contemporary optimisation methods may be classified broadly into three types; cal-
culus based, enumerative and random based.

Calculus based methods have been looked into quite considerably for design optimisa-
tion. These methods suffer from two fundamental drawbacks. Firstly they are local

1

in scope; the optima searched is confined to the best solutions available in the cur-
rent neighbourhood of the starting point of the search in multi-dimensional space.
Secondly the calculus based methods rely on the existence of the derivatives. These
methods have an implicit requirement for smoothness and order in the problem
defined parameter space. Unfortunately for the real world problems no such guar-
antees are available regarding the composure of the parameter space. The search
spaces associated with real world problems may be fraught with discontinuities and
comprise vast multi-modal, noisy search spaces.

Enumerative schemes are conceptually straightforward. The search space is descre-
tised and defined. The search algorithm starts looking at the objective function
values at every point discrete point in the space one at a time. Although the sim-
plicity of this algorithm is attractive but these scheme suffer on account of being
grossly inefficient. Most practical spaces are simply too large to be searched over
all the points one at a time.

Random schemes or walks are based upon the selection of the search direction at ran-
dom. The best results over a random walk are saved and then a new random search
direction is chosen for searching purpose. These schemes do not come up with any
guarantee of finding the best solution within reasonable time limits. Hence the ques-
tion of efficient searching remains unanswered. However these scheme are capable
of handling multi-modal noisy disjointed search spaces since they do not require
gradient information such as the calculus based schemes.

2.1 Genetic Algorithm

Genetic algorithm is different from the above described optimisation schemes in four ways:

1. GA works with a coding of the parameter set, not the parameters themselves.

2. GA searches from a population of points, not a single point.

3. GA uses payoff (objective function) information, not derivatives or other auxiliary
knowledge.

4. GA uses probabilistic transition rules, not deterministic rules.

Under many traditional optimisation methods, one would move from a single point
in the parameter space to the next using some form of a deterministic transition rule to
locate the next point. This strategy would however fail if the parameter space was multi-
modal (many peaks) and the starting point was located within the premises of a shorter
peak. The GA, in contrast, works from a rich database of points in the design space and
has the ability to switch to a different peak subject to the payoff information and a certain
factor of probability. Thus the GA may not be highly efficient in specific case, such as
smooth uni-modal spaces, but provides an efficient and broad based searching ability over
arbitrary shaped design search spaces. This aspect contributes to the robustness of the
GA and resulting advantage over more commonly used techniques.

2

3 Similarity Templates (Schemata)

A very basic overview of the schemata processing and its effectiveness is provided here.
If required a full and rigorous argument is given in reference [1].

In a search process given only payoff data (fitness value), we may look at the informa-
tion that is contained in a population of strings and their objective function values which
helps guide a directed search for improvement. Consider the string and the fitness values
shown in Table 1.

String Fitness
01101 169
11000 579
01000 64
10011 361

Table 1: A sample of Strings and Fitness

The string column in Table 1 represent the x in its binary form and the Fitness column
consists of f(x) where f(x) = x2. The objective is to maximize the function f(x) = x2

over an interval of [0,31].
If we look at this table, scanning up and down the string column, certain similarities

can be seen among the strings. We can see that certain string patterns seem highly
associated with good performance. For example, in the sample population, the strings
starting with a 1 seem to come up with best finesses. Two separate things may be noted
from the above example. First we are seeking similarities among strings in the population.
Second, so doing, we admit a wealth of new information to help guide a search. In order to
see how much and precisely what information is admitted, the concept of schema (plural,
schemata) or similarity templates must be considered.

A schema is a similarity template describing a subset of strings with similarities at
certain string positions. Without loss of generality let us consider the binary alphabet
0,1. A special symbol, the * or wild card (don’t care) symbol is required for full schema
description. As an example, consider the strings and schemata of length 5. The schema
*0000 matches two strings, namely {10000, 00000}. It should be emphasized that the
* symbol is simply a notional device that allows description of all possible similarities
among strings of a particular length and alphabet and is never explicitly processed by
the genetic algorithm. In general, a particular string of length l contains 2l schemata
since each position may take on its actual value or a don’t care symbol. As a result, a
population of size n contains somewhere between 2l and n2l schemata, depending upon
the population diversity.

The counting argument shows that a wealth of information is contained in even mod-
erately sized populations. But what does the GA do to this large number of diverse
schemata; what is processed usefully and what is the resulting effect? These questions
shall be dealt after the mechanism of the genetic algorithm is explained.

3

4 Implementation of a Simple Genetic Algorithm

Simplicity of operation and power of effect are two of the main attractions of the genetic
algorithm approach. The mechanics of a simple genetic algorithm are surprisingly simple
in concept and in computer implementation.

A simple genetic algorithm that yields good results in many practical problems is
composed of three operators:

• Reproduction

• Crossover

• Mutation

4.1 Reproduction

Reproduction is a process in which individual strings are copied according to their ob-
jective function values, f . Intuitively, we may think of the function f as some measure
of gain or profit that we want to maximize. Copying strings according to their fitness
values means that strings with higher values have a higher probability of contributing one
or more offspring in the next generation. This operator is an artificial version of natural
selection, a Darwinian survival of the fittest among strings creatures. Commonly the
reproduction operator is implemented in algorithmic form by creating a biased roulette
wheel. Suppose the sample population of strings created by a random coin toss has ob-
jective fitness function values f as shown in Table 2. The process of random coin toss for
the generation of a string is simply assigning [0,1] values at each binary position in the
string after tossing an unbiased coin.

No. String Fitness % of Total
1 01101 169 14.4
2 11000 576 49.2
3 01000 64 5.5
4 10011 361 30.9

Total 1170 100.0

Table 2: Sample problem strings and fitness values

The fitness values in the Table 2 are calculated by decoding the binary values for the x
represented as strings to decimal and then evaluating the objective function (f(x) = x2).
These fitness values are used to calculate the percentage of population total fitness and
then use these percentages to construct a weighted roulette wheel shown in Figure 1.

To reproduce the roulette wheel is spun, selecting a random number between 0 and
1, four times. Each time another offspring is required, a spin of the roulette wheel yields

4

14.4%

30.9%

5.5%

49.2%

1

3
2

4

Figure 1: String selection using a biased roulette wheel [1]

the reproduction candidate. In this way, fitter strings have a higher number of offspring
in the succeeding generation. An individual i has a probability of selection given by
pselecti =

fi∑
f
. Once a string has been chosen for reproduction, an exact replica of the

string is made. This string is then entered into a mating pool. From statistics, the roulette
wheel selection should select a string fi

f
number of times in any generation, where fi being

the fitness of the individual i and f being the average fitness for the generation.
Other selection procedures exist which attempt to reduce the stochastic sampling error

associated with the roulette wheel method. A popular method called remainder stochastic

selection without replacement uses the fi

f
directly. Consider a value 1.56, the mating pool

receives the number of copies of the design associated with the integer part of 1.56 i.e.
one. Once the integer part of this value for all the designs have been used, designs are
selected by looking at the designs within the generation and selecting designs using the
fractional parts as the probability factors for the selection of the remaining designs for the
mating pool. This ensures that better than average designs always receive at one copy
for the mating pool.

5 Crossover

After the completion of entries for the mating pool the crossover stage proceeds. Members
of the newly reproduced strings in the mating pool are selected and crossed over at
random. The process of the crossover proceeds as follows: an integer position k along the
string is selected uniformly at random between 0 and the string length l. Two new strings

5

are created by swapping all charters between positions 0 and k inclusively. For example,
consider strings a0 and a1 from our initial population:

a0 = 0 1 1 0 1
a1 = 1 1 0 0 0

Suppose in choosing a random number between 0 and 5, we obtain a k = 4 (as
indicated by the separator symbol —). The resulting crossover yields two new strings a′

0

and a′
1
as part of a new generation:

a′
0

= 1 1 1 0 1
a′
1

= 0 1 0 0 0

The combined emphasis of reproduction and the structure, through random exchange
of crossover, give genetic algorithm much of its power. Genetic algorithm efficiently
exploits the wealth of information contained within the design strings by (1) reproduc-
ing high quality notions according to their performance and (2) crossing these notions
with many other high-performance notions from from other strings. Thus, the action
of crossover with previous reproduction speculates on the new ideas constructed from
the high performance building blocks (notions) of past trials. Some researchers [3] have
used multi-parameter crossover whereby each and every string undergoes crossover. Multi
parameter crossover tend to change the fitness radically.

Every mating pair may not necessarily crossover. Crossover probability varies with
the size of the population. For a population of 100, empirical observations show good
results with a crossover probability of 0.6.

5.1 Mutation

In simple genetic algorithm, mutation is performed with a low probability factor for
each character position on the design string. For binary coded string it implies changing
the 1 to 0 and vice versa. Mutation is required to recover genetic material lost over the
generation and may also be interpreted as a way to climb out of a local optima. Empirical
observations show good results with probability of mutation kept at 0.003.

5.2 Objective function

Careful selection of the objective function plays an important feature in the efficiency of
the genetic algorithm. Most real life design optimisation problems require imposition of
design constraints. In GA based optimisation methods it is not possible to include the
design constraints explicitly in the procedure. These design constraints are applied as
penalties to the objective function.

6

The genetic algorithm is by nature a maximizing algorithm. It strives to increase
the fitness of the individuals from generation to generation. Minimisation problems may
however be formulated by maximizing an objective function, fmp, give as,

fmp = C − fp

Where C is taken as a large value which would keep the function value as positive. It
however important to note that inordinately high value of C may drastically reduce the
efficiency of the genetic algorithm.

The fitness value fmp returned by the above fitness function is termed as the raw

fitness.

5.3 Scaling of Raw Fitness

Regulation of the number of copies of different designs is especially important in small
population GA search. At the start of a GA search it is common to have a few extraor-
dinary individuals in a population of mediocre colleagues. If left to the roulette wheel
selection rule (pselecti =

fi∑
f
), the extraordinary individuals would take over a signifi-

cant proportion of the population in a single generation. This is would in turn lead to
premature convergence to a lot less than optimal. Later on during a run opposite is ap-
parent. The average fitness of the population becomes very close to maximum fitness of
the population. This leads to the best members getting the same number of copies for
reproduction as the mediocre members. In both the cases the, at the beginning of the
run and as the run matures, fitness scaling may help.

One useful scaling procedure is linear scaling. If we define f as the raw fitness (given
by fmo) and the scaled fitness as f ′ then linear scaling may be represented by the following
relationship:

f ′ = af + b

The coefficient a and b may be chosen in a number of ways; however in all cases
the average scaled fitness f ′

avg has to be equal to the average raw fitness favg . This
is imperative since the subsequent use of the selection procedure will ensure that each
average individual contributes one expected offspring to the next generation. To control
the number of offspring given to the population member with maximum raw fitness,
another scaling relationship is chosen to obtain a scaled maximum fitness, ′

max = Cmultfavg
where Cmult is the number of expected copies for the best population members. For typical
small populations (n = 50 to 100) a Cmult = 1.2 to 2.0 has been used successfully.

Towards the end of a run, this choice of Cmult stretches the raw fitness significantly.
Early on in a run, the normal scaling rule as shown in Figure 2 may be applied without
any problem. The few extraordinary individuals get scaled down and the lowly members
get scaled up. The more difficult situation is depicted in Figure 3. This situation occurs
in a mature run. when a few bad design strings are far below the population average

7

RAW FITNESS

S
C

A
LE

D
F

IT
N

E
S

S

f
min

f
avg

f
max

f’
min

f’
avg

2f’
avg

0
0

Figure 2: Linear scaling under normal conditions

and maximum and the average fitness of the population and the maximum fitness are
relatively close together. If the scaling rule is applied in this situation, the stretching
required on the relatively close average and maximum raw fitness values would cause the
low fitness values to become negative after scaling. In this case it is not possible to scale
to Cmult, the equality of the raw and the scaled average fitness is still maintained but
the minimum raw fitness fmin is scaled to f ′

min = 0. One more complication may arise
if a single individual manages to dominate a population completely; all members are the
same. In this case the maximum, minimum and the average finesses would converge to
the same value. Under this condition either the run could be terminated or scaling of the
fitness may not be done.

6 Schemata Revisited

The questions raised at the end of the section 3 may now be answered since we have
dealt with the general mechanism of genetic algorithm. It was asked that what does the
GA do to the large number of diverse schemata; what is processed usefully and what
is the resulting effect? Consider the effect of reproduction, crossover and mutation on
the growth or decay of important schemata from generation to generation. The effect of
reproduction on a particular schema is relatively easy to determine; since more highly fit
strings have higher probabilities of selection, on average we give an increasing number of
samples to the observed best similarity patterns. However, reproduction alone by itself
doesn’t sample new points in the search space. Crossover disrupts a schema with certain

8

RAW FITNESS

S
C

A
LE

D
F

IT
N

E
S

S

f
min

f
avg

f
max

f’
min

f’
avg

2f’
avg

0

Negative fitness violates
nonnegativity requirement

Figure 3: Difficulty with linear scaling procedure in a mature run. Points with low fitness
can be scaled to negative values

degree of probability. For example consider two schemata 1***0 and **11*. The first is
likely to be disrupted by a crossover, whereas the second relatively unlikely to be destroyed
by the crossover. As a result the schemata of short defining length are left alone by the
crossover and reproduce at a good sampling rate by the reproduction operator. Mutation
at normal low rates does not disrupt a particular schema very frequently and this leads
to an interesting conclusion. Highly fit, short-defining-length schemata are propagated
generation to generation by exponentially increasing examples to the observed best.

To conclude it may be said that building blocks - short, high performance schemata
are combined to form strings with expected higher performances. This occurs because
building blocks are sampled at near optimal rates and recombined via crossover operator.
Mutation has little effect on these building blocks; like an insurance policy, it helps pre-
vent the irrevocable loss of potentially important genetic material. A GA discovers new
solutions by speculating on many combinations of the best solutions within the current
population.

References

[1] Goldberg D. E., ”Genetic algorithms in search, optimization and machine learning”,
Addison-Wesley Publishing Company Inc 1989.

[2] Dunsmore A., ”The search for singularities in truss design using the genetic algo-

rithms”, MSc dissertation submitted to the Department of Civil and Offshore Engi-

9

neering of Heriot-Watt University, 1992.

[3] Jenkins W. M., ” Structural optimisation with the genetic algorithm”, The Structural
Engineer, vol 61, 418-422, 1991.

10

