Abstract The remains of fossil rhinoceroses from Laetoli represent at least three taxa: Ceratotherium efficax, Ceratotherium cf. simum, and Diceros sp. The great majority of the material from the Pliocene Laetolil Beds belongs to C. efficax, for which we provide a revised diagnosis. This taxon has been frequently misidentified and inaccurately referred to as C. praecox, C. germanoafricanum, or C. mauritanicum. A cranium from the Upper Ndolanya Beds shows more derived dental features, but a precise assignment to C. germanoaficanum or C. simum is presently not possible. The occurrence of true Diceros in the Laetolil Beds is demonstrated by a partial cranium with incomplete dentition, but very few other specimens can be potentially attributed to this genus. Analysis of occlusal wear patterns suggests that C. efficax was a grazer or possibly a graze-dominated mixed feeder; in either case it probably included a variable component of browse in its diet. The transition from a Diceros-like ectolophodont dentition to the full-fledged plagiolophodonty seen in extant Ceratotherium simum included a substantial period of stasis, spanning at least the interval represented by the Laetolil Beds. A shift in the dietary regime towards increased grazing had occurred by the Upper Ndolanya time, and this trend continued from the early Pleistocene to the Recent. Based on the available fossil record, the split of the two lineages leading to the extant species must have taken place in Africa during the Miocene.

Keywords Rhinocerotidae • Ceratotherium • Diceros • Taxonomy • Evolution • Nomenclature • Paleoecology • Paleodiet

Introduction

Since the first systematic description by the German paleontologist W. O. Dietrich during the Second World War (Dietrich 1942, 1945), fossil remains of rhinoceroses from Laetoli have been described and discussed under a variety of names (Arambourg 1947, 1959; Hooijer 1969, 1972; Groves 1975; Guérin 1979, 1980a, 1987a; Geraads 2005). The Laetoli rhinoceroses are of particular interest for understanding the early evolution of the Ceratotherium lineage during the Plio-Pleistocene, as well as for interpreting the paleoecological setting of the locality. In particular, the transition from a generalized ancestral morphology to the specialized grazing condition of the extant white rhinoceros, Ceratotherium simum, has been long regarded as a case study for evolutionary research (Osborn 1903; Dietrich 1942; Thenius 1969; Stanley 1979).

Our aim is simple: to revise the taxonomy of the rhinoceros material from Laetoli housed in the collections of the National Museums of Tanzania and Kenya, and in the collections of the Natural History Museum, London. Furthermore, we describe it with emphasis on functional aspects, particularly the dental functional morphology and wear patterns. We consider the implications of our findings for the paleoecology of the Laetoli sequence and the evolutionary history of the taxa, including the origins of Ceratotherium simum. We also discuss in detail the complicated taxonomic history of C. efficax (Dietrich, 1942), and Ceratotherium praecox Hooijer and Patterson, 1972.

Materials and Methods

Institutional Abbreviations

AMPG: Athens Museum of Paleontology and Geology, University of Athens; BMNH: British Museum of Natural History (=Natural History Museum), London; BSPG: Bayerische Staatssammlung für Paläontologie und Geologie,

Material

The material of fossil rhinoceroses from Laetoli is housed at the National Museum of Tanzania in Dar es Salaam, the National Museums of Kenya in Nairobi, the Museum der Naturkunde für Humboldt Universität in Berlin, and the Natural History Museum of London. Detailed information about the excavation and research history of the locality, as well as of the geological and stratigraphical setting is provided by Harrison (2011), Ditchfield and Harrison (2011), and Harrison and Kweka (2011).

The Laetoli material was compared with selected fossils from the Aterir Beds (Hooijer 1973), Chemeron Formation (Hooijer 1969), Kanapoi (Hooijer and Patterson 1972), and Koobi Fora and West Turkana (Harrises 1976, 1983) at the collections of KNM. Additional comparative studies with material from the Plio-Pleistocene localities of Hadar (Guérin 1980b; Geraads 2005) and Diuka (Geraads 2005) were carried out at the NME; from the Omo Valley (Arambourg 1947; Hooijer 1969, 1972, 1973, 1975; Guérin 1985) at NME, RMNH and MNHN. Pleistocene material from Olduvai Gorge, Kanjera, Kanam West, and Rawi (Hooijer 1969; Groves 1975) was studied at BMNH. The Kohl-Larsen fossil collection from East Africa (Dietrich 1942, 1945) was studied at MNHB. Specimens from Bou Hanifia (Arambourg 1959; Geraads 1986), Termine (Pomel 1895) and several Plio-Pleistocene North African localities (Arambourg 1970) were examined at MNHN. Materials of “Diceros” neumayri from Greece (Pikermi, Samos, Axios Valley: Gaudry 1862–1867; Geraads 1988; Geraads and Koufos 1990; Giourtsakis et al. 2006; Giourtsakis et al. 2009) were studied at AMPG, LGPUT, MNHN, BMNH, NHMW, IPUW, SMNS, BSPG, SMF and HLMD; those from Turkey (Various localities: Heissig 1975, 1996; Geraads 1994; Fortelius et al. 2003) were studied at BSPG, SMNK, and MNHN; and those from Iran (Maragheh: Osborn 1900; Thenius 1955) were examined at NHMW and MNHN. Casts of specimens from Fort Ternan (Hooijer 1968) and Langebaanweg (Hooijer 1972) were examined at BMNH and BSPG, respectively. Cranial material of Diceros douariensis from Douari (Guérin 1966) was kindly shown to MF by C. Guérin and digital images of the specimens were provided by C. Guérin and A. Prieur. The rhinoceros material from the following localities was studied based on the referred publications: Arrisdrift, Namibia (Guérin 2000, 2003); Ekora Formation, Kenya (Hooijer and Patterson 1972); Lothagam, Kenya (Hooijer and Patterson 1972; Harris and Leakey 2003); Ahl al Oughlam and Oulad Hamida, Morocco (Geraads 2005). Comparative studies with the extant species Ceratotherium simum and Diceros bicornis have been also carried out at the zoological collections of the aforementioned institutions.

Stratigraphy

For temporal resolution of the Laetoli Sequence, we used the stratigraphic position of the localities relative to the marker tuffs to create semi-arbitrary Tuff Groups (Harrison and Kweka 2011). The following groups were created: 1-LLB=Lower Laetolil Beds, 2-BT3=below Tuff 3, 3-T3-5=between Tuffs 3 and 5, 4-T5-7=between Tuffs 5 and 7, 5-STRT7=straddles Tuff 7, 6-AT7=above Tuff 7, 7-UND=Upper Ndolanya Beds.

Mesowear

We applied the original mesowear scoring system and analytical techniques introduced by Fortelius and Solounias (2000) for the upper dentition. We also extended the methodology to the cusp sharpness of the buccal enamel band of the lower teeth. We did this by a subjective judgment of equivalences according to the following guideline: distinct phase I facets with sharp boundaries=sharp; distinct phase I facets with fuzzy boundaries=rounded; no phase I facets=blunt. Relief was not scored for lower teeth and, apart from hierarchical clustering, we have limited our comparisons to cusp sharpness only. All teeth that were sufficiently well preserved were scored for mesowear, but only the first and second molars were included in the final analyses, and only the uppers in the hierarchical clustering analysis. Results generally remain similar even if premolars and deciduous teeth are included. We used polysiloxane putty (Provil Novo Putty regular set, Heraeus Kulzer GmbH, Hanau, Germany) to make partial molds of the teeth and synthetic dental stone
(Fujirock by GC Europe n.v., Leuwen, Belgium) to make replicas.

The curvature of the facets and enamel were further examined by high-resolution 3D scanning techniques. We used this methodology to study the enamel edges of the upper and lower teeth of Ceratotherium from latest Pliocene and early Pleistocene, extant C. simum, Pliocene Diceros and extant D. bicornis. An area of at least 2 x 3 mm around the enamel edge and the facet was scanned using a Nextec Hawk 3D laser scanner at 30 x 30 μm resolution. The scanned area extended from the vertical buccal side of enamel, over the worn enamel surface, to the dentine on the occlusal surface. Point clouds were realigned using Rhinoceros 3.0 (McNeel, Seattle, WA, USA). They were then imported into Surfer for Windows v. 8 (Golden Software, Colorado, USA) and a 30 x 30 μm resolution grid was generated using Kriging interpolation. Surface curvature was calculated according to Evans (2005): the surface was smoothed three times using a 9 x 9 kernel with central weighting of 4 to reduce surface noise, and then directional curvature was calculated at 10° intervals for 180°. The maximum curvature at each x, y point for all directions was determined. Radius of curvature (inverse of curvature) plots were overlain on the smoothed surface plot to visualize flat and curved areas (Evans 2005).

Statistical calculations were carried out using the statistics package JMP 6.0 (SAS Institute, Inc., Cary, NC, USA), except for the polar clustering diagrams (Fig. R.4.1), which were produced in Systat 11.0 (Systat Software, Inc., San Jose, CA, USA).

Systematic Paleontology

Class Mammalia Linnaeus, 1758
Order Perissodactyla Owen, 1848
Suborder Ceratomorpha Wood, 1937
Superfamily Rhinocerotoidae Owen, 1845
Family Rhinocerotidae Owen, 1845
Subfamily Rhinocerotinae Owen, 1845
Tribe Dicerotini Ringström, 1924
Genus Ceratotherium Gray, 1868
Ceratotherium efficax (Dietrich, 1942)

Synonymy

1907. *Opsiceros simplicidens* sp. nov. – Scott: pp. 257–259, pl. 17, Figs. 3–5.
1926. pro parte sub *Rhinoceros scotti* sp. nov. – Hopwood: pp. 216–217, Fig. 3; (Kaiso).

1942. *Serengeticeros efficax* gen. et sp. nov. – Dietrich: pp. 297–300, Fig. 2; (Laetoli).
1945. *Serengeticeros efficax* Dietrich, 1942. – Dietrich: pp. 56–67; pl. 13, Figs. 1, 3, 4, 6; pl. 14, Figs. 8, 10; pl. 15, Figs. 11–15, 18–20; pl. 16, Figs. 21–23; pl. 17, Fig. 28; pl. 18, Fig. 36; pl. 19, Fig. 42; (Laetoli).
1969. pro parte *Ceratotherium simum germanoaficanum* (Hilzheimer, 1925). – Hooijer: pp. 74–75, 85–86, pl. 3; (Laetoli).
1979. *Ceratotherium* sp. – Leakey and Hay: p. 4; (Laetoli).
1980b. pro parte *Ceratotherium praecox* Hooijer and Patterson, 1972. – Guérin: p. 61; (Hadar).

Holotype. Maxillary fragments with left and right M1-M3 of the same individual (MNHB: MB.Ma.42009), illustrated by Dietrich (1945: taf. 13, Fig. 1, 6).

Type Locality. Vogelflussgebiet near the Garrusi River of the Southern Serengeti, known today as Laetoli, Tanzania.

Stratigraphical level. Grey volcanic tuff of the Serengeti Beds (Dietrich 1945), corresponding to the Upper Laetolil Beds of current usage (Hay 1987; Ditchfield and Harrison, 2011).

Age. Pliocene.

Geographical distribution. Presently known from East Africa: Tanzania, Kenya, Ethiopia, Uganda, and perhaps Chad. Fossil evidence from other African countries is presently insufficient.

Revised descriptive diagnosis. Ceratotherium of large size; nasal and frontal horns present, nasal bones rostrally rounded with abrupt and broad termination; premaxillary bones reduced; lower border of orbita sloping laterally downwards; supraorbital process very strong, postorbital process absent; average position of the anterior orbital border at the level between the distal half of M2 and the mesial half of M3; dorsal cranial profile gently concave; strong nuchal crest with concave occipital notch, extending posteriorly over the level of the occipital condyles; occipital plane postero-dorsally inclined; postglenoid and posttemporal processes without contact. Upper and lower incisors absent or vestigial. High crowned, functionally hypsodont maxillary dentition with relatively flattened occlusal surface, rather constant enamel thickness, and significant cement coating. D1 not persisting in adulthood. Upper premolars with: protocone...
markedly larger than hypocone after moderate stage of wear; protocone constricted only by a mesial groove; distal protocone groove and antecrochet absent; hypocone not constricted; medisinus basin lingually open, protoloph and metaloph fusing only during late to latest stages of wear; lingual cingulum present, moderately expressed, and frequently continuous; crochet always present and well developed; distal protocone groove absent; lingual protocone groove generally present and well marked; crochet strong; expression of cristal variable; formation of closed medifossettes frequent after early to moderate stages of wear; buccal profile of ectoloph in molars slightly undulated; paracone fold present but weak to faint; mesostyle bulge prominent, but not acute and not markedly stronger than the paracone fold; metacone fold absent. M3 with predominately continuous ectometaloph and without postfossette. Lower premolars with lingually open trigonid and talonid basins, forming occasionally closed fossetids; lower molars with buccal wall of the trigonid frequently flattened. Appendicular skeleton with markedly long and relatively slender metapodials.

Differential diagnosis. Ceratotherium efficax is distinguished from C. mauritanicum, C. germanoafricanum and C. simum by its more primitive dentition, as well as from the latter two species by the different size and proportions of its appendicular skeleton, in particular of the metapodials. Based on the available evidence, C. mauritanicum differs from C. efficax by showing population variants with frequent expression of a shallow buccal depression slightly demarcating the continuity of the ectometaloph on M3, upper premolars with earlier fusion of protoloph and metaloph, upper premolars with weaker and frequently discontinuous lingual cingulum, and lower premolars forming more frequently closed fossetids during moderate stages of occlusal wear. C. germanoafricanum and C. simum differ from C. efficax and C. mauritanicum by the following dental features: the ectoloph and metaloph on M3 are always markedly separated forming a postfossette; the lingual protocone groove on the molars is absent or only faintly expressed; the metaloph on the molars and premolars is longer and bends more markedly distolingually; a closed medifossette is very frequently formed on the premolars during early to moderate stages of occlusal wear, and it is almost always formed on the molars during the earliest stages of occlusal wear. C. efficax differs from C. simum by its absolutely longer and relatively more slender appendicular skeleton. C. germanoafricanum differs from C. efficax and C. simum by its absolutely larger and relatively more robust appendicular skeleton.

Material

Lower Laetolil Beds (NMT)

Mandibles: EP 062/98, KK 82/294, KK 82/71

Upper Laetolil Beds (NMT)

Crania: LAET 74-323, LAET 78-4979
Mandibles: LAET 74-188, LAET 75-2836

Probably Upper Laetolil Beds (KNM)

Upper Ndolanya Beds (NMT)

Cranium EP 1041/00; lt p2 LAET 75-413; m/p frgt EP 3786/00

Laetoli Specimens (BMNH)

Almost 60 rhinocerotid specimens from Laetoli are housed in the collections of the Natural History Museum of London. About 35% of them represent dental elements, while the rest are postcranial elements. The specimens originate from the collections made by Louis Leakey during 1935 and bear their original field numbers. Three Laetoli sites are indicated: LIT.AS, LOL.S and 1710.S. The material forms a rather uniform sample, and there is no indication for the presence of *Diceros*: all dental specimens demonstrate the characteristic morphological features of *Ceratotherium efficiax* detailed in the diagnosis, and the postcranial elements are consistent in size and proportions. In particular, complete metapodials are absolutely longer and relatively more slender with respect to extant *Ceratotherium simum*.

Remarks and Comparisons

Before proceeding with the description we feel obliged to comment on what differences one may reasonably expect to demonstrate between species of the tribe Dicerotini. As our discussion shows, it has been commonplace in the literature to identify individual specimens at the species level. For complete cranial material and well-preserved dentitions and teeth this is generally entirely reasonable. However, even in these cases it might be difficult to support an identification based solely on metric comparisons. Fig. 11.1 shows that the skulls of the extant *Diceros* and *Ceratotherium* are quite well separated based on a length-width bivariate plot, although, even in this case, some individuals from the two genera overlap. Fig. 11.2 shows that the molars of the same specimens overlap almost completely in terms of their basal length-width measurements. We have accordingly desisted from attempts to use simple linear metrics to assign Laetoli teeth taxonomically, and based our identifications only on clearly defined morphological criteria.

![Fig. 11.1](image-url) Zygomatic width as a function of total skull length in Recent *Ceratotherium simum* (white) and *Diceros bicornis* (black), including subadult individuals, scale in cm. Some specimens have essentially identical dimensions but separation is good and the allometric relationship is different, *Diceros* having a more rapid increase in width with increasing length. Least squares regression lines and 95% density ellipses shown. Unpublished data; specimens from the collections of (Tervuren, Leiden, Copenhagen, Stockholm, Gothenburg, and Helsinki)
Crania

Guérin (1987a) assigned the crania LAET 74-323 (Loc. 7) and LAET 78-4979 (Loc. 3) from the Upper Laetolil Beds to *C. praecox*, reporting a close resemblance between the concave frontal profile of the latter specimen and the type cranium of “*C. praecox*” from Kanapoi (Hooijer and Patterson 1972). However, as noted by Geraads (2005), the frontal area of the LAET 78-4979 cranium is deformed rather than originally concave, and the cranial morphology is, in fact, very similar to the skulls from the Lower Awash Valley, which he referred to as *C. mauritanicum*. The dentition of the LAET 78-4979 cranium is very incomplete; the axis of the metaloph appears to pass distally to the medifossette, similar to the Lower Awash specimens. The dentition of the cranium LAET 74-323 is completely missing and the nuchal crest is seriously damaged; the available morphology of the occipital and frontal portion clearly distinguishes it from *Diceros*. The partial cranium EP 1041/00 from the Upper Ndolanya Beds is poorly preserved, but its dentition is in excellent condition and demonstrates all characteristic features of *C. efficax* described in the diagnosis (Fig. 11.3).

Permanent Upper Dentition

Although the Laetoli teeth assigned by us to *C. efficax* appear quite similar to those of modern *C. simum* in general characteristics, there are several distinct and constant differences. The dentition of *C. efficax* is absolutely and relatively less high crowned than *C. simum* and the occlusal surfaces of the teeth are less flattened. In *C. efficax*, the protoloph and particularly the metaloph bend less markedly distolingually than in *C. simum*. On the premolars of *C. efficax*, a moderately expressed and usually continuous cingulum is developed, the crista is weak and forms rarely after moderate stages of wear a closed medifossette with the strong crochet, the entrance of the medisinus remains usually open until late

Fig. 11.2 Plot of mesial width as a function of buccal length in second upper molars of Recent *Ceratotherium simum* (white) and *Diceros bicornis* (black), from the skulls shown in Fig. 11.1. Note complete lack of separation of teeth by size or proportions.

Fig. 11.3 *Ceratotherium efficax*, cranium NMT: EP 1041/00
stages of wear (except on P2), and a weak paracone fold is present on the buccal wall of the ectoloph. On the premolars of *C. simum*, the lingual cingulum is virtually absent, a closed medifossette is mostly formed during early stages of occlusal wear, the protoloph and metaloph fuse early closing the entrance of the medisinus, and the mesostyle bulge is the most prominent fold on the buccal wall of the ectoloph. On the molars of *C. efficax*, a conspicuous lingual protocone groove is nearly always present (sometimes also on premolars, but much weaker), a closed medifossette is variably formed, a faint protocone fold is usually evident, and the M3 features a continuous ectometaloph without postfossette. On the molars of *C. simum*, a marked lingual protocone groove is not developed (due to the more extreme bending of the protoloph), a closed medifossette is always formed at very early stages of wear, the paracone fold is completely suppressed by a deep parastyle groove, the mesostyle bulge is more acute, and on the M3 the ectoloph and metaloph are always markedly separated forming a postfossette.

Upper Deciduous Dentition

The upper deciduous teeth are generally quite similar to those of *C. simum*, with a slightly undulating ectoloph and a prominent parastyle, which is more markedly expressed than in *D. bicornis*. The mesial cingulum is weaker than in *D. bicornis* and the protoloph bends more markedly distolingly. The crista is strong and often expressed as multiple folds. The buccal enamel surface is rough, suggesting that a cement covering was originally present, but has not been preserved.

Mandible and Lower Dentition

Several mandibular fragments have been recovered from the Laetolil Beds, but unfortunately they are rather incompletely preserved. The mandibular symphysis and the ascending rami are usually broken off or severely crushed. The mandibular ramus, which is usually better preserved, is relatively high and features a concave dorsal profile. On its lingual side, the mylohyoid line is often expressed as a shallow longitudinal depression. The posterior margin of the symphysis extends variably below the level of p3. The enamel of the lower teeth is rough and cement traces can be often observed on the buccal wall and the internal valleys of the teeth. The dp1 does not persist in adulthood. On p2, the paralophid is single and there is no evident buccal groove or depression on the buccal wall of the trigonid. A rising mesiobuccal cingulum can be observed in some molars. The buccal wall of the metalophid is often slightly flattened, especially on the upper part of the crown, but not to the extent observed in extant *C. simum*, where it can be even slightly depressed, particularly on the molars. The ectoflexid is smoothly marked, but not particularly deep. It usually terminates before the base of the crown, especially on the premolars. The hypolophid is oblique and rounded, except sometimes on m3, where it may be less markedly rounded. In extant *C. simum*, the hypolophid on m3 and sometimes on m2 is less oblique and nearly straight. The lingual sinuses are situated high above the base; in molars, the profile of the anterior sinus is U-shaped and the distal sinus V-shaped. The lingual wall of the metaconid is rather flattened; in extant *C. simum*, the lingual wall of the metaconid is usually shallowly depressed. On the premolars, the metaconid bends frequently distolingly, but, contrary to the extant *C. simum*, the formation of closed fossetids is rare.

Tribe Dicerotini Ringström, 1924

Genus Ceratotherium (Gray, 1868)

Ceratotherium cf. *simum*
Material
Upper Ndolanya Beds (NMT)
Cranium LAET 81-74 (Fig. 11.4); lt p2 LAET 78-5017
Remarks and Comparisons
The LAET 81-74 cranium (Fig. 11.4) from Loc. 14 of the Upper Ndolanya Beds was assigned to *C. simum* by Guérin (1987a). The left P4-M3 are moderately well-preserved and show several derived features with respect to *C. efficax*. On

![Image 11.4 Ceratotherium cf. simum, cranium NMT: LAET 81-74, left P4-M3](image-url)
P4 a closed medifossette is formed, the metaloph is relatively longer than in *C. efficax*, and the mesostyle bulge more prominent. However, contrary to extant *C. simum*, the protoloph and metaloph of the P4 do not fuse lingually and the medisinus valley remains open even during this late stage of wear. The molars are fragmentary. The axis of the metaloph passes clearly through the medifossette. On the buccal wall of the ectoloph, the mesostyle bulge is the dominant fold, but it is not as prominent as in extant *C. simum*. The available comparative material presently prevents a more accurate assignment of this specimen to *C. germanoafriucanum* or primitive *C. simum*, since the molars of both species share the features listed above.

Tribe Dicerotini Ringström, 1924
Genus *Ceratotherium* Gray, 1868
Ceratotherium sp.

Material

Upper Ndolanya Beds (NMT)
Lt mandible LAET 75-2469; P frgt EP 4022/00

Remarks and Comparisons

LAET 75-2469 is an incompletely preserved mandibular fragment, which may be referred to *Ceratotherium*.

Tribe Dicerotini Ringström, 1924
Genus *Diceros* Gray, 1821
Diceros sp.

Restricted Synonymy

Material

Upper Laetolil Beds (NMT)
Cranium LAET 75-3065

The genus *Diceros* has generally been regarded as morphologically constant from the Early Pliocene to the present day. According to Harris and Leakey (2003) even the teeth from 6.24–5.5 Ma (Leakey et al. 1996) Upper Nawata, Lothagam, are similar to the teeth of the recent *D. bicornis*, even though, as Hooijer (1978) and Geraads (2005) noted, such longevity is extremely rare for a recent mammal species. Although *Diceros* appears to have been a less common element in the Laetoli fauna than it may have been previously assumed (Guérin 1987a), it clearly was present as evidenced by the LAET 75-3065 cranium. During an exhaustive survey of the entire collections of the Laetoli rhinoceros material preserved in the National Museums of Tanzania and Kenya, as well as in London and Berlin, we found only a few dental specimens that potentially could be attributed to *Diceros*. It is possible that some of the postcranial elements may also represent *Diceros*, as Guérin (1987a) has suggested, but we were not able to document reliable quantitative or qualitative criteria for distinguishing two genera among the available material.

Cranium

The cranium LAET 75-3065 originates from Loc. 10W of the Upper Laetolil Beds and was described and figured by Guérin (1987a, pl. 9.5). The cranium is crushed and deformed, and bears multiple fractures. It belongs to a very old individual, as indicated by its heavily worn teeth. The right P3-M3, as well as the left M2 and part of the left M3, are fragmentary. All molars are lingually broken and their ectoloph is poorly preserved. The relatively complete P4 shows a well-developed and continuous lingual cingulum, and an ectoloph coronal profile similar to extant *D. bicornis*. There is no evidence of a paracone fold at this late stage of wear. Both the protoloph and metaloph are rather straight and only slightly oblique, similar to extant *D. bicornis*. These features are in sharp contrast to *Ceratotherium efficax* (and subsequent congeneric species), where the lingual cingulum is weaker, the ectoloph profile more flattened, and the protoloph is bending markedly distolingually.

Geraads (2005) proposed that the cranium LAET 75-3065 might be referred to *Diceros praecox* (Hooijer and Patterson 1972) from Kanapoi, together with the skull AL-126-21 from Hadar. According to Geraads (2005), both specimens combine a dental morphology similar to extant *Diceros* with a “primitive” [sic] *Ceratotherium* occipital morphology. However, we could not detect the combination of cranial and dental features described by Geraads (2005) for the Hadar and Laetoli crania. The teeth of the Laetoli specimen LAET 75-3065 are too worn to show any reliable differences, while the apparent shortness
of the transverse lophs noted by Geraads (2005) for the Hadar specimen AL-126-21 does not, in our opinion, differ significantly from extant *D. bicornis* teeth at a similar early stage of wear. The large size of the teeth reported for the Hadar specimen actually fall within the range of variation of the large-sized genotypic subspecies *Diceros bicornis bicornis*. In addition, the teeth of the holotype cranium of the purported *Diceros praecox* from Kanapoi (KNM-KP 36) are too worn and incomplete to allow metric comparisons (Hooijer and Patterson 1972: Fig. 9a). The occipital region of both Laetoli and Hadar specimens is quite fragmentary. According to our comparisons, the available morphology seems to fall well within the range of variation that we have observed among the various subspecies of extant *D. bicornis*, for both the extension of the nuchal crest and the angle of the occipital level; a resemblance with the derived occipital morphology of *Ceratotherium* is not justified.

Tribe Dicerotini Ringström, 1924

Dicerotini gen. et sp. indet.

Material

Lower Laetolil Beds (NMT)

Upper Laetolil Beds (NMT)

Permanent teeth: Rt P3 EP 1061/03; Lt M1/2 LAET 75-757; rt p3 EP 628/98.

Probably Upper Laetolil Beds (KNM)

Permanent tooth: Lt P2 LIT 59-582.

Upper Ndolanya Beds (NMT)

Postcrania (incomplete listing): Magnum LAET 78-5023; unciform LAET 75-1653; femur, EP 1038/00; calcaneum EP 1214/03; navicular EP 705/03.

Ngaloba Beds (NMT)

Permanent tooth: Lt P3 EP 381/04

Remarks and Comparisons

Permanent Dentition

For some isolated dental fragments, a definite identification as *Ceratotherium* or *Diceros* is very difficult. The upper
specimens represent species, and relatively slender. There is little doubt that these specimens represent *C. efficax*. The size and proportions of the Laetoli metapodials are closer to the size and proportions of the abundant Langebaanweg sample (Hooijer 1972; Guérin 1979, 1987a). This was one of the key arguments used by Guérin (1987a) for referring the Laetoli material to *C. praecox*, since this name was previously widely used for the Langebaanweg sample. Guérin (1987a) did not assign any metapodials or long bones to *Diceros*, but only a few carpal and tarsal bones with somewhat smaller dimensions. Based on the proportions and morphology, it seems difficult to unequivocally recognize different groups among the carpals and tarsal bones. Since the majority of cranial and dental specimens belong to *C. efficax*, one could reasonably assume that the majority of the postcranials, if not all, represent this species. Alternatively, some of the smallest postcranial elements may indeed belong to the genus *Diceros*, as Guérin (1987a) has suggested. We believe that more postcranial material and comparative studies are required to establish reliable quantitative and/or qualitative criteria for their discrimination and we have accordingly not attempted an identification of the Laetoli postcranial specimens in the present study.

Discussion

Taxonomic History of the Laetoli Rhinoceroses

The first detailed studies of fossil rhinoceroses from Laetoli were published by Dietrich (1942, 1945). His material, consisting of a large number of isolated teeth and bones, had been collected by the Kohl-Larsen Expedition from 1938–1939 in the volcanic tuffs of the Garusi River area (“Vogelflussgebiet”; Dietrich 1941; T. Harrison, personal communication) of the Southern Serengeti, known today as Laetoli (Leakey 1987). Dietrich identified specimens that in his opinion could not be referred to either of the living African species, the white rhino *Ceratotherium simum* or the black rhino *Diceros bicornis* (Dietrich 1942). He considered these specimens to represent a species intermediate between the living species, although closer to *C. simum*. He named this species *Serengeticeros efficax* and believed it to be the direct ancestor of *C. simum*. According to Dietrich the diagnostic character of *S. efficax* was found in the upper molar teeth, in which the protoloph curves towards distal but the metaloph is straight (Dietrich 1942). In a more detailed description of the stratigraphic context of the rhinoceros remains (Dietrich 1945), he noted that *S. efficax* was found in the grey volcanic tuff, corresponding to the Upper Laetolil Beds of current usage (T. Harrison, personal communication). According to Dietrich, fossils attributable to the living species were only found in younger strata, probably corresponding to the Ndolanya Beds or the Pleistocene Ngaloba Beds (Leakey 1987; T. Harrison, personal communication).

The specimens described and illustrated by Dietrich as *Serengeticeros efficax* (e.g., Dietrich 1942, Fig. 2; Dietrich 1945, Table XII:1, 6) correspond precisely to subsequently collected material of the most common rhinoceros species from Laetoli. Dietrich’s line drawings show the characteristics of this species well, including the lingual curvature of the protoloph towards the distal, the straight metaloph with an axis that does not bisect the mediodentale, the lingual protoloph cone groove, and the mesostyle bulge, distinct but less developed than in *C. simum*. The lack of any specimens of *Diceros bicornis* from the grey tuffs as noted by Dietrich matches our finding that *Diceros* is very rare in the Laetolil Beds.

Much earlier, Pomel (1885) had mentioned and later described (Pomel 1888, 1895) a Pleistocene rhinoceros from Ternifine (age ca. 0.8 Ma, see e.g., Guérin 1987b), Algeria, as *Rhinoceros mauritanicus*. Pomel did not assign a holotype, but Geraads (2005) selected an isolated M2 (MNHNP TER-2261) drawn by Pomel (1895, plate 1, Fig. 2) as the lectotype of this species, and transferred it to *Ceratotherium* as *C. mauritanicum*. In Pomel’s drawing the specimen appears rather similar to second upper molars from Laetoli: the mediodentale is closed, the metaloph axis runs distal to the postfossette, the protoloph turns lingually towards distal, and the mesostyle bulge is significantly less pronounced than in *C. simum*. Among other specimens, Pomel also illustrates a right M3 (1895, Plate 1, Fig. 4), which also resembles specimens from Laetoli to a large degree.

Geraads (2005) attributed the Pliocene material from the Lower Awash to *C. mauritanicum*. The skull AL-129-25 figured by him (Geraads 2005, Fig. 1) matches the material from Laetoli perfectly in both cranial and dental features. We, however, feel that the name *Ceratotherium efficax* (Dietrich 1942) is more appropriate for this East African Pliocene species than the name *Ceratotherium mauritanicum* suggested by Geraads (2005).
North African Pleistocene *C. mauritanicum* retains similar craniodental and postcranial sizes and proportions as *C. effica*, but demonstrates slightly more derived dental features. For example, M3s are more frequently quadrangular in shape with an expression of a shallow buccal depression slightly demarcating the continuity of the ectolometaloph. Also in upper premolars the lingual cingulum is often weaker and discontinuous, and the fusion of the protoloph and the metaloph happens earlier, losing the continuity of the ectolometaloph. Also in upper premolars more often formed fossetoids during moderate stages of wear. The morphology of *C. mauritanicum* is thus closer to the common ancestor of *C. germano-africanum* and *C. simum*. *C. mauritanicum* managed to retain the *C. effica* morphotype with few modifications in North Africa considerably longer than in East Africa, where *C. effica* was replaced by the more derived species *C. germano-africanum* and *C. simum* (Geraads 2005; Giaourtsakis et al. 2009). According to the interpretation presented here, the Pliocene *C. effica* represents the common ancestor of *C. mauritanicum*, *C. germano-africanum* and *C. simum*.

Hilzheimer (1925) described a subspecies of the white rhino from Olduvai Gorge as *Rhinoceros simus germano-africanus*. Hilzheimer’s description was based mostly on a broken skull, which according to Geraads (2005) has since been lost. Hilzheimer did not publish a stratigraphy of his material, but according to Dietrich, Hilzheimer’s taxon was probably based on material of mixed provenance and age, an opinion supported by the notes of the original collector, Reck, who was uncertain whether the skull was derived from the basal Olduvai Beds proper or from a much younger horizon (“Steppensinter”) (Dietrich 1945). Dietrich excluded Hilzheimer’s material from *S. efficax* and suggested that *R. simus germano-africanus* might be synonymized with the white rhino, *Ceratotherium simum*, an opinion with which Geraads (2005) concurred.

Hilzheimer’s drawing (Hilzheimer 1925, text Fig. 1) shows two teeth, M2 and M3, which appear somewhat less derived compared to those of modern *C. simum*, and are, in our opinion, best associated with the species *Ceratotherium germano-africanum*. As already noted by Geraads (2005), the metaloph axis of M2 bisects the medifossette, resembling in this feature the modern *C. simum* and differing from the Pliocene *C. effica* and Pleistocene *C. mauritanicum*. However, the protolophs of the M2 and M3 are straighter than in the modern *C. simum*, so that they do not turn distally except at their lingual tips. In addition, the protocone of the M3 is clearly marked by a lingual protocone groove, which is absent or only faintly expressed in molars of *C. simum*. The medifossette of the M3 is open, with a tiny crista and faint ectoloph bulge, and the overall shape of the tooth is rather triangular. Another of Hilzheimer’s drawings (Hilzheimer 1925, text Fig. 2) shows an isolated M3 similar to modern *C. simum* with a closed medifossette and a quadrangular form.

In published Laetoli faunal lists, *C. simum germano-africanum* remained the only rhinoceros taxon until Leakey et al. (1976) reported finding skulls belonging to both *Diceros* and *Ceratotherium* from Laetoli (Guérin 1987a). Soon after, Leakey and Hay (1979) reported numerous teeth and some postcranial remains from Laetoli attributed to *Diceros*, and expressed the opinion that both *Diceros* and *Ceratotherium* were represented by tracks in the footprint tuff, even though their separation by other criteria than size was not possible (Leakey and Hay 1979; Leakey 1987).

Guérin (1987a) found three species of fossil rhinoceros at Laetoli: *Ceratotherium praecox* and *Diceros bicornis* in the Laetolil Beds, and *Ceratotherium simum* in the overlying Upper Ndolanya Beds. He regarded *Serengereticeros effica*, Dietrich, 1942 as synonymous with *Ceratotherium praecox* Hooijer and Patterson, 1972, but preferred to use the junior nomen because of its wider usage, pending a decision by the ICZN that does not appear to have materialized. Guérin (1987a) did, however, note that the dental material assigned by him to *C. praecox* differed from the teeth assigned to this species from Kanapoi, Ekora, Lothagam, and Langebaanweg, in it being more derived, similar to teeth from Hadar also assigned to *C. praecox*. Earlier Guérin (1980b) had also remarked that dental material from Sidi Hakoma of Hadar was morphologically intermediate between the species *C. praecox* and *C. simum*, and referred it to *Ceratotherium cf. praecox*. Given the wide concept of *C. praecox* adopted by other workers at the time (see below), Guérin’s decision to call the Laetoli species *C. praecox* was understandable. However, as noted above, the name *C. efficax* now appears appropriate for this material.

Relationships of the Plio-Pleistocene Dicerotini

Scott (1907, plate XVII Fig. 3) erected the new species *Opsiceros simplicidens* based on an isolated left M2 from superficial coastal deposits in Zululand. From the same deposits, he illustrated also two isolated teeth of *Diceros bicornis* (Scott 1907, Plate XVII, Fig. 4, 5). Scott (1907) compared this mixed material with the extant *Diceros bicornis* only, and the unusual morphology of the isolated M2 led him to the creation of a new species. However, the tooth is morphologically indistinguishable from fossil and extant *Ceratotherium simum*. Hopwood (1926) inappropriately reported that the species name *Opsiceros simplicidens* was a previously occupied (junior homonym of *Rhinoceros simplicidens* Lydekker) and proposed the species name *Rhinoceros scotti* as a replacement. Thus, *Rhinoceros scotti* Hopwood, 1926 is an objective junior synonym of *Opsiceros simplicidens*. Scott, 1907, which is a subjective junior synonym of *Ceratotherium simum* and therefore neither of these
names affects the usage of Ceratotherium efficax. Hopwood (1926, Fig. 3) referred an upper molar (BMNH 12616) from the Kaiso Bone Beds in Uganda to his Rhinoceros scotti. Dietrich (1945) considered that this molar may be conspecific with C. efficax from Laetoli and our direct comparisons seem to support this assignment, although the stratigraphic context of the specimen is somewhat imprecise.

Arambourg (1947), in his study of fossil rhinoceros material from the Omo, synonymized Serengeticus efficax with Hilzheimer’s taxon, which he referred to as Atelodus simus germano-africanus. Furthermore, Arambourg synonymized Hopwood’s Rhinoceros scotti (and Scott’s R. simplicidens) with A. simus germano-africanus. Like Arambourg, Hooijer (1959, 1969) and Harris (1983) regarded R. simus germano-africanus Hilzheimer as synonymous with Serengeticus efficax Dietrich. According to Hooijer (1972), this taxon, named C. simum germano-africanum, occurs at Laetoli, Chemeron, and Olduvai. In Hooijer’s view, its skull is indistinguishable from that of C. simum, but its upper molars differ from those of C. simum in having a transverse metaplastoloph and a protoloph that begins to curve towards distal only at its lingual end (Hooijer 1969). Hooijer (1969, Plate 1, Figs. 1–2) illustrated a skull of C. simum germano-africanum from Chemeron, J.M.91, which he considered similar to the material from Laetoli described by Dietrich as S. efficax, an opinion with which we concur; under the nomenclature employed here, this skull would thus be assigned to Ceratotherium efficax. In the same publication, Hooijer illustrated material from Olduvai, which he assigned either to C. simum germano-africanum or to C. simum subsp. Unfortunately the quality of the figures does not permit a precise identification of the species in all cases.

The species Ceratotherium praecox was described by Hooijer and Patterson (1972), who interpreted it as an offshoot of Diceros, the first representative of Ceratotherium and a direct ancestor of the living C. simum by way of the intermediate form C. simum germano-africanum (Hooijer and Patterson 1972; Hooijer 1973). They selected a rather poorly preserved skull from Kanapoi, KNM-KP 36 (Hooijer and Patterson 1972, Fig. 9 A) for the holotype. Both sides of this skull as well as the occiput are damaged; the teeth are very worn as well as damaged, making comparisons with other material difficult. Hooijer and Patterson also referred to C. praecox a somewhat younger crushed skull from the Ekora Formation (KNM-KP 41; Hooijer and Patterson 1972, Fig 10 A-B) and a rather older isolated upper molar from the late Miocene of the Lower Nawata Formation of Lothagam (KNM-LT 89; Hooijer and Patterson 1972, Fig 8 C-D). Hooijer and Patterson regarded the holotype skull as not far removed from living Diceros in shape, but somewhat larger and postdentally more elongated. As for molar morphology, they noted that the metaloph is transverse and the protoloph bulges posteriorly in its lingual third, and that the molars of the type skull are similar to those of the isolated specimen from Lothagam KNM-LT 89. In the Ekora skull KNM-KP 41 Hooijer and Patterson also observed postdental elongation, but the skull is badly crushed and distorted. Its molars are damaged on the buccal sides, but the relatively well preserved premolars were observed by Hooijer and Patterson to be very similar to those of Dicerors bicornis, differing only in the lack of a paracone style and in the ectoloph being flatter and undulating. The molars of the Ekora skull have a weak lingual cingulum, noted by Hooijer and Patterson as their only difference from the Lothagam molar KNM-LT 89.

According to Geraads (2005), Ceratotherium praecox should be transferred to Diceros. He regarded the Ekora skull KNM-KP 41 as belonging to Diceros bicornis, but retained the cranium KNM-KP 36 for Diceros praecox. We agree that both the Kanapoi skull KNM-KP 36 and the Ekora skull KNM-KP 41 belong to Diceros, but see no compelling reason to assign them to different species. Instead, we observe other signs of heterogeneity in the original C. praecox hypodigm. Thus, the teeth of the Kanapoi skull are in our opinion indistinguishable from those of modern D. bicornis, including the distal bulging of the protoloph noted by Hooijer and Patterson (1972), commonly seen in worn specimens. We would add that some Kanapoi specimens, such as KNM-KP 32, KNM-KP 30216 and KNM-KP 30472, are morphologically similar to D. bicornis in shape, but others, such as KNM-KP 38, KNM-KP 30217 and KNM-KP 30554 appear distinctly derived, and can be assigned to C. efficax. KNM-KP 38, a right P4, has a closed medifossette and, despite loss of the lingual enamel, a distinct vertical groove is observable on the lingual face of the protocone. KNM-KP 30217 is a left mandibular fragment with a lightly worn p3 in place. This tooth is quite hypsodont, with derived features such as a flattened buccal wall of the metalophid, flattened lingual walls, deep V-shaped lingual sinuses and rough enamel. KNM-KP 30554 is a worn left first or second molar with a flattened lingual wall, with the crown flaring out towards mesial and distal above the base, and rough enamel.

The dentition of the Ekora skull is similar to D. bicornis, as noted by Geraads (2005). Of the features noted by Hooijer and Patterson, the presence or absence of a paracone style in the molars cannot be determined on the buccally damaged molars, while in the premolars this feature, which depends very much on the stage of wear, is often weak or even missing in the living species; the ectoloph profile of these teeth also appears D. bicornis-like to us. In contrast, the isolated upper molar KNM-LT 89 again shows a more derived morphology: the ectoloph is slightly swollen in its middle part and the protocone has a vertical groove lingually.

Hooijer (1972) referred the rhinoceros from Langebaanweg to C. praecox, although the teeth show distinctly more derived features than in the Kanapoi and Ekora skulls. In particular the M1s show the presence of a lingual protocone groove (Hooijer 1972, Plates 21–24). We agree with
Hooijer that the Langebaanweg rhinoceros is a primitive form of the *Ceratotherium* lineage, as also noted by Geraads (2005) and Giaourtsakis et al. (2009). Since the Langebaanweg material, however, clearly represents a less derived form, with respect to both dental features and the features of the posterior part of the skull, than the Laetoli material attributed to *C. efficax* (see Giaourtsakis et al. 2009), we leave the actual taxon to be specified in later works.

Hooijer (1972) also transferred to *C. praecox* several specimens from the Mursi Formation of the Omo Basin and from the Chemeron Formation in Kenya, previously assigned by him to *C. simum germanoafricanum* (Hooijer 1969). These Mursi specimens are a palatal portion of a skull with the left M2-3 in place and a skull fragment with a broken left P4 (Hooijer 1969, Plate 5, Figs. 4–5). They are definitely more derived than those of the *C. praecox* type cranium from Kanapoi (which actually represents *Diceros*), and also more derived than the dental material of the Langebaanweg *Ceratotherium*, suggesting that an attribution to *C. efficax* would be reasonable. Both P4 and M2 have a lingual vertical groove on the protocone, the protolophs expand towards distal, and the metaloph of the M2 is straight. The mediossettes are open on these teeth but closed in the M3, as noted by Hooijer (1972) as exceptional for the Langebaanweg material; the ectolophs are damaged and their shape cannot be assessed. In *C. efficax* the mediossettes are usually, but not always, closed on the molars and often open on the premolars. The Chemeron specimen is a left maxilla with poorly preserved M1-3 (Hooijer 1969, Plate 2, Fig. 1). Only the M2 is sufficiently complete to allow comparisons; Hooijer (1972) regarded it as similar to the Mursi specimens, and it appears derived in comparison with the *Ceratotherium* material from Langebaanweg. Hooijer continued to add such morphologically derived specimens to *C. praecox*, from the Aterier Beds in the Baringo area, Kenya (Hooijer 1973, Plate 1, Figs. 1–3) and from the Omo (Hooijer 1975, Plate 2, Figs. 1–2). The latter material consists of milk teeth, which are considered indeterminate Dicerotini by Geraads (2005). They appear more derived than corresponding deciduous teeth from Langebaanweg and might therefore fit *C. efficax* better than other known forms.

The material referred to the species *C. praecox* by its original authors is thus quite heterogeneous, and the applied concept rather quickly drifted away from the original type material towards a more derived state. A considerable amount of fossil material has subsequently been assigned to what appears to be this secondary concept of *C. praecox*. Harris (1983) found this species in the Kubi Algi Formation of Koobi Fora, Guérin (1987a) found it at Laetoli, Harris et al. (2003) found more material at Kanapoi, and Harris and Leakey (2003) found it at Lothagam. Geraads (2005) noted that the type material of *C. praecox* belongs to the genus *Diceros* (as *Diceros praecox*), and he found that species at Hadar.

Early Evolution of Dicerotini

Several Miocene taxa have been described and phylogenetically associated with the extant African genera (Wagner 1848; Gaudry 1862–1867; Osborn 1900; Thenius 1955; Hooijer 1968, 1978; Guérin 1966, 2000, 2003; Arambourg 1959; Geraads 1986, 1988, 2005). Their status has been recently reviewed and updated by Giaourtsakis et al. (2009). Despite the number of described species, the early evolutionary history and radiation of the Dicerotini tribe remains presently unresolved, primarily due to the insufficient African Miocene record.

“*Diceros* neumayri” was the first recognized fossil relative of the extant African species (Wagner 1848; Gaudry 1862–1867) and until the 1960s their only Miocene representative. It is a very common element of the Hipparion fauna of the sub-Paratethyan mammalian province (*sensu* Bernor 1984) and has been documented in numerous localities from the Eastern Mediterranean, the Middle East and adjacent regions (Giaourtsakis 2009 and references therein). Because of its dental similarities with the extant *Diceros*, the taxon has been commonly assigned to this genus (Ringström 1924; Thenius 1955; Hooijer 1972, 1978; Heissig 1975, 1989; Guérin 1966, 1980a, 2003; Tsiskarishvili 1987). Geraads (1988) pointed out cranial similarities with *Ceratotherium*, which, however, represent early convergences (Giaourtsakis et al. 2009). Later, Geraads (2005) deemed “*Diceros* neumayri” (which he called *Ceratotherium neumayri*) as the common ancestor of both extant species, arguing that it is morphologically and ecologically intermediate between them. In his context, the known African Miocene taxa *Paradiceros mukirii* and *Diceros primaevus* were considered as being related forms with “*D*. neumayri,” and *Diceros douariensis* as potentially conspecific. However, no arguments were provided by Geraads (2005) to support this grouping or the implied relationships among the Miocene taxa, whereas *Diceros australis* was excluded from the comparisons. Geraads (2005) further suggested that the two extant lineages split soon after the Miocene–Pliocene boundary, leading from an ancestral mixed feeder (“*Ceratotherium neumayri*”) to a lineage of grazers (*Ceratotherium*) and a lineage of browsers (*Diceros*). However, based on our observations, the Late Miocene “*Diceros* neumayri” forms a monophyletic extra-African evolutionary lineage with no Pliocene descendants. The dispersal of these populations in the eastern Mediterranean and adjacent regions was followed by the gradual establishment of a unique combination of primitive and derived craniodental features, as well as several autapomorphies, notably in the postcranial skeleton (Giaourtsakis et al. 2009). The available Miocene fossil record indicates that the split between the extant lineages of *Diceros* and *Ceratotherium* must have taken place in Africa during the Miocene and that not only the common ancestor...
of the extant lineages should have been a browser, but also the ancestral stock of the *Ceratotherium* lineage probably favored a browsing diet for as long as available habitats could supply it.

A potential candidate of the ancestral Dicerotini morphology is the relatively complete rhinocerotid sample from the early late Miocene locality of Bou Hanifia (Oued el Hammam), Algeria, recovered above a volcanic tuff radiometrically dated at 12.18 ±1.03 Ma (Ameur et al. 1976). The material was originally described as *Dicerorhinus primaevus* by Arambourg (1959), partly due to misleading comparisons (Giaourtsakis et al. 2009), but was later properly allocated to the genus *Diceros* by Geraads (1986). *Diceros primaevus* shows a dental and postcranial morphology that essentially persists, with relatively few modifications, in the extant black rhinoceros. The conservative morphology of *D. primaevus* may support a placement close to the split between the extant black and white rhinoceros lineages. In addition, populations similar to *D. primaevus* might have migrated outside Africa, around the middle-late Miocene boundary, and independently evolved into the Eastern Mediterranean "*Diceros* neumayri".

A species considerably older than *D. primaevus* has been recently described by Guérin (2000, 2003) as *Diceros australis* from the locality of Arrisdrift in the Orange River Valley of Namibia, dated close to the early-middle Miocene boundary (ca. 17.5-17.0 Ma after Pickford and Senut 2003). Besides a small occipital and a few mandibular fragments, the hypodigm of *D. australis* comprises several isolated dental and postcranial elements. Based on Guérin’s (2000, 2003) descriptions and illustrations, the morphology of the upper permanent cheek teeth indeed seems to follow the unspecialized Dicerotini pattern, similar to the extant *Diceros*. The well preserved, slightly worn P4 (Guérin 2000, Plate 1, Fig. 3) has a strong paracone fold, the mesostyle and metacone folds are not developed, a weak cusp is present but no crista, the protocone is not constricted by a distal groove, and a strong continuous crenulated lingual cingulum is developed. The described molars also bear a strong paracone fold, a weakly developed cusp without a cista and a distally unconstructed protocone (Guérin 2000, 2003). The most prominent feature of *D. australis*, however, is the significant size of its postcranial elements, especially the metapodials that are considerably larger than the maximum values recorded for the two extant species, as well as the early late Miocene *D. primaevus* and the side branch of the extra-African "*D.* neumayri". Similar size and proportions can be found on isolated specimens from the significantly younger Mpesida Beds of Kenya (~6.2 to 6.9 Ma), and Saitune Dora (~5.6 Ma, Giaourtsakis et al. 2009), as well as in the abundant material from the early Pliocene of Langebaanweg (Hooijer 1972) and the Late Pliocene *C. efficax*. If correctly identified and dated, the puzzling discovery of the large-sized *D. australis* as the oldest known representative of the Tribe Dicerotini perplexes the early radiation of the Tribe and the split between the black and white rhinoceroses (sensu lato), as it would clearly pose a second center of evolution next to the younger and apparently more conservative *D. primaevus*.

Another Middle Miocene taxon traditionally associated with the Dicerotini lineage has been inaccurately described from the locality of Fort Ternan in Kenya (ca. 13.7 ± 0.3 Ma, after Pickford et al. 2006). Hooijer (1968) originally portrayed *Paradiceros mukirii* as a primitive collateral species of the ancestral *Diceros* stock, differing from extant and fossil *Diceros* in a combination of primitive and progressive features. However, the holotype and the majority of the specimens from Fort Ternan, if not the complete hypodigm, belong to "*Dicerorhinus* leakeyi" Hooijer, 1969, an early member of the Dicerorhinini tribe (Giaourtsakis et al. 2009).

The first Miocene taxon to show some progressive dental features similar to *Ceratotherium*, appears to be *Diceros douariensis*, Guérin, 1966 (Heissig 1989; Giaourtsakis et al. 2009). The type material originates from the Mines of Douaria, 2.5 km SW of the village Sedjerane, in the plateau of Couchet el Douharia in North Tunisia. The biostratigraphical context of the locality warrants a Late Miocene age (Guérin 1966, 2003). The material comprises an adult holotype and a juvenile paratype skull, however the latter belongs clearly to a different, hornless rhinoceros species (Geraads 2005; Giaourtsakis et al. 2009). Guérin (1966) originally considered *D. douariensis* as a circum-Mediterranean species showing a mixture of progressive and primitive features with respect to the Eastern Mediterranean "*D.* neumayri", the only established Miocene Dicerotini species at that time. Besides the reported large size and the apparent high crowned teeth of the holotype adult skull (Guérin 1966; Giaourtsakis et al. 2009), some derived dental features characterize the Douaria rhinocerotid and distinguish it from Plio-Pleistocene and extant *D. bicorins*, as well as from the extra-African *D. neumayri*. These include the obliquity of the protoloph on the molars and the development of lingual protocone groove (Guérin 1966, Fig. 8). A similar dental morphology is also observed on an isolated upper molar (KNM LT-89) from the Lower Nawata formation of Lothagam (~7.5–6.5 Ma; McDougall and Feibel 1999, reprinted in 2003), originally referred to as *C. praeox* by Hooijer and Patterson (1972), and an almost complete cranium from Kuseralee of the Middle Awash Valley of Ethiopia (Giaourtsakis et al. 2009). The dental complexity was further advanced during the Pliocene by populations similar to the Langebaanweg sample (Hooijer 1972) and the late Pliocene *Ceratotherium efficax* detailed herein as a response to the expansion of more open habitats and the adaptation to more abrasive diet.
Paleoecology of the Laetoli Rhinoceroses

The available cranial morphology of the LAET 75-3065 *Diceros* falls within the variation observed in the extant *D. bicornis*. The Laetoli *Ceratotherium* crania are markedly longer, more dolichocephalic, and demonstrate an increased posterodorsal inclination of the occiput similar to extant *C. simum*. These cranial features suggest a lowering of the resting position of the head, and by implication, a shift towards feeding on lower vegetation, as originally suggested by Zeuner (1934) and Loose (1975). These observations are consistent with the commonly held view that *Diceros* has remained a browser throughout its history, whereas *Ceratotherium* experienced a more or less gradual shift towards grazing (Osborn 1900; Zeuner 1934; Dietrich 1945; Thenius 1955; Hooijer 1969, 1978; Guérin 1980a, 1987a; Heissig 1989; Harris and Leakey 2003; Giaourtsakis et al. 2009). The available data do not favor a sudden shift in proportions as caused by a mutation acting on ontogenetic development (Stanley 1979), and it is difficult to reconcile with the scenario of Geraads (2005), which suggests that *Diceros* arose from *Ceratotherium* through a process of evolutionary reversal from mixed feeding, or grazing, to browsing.

The available dental morphology of the Laetoli *Diceros* shows no significant difference with respect to extant *D. bicornis*. The recovered teeth are too few (as only the teeth of the cranium LAET 75-3065 can be securely assigned to *Diceros*), and too worn to allow a meaningful study of dental wear patterns. However, nothing suggests that the teeth were worn much differently from what is seen in the extant species. On the contrary, the dental morphology of the Laetoli *Ceratotherium* is functionally informative, since a sufficient number of specimens exist to allow a paleodietary reconstruction using the mesowear analysis (Fortelius and Solounias 2000).

The functionally relevant morphological features of the *Ceratotherium* teeth from Laetoli all point to a state intermediate between extant *Diceros* and extant *Ceratotherium*. These include, among others, the moderate degree of hypsodonty, the presence of thickened cement covering the crown, the mild distolinguinal bending of the transverse lophs, the incipient closing-off of the medifossette and the medially bulging curvature of the ectoloph. The distribution of these character states is discussed in detail in the taxonomic part of this chapter; here we only note that the dental morphology of the Laetoli *C. efficax*, while indeed intermediate, is significantly closer to the *C. simum* end of the spectrum and well separated from the plesiomorphic rhinoceros morphology demonstrated by *Diceros*, including *D. praecox* as understood by Geraads (2005). However, rather than trying to quantify the relative development of these features of long-term evolutionary change, we focus our attention here on the analysis of wear patterns reflecting the immediate dietary regimes of the animals.

Hierarchic clustering of *C. efficax* from Laetoli, based on classical mesowear, places it within the grazer cluster, with stratigraphically defined subclusters ending up in distinct parts (Fig. 11.5). The result is insensitive with respect to which two of the three cusp sharpness states are included in the analysis, and to whether the relief is included as a parameter or not.

In order to evaluate the conventional mesowear study presented here, we used curvature analyses of scanned enamel profiles to illustrate and to compare the wear profiles in a small selection of upper and lower teeth from Laetoli with teeth of the extant species (Fig. 11.6). These profiles clearly show the exceptionally sharp edges (high curvature) seen in *Diceros*, indicated by a narrow band of white along the buccal edge of an otherwise smooth (black-colored) surface. In contrast, the teeth of derived *Ceratotherium* from the latest Pliocene and
early Pleistocene, and particularly extant Ceratotherium simum show moderate curvature along the crest and a profusion of locally high curvature due to irregularities in the enamel surfaces. C. efficax from Laetoli occupies an intermediate state between these extremes, with relatively well-demarcated curvature maxima along the profile, but decidedly lower values at the edge between the main surfaces and with more irregularities within them than is seen in Diceros. This comparison also reveals that the profiles of the lower teeth, while geometrically different from those of the upper teeth, nevertheless show the same overall similarities and differences as the upper teeth, lending some independent support to our inclusion of lower teeth in the cusp sharpness analyses.

A box plot of cusp sharpness among selected taxa (Fig. 11.7) shows a clear separation between Diceros and Ceratotherium, with C. efficax occupying an intermediate position closer to C. simum than to Diceros. A marked but statistically insignificant difference is observed between the late Pliocene and early Pleistocene derived Ceratotherium and extant C. simum, suggesting that the extreme grazing diet of the extant species may

Fig. 11.6 Profiles and curvature maps of buccal upper and lower teeth enamel facets (all teeth are M2/m2, except KNM ER-1190 and LAET 75-3065, which are P4s) of C. efficax compared with the early Pleistocene (left) and the latest Pliocene (right) derived Ceratotherium, Recent C. simum, Pliocene Diceros and Recent D. bicornis. For each specimen, a topographic surface is shown on the left, and a curvature map overlaying the surface is shown on the right. Higher curvature (lower radius of curvature) is shown in white, with lower curvature in black. Topographic scale bar in mm, radius of curvature scale (grayscale) in mm.

Fig. 11.7 Comparison of mean molar cusp roundedness in selected rhinoceros taxa: CerEff = C. efficax, CerFos = derived Ceratotherium from the late Pliocene and the early Pleistocene, Cersirec = C. simum (recent), Dibirc = D. bicornis (recent), Dicerfos = fossil Diceros. Note low rounding in Diceros, high in C. simum, and intermediate in C. efficax. Top and bottom of diamond, 95% CI; horizontal lines are “overlap marks”, width of diamond signifies number of specimens.
have developed during the beginning of the Pleistocene or even later. A similar plot for Ceratotherium across temporal groups within the Laetoli sequence shows the same relationships but with more resolution (Fig. 11.8). The minor fluctuations observed within the Laetolil Beds cannot be distinguished from random noise, but the small sample from the Upper Ndolanya Beds shows significantly higher rounding, indicating a more abrasive diet at this time. Thus, the dietary regime of C. efficax appears to fall within the grazing realm, but may still have included variable amounts of browse. In any case the food eaten was clearly less abrasive than the graze consumed by the late Pliocene and early Pleistocene Ceratotherium and especially extant C. simum. Figure 11.9 illustrates the mean molar cusp roundness of Ceratotherium in East Africa over time.

Conclusions

The occurrence of true Diceros in the Laetolil Beds is indisputable, but, in contrast to Guérin (1987a), we find few specimens attributable with any confidence to this genus. We are also unwilling to assign the Laetoli Diceros material at the species level. We agree with Hooijer (1978) and Geraads (2005) that the existence of an extant species D. bicornis even in the Late Miocene locality Lothagam (Harris and Leakey 2003) would make its longevity rather unique among mammals. We were, however, unable to detect in the Diceros material from Laetoli features described by Geraads (2005) in D. praecox from Lower Awash. We agree with Guérin (1987a) on the identity of the larger and more abundant rhinoceros at Laetoli, which he assigned to Ceratotherium praecox, while mentioning the alternative nomenclatorial choice of C. efficax.

As noted by several authors (Osborn 1900; Dietrich 1942; Fortelius 1985), the dental evolution of Ceratotherium shows a transition from a Diceros-like ectolophodont condition to the full-fledged plagiolophodonty seen in extant Ceratotherium simum. There cannot be any doubt that this morphological transition somehow reflects a dietary shift from browsing to grazing, but the rate and timing of these changes, as well as their precise relationship to the diet has largely remained a matter of speculation. Our results suggest, that the transition included a substantial period of stasis, spanning at least the interval represented by the Laetolil Beds, during which the dietary regime varied in the range from mixed feeding to grazing (Fig. 11.8). Our results clearly show that a shift in the dietary regime towards grazing had occurred by Upper Ndolanya times, and that the trend towards increased grazing continued from the Early Pleistocene to the Recent (Fig. 11.9).

Geraads (2005) proposed an alternative scenario according to which African Ceratotherium arose through an immigration of the Eurasian species “Diceros” neumayri, and in turn gave rise to Diceros through an evolutionary reversal to a browsing mode of life. However, we find this scenario difficult to reconcile with the available evidence, and believe that the Late Miocene “Diceros” neumayri actually forms a monophyletic extra-African evolutionary lineage with no Pliocene descendants (see Giaourtsakis et al. 2009).
Acknowledgements We sincerely thank Terry Harrison for inviting us to undertake this study and facilitating our work in every way; Terri Harrison for good advice; Paul Msemwa and Amandus Kweka in Tanzania; Emma Mbua and Mary Muungu in Kenya; Claude Guérin for showing us the material of D. douaniensis; Kurt Heissig and Aleksis Karme. We would like to thank Denis Geraads and the other referees for their good advice and suggestions. We also thank the curators and other staff of the following museums for access to specimens over decades: Athens Museum of Paleontology and Geology, University of Athens, Athens; British Museum of Natural History, London; Bayerische Staatssammlung für Paläontologie und Geologie, München; Faculté des Sciences, University of Lyon; Finnish Museum of Natural History, Helsinki; Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt am Main; Institut für Paläontologie der Universität, Wien; Koninklijk Museum voor Midden-Afrika, Tervuren; Laboratory of Geology and Palaeontology, University of Thessaloniki; Museum der Naturkunde für Humboldt Universität zu Berlin, Berlin; Museum National d’Histoire Naturelle, Paris; National Museum of Ethiopia, Addis Ababa; National Museum of Tanzania, Dar Es Salaam; National Museums of Kenya Nairobi; Naturhistorisches Museum, Wien; Naturhistoriska Riksmuseet, Stockholm; Rijksmuseum van Natuurlijke Historie (Naturalis), Leiden; Royal Zoological Museum, Copenhagen; Staatliches Museum für Naturkunde, Karlsruhe; Staatliches Museum für Naturkunde, Stuttgart, and Zoological Museum, Amsterdam. The study visit of EH and MF was funded by a grant from NSF (BCS-0309513) awarded to Terry Harrison, with an additional traveling grant provided for EH by the European Commission’s Research Infrastructure Action (EU-SYNTHESYS: GB-TAF-574, NL-TAF-2513, FR-TAF-2545, DK-TAF-3765) and the Research for Human Origin Initiative (RHOI, under NSF award BCS-0321893).

References

Paleontology and Geology of Laetoli: Human Evolution in Context
Vertebrate Paleobiology and Paleoanthropology Series

Edited by

Eric Delson
Vertebrate Paleontology, American Museum of Natural History,
New York, NY 10024, USA
delson@amnh.org

Eric J. Sargis
Anthropology, Yale University
New Haven, CT 06520, USA
eric.sargis@yale.edu

Focal topics for volumes in the series will include systematic paleontology of all vertebrates (from agnathans to humans), phylogeny reconstruction, functional morphology, Paleolithic archaeology, taphonomy, geochronology, historical biogeography, and biostratigraphy. Other fields (e.g., paleoclimatology, paleoecology, ancient DNA, total organismal community structure) may be considered if the volume theme emphasizes paleobiology (or archaeology). Fields such as modeling of physical processes, genetic methodology, nonvertebrates or neontology are out of our scope.

Volumes in the series may either be monographic treatments (including unpublished but fully revised dissertations) or edited collections, especially those focusing on problem-oriented issues, with multidisciplinary coverage where possible.

Editorial Advisory Board
Nicholas Conard (University of Tübingen), John G. Fleagle (Stony Brook University), Jean-Jacques Hublin (Max Planck Institute for Evolutionary Anthropology), Ross D.E. MacPhee (American Museum of Natural History), Peter Makovicky (The Field Museum), Sally McBrearty (University of Connecticut), Jin Meng (American Museum of Natural History), Tom Plummer (Queens College/CUNY), Mary Silcox (University of Toronto).

For other titles published in this series, go to
www.springer.com/series/6978
Paleontology and Geology of Laetoli: Human Evolution in Context

Volume 2: Fossil Hominins and the Associated Fauna

Edited by

Terry Harrison
Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA

Springer
To Australopithecus afarensis for being there when it mattered
Laetoli in northern Tanzania is one of the most important paleontological and paleoanthropological sites in Africa. It is renowned for the recovery of early hominin fossils belonging to *A. afarensis* and for the discovery of remarkably well-preserved trails of footprints of hominins. Given the significance of Laetoli for understanding and interpreting the evolutionary history of early hominins the author initiated long-term geological and paleontological investigations at Laetoli and at other fossil localities on the Eyasi Plateau. The overall objectives of the project were to recover additional fossil hominin specimens and to obtain more detailed contextual information on the paleontology, geology, dating, and paleoecology.

The field campaigns (1998–2005) have produced important original data on the fossil hominins, their associated fauna, and the paleoecological and paleoenvironmental context. The work presented here is the culmination of that research. It represents the combined effort of a dedicated and experienced field crew who were responsible for collecting the fossils and samples described and analyzed here, and subsequent research by a multidisciplinary team of international specialists.

The present volume focuses on the morphology, systematics and paleobiology of the fossil hominins and the associated invertebrate and vertebrate fauna. The companion volume provides an interdisciplinary perspective on the geology, geochronology, paleoecology, taphonomy, paleobotany, and modern-day Serengeti ecosystem. Together, these two volumes present a comprehensive account of the geology, paleontology and paleoecology of Laetoli. It is hoped that the research presented here will provide an important building block in a broader understanding of early hominin evolution, faunal diversity and ecological change in East Africa during the Pliocene, and provide the basis for analyzing early hominin adaptation within the context of broader macroevolutionary models of speciation, diversification and extinction.

A special thanks goes to all of the dedicated team members who participated in the expeditions to Laetoli that contributed to the recovery of the material discussed and analyzed here (they are identified individually in the introductory chapter in Volume 1). I am especially grateful to the graduate students (current and former) who participated in the project, often under difficult conditions, and I fully acknowledge their significant contributions to the success of the project. The students who accompanied me into the field were as follows: E. Baker, S. Cooke, C. Fellmann, K. Kovarovic, A. Malyango, L. McHenry, K. McNulty, G. Mollel, C.P. Msuya, T. Rein, C. Robinson, L. Rossouw, M. Seselj, D. Su, M. Tallman and S. Worthington. Of my former graduate students, Denise Su deserves special recognition for taking on the primary role of curating and cataloguing the Leakey and Harrison Laetoli collections at the National Museum of Tanzania in Dar es Salaam, as well as for her valuable assistance with logistics at Laetoli and in Dar es Salaam.

I thank the Tanzania Commission for Science and Technology and the Unit of Antiquities in Dar es Salaam for permission to conduct research in Tanzania. Special thanks go to the late Norbert Kayombo (Director General), Paul Msemwa (Director), Amandus Kweka and all of the curators and staff at the National Museum of Tanzania in Dar es Salaam for their support and assistance. I thank the regional, district and ward officers in Arusha Region for their support and hospitality. I am grateful to the Ngorongoro Conservation Area Authority for permission
to conduct research in the conservation area. Emin Korcelik and Naphisa Jahazi of Hertz International in Dar es Salaam arranged the field transportation, and H. Meghji and A. Esmail helped with logistical support in Dar es Salaam.

I thank the curators and staff at the various museums and repositories for allowing me access to archival materials, fossils and comparative specimens in their care. These include: National Museums of Tanzania, Kenya National Museum, American Museum of Natural History, Natural History Museum in London, Humboldt-Universität Museum für Naturkunde in Berlin, Eberhard-Karls Universität Tübingen Institut für Ur- und Frühgeschichte und Archäologie des Mittelalters and Institut und Museum für Geologie und Paläontologie.

New York

Terry Harrison
Contents

1. **Introduction: The Laetoli Hominins and Associated Fauna**
 Terry Harrison

2. **Rodents**
 Christiane Denys

3. **The Lower Third Premolar of Serengetilagus praecapensis**
 (Mammalia: Lagomorpha: Leporidae) from Laetoli, Tanzania
 Alisa J. Winkler and Yukimitsu Tomida

4. **Macroscelidea**
 Alisa J. Winkler

5. **Galagidae (Lorisoida, Primates)**
 Terry Harrison

6. **Cercopithecids (Cercopithecidae, Primates)**
 Terry Harrison

7. **Hominins from the Upper Laetolil and Upper Ndolanya Beds, Laetoli**
 Terry Harrison

8. **Carnivora**
 Lars Werdelin and Reihaneh Dehghani

9. **Proboscidea**
 William J. Sanders

10. **Orycteropodidae**
 Terry Harrison

11. **Rhinocerotidae**
 Elina Hernesniemi, Ioannis X. Giaourtsakis, Alistair R. Evans, and Mikael Fortelius

12. **Equidae**
 Miranda Armour-Chelu and Raymond L. Bernor

13. **Suidae**
 Laura C. Bishop
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Giraffidae</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>Chris A. Robinson</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Bovidae</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>Alan W. Gentry</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Amphibia and Squamata</td>
<td>467</td>
</tr>
<tr>
<td></td>
<td>Jean-Claude Rage and Salvador Bailon</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Tortoises (Chelonii, Testudinidae)</td>
<td>479</td>
</tr>
<tr>
<td></td>
<td>Terry Harrison</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Aves</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td>Antoine Louchart</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Beetles (Insecta: Coleoptera)</td>
<td>535</td>
</tr>
<tr>
<td></td>
<td>Frank-T. Krell and Wolfgang Schawaller</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Lepidoptera, Insecta</td>
<td>549</td>
</tr>
<tr>
<td></td>
<td>Ian J. Kitching and S. Sadler</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Trace Fossils Interpreted in Relation to the Extant Termite Fauna</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>at Laetoli, Tanzania</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Johanna P.E.C. Darlington</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Gastropoda</td>
<td>567</td>
</tr>
<tr>
<td></td>
<td>Peter Tattersfield</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>589</td>
</tr>
</tbody>
</table>
Contributors

Miranda Armour-Chelu
Department of Anatomy, Laboratory of Evolutionary Biology, College of Medicine, Howard University, 520 W St, N.W. Washington, DC 20059, USA
marmour-chelu@howard.edu

Salvador Bailon
CNRS UMR 7194-7209, MNHN, CP 55, 55 Rue Buffon, 75005, Paris, France
sbailon@lazaret.unice.fr

Raymond L. Bernor
Department of Anatomy, Laboratory of Evolutionary Biology, College of Medicine, Howard University, 520 W St, N.W. Washington, DC 20059, USA
rbernor@howard.edu

Laura C. Bishop
Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom St, Liverpool L3 3AF, UK
L.C.Bishop@ljmu.ac.uk

Johanna P.E.C. Darlington
University Museum of Zoology, Downing Street, Cambridge, CB2 3EJ, UK
jpecd2@cam.ac.uk

Reihaneh Dehghani
Department of Palaeozoology, Swedish Museum of Natural History, Box 50007 S-104 05, Stockholm, Sweden
reihaneh.dehghani@nrm.se

Christiane Denys
Department of Systematics and Evolution – CP51, UMR7205 CNRS: Origine structure & évolution de la Biodiversité, MNHN, 55 rue Buffon, 75005, Paris, France
denys@mnhn.fr

Alistair R. Evans
School of Biological Sciences, Monash University, Victoria 3800, Australia
arevans@fastmail.fm

Mikael Fortelius
Department of Geosciences and Geography, University of Helsinki, P.O. Box 64 FIN-00014, Helsinki, Finland
mikael.fortelius@helsinki.fi
Contributors

Alan W. Gentry
c/o Department of Palaeontology, Natural History Museum,
Cromwell Road, London, SW7 5BD, UK
alantgentry@aol.com

Ioannis X. Giaourtsakis
Department of Geo- and Environmental Sciences, Section of Paleontology,
Ludwig-Maximilians-University of Munich, Richard-Wagner-Strasse 10,
D-80333 Munich, Germany
i.giaourtsakis@lrz.uni-muenchen.de

Terry Harrison
Center for the Study of Human Origins, Department of Anthropology,
New York University, 25 Waverly Place, New York, NY 10003, USA
Terry.harrison@nyu.edu

Elina Hernesniemi
Department of Geosciences and Geography, University of Helsinki,
P.O. Box 64 FIN-00014, Helsinki, Finland
elina.hernesniemi@helsinki.fi

Ian J. Kitching
Department of Entomology, The Natural History Museum, Cromwell Road,
London, SW7 5BD, UK
i.kitching@nhm.ac.uk

Frank-T. Krell
Denver Museum of Nature & Science, 2001 Colorado Blvd. Denver, CO 80205, USA
frank.krell@dmns.org

Antoine Louchart
Institut de Génomique Fonctionnelle de Lyon, team “Evo-devo of vertebrate dentition”,
Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA, Ecole Normale
Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon cedex 07, France
antoine.louchart@ens-lyon.fr; a222313c@yahoo.fr

Jean-Claude Rage
Département Histoire de la Terre, CNRS UMR 7207, MNHN, CP 38,
8 rue Buffon, 75231, Paris cedex 05, France
jcrage@mnhn.fr

Chris A. Robinson
Department of Biology, Bronx Community College,
2155 University Avenue, Bronx, NY 10453, USA
chris.robinson@bcc.cuny.edu

S. Sadler
Department of Entomology, The Natural History Museum, Cromwell Road,
London, SW7 5BD, UK

William J. Sanders
Museum of Paleontology, The University of Michigan, 1109 Geddes Avenue,
Ann Arbor, MI 48109, USA
wsanders@umich.edu

Wolfgang Schawaller
Staatliches Museum für Naturkunde, Rosenstein 1, D-70191, Stuttgart, Germany
wolfgang.schawaller@gmns-bw.de
Contributors

Peter Tattersfield
Department of Biodiversity and Systematic Biology, National Museum of Wales,
Cathays Park, Cardiff, CF10 3NP, UK
peter@petertat.demon.co.uk

Yukimitsu Tomida
National Museum of Nature and Science, 3-23-1 Hyakunincho,
Shinjukuku, Tokyo 169-0073, Japan
y-tomida@kahaku.go.jp

Lars Werdelin
Department of Palaeozoology, Swedish Museum of Natural History,
Box 50007 S-104 05 Stockholm, Sweden
werdelin@nrm.se

Alisa J. Winkler
Roy M. Huffington Department of Earth Sciences, Southern Methodist University,
Dallas, TX 75275, USA; Department of Cell Biology, University of Texas Southwestern
Medical Center at Dallas, Dallas, TX 75390, USA
awinkler@smu.edu