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Abstract

The relationship between tooth form and function is a long-standing issue in the
realm of functional morphology. However, in contrast to many other aspects of functional
morphology, where many concepts and methods from engineering have been embraced,
functional dental morphology has in many ways lagged behind in the application of these
principles. The complexity and poor understanding of engineering applications such as tool
function and fracture mechanics, which can be seen as analogous to the function of teeth
and the fracture of food, have meant that techniques that allow the prediction of dental
function from morphology have been lacking. This thesis seeks to address this deficit by
the comprehensive application of several aspects of engineering to the issue of how teeth
work, specifically, how the shape of an insectivore’s teeth can be related to function.

The first major step in understanding dental function was to use engineering
principles of machine tools to directly relate shape characteristics of teeth to how they will
function. The result is a set of shape parameters, any alteration in which can be used to
predict the relative change in the amount of force or energy that would be required for a
tooth to function. These functional parameters are: tip sharpness and edge sharpness for
cusps; rake, relief and approach angles, food capture and fragment clearance for crests.

Using these shape parameters as the dimensions of a multidimensional
morphospace that includes all possible tooth shapes, only a very limited number will allow
proper occlusion of the cusps and crests and have advantageous characteristics for all of
the functional parameters listed above. From a search of this morphospace, the very few
tooth shapes that do meet these criteria are remarkably similar to several tooth forms or
structures that occur in extinct and extant mammals. These shapes can be considered
‘ideal’ in that they are very close to the morphology predicted to be the best functional
shape. It appears, then, that these tooth forms are ideal functional shapes and are relatively
unconstrained by the development and evolutionary history of mammals.

These ideal forms were then used to construct virtual three-dimensional model teeth
that very closely emulate the shape and function of real tooth forms such as zalambdodont,
insectivore premolars, dilambdodont and tribosphenic.

New fluorescent confocal imaging techniques for three-dimensional reconstruction
of small teeth were developed and used to measure the important functional characteristics
of microbat teeth. The use of Virtual Reality Modelling Language (VRML) allows the

three-dimensional reconstruction of tooth occlusion of mammalian teeth for the first time,
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representing a significant improvement on the use of occlusal diagrams to understand tooth
occlusion. Measurements of the functional parameters from the digital tooth
reconstructions demonstrate significant quantitative differences in morphological
characters that predict a change in tooth function with wear, which has not been achieved
with alternative approaches.

The concept of ‘hardness’ has long been used to describe the biomechanical
properties of many groups of animals. However, due to the lack of a consistent definition,
and the multitude of uses to which the term has been put, the use of the term ‘intractability’
has been advocated in this thesis to represent the extent to which the structural strength,
stiffness and toughness are increased in a foodstuff. The thickness of the cuticle of an
insect was found to be a good measure of the intractability of cuticle. The tremendous
advantage of the use of cuticle thickness as a measure of the biomechanical properties of
invertebrates means that the properties of a living insectivore can be directly quantified
according to the thickness of the cuticle in its faeces. The quantitative measurement of
intractability obtained through this technique can be used in correlations with adaptations
of the masticatory apparatus, including tooth and skull morphology. This is a major
advance on previous measures of the biomechanical properties of insectivore diets, and
may represent the best technique of any dietary group in assessing the properties of its diet.

Comparisons between microbats that specialise on intractable or tractable insects
illustrate some functional differences between tooth shape that arguably relate more to the
risk of tooth fracture and increased wear rather than differences in the biomechanical
properties of the diet. This conclusion challenges current views of insectivore tooth form
and function.

Data gathered on the sharpness of microbat teeth was used to reassess the
theoretical and empirical aspects of the scaling of tooth sharpness with body size. For large
animals, it appears that the effect of tooth wear has the greatest influence on tooth
sharpness, but the influence of development may be more important in smaller mammals.

Finally, aspects of general tooth morphology are addressed. Mammals of all sizes
that consume tough foods will require crests for the forced crack propagation (cutting) of
dietary items. It is suggested that cusps represent an adaptation to the concentration of
forces, and therefore would be more prevalent in tooth forms of smaller animals with a
smaller absolute bite force. This would predict that cusps are not required in larger
animals, with larger bite forces, and their tooth forms should be dominated by crests. This

is generally borne out in many groups of mammals.
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Chapter 1. Introduction
1.1. Functional Morphology

The awareness of the influence of morphology on function has progressed
substantially over the last few decades such that the mechanics of many biological systems
are fairly well understood. Many systems, including terrestrial locomotion, flight,
swimming, acoustics and certain aspects of feeding, have been successfully analysed using
conventional mechanics and engineering concepts of force vectors, mechanical advantage,
energetics and fluid dynamics (e.g. Alexander 1983, 1992; Bels et al. 1994). These
techniques have allowed rigorous functional analyses and the construction of useful
hypotheses from sound theoretical foundations. The use of these methods has profoundly
increased the level of understanding of the factors involved in function in these systems.
Questions of interest, such as the comparison of locomotion in bipeds and quadrupeds
(McGeer 1992) and the flight mechanics of birds and bats (Norberg 1990), have been
successfully addressed.

Like many aspects of morphology, the study of relationships between form and
function of the dentition has a long history, extending back to Empedokles and Aristotle
(Russell 1916; Kay 1975). It was recognised that the tooth forms of particular animals such
as lions and horses appeared to match their diet extremely well. Despite what in many
respects appears to be an obvious correlation, the exact reasons and the extent to which diet
and dentition are matched are still issues of great significance and in many cases are
unresolved.

Advances in understanding the function of the dentition has not been as rapid or
successful as other morphological systems. Studies of the dentition have rarely examined
function from a mechanical point of view, which is one aspect in which functional dental
morphology falls behind most of functional morphology. In many respects, questions
relating to systems like terrestrial locomotion and flight deal with structures and processes
that more closely resemble engineering problems that are more amenable to analysis
compared to investigating dental function. This thesis will examine the question of tooth
form and function in insectivorous microchiropterans by the extensive application of

engineering concepts.
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1.2. Recent Approachesin Functional Dental M or phology

There was a great resurgence of interest in tooth function starting from the late
1960s. This was encouraged by new fossil finds and interpretations (Crompton 1971;
Crompton and Sita-Lumsden 1970) along with technical and methodological innovations
such as cinefluorography to examine mastication and oral transport in mammals
(Crompton and Hiiemae 1970; Kallen and Gans 1972) and scanning electron microscopy
for analysis of dental microwear (Gordon 1982; Rensberger 1978; Ryan 1979; Teaford
1988; Walker et al. 1978). Conceptual advances have been just as important, including the
use of wear facets in reconstructing occlusal dynamics of teeth (Butler 1952; Mills 1966).
This new work was built on the foundations of earlier important work in dental function
and evolution (Butler 1941; Gregory 1920; Osborn 1888; Patterson 1956).

An important step in understanding the relations between tooth shape and function
was made with Osborn and Lumsden’s (1978) work. This paper identified some specific
aspects of tooth shape that affected function. One aspect that was not explicit in that work,
however, was expounded by Rosenberger and Kinzey (1976) and Lucas (1979), who
argued that the biomechanical properties of foods are the primary determinants of the
functional shape. This reasoning was expanded by Lucas and Luke (1984) who considered
the major tooth forms that would function best for a variety of food types, characterised by
their biomechanical properties. Blades are best for tough foods (where cracks must be
continually driven through the food), and a mortar and pestle for brittle (with self-
sustaining crack propagation) and most probably juicy foods. However, one of the most
important aspects of Osborn and Lumsden’s (1978) analysis, the identification of specific
tooth shape characteristics that could be used to assess tooth function, was lacking in the
later papers. In addition, the group of specific interest in this thesis, insectivores, was
largely ignored in this body of work.

The main line of inquiry that has attempted to relate specific aspects of tooth shape
to function and diet is due to Richard Kay and his co-workers and followers (Kay 1975,
1978, 1984; Kay and Covert 1984; Kay and Hylander 1978; Kay et al. 1978; Anthony and
Kay 1993; Benefit and McCrossin 1990; Covert 1986; Dumont et al. 2000; Kirk and
Simons 2001; Meldrum and Kay 1997; Strait 1991, 1993a, 2001; Ungar and Kay 1995;
Williams and Covert 1994) examining primates. These studies have used ‘shear quotient’
or ‘shear ratio’, a measure of relative crest length (by a criterion of subtraction or
standardised to tooth length or area or body mass), as a functional measure of tooth shape.
The length of individual crests (such as the cristid obliqua) or the sum of several crests

(crests 1-6 of Kay and Hiiemae 1974) have been used.
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Shear ratio-type measures are not used in this thesis because they do not take into
account the effect of cusp and crest shape on function. They are more indicative of the size
of the crests rather than the comparative function, which will be as greatly affected by the
non-occluding tooth surfaces as the occluding cusps and crest edges.

Strait (1991, 1993c) employed shear ratio to examine tooth form in insectivorous
mammals, where it was found that hard feeders had lower shear ratios than soft feeders.
This finding was predicted by Strait (1991, 1993c), but the reasoning behind this
expectation has been challenged (Evans and Sanson 1998).

There have been many other studies that have incorporated useful functional
analyses of teeth, or identified, expanded and/or measured some of the shape
characteristics that will influence tooth function (Abler 1992; Bryant and Russell 1995;
Evans and Sanson 1998; Frazzetta 1988; Freeman and Weins 1997; Lucas 1982; Mellett
1981, 1985; Popowics and Fortelius 1997; Rensberger 1973, 1975, 1986, 2000; Sanson
1980; Seligsohn 1977). Some of these in particular (e.g. Rensberger 1973; Seligsohn 1977)
have made very substantial contributions to the understanding of dental form, but in large
part their methods and approaches have not been followed or applied any further. Other
important developments have been made, particularly in associating enamel microstructure
with evolution and diet (Koenigswald and Clemens 1992; Koenigswald et al. 1987,
Rensberger and Koenigswald 1980; Rensberger and Pfretzschner 1992), but these are not
specifically addressed in this thesis.

Despite the significant conceptual and informational advances, few studies have
attempted a complete analysis of tooth shape to compile a comprehensive list of shape
variables that will affect function, and even fewer have measured these variables in teeth.
These steps are necessary to achieve a holistic understanding of tooth function, not just in

the theoretical sense but also in terms of the practical applications that exist in organisms.

1.3. Engineering and Tooth Function

The approach adopted in this thesis is that the form of the tooth largely dictates the
function and occlusion of the tooth (for a food of given biomechanical properties). An
understanding of how the shape and arrangement of cusps and the edges and associated
surfaces of crests affect function is critical to the reconstruction of function for a given
tooth form. The biomechanical properties of the diet will have a functional, and therefore
selective, influence on the tooth form. In view of a considerable overlap in many of the
questions that engineers and biologists tackle, the search for correlations between shape,

function and biomechanical properties of teeth and food should start with investigating the
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ways in which engineering analysis will improve understanding of tooth form and
function.

Many of the issues explored in this thesis have been addressed by mechanical and
materials engineers to some extent (Gordon 1976, 1978). The advantages of engineering
are manifold: engineers deal with a designed structure of greater simplicity in terms of
materials and structure compared to biological systems; there is a greater understanding of
the basis of the materials and structures; and they are more able to perform tightly
controlled experiments. The phenomenal success of engineering is apparent in every aspect
of modern life. These do not guarantee a perfect answer in engineering, but the major
advances in materials engineering in the last few decades are indicative of the advantages
of the current approaches.

From a mechanical perspective, there are two factors that have the most influence
on the success with which a tooth will fracture food and reduce it to small fragments if
necessary. First, the shape of a tooth will largely dictate how the stresses and strains are
applied to the food. This requires the identification of specific aspects of tooth shape that
influence function. Second, how the food responds to the applied stress and strain depends
on its material and structural properties. This is the recognition of the influence of
biomechanical properties of the diet on the function of teeth. In engineering, the first has
been considered to some extent in the design and use of machine tools, e.g. lathe tools, that
are designed to fracture materials. The second is the realm of materials engineering and
fracture mechanics.

In mechanical engineering, the function and design of machining tools have many
parallels to the bladed structures of teeth (Oberg et al. 2000; Ostwald and Mufioz 1997,
Nee 1998; Pollack 1976). A single-point machining tool has cutting edges with its faces set
at particular angles to the direction of movement and the workpiece (e.g. rake and relief
angles; Fig. 1.1). Also, it may have features to clear material away from the edge of the
tool to prevent clogging, such as a chip breaker, which is a notch or groove in the tip of the
tool (Fig. 1.1).

The other side of the equation is represented by materials engineering, which
examines the causes and consequences of stresses on materials and the mechanisms of
failure and fracture (Atkins and Mai 1985; Ashby and Jones 1996; Askeland and Phulé
2003). Materials engineering uses concepts such as stress, strain, strength, stiffness,
ductility and toughness to describe and quantify these effects. The objective of the
dentition is to fracture food while not being fractured itself, so the material properties of

both tooth and food are relevant.
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However, the application of engineering principles to biological questions is
complicated for many reasons. The principal reason is the great differences between the
disciplines of engineering and biology in the aims of study and the methods that must be
used. Engineers want to design structures that work; biologists want to understand working
structures that they had no input in designing. One of the keys to successful engineering is
a comprehensive understanding of all interactions of components within a structure before
assembly, which is normally achieved by extensive testing of the components, including
materials and component structures. Not only are biologists not privy to the results of pre-
testing, but this is not how biological structures were designed and built. Biological
structures were not planned and constructed from the ground up — in large part they are
haphazard adaptations of pre-existing structures to new uses, the products of the blind
watchmaker (Dawkins 1986). Despite the lack of foresight, organismic design has the
advantages of structural control at the atomic level and immense periods of time for
extensive testing of designs. The history of biological study is replete with examples of
how the resulting highly complex structures are extremely well adapted to their function
(Alexander 1983; Vincent 1990; Wainwright et al. 1976).

Functional morphology is essentially the reverse engineering of biological
structures, with all the mystery of why the structures exist, what their habitual function is,
and how their function can be predicted from the morphology. The contrast between
engineering and biology shows the greater requirement for prediction of function from
form in biology compared to engineering.

This difference is apparent in the limits to which current engineering cannot
confidently address biological questions. For instance, machine tool engineering practice is
largely dependent on experimental results rather than a general theory of the function of
the shape of machining tools. There has been surprisingly little analysis on the
quantification of knife shape and function for cutting ductile materials (Frazzetta 1988;
Abler 1992).

Likewise in materials engineering, there is inadequate knowledge of the processes
of fracture, particularly the fracture of biological materials, for the prediction of how
different structures will fail (Atkins and Mai 1985). This is largely due to the composite
and intricate nature of the materials and structures of organisms, so that their mode of
failure and fracture are highly complex. Engineers are mostly only interested in initial
failure or fracture of a structure, and so the majority of the work reflects this. However,
when considering the fracture of food by teeth, progressive and sustained fracture of

structures and substructures is required. Some subdisciplines of materials engineering have
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sought to deal with this issue (e.g. Lowrison 1974), and have been applied in the biological
realm (Lucas and Luke 1983a, b), but they frequently deal with relatively homogeneous
structures with properties incongruent with biological structures.

Some aspects of traditional engineering theory have been successfully applied to
teeth, such as beam theory (Van Valkenburgh and Ruff 1987; Farlow et al. 1991), but these
have limited use in their ability to model and predict the function of more complex teeth.
One very promising technique for understanding the influence of tooth shape and
biomechanical properties on function is the use of finite element stress analysis (FESA). It
is only now emerging from its embryonic stage of development, and results have begun to
reveal much about stress distribution in teeth and foods (Crompton et al. 1998; Macho and
Spears 1999; Rensberger 1995; Spears 1997; Spears and Crompton 1996; Spears and
Macho 1998; Spears et al. 1993; Yettram et al. 1976).

The arguably lack of success of functional dental morphology compared to other
areas of functional morphology can be seen to be due to the difficulty of both the
examination of the complex structures and the application of the principles established in
engineering to the biological sphere. Also, though with less relevance today, there is the
reluctance of the biologist to cross the language barrier and employ the knowledge of the
engineer.

The conceptual and operational tools developed in engineering can give great
insight into aspects that should be considered when examining biological function. But we
should be cautious of the degree to which engineering principles can be usefully
transferred to biology. Ironically, engineering concepts may be more applicable to
biomaterials than engineering materials in some cases, as the properties of the latter may
be considered to be affected by the distribution of flaws, whereas the former may be
perfect materials to which the theory is more suited (Atkins and Mai 1985).

This thesis aims to establish the relevance and usefulness of engineering principles
to functional dental morphology, particularly in terms of insectivorous dentitions, and set

out aspects of tooth shape that can be used in the prediction of tooth function.

1.4. Dilambdodont and Tribosphenic Tooth Function

Functional analysis of dilambdodont and tribosphenic molars, found in microbats,
shrews, moles and tree shrews, has largely lagged behind that of primates, with a more
derived tribosphenic or quadritubercular form, and herbivores. The first two tooth forms
are often considered primitive in the sense of being not as well adapted as the more

recently-evolved forms. This perhaps has influenced interpretation of these forms, where
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insectivore teeth are most often considered as inferior to the herbivore dentition for
herbivory, and carnivore dentition for carnivory rather than focussing on the special
adaptations required for insectivory. An important aim of this thesis is to reveal the superb
adaptations of the insectivore tooth form to an invertebrate diet. The great similarities in
the molar structure of dilambdodont when compared to zalambdodont (the molar form of
solenodons, tenrecs and golden moles) and tribosphenic (primitive mammals and some
marsupials) tooth forms mean that a firm functional foundation of the dilambdodont form
will have application in these other forms.

The superb work of Percy Butler has shown insight into many aspects of
insectivore dentition (Butler 1937, 1939, 1941, 1961, 1972, 1982, 1990, 1995, 2001). It
established many important features of the relations between premolars and molars in
development and evolution, and determined or confirmed cusp homologies along the tooth
row and among mammal groups. Other important work on the dentition and occlusion in
insectivorous mammals includes that undertaken by Mills (1966), as well as the work on
the tribosphenic form of Didelphis (Crompton and Hiiemae 1970; Crompton and Sita-
Lumsden 1970; Crompton et al. 1994; Stern et al. 1989). Comparisons of the molar
effectiveness of different insectivore forms was compared by Sheine and Kay (1977) and

(Moore and Sanson 1995).

1.5. Tooth Wear

Recognition of the value of tooth wear for the reconstruction of tooth use is now
well established through the application of techniques such as wear facet analysis and
microwear. However, on the whole, the effect of wear on the function of the tooth has still
been neglected. Studies of herbivores have revealed the influence of wear on tooth function
(Lanyon and Sanson 1986; Logan and Sanson 2002; McArthur and Sanson 1988; Skogland
1988), which are based on qualitative wear states of the molars. It would be greatly
preferable to use tooth features for which a priori predictions can be made regarding how
changes in shape with wear will affect function. For many tooth forms, particularly those
of insectivores, it has been assumed that increased wear will impede function (e.g. Verts et
al. 1999a), but no quantitative predictions or measurements have been made of worn
insectivore teeth to examine this presumption. Canine height is most frequently used as a
measure of tooth wear; this may correlate with postcanine wear but does not make any
specific prediction about the function of canine or postcanine teeth. Any measures of tooth
function, including those used in this thesis, are only valuable if they have predictive value

for worn teeth as well as unworn teeth.
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1.6. InsectivoreDietary Properties

Explicit in Lucas’s (1979) view of tooth function is the necessity for information on
the biomechanical properties and the modes of fracture of foods. However, very little work
has been done in describing the properties of the insectivore diet. Descriptions of the
invertebrates, particularly insects, as food only extended as far as concluding that some
may be hard and brittle, and some soft and ductile (Lucas 1979; Lucas and Luke 1984).

The extent of knowledge of the biomechanical properties of insects and their
constituent components has gradually increased (Hepburn and Chandler 1976; Hepburn
and Joffe 1976; Hillerton 1984; Strait and Vincent 1998; Vincent 1992a), but is still fairly
limited considering the immense range of material and structural adaptations that exist in
such a large and important group of animals.

Classifications of insects as dietary items have used ‘hardness’, either according to
a qualitative scale (Freeman 1981a) or by generalisations of hard insects as strong, tough,
stiff and brittle compared to soft insects (weak, fragile, pliant and ductile; Strait 1993c).
However, these characterisations are limited in their usefulness or have not been
quantitatively tested. This thesis aims to establish sounder principles and methods of
characterising the biomechanical properties of insects with the purpose of understanding

the influence of insectivore dietary properties on tooth form.

1.7. Microchiropterans

Despite comprising approximately one fifth of mammalian species, investigations
into most aspects of bats, including nutritional ecology, were scarce until the last few
decades. This can be explained by the difficulty in gathering data on their foraging habits
due to their crepuscular flight and aerial feeding. A significant amount of work on the
comparative and functional morphology of this group is due to Patricia Freeman’s series of
studies on Chiroptera (Freeman 1979, 1981a, b, 1984, 1988, 1992, 1995, 1998, 2000;
Freeman and Weins 1997). This work, along with comparable investigations in other
groups, stimulated a great deal of other studies relating morphology of chiropteran skull
and teeth to diet (Barlow et al. 1997; Czarnecki and Kallen 1980; Dumont 1995, 1997,
1999; Fenton et al. 1998c; Jacobs 1996; Reduker 1983; Rodriguez-Duran et al. 1993).

Examination of the diet of microchiropterans has revealed that some species appear
to specialise on certain insect groups, such as beetles or moths (Black 1974; Ross 1967,
Vaughan 1977; Warner 1985; Whitaker and Black 1976). Freeman (1979, 1981a) found
that feeding on ‘hard’ invertebrates such as beetles correlated with robustness of jaws,

areas for jaw muscle attachments, and the size of molars. Other patterns have since been
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found that relate to the biomechanical properties of the insectivore’s diet (Dumont 1995;
Strait 1993b, c). However, differentiation between specialist insectivores with regard to the

fine morphology of the molars has not been demonstrated.

1.8. Three-dimensional Tooth Modelling

A significant challenge in the comprehension of tooth form and function is the
three-dimensional shape and occlusion through time of the complex morphologies of teeth.
In the past this has not been possible, and reconstructions (at least published ones) are
generally through line drawings, which cannot hope to sufficiently indicate the relations
between teeth. Representation of the tooth in three dimensions is preferable, and various
forms of imaging or scanning technology have made this possible (Boyde and Fortelius
1991; Reed 1997; Ungar and Williamson 2000; Zuccotti et al. 1998).

Two important aspects of this can be considered. First, three-dimensional analysis
is required to understand more completely the fundamental aspects of tooth shape and the
principles of morphology for occluding upper and lower teeth. Second, measurement of
functional characteristics of teeth in three-dimensional space requires a full representation
of teeth. Revolutions in computer and imaging technology have resulted in microscopes
and computing software and hardware that can carry out these onerous tasks. Fluorescence
laser confocal microscopy is able to build a three-dimensional model of an object,
including small mammalian teeth. Any measurement that can be carried out by
conventional calipers or protractors can be made on the teeth reconstructions, as well as
surface areas, volumes and curvature, which would have been either impossible or
laborious with previous methods. Virtual reality modelling language (VRML) allows the
construction of three-dimensional computer models of any shape, along with real-time
movement of objects. Simplified models of VRML teeth can be used to investigate
principles of tooth shape and occlusion, and VRML reconstructions of upper and lower
mammalian teeth can be occluded in virtual space to scrutinise the occlusion of

mammalian molars in the full three dimensions for the first time.

1.9. Structureof Thesis

The main objective of this thesis is to demonstrate that the types of rigorous
functional analyses carried out in other morphological systems are possible in dental
systems. To achieve this, it sets out to attain a greater understanding of the influence of
insectivore tooth shape on function through use of tool engineering and understanding of

occlusal geometry. The result should be a more predictive relationship between the
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important aspects of wear and the biomechanical properties of foods on the quantitative
function of insectivore teeth.

Chapter 2 establishes the functional characteristics of cusps and crests that can be
gleaned from engineering principles or previous dental studies. These are used in the
exploration of all possible tools (morphospace) to find those tools that best meet functional
criteria. The final shapes from this exploration are used in Chapter 3 to construct three-
dimensional functional models of carnivore and insectivore molars and premolars. Chapter
4 describes the use of fluorescent confocal microscopy to generate three-dimensional
reconstructions of microchiropteran teeth. These models can be used for the measurement
of the functional parameters established earlier, and the reconstruction of occlusal
dynamics of upper and lower molars. A comprehensive study of the molar form of a single
microchiropteran species forms the basis of Chapter 5, which also examines the effect on
function due to tooth wear. Chapter 6 explores the ways in which insects have been
characterised as a dietary item, and specifically looks at the ‘hardness’ of invertebrates. It
sets out to validate the use the of cuticle thickness as a measure of the biomechanical
properties of invertebrates. Chapter 7 investigates the tooth form of ‘hard-feeding’ and
‘soft-feeding’ insectivorous microchiropterans in an effort to elucidate the influence of
dietary properties on the tooth form of insectivores. A discussion on the scaling of tooth
sharpness forms Chapter 8, setting out a theoretical model for the scaling of sharpness and
incorporating data gathered in this thesis with published data. The thesis discussion
(Chapter 9) looks more broadly at some of the issues raised throughout the thesis, such as
the comparative function of tribosphenic-like and carnassial tooth forms and the influence

of size and diet in mammals generally.
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Fig. 1.1. a) Dimensions of a single-point cutting tool; b) one form of chip breaker on a

cutting tool designed to help the clearance of fragments. (Redrawn from Oberg et al.

2000.)
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